
Comprehensive Medicinal Chemistry III 

30010. Fingerprints and other molecular descriptions for database 

analysis and searching  
 

Dávid Bajusz
1
, Anita Rácz

2,3
, and Károly Héberger

2
 

1
 Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Institute of 

Organic Chemistry Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 

Budapest, Hungary  

E-mail: bajusz.david@ttk.mta.hu Phone: + 36 1 382 69 74 

2
 Plasma Chemistry Research Group, Institute of Materials and Environmental Chemistry, 

Research Centre for Natural Sciences, Hungarian Academy of Sciences,  

Magyar tudósok krt. 2, H-1117 Budapest, Hungary 

E-mail: racz.anita@ttk.mta.hu and heberger.karoly@ttk.mta.hu Phone: + 36 1 382 65 09 

3
 Department of Applied Chemistry, Szent István University, Villányi út 29-43, H-1118 

Budapest, Hungary 

 

 

 

 

Cite as follows: 

 

Dávid Bajusz, Anita Rácz, and Károly Héberger*, Chapter 3.14 – Chemical Data Formats, 

Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching.  

In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 

Comprehensive Medicinal Chemistry III - Volume 3 Editor-in-Chiefs Samuel Chackalamannil, 

David P. Rotella and Simon E. Ward; In silico methods Eds: A. Davies, C. Edge, 

Available online 13 June 2017, Pages 329–378  

Oxford: Elsevier. Elsevier (2017) 

http://dx.doi.org/10.1016/B978-0-12-409547-2.12345-5 

ISBN: 9780128032008 

 

  



Abstract 

In this chapter we strive to provide a comprehensive but reasonably compact overview of the 

various possibilities for the computational representation of molecules. This includes a detailed 

introduction to the most commonly used chemical file formats (complemented with a few novel 

or more specific representations), a thorough overview of the theoretical backgrounds of various 

molecular fingerprints and descriptors, and a complete subchapter devoted to similarity measures 

and data fusion approaches. Finally, we provide a list of the most important online chemical 

databases and conclude the chapter with a short outlook on present trends and future 

expectations. 
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1. Introduction 

Molecules possess an abundance of properties. 3D structure, atom connectivity, shape and 

physicochemical descriptors such as molecular weight or logP (logarithm of the n-octanol/water 

partition coefficient) are just a few of such properties that are usually of interest in the 

overlapping domains of cheminformatics, molecular modeling and drug design. Many of these 

properties have a quite intricate nature: for example 3D structure, which can rarely be 

characterized with a single conformation (but instead an ensemble of conformations), or even 

simple properties, such as molecular weight that depends on the isotope distribution of the 

composing atoms. The affinity of the molecule towards various types of environment (such as a 

physiological solution, a mixture of solvents or a particular protein binding pocket) – which is of 

particular interest in the mentioned fields – expands the property space of even a single 

compound beyond comprehension. 

As such, it is currently impossible to give a perfectly accurate and complete computational 

representation of a molecule that accounts for its every possible aspect; however in most cases 

this is not necessary. Nonetheless, one should always be aware of the implied simplifications in 

the computational representation of molecules, especially when making predictions based on 

them. In other words, the main responsibility of the computational chemist (or drug designer or 

cheminformatician) is to know, which aspects of a molecule are important to be considered for 

the given application. If it is so, then one can utilize the predictive power of computational 

chemistry techniques to provide invaluable guidance for medicinal chemistry endeavors. 

In the recent decades, medicinal chemistry has been armed with a growing number of large, 

highly featured and annotated databases. These databases contain the ever growing public (and 

proprietary) knowledge that is being aggregated by medicinal chemistry research and they 

provide an invaluable foundation for retrospective analyses and prospective/predictive work. 

Databases containing chemical information can be queried in a number of ways, each of which 

requires specific types of molecular representations. Substructure searches require an efficient 

chemical query language (e.g. SMARTS), while similarity searches need means to quantify the 

similarity of two molecules and appropriate structural representations that allow for such 

operations (e.g. molecular fingerprints). It is also common to query databases for specific values 

or ranges of quantifiable molecular properties such as molecular weight or logP. 

In this chapter, we provide a comprehensive overview of molecular representations, including file 

formats, fingerprints and molecular descriptors – with an emphasis on those that are widely 

applied in works involving large databases. We also dedicate a subchapter to molecular similarity 

(and the diverse methodologies that have been developed to elaborate this sub-field), as a 

ubiquitously applied concept in cheminformatics and drug design. Last but not least, we provide 

a short overview of the most prominent online resources of molecular information that ultimately 

fuel most of the computational chemical research that involves a consideration of large 

compound sets. 

 

  



2. Chemical file formats and data structures 

The means to store chemical information started to develop in parallel with the first computers (in 

fact, earlier than computers became standard work tools). Since that time, generations of file 

formats have been developed (and have occasionally become obsolete). Since each file format 

was developed with a specific purpose, each encodes different aspects of the structure and 

properties of a molecule. Some of them are optimized for compactness, while others allow the 

storage of various properties or other information besides the 3D structure of the molecule. 

A complete overview of the available chemical file formats would be a futile effort – and 

probably pointless, as there is little relevance (from a cheminformatics point of view) of covering 

file formats that are developed for e.g. specific molecular dynamics or quantum chemistry 

programs. Instead, we will dedicate this subchapter to introduce the reader to today’s most widely 

used, cross-platform, human-readable chemical file formats, with an emphasis on their use in 

database searching and other subfields of cheminformatics. Throughout these subsections, we 

will occasionally refer to the structural representation of L-phenylalanine (see Figure 1) in the 

various file formats as a common example. 

 

Figure 1. Neural (1) and zwitterionic (2) forms of L-phenylalanine. The α-carbon is annotated 

with the absolute configuration of the stereogenic center. 

Before proceeding with the description of specific file formats, we make note of a convenient 

means for the interconversion of various chemical file formats. While many modeling software 

suites are capable of handling multiple file formats (and consequently, to convert them), 

computer programs dedicated specifically for this tasks also exist. Probably the best known 

example is Open Babel, an open source software for the interconversion of chemical structures 

between an abundance of file formats (over 110 for the current version).
1
 

2.1 Line notation formats 

The principle of line notation formats is to store chemical structures unambiguously, but as 

compactly as possible (usually on a single line). In fact, the IUPAC Recommendations on 

Organic and Biochemical Nomenclature can be thought of as a line notation system as well.
2
 

(Though ironically it is not necessarily more human-readable than e.g. the SMILES format, 

especially for large molecules.) In that “format”, the representation of L-phenylalanine would be 

(2S)-2-amino-3-phenylpropanoic acid (or somewhat less intuitively, (2S)-2-azaniumyl-3-



phenylpropanoate for the zwitterionic form). While IUPAC names can unambiguously describe 

arbitrarily complicated molecules, the names themselves are often very complicated as well. 

Also, a substructure can usually be specified in multiple ways (depending on other groups, the 

order of priority, etc.), which essentially removes text-based IUPAC name queries from the 

toolbox of substructure searching. 

From the available tools for chemical identification and documentation, today’s standard is the 

CAS (Chemical Abstracts Service) Registry number.
3,4

 CAS maintains a constantly updated 

database (the CAS Registry) to store every reported chemical structure (cca. 111 million at the 

time these lines are written) with a uniquely assigned identifier, the CAS Registry number (e.g. 

for L-phenylalanine: 63-91-2). In addition to the database itself, the CAS Registry powers the 

two major chemical information services of CAS: Scifinder (for querying chemical structures and 

reactions, primarily in the literature)
5
 and STN (a search engine that provides access to patent 

content).
6
 While CAS Registry numbers are quite compact linear notations, they do not provide 

direct, human-readable information on molecular structure, nor relation/proximity to another 

substance (e.g. the CAS number for racemic phenylalanine is 150-30-1). 

Efforts to provide compact means of chemical structure representation using line notations date 

back to the late 1940’s when the Wiswesser Line Notation (WLN) was introduced.
7
 Nowadays, 

multiple line notation formats are available. While we will only briefly cover those that are 

mostly of historic interest (e.g. WLN and ROSDAL), we introduce today’s standard tools such as 

SMILES and InChI in more detail. 

2.1.1 Simplified molecular-input line-entry system (SMILES) 

SMILES was introduced by Weininger in 1987.
8
 By that time, several line notation systems have 

already existed and their flaws were also well-known, which provided a need – but at the same 

time also a knowledge base – for the development of a mature, but easily understandable line 

notation language. SMILES provides a structure specification tool that is easily handled by both 

computers and humans, which is probably the main reason for its success in the past three 

decades. During this time, SMILES have become the de facto standard of molecular line 

notations, and a basis of inspiration for other line notation systems, such as SLN (see subchapter 

2.1.3.3). A concise overview of the format follows (a more complete documentation is available 

in the original SMILES paper
8
 and on the website of Daylight

9
). 

A SMILES string is a series of characters specifying primarily the heavy atoms (and optionally, 

hydrogens and bonds) of the molecule. Atoms are represented by their atomic symbols (first letter 

in upper case, second letter in lower case), and by default must be enclosed in square brackets: 

however, this is not required for elements in the “organic subset”: B, C, N, O, P, S, F, Cl, Br and 

I, if the number of hydrogens conforms to the lowest normal valence minus those bonds that are 

explicitly given. Neighboring atoms are connected by bonds (single by default), branches are 

enclosed in parentheses. Atoms in aromatic rings are denoted with lower case letters. Hydrogens 

must be explicitly specified by default, but they are implied in the absence of square brackets 

(which is most often the case). Single and aromatic bonds are implied, but they can be specified 

explicitly as well with “–“ and “:”, respectively (double and triple bonds are denoted by “=” and 

“#”). Attached hydrogens, charge, stereochemistry and isotope numbers can be specified inside 



the square brackets of the given atom, e.g. [15NH4+] denotes an ammonium ion with a 
15

N atom. 

As an example, SMILES strings of L-phenylalanine are provided in Figure 2. 

 

Figure 2. SMILES strings of the neutral (above) and zwitterionic (below) form of L-

phenylalanine. Breaking points of the phenyl ring are labeled as number 1. Attached hydrogens, 

charges and stereochemical information are provided inside the square brackets. Note that the 

order of the substituents of the α-carbon is interchangeable, but affects the specified 

stereochemistry of the α-carbon: looking from the nitrogen towards the α-carbon, the three 

following substituents (in sequential order) can appear counter-clockwise (@) or clockwise 

(@@). 

Probably the greatest drawback of SMILES is the lack of an internal canonicalization approach. 

(As seen on the above example, atoms can be mapped to the SMILES string in an arbitrary 

order.) While Weininger and colleagues have published a canonicalization algorithm shortly after 

the release of the SMILES format itself, their approach could not handle stereochemistry.
10

 

Moreover, this method was included in the commercial software of Daylight
11

, resulting in many 

different variations of canonicalization being implemented in several cheminformatics toolkits. 

Recently, a universal SMILES representation based on the InChI canonicalization procedure was 

introduced by O’Boyle.
12

 Schneider et al. have developed and published a robust, open-source, 

freely available SMILES canonicalization algorithm.
13

 They conclude that their canonical 

labeling algorithm (which is also available in the open-source cheminformatics package RDKit
14

) 

“could be combined with the universal SMILES representation proposed by O’Boyle”. 

SMILES is also able to specify reactions. Notably, two available “grammars” for specifying 

reactions in SMILES are reactant>>product and reactant>agent>product. Disconnected 

molecules (e.g. two reactants) are separated by a dot (this is also available for single compounds 

that have e.g. counterions). The functionality of SMILES has also been extended to support 

substructure querying and matching (SMARTS) and the description of generic reactions 

(SMIRKS). We well briefly cover these extensions in the following subchapters. 

2.1.1.1 Smiles arbitrary target specification (SMARTS) 

SMARTS is an extension of the SMILES language that was developed with the explicit intention 

to provide a query language for substructure searching.
15

 As a result, any SMILES string is an 

acceptable SMARTS query by definition. To facilitate substructure searching, a number of 

additional features have been implemented for SMARTS, to allow for more general queries. 

These include atomic primitives (for example * denotes any atom, while a denotes any aromatic 

atom), bond primitives (e.g. ~ for any bond, @ for any ring bond) and logical operators (e.g. ! for 

not, & for and). Another interesting feature is recursive SMARTS, which enables to define an 

atomic environment starting with the atom of interest in the following form: $(SMARTS). With 

these features, quite complex queries can be formulated, e.g. C[$(aaO)&$(aaaN)] would match 



any molecule that has a methyl carbon as a substituent of an aromatic ring with an oxygen in an 

ortho position and a nitrogen in a meta position. 

Like SMILES, SMARTS is able to handle – and in particular, to query – reactions. A reaction 

query may consist of reactant, agent and product parts (all optional), as introduced briefly above. 

The queries can be run against a set of “target” reactions (also specified in the SMILES format). 

Atom mapping is also supported in the query and the target, thus changes on a specific atom can 

be specified. For example, while C=O>>C-O would match any reaction that has a molecule with 

a C=O group on the reactant side and a molecule with a C-O moiety on the product side, 

[C:1]=O>>[C:1]-O is specific to the same carbon atom with a doubly bonded oxygen on the 

reactant side and a singly bonded oxygen on the product side. However, this would still match 

e.g. a carboxyl group that is unchanged during the reaction as the oxygen was not specified to be 

the same atom on the reactant and product sides. Transformation of the double bond to a single 

bond is thus specified with the [C:1]=[O:2]>>[C:1]-[O:2] query. (However, to produce any 

matches, the atoms must be mapped in the target reactions as well!) A complete documentation 

of SMARTS is available on the website of Daylight Inc.
15

 

2.1.1.2 SMIRKS 

SMIRKS is a hybrid of SMILES and SMARTS, developed to provide a means to specify generic 

reactions.
16

 It is a restricted version of reaction SMARTS with a set a rules that act as constraints. 

For example, the transformation of the oxo group in the SMARTS example above (see previous 

subchapter) can be specified with the following SMIRKS transform: 

[*:1][C:2](=[O:3])[*:4]>> [*:1][C:2]([O:3][*])[*:4] 

In some sense, SMIRKS can be considered the opposite of reaction SMARTS. While the latter 

can be used for querying already defined reactions, the former can be applied to enumerate 

reactions based on a generic reaction. (A recent example is a paper of Guasch et al., describing 

the enumeration of ring-chain tautomers.
17

) A complete description of SMIRKS is available on 

the website of Daylight Inc.
16

 

2.1.1.3 MQL 

The Molecular Query Language (MQL) was developed in 2007 with the intention to provide a 

way to define more complex, feature-rich substructure queries.
18

 MQL is based on the SMILES 

language and a context-free grammar, implementing concepts from Unix-style regular 

expressions such as brackets for grouping, “(…)?” for optional singular occurrence, “(…)*” for 

optional occurrence zero or more times, etc. MQL is open-source and was developed to be 

compatible with external cheminformatics toolkits, such as the Chemistry Development Kit 

(CDK).
19,20

 

2.1.2 International Chemical Identifier (InChI) 

While it is slightly less human-readable than SMILES (especially for complicated structures), 

InChI is a fully featured, flexible and standardized line notation.
21,22

 It was developed with the 



support of IUPAC (International Union of Pure and Applied Chemistry)
23

 with principal 

contributions from NIST (U.S. National Institute of Standards and Technology)
24

 and is 

maintained by InChI Trust, a non-profit organization established for this purpose.
25

 This signifies 

some of the main advantages of InChI, i.e. that it is free, open-source and is maintained by a 

single organization (meaning that there are no concurrent, parallel implementations). 

 

Figure 3. InChI string of L-phenylalanine, composed of the following layers: prefix 

(“InChI=1S/”), empirical formula, skeletal connections (“/c”), hydrogens (“/h”) and 

stereochemistry, composed of three sublayers: tetrahedral centers (“/t”), and two indicator layers 

(“/m” and “/s”). The InChI string for the zwitterionic form is identical to the neutral form, as they 

are derived from the same core parent structure and have the same number of protons. 

Compared to SMILES, InChI employs a greatly different logic (see Figure 3 for the InChI of L-

phenylalanine as an example). An InChI code is made up of several layers separated with forward 

slashes (“/”), each of which presents specific information on the molecular structure. While some 

layers are mandatory, other layers (providing more subtle structural features) are optional. Hence, 

InChI is capable of providing molecular information at different levels of detail. We summarize 

the most important InChI layers and their syntax in Table 1. 

Table 1. InChI layers and sublayers (with L-phenylalanine as an example, where applicable).
22

 

Layer Syntax example Comment 

Prefix 
InChI=1/ 

InChI=1S/ 

Denotes the major version number (currently 1, or 1S for 

standard InChI) 

Formula C9H11NO2 

Represented according to the Hill convention (carbons first, 

then hydrogens, then other elements in alphabetical order). 

Canonical numbers are assigned to heavy atoms in the order 

they appear in the formula. 

Skeletal 

connections 

/c10-

8(9(11)12)6-7-

4-2-1-3-5-7 

Connections between skeletal atoms specified with their 

canonical numbers. Branches are specified in parentheses. 

Hydrogens 

/h1-

5,8H,6,10H2,(H,

11,12) 

Comma-separated list of the positions of hydrogen atoms in 

three sublayers: (i) bridging hydrogens (if applicable), (ii) 

immobile hydrogens, (iii) mobile hydrogens. For L-

phenylalanine, no bridging hydrogens are present, heavy 

atoms 1 through 5 (phenyl ring) and 8 (α carbon) are bonded 

to one hydrogen atom, while 6 (methylene) and 10 (nitrogen) 

to two. One hydrogen is shared between atoms 11 and 12 

(carboxyl oxygens). 

Charge /q+1 Charge sublayer: net charge of the core parent structure. 

 /p+1 
Protonation sublayer: net number of protons removed from or 

added to the core parent structure. 

Stereo 

chemistry 
/b4-3+ Z/E configuration of double bonds. 



 /t8- Configuration of stereogenic centers. 

 /m0 

Indicator sublayer of “/t”: specifies the stereo arrangement 

relative to the canonicalized core parent structure. (“/m0” for 

identical, “/m1” for inverse. Only for “/s1”.) 

 /s1 
Indicator sublayer of “/t”: specifies if absolute (“/s1”) or 

relative (“/s2”) stereochemistry is provided. 

Isotopic /i12+1 

Specifies non-natural isotopes. In the example: atom 12 

consists of the isotope with mass increased by unity with 

respect to the natural value. May have its own stereochemistry 

sublayer. 

FixedH /f10H3 

Lists the exact positions of tautomeric (mobile) hydrogens. 

May have its own formula, charge and stereochemistry 

sublayers. 

A great advantage of InChI codes is that they are readily canonicalized at the time of generation, 

thus the relationship between substance and InChI code is mutually unambiguous. (Canonical 

atom numbers are assigned to elements in the order they appear in the empirical formula, i.e. first 

to carbons, then nitrogens, etc.) Further standardization was achieved with the introduction of the 

Standard InChI, which was designed to enable interoperability between large databases and web 

resources and “distinguishes between chemical substances at the level of ‘connectivity’, 

‘stereochemistry’, and ‘isotopic composition’.
22

 

2.1.2.1 InChIKey 

A drawback of InChI strings is that they can be really long for big molecules, which makes them 

unfit for web search queries. To remedy this deficiency, InChIKey, a compact hashed code 

derived from InChI was developed.
22

 InChIKey compresses the information content of an InChI 

string to a fixed length of 27 characters in the following format:  

AAAAAAAAAAAAAA-BBBBBBBBFV-P 

The first 14 characters encode the core molecular constitution (formula, connectivity, hydrogens 

and charge), while the first 8 characters of the second block encode advanced structural features 

(stereochemistry, isotopic substitution, exact position of mobile hydrogens, metal ligation data). F 

is a flag for Standard (S) or non-standard (N) InChI, V denotes the version (currently A, meaning 

version 1), and P is a protonation flag (N for neutral and other letters for various protonation 

states). By definition, the first block is the same for substances sharing the same molecular 

skeleton. As an example, the InChIKey of L-phenylalanine is: COLNVLDHVKWLRT-

QMMMGPOBSA-N. 

A key consideration in the design of the InChIKey was the compatibility with search engines. 

Thus, InChIKeys only contain uppercase letters and are restricted to a fixed length. While 

InChIKey collisions (i.e. two structures having the same InChIKey) are theoretically possible, 

their likeliness has been shown to be practically nonexistent in theory and in practice as well.
26

 A 

disadvantage of InChIKey is that the chemical structure cannot be restored algorithmically. 

However, publicly available InChI Resolvers provide a lookup service for this task.
27

 



2.1.3 Other line notation formats 

2.1.3.1 Wiswesser Line Notation (WLN) 

Once a widespread tool in chemical database searching
28

, the Wiswesser Line Notation is now 

mostly of historic interest. It was the first computer-processable line notation system, introduced 

in 1949.
7
 It uses alphanumerical characters and a set of special characters (to indicate rings and 

substitution positions).
29

 It makes use of letters not only to encode individual atoms, but also – 

quite intuitively – to denote common structural features (for example, the letters X and Y denote 

branched chains of X- and Y-shapes). This approach has enabled a great extent of 

compactification (for example the WLN code for phenylalanine would be “VQYZ1R” – only six 

characters!) and WLN was applied for indexing large chemical databases, such as the Chemical 

Structure Index (CSI) or the Index Chemicus Registry System (ICRS).
30

 However, the notation 

was error-prone and difficult to code and with the advent of connection table formats, it has 

gradually lost its importance. 

2.1.3.2 Representation of Organic Structures Description Arranged Linearly (ROSDAL) 

The ROSDAL notation was developed in 1985 in the Beilstein Institute and has powered the 

Beilstein DIALOG system (or Beilstein-Online).
30

 It is quite intuitive, but not easily readable: 

each atom (other than hydrogens) is assigned a unique number and the connections between the 

atoms are listed sequentially, e.g. for phenylalanine: “1O-2=3O,2-4-5N,4-6-7=-12-7”. As seen, 

heteroatoms (but not carbons) are specified with their chemical symbols, while bonds are denoted 

with the special characters - (single), = (double), # (triple) and ? (for any connection), and 

alternating bonds can be simplified, e.g. the substring denoting the phenyl ring is “7=-12”. A 

great drawback of this notation is that atoms are arbitrarily numbered and there is no unique 

representation of a molecule. Despite being mostly obsolete, some chemical drawing packages 

(such as ChemDoodle) still support the ROSDAL notation.
31

 A common deficiency of WLN and 

ROSDAL is the lack of support for important structural features such as ions and 

stereochemistry. 

2.1.3.3 Sybyl Line Notation (SLN) 

The Sybyl Line Notation was developed at Tripos (now a subsidiary of Certara) and it was 

published in 1997.
32

 In many senses, SLN is very similar to the SMILES notation, although they 

employ different concepts regarding the representation of certain features. For example in SLN, 

aromaticity is a property of the bonds, not the atoms (in contrast to SMILES): aromatic bonds are 

always explicitly represented with a colon. Each atom with a ring closure is assigned an ID 

number in square brackets (e.g. “[1]”) and subsequent connections to a previously defined ring 

closure atom are specified with a commercial at symbol, e.g. “@1”. In addition, square brackets 

are also used to specify properties of atoms and bonds in a [property=value] format, e.g. a double 

dative bond is encoded by the following substring: „=[type=dative]”. As an example, SLN 

strings for L-phenylalanine are provided in Figure 4. 

In 2008, the functionality of the SLN language was substantially expanded: support for reactions, 

queries and virtual combinatorial libraries was implemented.
33

 While SLN is a fully featured and 



versatile line notation language, its use is less common nowadays, possibly due to the decreased 

popularity of the Sybyl modeling suite. 

 

Figure 4. SLN strings for the neutral (above) and zwitterionic (below) forms of L-phenylalanine. 

Hydrogens may or may not be specified explicitly. Formal charges are implemented as atomic 

properties, as well as absolute configurations, here specified with the “[S=S]” substring. 

2.2 Chemical table files 

Chemical table files are the standard formats for the 3D representation of small molecules, but 

they are widely used to store 2D structures as well. Though not as compact as line notations, they 

are capable of storing specific 3D conformations, partial charges, database fields (such as 

molecular properties), etc. We briefly review the two most prominent tabular formats in this 

subchapter: the Ctab-based format family (“MDL molfiles”) and the Tripos mol2 format. 

2.2.1 Connection table (Ctab) based file types 

Several file formats have been developed at Molecular Design Limited that are built around the 

common concept of connection table (Ctab) blocks.
34

 These include most notably mol files for 

storing a single molecule, sdf files (or SDfiles) for storing multiple molecules and associated 

data, as well as rxn and rdf files (or RDfiles) for storing single and multiple reactions, 

respectively. While the Ctab format is quite rich in features and optional fields, some of its 

functionalities are now rarely used or obsolete. Here we will only review its most important 

features, while we refer to the work of Dalby et al. for a more detailed description.
34

 

The connection table (Ctab) consists of various blocks in a fixed order: the counts line, the atom 

block, the bond block, two optional blocks (atom list and Stext) and the properties block. The 

counts line specifies the total number of atoms and bonds in the molecule (among others), the 

atom and bond blocks list the coordinates (and other properties) of the atoms and the 

specification of the bond, while the properties block contains additional information on charge, 

radicals, isotopes, etc. and is always terminated by “M  END”. (See Figure 5 for the Ctab of L-

phenylalanine.) 

The Ctab itself is preceded by three lines – which can contain the molecule title and information 

about the program used for the production of the file – and is followed by data fields in sdf files, 

specified in a two-line format, where the first line is the data header – starting with “>” and 

specifying either the field name or the field number in the associated database – and the second 

line contains the data value. In multiple molecule formats (such as sdf), entries are separated with 

a line containing four dollar signs (“$$$$”). 



 

Figure 5. Ctab block of the zwitterionic form of L-phenylalanine. (Written with Chemaxon 

Marvin.
35

) A) The counts line contains the numbers of atoms and bonds (both 12), the chirality 

flag (1, as the molecule is chiral), the Ctab version (V2000) and some additional properties. B) 

The atom block specifies the 3D coordinates, atom symbol and various properties (such as mass 

difference, charge, hydrogen count) of each atom. In particular, the second column after the atom 

symbols contains formal charges (where 3 and 5 encode a charge of +1 and -1, respectively) and 

the third column specifies the atom stereo parity (see the work of Dalby et al. for a detailed 

specification).
34

 C) The bond block lists the bonds, specifying the numbers of the first and second 

atoms, the bond type (1 for single, 2 for double, etc.), the bond stereo specification and a few 

additional properties. D) The properties block can have a number of “M  XXX” entries that 

specify additional properties, and is always terminated by “M  END”. Here, the “M  CHG” line 

specifies (from left to right) that there are two atoms with formal charges: atom number 1 with a 

formal charge of 1 and atom number 4 with a formal charge of -1.  

While Ctab formats are “the closest thing cheminformatics has to a universally-adopted 

standard”, some argue that they are out-of-date.
36

 It is worth to note that the format has been 

updated several times to resolve known issues. In 1995, the next-generation V3000 format was 

introduced by MDL (Molecular Design Limited) to overcome known limitations of the V2000 

format, such as the hard limit on the number of atoms and bonds (999 in V2000) or the handling 

of partially defined stereochemistry. (However, the position of V2000 as the de facto default 

format has been more or less unchanged ever since.) In 2011, Clark proposed further changes to 

enable the handling of zero-order bonds and explicitly specified count of attached hydrogens in a 

backwards compatible manner, thus extending the scope of Ctab files to store non-organic 

substances, such as metal complexes.
37

 Nonetheless, the superfluous atom specification and the 



lack of extensibility (among other known issues) constitute a valid base to criticism of the MDL 

Ctab format and call for an alternative, 21st century lingua franca for chemical information 

management.
38

 

2.2.2 Tripos mol2 format 

Compared to Ctab files, the mol2 format (developed at Tripos) offers a more flexible (and 

customizable) structure for chemical data storage.
39

 One of the most important changes is that 

mol2 files are “free format” files, meaning that the widths of the various data fields are not fixed. 

(Also, empty lines are ignored and comments can be specified on lines starting with #.) 

Additionally, a mol2 file consists of so-called “records” (similar to the sub-blocks of the Ctab 

block) that may specify diverse types of information. Most of the records can be omitted, but the 

MOLECULE, ATOM and BOND (and for some programs, the SUBSTRUCTURE) records are 

universally used. Other important features are the inclusion of partial charges by default and the 

concept of substructures, which effectively extends the usage of the mol2 format to the domain of 

macromolecules (e.g. proteins). As a reference, the mol2 entry of the zwitterionic L-

phenylalanine is presented in Figure 6. 

 

Figure 6. Zwitterionic phenylalanine, mol2 entry. (Written with Open Babel.
1
) A) The 

MOLECULE record by default lists the molecule title (here, ***** denotes that it was not 

supplied), a line containing the numbers of atoms (12), bonds (12), substructures (0), features (0) 

and sets (0), the molecule type (SMALL) and the charge type (GASTEIGER). B) The ATOM 



record lists the atoms in the following format: atom number, name, 3D coordinates, atom type, 

substructure ID, substructure name and charge. C) The BOND record lists the bonds in the 

following format: bond number, 1st and 2nd atoms and bond type (with ar for aromatic). 

Drawbacks of this file format include the lack of stereochemistry support in the absence of 3D 

coordinates, and the lack of a unified format specification: while mol2 was originally developed 

for the Sybyl software suite of Tripos, now each program implements the mol2 format with slight 

differences. 

2.3 Other formats 

The file formats covered so far are optimized for their usage in chemistry-related applications, 

mostly covering the domain of small molecules. The treatment of macromolecules (such as 

proteins and nucleotide chains) requires specific features, which led to the evolution of the 

specialized file formats of this domain. Of these, we will concisely cover the two that are 

probably most often encountered by computational medicinal chemists: pdb files and FASTA 

sequences. In addition, we briefly introduce the reader to novel chemical data management 

formats and tools, such as the Chemical Markup Language and structure recognition approaches. 

2.3.1 Protein Data Bank file format (pdb) 

The pdb format was introduced in 1992 as the official format specification of the Protein Data 

Bank (the standard global repository of experimentally solved macromolecular structures).
40

 

Since a great portion of medicinal chemistry-related modeling work deals with macromolecules, 

the use of pdb files is ubiquitous in this field. 

Pdb files are fixed format and they consist of single-line records (starting always with the record 

type). The diversity of record types allows for the specification of highly detailed information. 

Atom information is stored in ATOM and HETATM records (the latter is used for non-polymer 

entries, such as waters or small molecules), while bond information is stored in CONECT 

records. Atom blocks (corresponding to polymer chains) are terminated with TER records. A 

more thorough overview of the different types of records is provided in the official 

documentation of the PDB file format.
41

 As an example, we provide the ATOM section of a 

phenylalanine residue from an actual PDB entry in Figure 7. 



 

Figure 7. ATOM section of a phenylalanine residue from a PDB entry. The record type (ATOM) 

is followed by the atom number, atom type, residue type, chain identifier, residue number, the 3D 

coordinates, the occupancy and temperature factor values and element symbol (followed by the 

formal charge, where applicable). This example highlights a drawback of fixed format files: 

structures with more than 9999 residues would be problematic to represent, as only four character 

positions are specified for residue numbers (characters 23-26) and the format does not allow any 

overflow (character 22 is reserved for the chain identifier). 

A great advantage of the pdb format is the standard atom typing that was introduced for the 

common amino acids, nucleotides, cofactors, etc. These atom names are based on IUPAC rules
42

 

and they are also listed in an appendix of the original pdb format documentation.
43

 Their use 

eliminates the need to explicitly specify the bonds in the mentioned residue classes, saving a 

great amount of space in pdb files (however, they do have to be specified if non-standard atom 

names are given). 

Another widely used format for crystallographic data is the Crystallographic Information File 

(cif).
44,45

 A merit of cif (in comparison with pdb) is that it is a free format – allowing for more 

flexibility (and removing any limitations on the number of atoms, residues or chains). On the 

other hand, it is slightly less human-readable than pdb. By default, structures can be downloaded 

in both formats from the Protein Data Bank (in fact, the standard archive format of PDB is 

PDBx/mmCIF – a customized version of cif – since 2014).
46

 In addition, an XML-based 

representation of the pdb format, PDBML (Protein Data Bank Markup Language) has been 

developed and published, and is available in the Protein Data Bank.
47,48

 While the XML 

implementation can provide better interoperability (see subsection 2.3.3), this format currently 

lacks the compactness of pdb files. 

2.3.2 FASTA 

FASTA is a format that was introduced in a DNA and protein sequence alignment software of the 

same name and it has been the de facto standard format for DNA and protein sequences ever 



since, owing to its simplicity.
49

 It is essentially a sequence of one-letter amino acid (or nucleic 

acid) codes and special characters (X for any residue, - for gap and * for sequence termination) 

with a single description line (the first line of the file, starting with “>”). 

Due to their compactness, fasta files (or more generally, one-letter amino acid sequences) are the 

ideal format for querying macromolecular databases on the basis of sequence identity/similarity. 

(This type of database querying is often needed in homology modeling and other domains of 

computational medicinal chemistry.) Such tasks can be decomposed to two (consecutive) 

questions: (i) how can I find the optimal alignment of two protein sequences, and (ii) how can I 

quantify the homology/similarity between the two aligned sequences? 

While the basics of sequence alignments have been established as early as in the 1970 work of 

Needleman and Wunsch
50

, the BLAST (Basic Local Alignment Search Tool) algorithm (which is 

considered the standard tool for sequence-based similarity searches) was introduced in 1990 by 

Altschul et al.
51

 In contrast to the approach of Needleman and Wunsch, which optimizes the 

overall alignment of the two sequences, BLAST is a local similarity algorithm, seeking only 

relatively conserved subsequences. BLAST (along with its numerous specialized versions) 

powers a web service of the same name, maintained by the National Center for Biotechnology 

Information (NCBI).
52

 

For quantifying the similarity between two aligned sequences, scoring functions based on 

substitution matrices are usually applied. Substitution matrices contain additive score 

contributions for each possible exchange of amino acid A to amino acid B. After summing these 

score contributions, the alignment with a higher score is better. (The two most commonly used 

substitution matrix types are Point Accepted Mutation (PAM) matrices
53

 and Blocks Substitution 

(BLOSUM) Matrices.
54

) The introduction of gaps is usually allowed, but penalized in the overall 

score. The BLAST web server also returns an Expect value (or E-value) for each alignment, 

which is the number of BLAST hits that are expected to result by chance with the observed score 

(or higher). While a low E-value alone does not prove that two sequences are homologous, it is a 

useful guideline to infer some sort of biological relationship. 

2.3.3 Chemical Markup Language 

The Chemical Markup Language (CML) is an application of XML (eXtensible Markup 

Language) for the management and integration of chemical data.
55

 It was first introduced by 

Murray-Rust and Rzepa and has been extended numerous times in the following years.
56–63

 The 

main goal of CML is to provide a portable data type that allows for the production of 

interoperable and reusable documents. In addition to chemical structure, it is capable of storing 

crystallographic, spectral
62

 and reaction
61

 data and has been integrated with e.g. RSS 

aggregators
60

 and Microsoft Word.
64

 It operates using various conventions, allowing for 

applicability by various subdomains of chemistry.
65

 While CML provides interoperability with an 

explicit specification of properties via markup text, the cml format is still fairly compact in 

comparison with e.g. the tabular file formats presented above. (The cml entry for L-phenylalanine 

is provided as an example in Figure 8.) The Chemical Markup Language is entirely open-source 

and is developed on a voluntary basis. (In fact, it is considered as a project of the Blue Obelisk 

Movement, an Internet community dedicated to the development of open-source, interoperable 



cheminformatics software.
66

) Its flexibility, interoperability and open-source implementation 

make CML (in the authors’ opinion) a strong candidate for being the next-generation standard for 

chemical data storage and exchange. 

 

Figure 8. CML entry for L-phenylalanine. (Written with Chemaxon Marvin.
35

) The <cml> 

element contains the CML specifications (such as the applied schema and convention), the 

<molecule> element summarizes all the sub-elements that belong to the given molecule (titled 

m1 in this example). The <atomArray> and <bondArray> elements consist of <atom> and 

<bond> elements, respectively, with the relevant properties listed in a name=”value” general 

format. 

Although it is independent of CML, we make note of a novel XML-based query language, the 

Chemical Subgraphs and Reactions Markup Language (CSMRL).
67

 CSRML was recently 

developed (together with the ChemoTyper software and the ToxPrint library) to support 

chemotypes as a novel approach in substructure querying. (Here, chemotypes are defined as a 

way of representing chemical entities with three objectives: they should be (i) publicly accessible, 

(ii) coded in a unique and reproducible manner and (iii) capable of combining both connected and 

nonconnected chemical patterns as well as atom, bond and molecule-based properties into a 

single query.) CSRML provides serious advancements over existing query languages in multiple 

respects, for example it provides a way to produce canonical representations of queries (i.e. a 

query can be specified exactly one way). Also, complex queries can be formulated by defining 

chemotypes based on molecular properties (in addition to structural patterns). CSRML was 

developed based on the CML language, extending it with additional features. 

  



2.3.4 Structure recognition tools 

Besides the enormous amount of data that is publicly available in standard chemical information 

formats (such as those detailed above), chemical knowledge of similar (or even greater) multitude 

is gathered in “traditional” formats, such as text and images in scientific publications and patents. 

While the conversion of images and text to chemical data is manually cumbersome and time-

demanding, recent advances in text mining and optical structure recognition (OSR) are already 

paving the way towards the seamless, automated processing of textual and pictorial chemical 

information. These applications provide researchers access to invaluable chemical information 

that can be utilized for many purposes, e.g. for supporting drug discovery and navigating in the 

intellectual property (IP) space. In this subchapter, we present a brief overview of current sources 

and services dealing with chemical text mining and image recognition. (Since a detailed review 

of the related techniques and methodologies would be out of the scope of this chapter, we only 

refer the reader to recent, well-written reviews in this respect.
68–70

) 

Currently the most complete set of chemical text mining tools is provided by ChemAxon in their 

commercial Chemistry Text Mining Suite.
71

 The software package includes naming applications 

(such as Name to Structure), supports text mining from Asian languages (with Chinese Name to 

Structure and Japanese Name to Structure) and processes whole documents for extracting 

chemical data (Document to Structure) with the integration of current optical structure 

recognition software (see below). Most of these functionalities are also provided free of charge 

on the web server chemicalize.org.
72,73

 

Current, freely available chemical text mining and named entity recognition (NER) tools include 

OSCAR (Open-Source Chemistry Analysis Routines)
74

, CheNER (Chemical Named Entity 

Recognizer)
75

 and OPSIN (Open Parser for Systematic IUPAC Nomenclature)
76

. Although there 

are many challenges still unsolved in optical structure recognition – such as extracting chemical 

data from complex arrangements, such as SAR tables –, this field is also quickly progressing. 

Several commercial and open source solutions are available as well, including CLiDE
77

, Imago
78

, 

OSRA
79

 and MLOCSR
80

 (the latter two also operate as web services). 

Since traditionally the analysis of the patent literature is a cumbersome task, possible applications 

in this sub-field provide great motivation for the development of text mining and structure 

recognition tools. In particular, Markush structures (i.e. generic representations of a compound 

class consisting of a core structure and multiple R-groups) are quite extensively used in patent 

documents.
81

 Recent developments describe novel methods for the visualization of Markush 

structures
82

, as well as deconvoluting complex (nested) Markush structures
83

, mapping specific 

structures to Markush structures
84

 or encoding and searching Markush structures.
85

 We anticipate 

that coupling these techniques with the text mining and OSR approaches mentioned above will 

effectively multiply the speed of patent analysis tasks, enabling the extraction of even more 

information from even more complex data structures than what state-of-the-art programs can 

currently handle. 

 

  



3. Molecular fingerprints 

Fingerprints are an important and ubiquitous concept in the domain of cheminformatics. Their 

primary purpose is to provide numerical representations of the structure or certain features of 

molecules, thus enabling the quantification of the similarity of two molecules. While fingerprints 

are often represented as bit strings (streams of zeros and ones), in a general sense, any vector of 

continuous, discrete or categorical (such as 0 and 1) numerical values can be considered a 

fingerprint. Depending on the fingerprint, various similarity metrics can be used for similarity 

calculations between molecules. We will cover these options in detail in subchapter 5. 

In general, molecular fingerprints are not applicable for chemical data storage, as they are 

generated with algorithms that e.g. check for the presence of a predefined set of substructures or 

use hashing functions to set the values of certain bits in a bit string – thus converting fingerprints 

back to structures is not possible for most fingerprint types. This is not necessary however, as 

there are various options for the compact storage of 2D structures, as well as for more detailed 

representations including 3D structures and an arbitrary number of molecular properties, 

including even molecular fingerprints (see subchapter 2). 

On the other hand, various molecular fingerprints are used in ligand-based virtual screening 

approaches. In typical setups, novel bioactive molecules are sought based on their similarities to 

one or more reference compounds with known activity profiles. The greatest advantages of 

fingerprint-based virtual screening approaches are computational feasibility and minimal setup 

and configuration requirements.
86

 On the other hand, fingerprint-based methods often fail to 

identify activity cliffs
87

 and their performance depends greatly on the particular fingerprint type.
88

 

(Although the latter issue can be addressed with data fusion techniques
89

, which we cover in 

more detail in subchapter 5.) Fingerprint similarity searching was compared to other virtual 

screening methods (such as shape similarity searching and ligand docking) in several works, with 

varying conclusions, but such comparisons are out of the focus of the present work.
90–92

 

This subchapter is dedicated to a thorough overview of current fingerprinting methods. Before 

moving on to an itemized description however, we highlight some recent, well-written reviews of 

this field
86,93

, as well as some detailed, in-depth analyses of molecular fingerprints, dealing 

primarily with the similarities and differences among the fingerprinting methods themselves
88

, 

and the effects of various parameters (such as the addressable space, atom typing schemes and bit 

scaling rules) on fingerprints and their virtual screening performances (in particular on hashed 

fingerprints implemented in Schrödinger’s Canvas).
94,95

 In addition, a review by Heikamp and 

Bajorath summarizes fingerprint engineering strategies, i.e. methods for designing fingerprints 

with an optimized search performance.
96

 

Addressing the need for standardized methods for the evaluation and comparison of fingerprints 

and their screening performances, Riniker and Landrum have assembled and published a standard 

benchmarking platform for fingerprints
97

, based on the open-source RDKit cheminformatics 

toolkit.
14

 Earlier, the same authors have published similarity maps, a useful, open-source tool for 

the visualization of atomic contributions to the similarity between two molecules, which – 

depending on the fingerprint method – is not always straightforward to see.
98

 



While a comprehensive collection of cheminformatics and molecular modeling applications have 

recently been published by Cereto-Massagué et al.
86

 (and we also refer to them throughout this 

chapter), we make note of Cinfony, a Python-based common application programming interface 

(API) for integrating several cheminformatics toolkits, including Open Babel, RDKit, CDK and 

others (“the toolkit of cheminformatics toolkits”).
99,100

 Another, recent addition to the set of 

publicly available fingerprint-related tools is ChemDes, an online platform capable of generating 

a rich selection of molecular fingerprints and descriptors, integrating the functionality of multiple 

popular cheminformatics packages.
101,102

 While the former encompasses a larger scope of 

functionality, the latter offers a user-friendly graphical interface. 

3.1 Substructure key-based 

In key-based fingerprints, the bits are set according to the presence or absence of predefined 

substructures (structural keys), as shown in Figure 9. The fingerprint length is determined by the 

number of structural keys and each bit corresponds of a single, specific key. While key-based 

fingerprints are useful for molecules that are likely to be covered by the structural keys, the 

treatment of novel or less common substructural features is problematic. Nonetheless, several 

programs allow for customized keysets, thus the substructural keys can be easily updated, if 

needed. 

 

Figure 9. In substructure key-based fingerprints, bits are set according to the substructures that 

are present in the molecule. (1 or “on” if the given substructure is present and 0 or “off” if 

absent.) Thus, each bit position corresponds to a specific substructure. 

Key-based fingerprints account for a set of specific structural features, which limits their ability 

to identify molecules that are similar to the query (on the level of e.g. atom environments), but 

contain diverse fragments, rings, ring systems, etc. (In contrast, this is usually considered 

advantageous for several applications in drug discovery, such as hit expansion or scaffold 

hopping.) On the other hand, they are the tools of choice if the aim is to retrieve molecules that 

contain identical substructures with those found in the query molecule. As such, the use of key-

based fingerprints with similarity metrics can be thought of as a transition between substructure 

searching and similarity searching. (In fact, structural keysets were historically used for 

substructure searching: in this case, molecules that did not have the same bits set as the query 

molecule were filtered out.
103

) 



MACCS (for Molecular Access System, a program developed by MDL) can be considered the 

prototype of key-based fingerprints – or at least it is the best-known. It was developed by MDL 

(Molecular Design Limited, now a subsidiary of BIOVIA
104

) and has two variants: one contains 

166 keys, while the other contains 960 keys. While the former is almost universally implemented 

in cheminformatics applications (e.g. in RDKit
14

 or Open Babel
1
), the latter is quite rare (it is 

available in BIOVIA’s Discovery Studio however
105

). The reason for the popularity of the 166-

bit version is that while short, it covers most of the interesting features for drug discovery and 

virtual screening.
86

 However, its application in virtual screening is somewhat ambiguous: while 

MACCS fingerprints show reasonably good retrieval rates in the work of Bender et al.
88

, they 

clearly perform weakly in the comparative study of Sastry and colleagues
94

. Nevertheless, Durant 

and colleagues have published useful guidelines for the reoptimization of MACCS keys, allowing 

for its optimization for specific sceniarios.
106

 

The PubChem fingerprint consists of 881 structural keys that encode quite diverse features.
107

 It 

can be divided into seven sections, each corresponding to a given feature type (e.g. atom counts, 

bonded atom pairs, rings, etc.). It is implemented in the PubChem database for similarity 

searching, as well as some cheminformatics toolkits, such as CDK.
19,20

 Further examples of key-

based fingerprints include the modifiable BCI (Barnard Chemical Information Ltd., now Digital 

Chemistry) fingerprints,
108

 two fingerprints of Open Babel (termed FP3 and FP4)
1
 and two 

fingerprints implemented in CDK, based on the work of Klekota and Roth (a set of “privileged” 

substructures for biological activity),
109

 and the electrotopological state formalism of Hall and 

Kier.
110

 

A somewhat special substructure-based fingerprint is the set of MQNs (molecular quantum 

numbers) introduced by Nguyen et al.
111

 MQNs are a set of 42 integer value descriptors of 

molecular structure, which count atoms, bonds, polar groups (such as H-bond donors and 

acceptors) and topological features (such as 5-membered rings or acyclic tetravalent nodes). 

Consequently, they are not “traditional” key-based fingerprints in the sense that instead of 

encoding the presence or absence of substructures (either 0 or 1), they encode substructure 

counts. (On the other hand, feature counts are much more commonly applied in topological 

fingerprints, as detailed in the next subchapter.) MQNs were primarily introduced as a tool to 

define, analyze and visualize large chemical spaces (i.e. large databases), for which principal 

component analysis is proposed as a convenient dimension reduction method.
112

 

3.2 Topological 

Many molecular fingerprinting methods are inspired by more abstract concepts than substructure 

matching. In general, these methods perceive unique, non-predefined (sub)structural features of 

molecules. Since there are no predefined substructures, no bit positions are assigned to specific 

features. Instead, mapping the features to a bit position (or more bit positions) is usually carried 

out with an appropriate hashing function (thus, topological fingerprints are often referred to as 

hashed fingerprints). Since the number of bit positions (the length of the fingerprint or 

addressable space) is finite, it can occur that two features are mapped to the same bit position: 

this phenomenon is called a bit collision. Bit collisions cause a loss of information and have been 

shown to deteriorate virtual screening performance in the work of Sastry et al.
94

 (They can be 

avoided by increasing the addressable space, although that results in a loss of speed as the 



individual fingerprints get larger.) Due to the possibility of bit collisions, hashed fingerprints 

would be – by default – inappropriate for substructure searching. However, with a large enough 

addressable space, the frequency of bit collisions becomes negligible: in this case, substructure 

searching can be carried out in the same way as mentioned in the previous subchapter. 

3.2.1 Path-based 

Path-based topological fingerprints operate by enumerating all fragments of a molecule based on 

linear or branched paths up to a certain number of bonds and hashing them to the addressable 

space (see Figure 10 as an example). This removes the limitation of predefined substructures, i.e. 

any imaginable molecule produces a meaningful fingerprint. 

 

Figure 10. In path-based fingerprints, linear (or in some cases, branched) paths up to a certain 

length (here three bonds) are enumerated and encoded. (In this example, the paths start from the 

nitrogen atom of L-phenylalanine, but in practice, the procedure is repeated for each heavy atom.) 

Note that depending on the applied fingerprint, the two paths (fragments) with 2 bonds of length 

can be treated as identical or different: this depends on the atom typing scheme used (see main 

text). 

An early example of path-based fingerprints is the Daylight fingerprint, consisting of 2048 bits 

and encoding all possible connectivity pathways of a molecule up to a predefined length.
113

 

(Interestingly, the original implementation employed a pseudo-random number generator as the 

hashing function that produces typically 4 or 5 bit positions per pattern.) The Daylight fingerprint 

and its variants are still popular: for example, Open Babel has implemented a similar fingerprint 

(FP2), which consists of 1024 bits and enumerates fragments with 1-7 atoms.
1
 

For generating path-based fingerprints, a variety of atom-typing schemes are available. In 

Pipeline Pilot, functional classes (similar to pharmacophore features), AlogP codes and mol2 

atom types can be used for this purpose (besides element types).
114

 For example in Figure 10, the 

two paths (fragments) with 2 bonds of length would be treated as identical (N-C-C) if element 

symbols are used for atom typing, but they are differentiated by mol2 atom types (N-CA-C vs. N-



CA-CB, see Figure 6 for reference). Schrödinger’s Canvas implements an even wider set of atom 

typing schemes, ranging from “generic” (where all atoms and bonds are equivalent) to complex 

ones such as RTXHB (which takes into account ring size, aromaticity, H-bond acceptor/donor 

type, etc.).
115

 Both programs implement the possibility to account for feature counts (rather than 

the mere presence or absence of the features), while Canvas also includes a variety of bit scaling 

rules to account for the fact that larger fragments usually occur with higher frequencies.
94

 

Some path-based fingerprints employ an extended representation of molecular paths (or 

fragments) by involving branched fragments in the fingerprint generation. Notable examples are 

OpenEye’s Tree fingerprints
116

 and Schrödinger’s Dendritic fingerprints.
115

 

3.2.2 Circular 

Instead of paths, circular fingerprints encode circular atom environments starting from the central 

atom and expanding to a given diameter. Circular fingerprints cannot be used for substructure 

searching (since a particular substructure in a different environment sets a different bit), but are 

ideal (and popular) choices for similarity searching. Two typical examples for circular 

fingerprints are Molprint2D and extended connectivity fingerprints. 

Molprint2D was introduced in 2004 by Bender and colleagues.
117

 This fingerprint encodes atom 

environments (for each heavy atom) within a distance of two bonds in the following way: the 

atom types found at distances of one and two bonds are listed and converted to the form type-

freq-distance, where freq is the number of type atoms at the given distance from the central atom. 

These entries are sorted by distance and then by type, and hashed to a bit position. A 3D version 

called Molprint3D was also developed and published in the same year.
118

 Molprint2D is available 

in many software packages, including Open Babel
1
 and Canvas

115
. 

Extended connectivity fingerprints (ECFP) can be considered as the de facto standard of circular 

fingerprints. They were first introduced in 2000 in Pipeline Pilot
114,119

, but have since been 

implemented in various cheminformatics packages, including ChemAxon’s JChem
120

 and 

Schrödinger’s Canvas.
115

 A thorough description of extended connectivity fingerprints was 

published in 2010 by Rogers and Hahn.
121

 

ECFPs are based on a modified version of the Morgan algorithm, which was originally 

introduced as a solution for the molecular isomorphism problem, i.e. to determine whether two 

molecules – with different atom numberings – are the same.
122

 The ECFP generation process 

consists of three consecutive steps: (i) initial assignment, where each atom has an integer 

identifier assigned to it (based on atomic properties, such as atomic number, formal charge, etc.), 

(ii) iterative updating, where each atom identifier is updated to an array containing the atom 

identifiers of the central atom and the neighboring atoms (up to n bonds of distance, where n is 

the iteration number), which is hashed back into a new, single-integer identifier, and (iii) 

duplicate removal, where multiple occurrences of the same feature are removed (or counted, if 

feature counts are requested). The process is illustrated in Figure 11. 

ECFPs are highly customizable: in particular the diameter, the addressable space, the 

consideration of feature presence/absence vs. feature counts, and the atomic properties used for 



generating the atom identifiers are all influential parameters that affect the virtual screening 

performance either slightly or substantially. In Pipeline Pilot, there are a number of options for 

atom typing (similarly to path-based fingerprints), such as mol2 atom types, functional classes or 

AlogP codes and the diameter is variable as well. To distinguish between the various alternatives, 

a naming convention was introduced: xyFz_n, where x is the atom typing (E for atom type, F for 

functional class, A for AlogP code and S for Sybyl mol2 atom type), y is the fingerprint type (C 

for extended connectivity, P for path fingerprints), z indicates the presence/absence of a feature 

(P) or feature counts (C) and n is the diameter. (For example, ACFC_4 would be an extended 

connectivity fingerprint with AlogP-based atom types, a diameter of 4 and feature counts.) 

Canvas includes some other options for configuration, such as bit scaling and bit filtering rules, 

while in JChem, the atomic properties used for identifier generation are highly customizable and 

the whole configuration can be supplied in an xml file. 

 

Figure 11. Extended connectivity fingerprints encode full atom environments up to a predefined 

diameter (here, 4 bonds). For the terminal atoms, any other bonds (that are not part of the 

fragment) are also accounted for (here, the letter “A” denotes “any atom”). In this example, the 

central atom is the α-carbon, but in practice, the procedure is repeated for each heavy atom. 

3.2.3 Topological subsets 

Besides paths and circular atom environments, other topological subsets can also be used for 

fingerprint generation. Here, we briefly mention two examples whose theoretical basics have 

been laid down about three decades ago, but are still implemented in current software packages. 

Atom pairs have been introduced in 1985 by Carhart et al. as a topological descriptor for 

structure-activity studies.
123

 Two years later the same laboratory has published topological 

torsions for the same purpose.
124

 The authors have also developed an atom typing scheme for 

these descriptors, where an atom is characterized by its element type, the number of its heavy (i.e. 

non-hydrogen) neighbor atoms and the number of its π electrons. (For example, the α-carbon of 



L-phenylalanine has three heavy neighbors and zero π electrons, so it could be represented as 

C_3_0.) While alternative atom types (based on physicochemical properties) have been proposed 

by Kearsley et al., no general superiority is observed for any of these atom typing schemes.
125

 

Atom pairs are defined as two atom types and the topological distance (i.e. number of bonds in 

the shortest path) that separates them, and are calculated for each pair of atoms in the molecule to 

produce the (hashed) atom pair fingerprint. For a molecule with n heavy atoms, the total number 

of atom pairs will be n*(n-1)/2. On the other hand, a topological torsion is defined as four, 

consecutively bonded atom types and represent the topological analogue of the basic 

conformational element, the torsion angle. Similarly to atom pairs, topological torsions are also 

enumerated for each quartet of consecutively bonded atoms of the molecule and hashed to a 

fingerprint. 

The two descriptors capture different aspects of molecular topology. For example the original 

authors note that while atom pairs are generally sensitive to small changes (e.g. changing a single 

atom changes the n-1 atom pairs involving that atom), topological torsions provide local 

information and are hence less sensitive to such small local changes. In addition, atom pairs and 

topological torsions have provided a conceptual basis for the development of further, similar 

methods, such as geometric atom pairs (the 3D analogue of atom pairs)
126

 or fluorine 

environment fingerprints (a specialized implementation of topological torsions, focusing on 

fluorine atoms).
127

 Meanwhile, the two core methods are implemented in a number of current 

software packages, including Canvas
115

 and RDKit.
14

 

APfp, a 2D atom pair fingerprint (not to be confused with the APFP_n fingerprints of Pipeline 

Pilot) published recently by Awale and Reymond is a simplified version of the atom pair 

fingerprints detailed above.
128

 APfp is a set of 20 integer values, counting the total number of 

atom pairs in a molecule at distances of 1 to 20 bonds, while Xfp is a related 55-dimensional 

extended fingerprint that also encodes atomic properties: both have been shown to perceive 

molecular shape quite effectively. 3D analogues of these methods (based on through-space 

distances and atom pair Gaussian functions) have been published in 2015 by the same research 

group.
129

 

3.2.4 Pharmacophore 

While the category of pharmacophore fingerprints substantially overlaps with the fingerprints that 

were already covered (e.g. topological fingerprints with “functional class” or similar atom typing 

schemes), we dedicate a separate subchapter for pharmacophore fingerprints as a group of 

methods that are based on different considerations or design concepts. Pharmacophore 

fingerprints employ a similar concept to that of atom pair fingerprints (see previous subchapter) 

in the sense that they provide a simplified representation of key interacting atoms/groups (i.e. 

pharmacophores), which are not necessarily bonded to each other – they can be separated by any 

number of bonds. On the other hand, in pharmacophore fingerprints, subsets consisting of more 

than two (typically three or four) features are often encoded: these subsets are called three
130,131

 

and four-point pharmacophores respectively.
132

 In addition to comparing and screening small 

molecules, pharmacophore fingerprints can also be used for protein binding site similarity 

calculations.
133

 



Among popular software packages, the Molecular Operating Environment (MOE) is particularly 

rich in pharmacophore fingerprints, with a total of seven choices, encompassing two, three and 

four-point pharmacophores.
134

 The two-point fingerprints TGD (Typed Graph Distances) and 

TAD (Typed Atom Distances) can be considered an implementation of atom pair and geometric 

atom pair fingerprints respectively, with a different atom typing scheme (H-bond donor, H-bond 

acceptor, cation, anion, hydrophobic, polar). Thus, TGD uses a 2D (graph-based) representation 

of the molecule, while TGT uses a 3D conformation. The three-point fingerprints TGT (Typed 

Graph Triangles) and TAT (Typed Atom Triangles) are extensions of TGD and TAD, using 

triplets of atoms instead of pairs. It was shown that the implementation of overlapping atom 

types, as well as feature counts, could improve the virtual screening performance of TGT 

fingerprints.
135

 GpiDAPH3 and piDAPH3 are also three-point pharmacophore fingerprints, but 

they employ a different atom typing scheme, in which atoms are differentiated based on three 

properties (in π system, is H-bond donor, is H-bond acceptor; a total of eight possible 

combinations). GpiDAPH3 is graph-based, while piDAPH3 is 3D conformation-based. The four-

point fingerprint piDAPH4 is an extension of piDAPH3, which considers quartets of features 

instead of triangles. 2D (configurable) pharmacophore fingerprints are also available in JChem
120

 

and RDKit
14

, while 3D (three and four-point) fingerprints are available in Canvas.
115

 

3.3 Hybrid 

In a general sense, the term “hybrid fingerprint” encompasses any method that utilizes more than 

one fingerprinting concepts, but in a wider sense, we can also include in this definition single 

fingerprints that are optimized post hoc based on some known rationale or pre-defined goal. 

An early example is the Unity 2D fingerprint of Tripos (now Certara), which is a 988-bit 

fingerprint that includes both structural keys and path fragments.
136

 More recently, Xue and 

colleagues have introduced the concept of MFPs or “minifingerprints” (short binary 

fingerprints)
137

 and designed various improved fingerprinting methods
138

, including MP-MFP, a 

hybrid fingerprint that contains 61 property-based and 110 structural key-based bits.
139

 The more 

recent PDR-FP (property descriptor range fingerprint) employs solely property-based descriptors, 

selected systematically to correlate with activity-relevant molecular features.
140

 

A common design concept behind these fingerprints is the selection of the most relevant pieces of 

information that will constitute the final fingerprint, which is often shorter than “traditional” 

fingerprints, but retains their screening performance (or even improves upon it). In general, there 

are two (somewhat alternative) principles that underlie the design of such hybrid fingerprints: the 

recombination of bits (or features) from two or more different fingerprints
141,142

 and the 

weighting (or scaling) of the bits (or features) of a single fingerprint, based on relative 

importance.
143,144

 (The latter is not to be confused with the bit scaling rules implemented in 

Canvas, which is related to the feature counts of certain fingerprints.
94,115

) Due to their highly 

customized implementation, hybrid fingerprints can provide serious improvements over 

individual fingerprints even in tasks that are traditionally considered to be particularly difficult 

for 2D fingerprints – such as scaffold hopping.
142,145

 

  



3.4 Other fingerprint types 

All of the fingerprint methods presented so far are based (one way or another) on the topology or 

structural features of the molecules. In this subchapter, we present several additional fingerprint 

types that are based on slightly or radically different ideas. (Nonetheless, these fingerprints are 

influenced by the molecular topologies as well, but this influence is more or less indirect.) 

3.4.1 Text-based 

SMILES strings (see subchapter 2.1.1) are very compact representations of molecular structure. 

Thus, it has been proposed that introducing a means to compare SMILES strings (and calculate 

their similarities) would speed up virtual screening, since the generation of molecular graphs or 

connection tables could be omitted. Here, we briefly include two, conceptually diverse SMILES-

based fingerprints, LINGO and SMIfp. For a recent, detailed comparison of SMILES-based 

similarity methods, we refer to the work of Öztürk et al.
146

 

LINGO is based on the fragmentation of the SMILES string into substrings.
147

 In particular, “a q-

LINGO is a q-character string, including letters, numbers and symbols, such as “(“, “)”, “[“, “]”, 

“#”, etc. obtained by stepwise fragmentation of a canonical SMILES molecular representation”. 

For producing these substrings, LINGO uses canonical SMILES strings. (Although multiple 

SMILES canonicalization approaches exist – see subchapter 2.1.1 –, the use of alternative 

canonicalization schemes provides very similar or identical results for property or similarity 

calculations, as long as the same canonicalization scheme is used consistently for the whole 

process.) For a SMILES string of length n, (n-q+1) substrings of length q are extracted and their 

occurrences are counted to provide the final LINGO profile. Such profiles can be thought of as 

fingerprints and their similarities can be calculated with e.g. the Tanimoto coefficient. 

In contrast, SMIfp applies a fixed-size chemical space by counting the occurrences of 34 different 

symbols in the SMILES strings.
148

 For SMIfp, the city block (or Manhattan) distance is proposed 

for similarity calculations. This combination has been shown to perform well in recovering 

several series of active molecules from multiple databases. SMIfp powers a series of SMIfp-

browsers for searching popular chemical databases, available at the website of the authors.
149

 

3.4.2 EDPrints 

The recently developed EDPrints (Electron Density Fingerprints) approach of Kooistra et al. is 

based on a unique idea: chemical shifts (i.e. shifts in frequency of NMR spectroscopy signals), as 

well as partial atomic charges can represent the particular molecular environment of an atom (due 

to the asymmetric distribution of electrons in chemical bonds).
150

 Therefore, both values are 

useful representations of the chemical and structural properties of molecules, thus they can be 

utilized in the construction of a fingerprint (as alternatives to the topology of the molecule). 

EDPrints calculates 
13

C and 
1
H chemical shifts with the BatchNMRPredictor program

151
, and 

Merck molecular force field (MMFF94)-type nonpolarized partial atomic charges with 

Balloon.
152

 The calculated values are transformed into non-negative integers and mapped to a 

bitstring, where each bit position reflects a particular descriptor value. The authors have found 

that EDPrints is able to achieve similar (and sometimes better) screening accuracies compared to 



other 2D ligand-based screening methods and exceeds their speed in terms of the time needed to 

compare a pair of molecules. 

3.4.3 Affinity fingerprints 

Instead of focusing on the molecular structure, affinity fingerprints encode the experimentally 

determined binding potencies of a compound against several target proteins. (Hence, an activity 

fingerprint is by default a vector of real numbers.) The concept was introduced in 1995 in the 

work of Kauvar et al., reporting the design of a small reference panel of eight proteins, which 

was used to define the affinity fingerprints of 122 structurally diverse compounds.
153

 With the 

application of statistical methods (in particular, multivariate regression techniques), the authors 

were able to predict binding potencies quite effectively and concluded that affinity fingerprints 

can be useful tools in a number of applications, including chemical classification, compiling 

diversified chemical libraries and guiding combinatorial chemistry efforts. Interestingly, a linear 

combination of the measured binding affinities can provide quite precise predictions for the 

binding affinities to proteins that are not included in the panel.
153,154

 The methodology was 

further elaborated and compared with a structural fingerprint (MOLSKEYS) by Dixon and 

Villar.
155

 Possibly the best known and most extensively used public reference panel is the cancer 

cell line panel operated by the National Cancer Institute (NCI).
156

 The panel consists of 60 human 

cancer cell lines, on which 50-percent growth-inhibitory concentrations (GI50) are determined 

for compounds submitted by research groups from around the world and the results are published 

in NCI-operated databases. 

The concept of affinity fingerprints was later expanded to in silico data with the introduction of 

“virtual affinity fingerprints”, encoding interaction energies derived from docking (instead of 

experimentally determined affinities).
157

 Since docking was not (and is still not) a reliable method 

for the prediction of ligand affinities, Bender and colleagues have introduced “Bayes Affinity 

Fingerprints” as an alternative of virtual affinity fingerprints.
158

 In this approach, class-specific 

Bayes models are employed to predict a wide panel of bioactivities and the resulting Bayes scores 

constitute the Bayes Affinity Fingerprint. Besides reporting consistently higher retrieval rates 

compared to ECFP_4 fingerprints, another valuable conclusion of the study is that information-

optimal “bioactivity spaces” of low dimensionality can be utilized to answer complex questions 

about bioactivity profiles (e.g. “can I modulate off-target activity B independently of on-target 

activity A?”). The further development of biological fingerprints – and chemogenomics (the 

study of systematic relationships between targets, based on their ligands) in general – was 

reviewed by Bender et al.
159

 

3.4.4 Interaction fingerprints 

As the name suggests, instead of chemical features, interaction fingerprints (IFP) encode 

information about the interactions between the molecule and its environment, usually a protein 

target. In this manner, protein-ligand complexes resolved with X-ray crystallography (or other 

experimental methods) or predicted with docking (or other computational methods) can be 

processed and compared. Consequently, interaction fingerprints can mostly be utilized in 

docking-based virtual screens or database analysis studies. 



Interaction fingerprints consist of a fixed number of bits per residue, corresponding to a 

predefined set of general or specific interactions between the ligand and the residue. These 

interactions are checked based on standard cutoffs (in terms of e.g. H-bond distance or angle) and 

the corresponding bits are set to either 1 (there is an interaction) or 0 (no interaction). The process 

is repeated for every residue of the protein and the resulting substrings are concatenated in the 

sequential order of the residues to produce the final interaction fingerprint. 

There are multiple reported methods for generating interaction fingerprints, the earliest of which 

to our knowledge is SIFt (Structural Interaction Fingerprints),
160,161

 which implements seven 

different interaction types (including “any contact”, “any backbone contact” and “any sidechain 

contact”). A somewhat modified version of SIFt is implemented in the Schrödinger Small-

Molecule Drug Discovery Suite.
162

 

Several similar (and similarly named) methodologies were introduced in the following years. The 

IFP implementation of Marcou and Rognan omits the most general interaction types of SIFt, and 

enables the configuration of the fingerprinting algorithm, including the addition of weaker and 

scarcer interaction types such as cation-π interactions or metal complexation.
163

 Mpamhanga et 

al. have designed interaction fingerprint based on an alternative concept: their IFPs are fixed-

length bit strings that are as long as the number of heavy atoms in the binding site.
164

 Pérez-

Nueno and colleagues have introduced an atom-pair based interaction fingerprint (APIF) that 

considers the relative positions of interacting atom pairs.
165

 An implementation of interaction 

fingerprints (termed PLIF, or Protein-Ligand Interaction Fingerprints) is also included in the 

Molecular Operating Environment (MOE).
134

 A more recent approach is SPLIF (Structural 

Protein-Ligand Interaction Fingerprints), developed by Da and Kireev, in which “three-

dimensional structures of interacting ligand and protein fragments are explicitly encoded” (as a 

result, the interactions themselves are encoded implicitly, in contrast to e.g. SIFt).
166

 

Trivially, interaction fingerprints can only be compared between the complexes of the same 

protein structure (as the length of the fingerprint varies according to the total number of residues). 

Alternatively, with a prior residue selection, such comparisons can be extended to multiple 

structures, or even multiple, similar proteins (in this case, a prior 3D alignment is needed to 

match the residues in the different proteins). These methodologies are utilized in recent works of 

the research group of de Graaf at the VU University of Amsterdam, where interaction fingerprints 

are employed to power class-specific protein-ligand structural databases such as KLIFS (for 

kinases)
167–169

 or PDEstrian (for phosphodiesterases).
170,171

 

3.4.5 FLAP 

FLAP (Fingerprints for Ligands And Proteins) was developed in 2007 and is currently distributed 

by Molecular Discovery.
172,173

 FLAP uses a unique approach for fingerprint generation, and 

employes a wide range of important concepts from cheminformatics/molecular modeling, such as 

pharmacophores, molecular interaction fields and molecular shape. As such, it is quite distinct 

from the interaction fingerprints detailed in the previous subchapter, even though it also encodes 

information about the interactions between the protein and the ligand. 



FLAP uses molecular interaction fields (MIFs) based on the GRID force field to identify the 

active site of the protein. MIFs are then condensed into a few target-based pharmacophoric points 

(i.e. points where specific interactions with the protein would be favorable). To define FLAP 

fingerprints, one has to select (manually or automatically) a set of such pharmacophoric points. 

Then, all possible arrangements of four pharmacophoric points are generated and stored in a so-

called protein fingerprint. Ligands are fitted to these pharmacophoric points to identify favorable 

interactions and the resulting poses are filtered according to the complementarity of the shapes of 

the ligand and the binding site (to account for steric clashes). 

3.4.6 Reaction fingerprints 

Similarly to line notations, the concept of fingerprints has also been extended to encode reactions 

(in addition to compounds). Reaction fingerprint generation has been a quite intuitive process 

since the earliest reported examples of such methods: molecular fingerprints or vectors 

(consisting of various descriptors) are generated for both the reactants and the products, from 

which a difference fingerprint (or vector) is calculated. The difference is calculated with a bitwise 

OR operation in the case of Daylight Structural Reaction Fingerprints
113

, and with a vector 

subtraction in the case of descriptor-based reaction vectors.
174

 These methods have been 

successfully applied for a number of tasks, including metabolite prediction
175

, de novo molecular 

design
176

 and local QSAR analysis.
177

 Most recently, Schneider and colleagues have developed a 

novel reaction fingerprint method based on atom-pair fingerprints of the products and reactants 

and a physicochemical property based representation of the agents.
178

 The method was 

successfully applied for building machine-learning models, assessing the similarities of reactions 

and classifying a large set of reactions based on reaction type. 

 

4. Numerical descriptors and similar representations 

In the past few decades numerous books with hundreds of pages were published in the field of 

molecular descriptors. Although the topic is indeed huge, more and more novel molecular 

descriptors appear from year to year. In this section we would like to provide a general view of 

the world of molecular descriptors.  

A basic definition of molecular descriptors (molecular representations) is that they are measured 

or computationally calculated properties of molecules. Another definition is stated in the popular 

and largely useful encyclopedia of Todeschini and Consonni:
179

 “The molecular descriptor is the 

final result of a logical and mathematical procedure which transforms chemical information 

encoded within a symbolic representation of a molecule into a useful number or the result of 

some standardized experiment.” These molecular representations can be used mostly for 

similarity searching, virtual screening and QSAR (or related) models.  

The molecular descriptors can be classified in several ways. There are binary, discreet, and 

continuous values and we can also calculate other new descriptors from previously defined ones. 

Usually they are classified based on their dimensionality as 0, 1, 2, 3 … n D descriptors. We 

should mention the obvious confusion that while fingerprints can be calculated from the 2D or 



3D representations or properties of the molecules, they are often termed 1D descriptors.
180

 

Another, truly 1D descriptor is reported in the work of Dixon and Merz, based on the projection 

of a 2D graph or a 3D conformation to a single dimension.
181

 As for higher dimensional 

descriptors, the term “2D descriptor” means that it is calculated from the 2D (graph) 

representation of the molecule and in the same manner 3D descriptors are based on the 3D 

representation of the molecule. In the group of zero dimension descriptors are the molecular 

weight, the number of different atoms, etc. Thus, 0D descriptors are independent of the molecular 

structure and can be calculated from the molecular formula. 

On the other hand, we can differentiate between physicochemical, structural, topological, 

electronic, geometric and simple indicator parameters (based on their theoretical backgrounds). 

The term “whole-molecular descriptors” encompasses descriptors that can be calculated from the 

2D representation of the molecule. Here we can distinguish between simple descriptors (number 

of H-bond donors and acceptors, number of ring systems and rotatable bonds etc.) and 

physicochemical descriptors. When using molecular descriptors, one always has to decide 

between the computational demanding but precise, and the time-saving but less precise methods. 

Usually 2D descriptors are less time-demanding than 3D descriptors. 

4.1 2D descriptors 

As it was mentioned above, 2D descriptors are always calculated from the 2D representation of 

molecules. 2D descriptors are also called graph invariants,
179

 as their values do not depend on the 

numbering of the atoms in the molecule. Here the two main categories: whole-molecular and 

topological descriptors, as well as other smaller groups will be discussed. 

4.1.1 Whole-molecular descriptors 

Whole-molecular descriptors can be categorized into simple and the physicochemical descriptors. 

Simple 2D descriptors are the number of H-bonds acceptors, H-bond donors, the number of rings 

or other countable parts of a molecule. They can be easily calculated. 

Physicochemical descriptors are a larger and more diverse group. There are several parameters 

and several calculation types. The easiest ones (like molecular weight) are included in 0D 

descriptors, while we summarize the more complex ones here. 

One of the most important physicochemical descriptors is the lipophilicity index, logP. LogP is 

part of Lipinski’s rule of five to predict drug-likeness. Usually, logP means the logarithm of the 

n-octanol (organic)-water (aqueous) partition coefficient, but if there are more lipophilicity 

indices at hand, it should be denoted as logKo/w. It plays a role in drug absorption and 

distribution, thus this descriptor is one of the oldest and most important members of the 

descriptors applied in drug discovery. The logP and hydrophobicity descriptors are frequently 

used in quantitative structure-activity (and structure-property) relationships (QSAR, QSPR). 

Lipophilicity can be decomposed into two parts: hydrophobicity and polarity. Hydrophobicity 

entails the contribution of nonpolar interactions to lipophilicity, but they are not synonyms of 

each other. The equations relating the partition coefficient (logP) to the hydrophobicity constant 

(π) are the following: 



log𝑃 =  log 𝐾𝑜/𝑤 = log
[𝐶]𝑛−𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝐶]𝑤𝑎𝑡𝑒𝑟
 ,  (1) 

where [C] is the concentration of the solute in different phases, and 

𝜋𝑋 = log𝑃𝑋 − log𝑃𝐻 , (2) 

where PX and PH values are connected to the substituted and the unsubstituted molecules’ 

partition coefficients. 

Several opportunities are developed for not just measuring, but also for calculating logP 

descriptors. Nowadays the use of in silico logP descriptors is also acceptable in the field of drug 

design. The work of Hansch and Fujita has pioneered the calculation of in silico logP 

descriptors.
182

 LogP can be measured by HPLC (high performance liquid chromatography) or 

TLC (thin layer chromatography) methods manually, or it can be calculated in silico in several 

ways based on for example quantum chemical or half-empirical calculations. Two larger groups 

of in silico calculations are substructure-based and property-based methods. Some calculations – 

based on the summation of logP contributions of molecule fragments – were reviewed by Leo.
183

 

Typical in silico logP calculation methods are ALOGP, MLOGP, ClogP, XLOGP2, XLOGP3, 

etc. Nowadays there are several software packages that are freely accessible online. Due to the 

large number of choices, a careful evaluation of this descriptor is very important in every field of 

pharmaceutical science. In the past years some detailed comparisons of logP calculation methods 

were published.
184–187

 They can help to decide and to answer questions like “what should be 

used” or “what is the best technique”, etc. In the latter article the authors show that in silico 

calculations usually give more reliable results than TLC measurements. 

Another highly important descriptor is the acidic dissociation constant and its negative logarithm 

(pKa). It is connected not just to the pH value (and other descriptors like lipophilicity), but to 

many other ADME related properties, such as membrane and blood-brain barrier permeability. 

The definition of the acidic dissociation constant is the following: 

𝐾𝑎 =
[𝐴−][𝐻+]

[𝐻𝐴]
  (3) 

, where HA is the acidic form and A
-
 is the conjugate base. 

There are several ways to measure pKa values, for example direct potentiometric titration and 

measurements based on chromatographic retention or UV absorption, etc.
188

 One can also use in 

silico pKa predictions, which have a serious advantage compared to experimental methods. 

Namely, the preparation of the molecules is not needed for the analysis. Most of the in silico pKa 

prediction methods and commercial software are based on linear free energy relations (LFER) 

and the Hammett equation:
189,190

 

𝑝𝐾𝑎 = 𝑝𝐾𝑎
𝑢 + 𝜌𝛴𝜎  (4) 

, where 𝑝𝐾𝑎
𝑢 is the dissociation constant of the unsubstitued molecule, ρ is the constant for an 

ionizable group and σ is the constant of an exact substituent. 



Similarly to in silico lipophilicity indices, comparisons between the pKa predication methods and 

software have also been published.
191

  

Last but not least the third crucially important physicochemical descriptor is the (aqueous) 

solubility (and its negative logarithm). In drug discovery the aqueous solubility of a drug 

candidate cannot be increased endlessly, because strongly hydrophilic molecules cannot cross 

lipid membranes. Thus solubility has to be in an optimum range. There are many options for the 

in silico calculation of solubility, some of which are based on other physicochemical descriptors, 

such as the melting point or lipophilicity. The well-known Yalkowsky equation is a good 

example for this:
192

 

log(𝑆0) = −0.01(𝑀𝑃 − 25°𝐶) − 𝑙𝑜𝑔𝑃 + 0.50  (5) 

, where S0 is the water solubility, MP is the melting point and logP is the lipophilicity index. 

This equation has larger bias, due to the use of the melting point, which is hard to predict based 

on the molecular structure. The other opportunity for in silico solubility calculation is the use of 

different QSPR models. In this case we can use several chemometric tools for the prediction, 

such as partial least square regression (PLSR)
193

, multiple linear regression (MLR)
194

, random 

forest (RF)
195

 and artificial neural network (ANN)
196

. A comparison of the general solubility 

equation (GSE) and the above mentioned chemometric tools has also been published.
197

 

One can find further physicochemical (molecular) descriptors, which are not discussed here in 

Todeschini’s encyclopedia of descriptors.
179

 

4.1.2 Topological descriptors 

Topological descriptors (or topological indices) are numerical descriptors that can be calculated 

from the molecular structure. Topological descriptors are one of the most populated (and popular) 

members of the molecular descriptor (and 2D descriptor) family. Their importance is 

emphasized, as they can provide simple and useful information about the structures of the 

molecules. However, they do not contain any information about the stereochemistry and the 3D 

conformation. (With the words of Hugo Kubinyi: “The topology and topography of a molecule 

may be compared to the skeleton of a human being. How boring would life be, if we recognize 

each other only by our skeletons and not by shape, behavior and spirit!”)
198

 Thus, topological 

descriptors can be calculated without the optimization of molecular structure. With the 

combination of other molecular descriptors (such as physicochemical descriptors), they can be 

quite useful in QSAR and QSPR studies. 

These descriptors are based on the 2D graph of a molecule. The calculation of the topological 

descriptors is closely connected to graph theory, where the molecular structures are built up from 

vertices (which symbolize the atoms) and edges (which denote covalent bonds). There are two 

types of these molecular graphs (or maps), the H-filled (contains the hydrogen atoms) and H-

depleted (without hydrogen atoms). From these molecular graphs we can also create a graph 

theoretical matrix, where the relations between edges or vertices can be examined (defined). 

From another point of view we can distinguish between the adjacency matrices and the distance 



matrices (based on the original molecular graph). The former matrix contains the non-hydrogen 

adjacent atoms (for the H-depleted version) and assigns each pair of them as one (if they are 

adjacent) or zero (if not), while the latter one counts the number of edges between two vertices in 

the shortest path (topological distance). See Figure 12 for an example of a simple molecule’s 

adjacency and distance matrices. Topological indices can be calculated from different molecular 

maps in an unequivocal way as they are based on the topological distances between the atoms of 

the molecule (through-bond indices). The topological indices can be topostructural (using only 

the atomic distances) or topochemical (using also atomic properties, like chemical identity or 

hybridization states).
199

 The molecular graphs are also used for the creation of molecular 

signatures, which are also an appropriate way to calculate several topological indices.  

 

Figure 12. Adjacency (A) and distance (D) matrices of L-alanine. In the adjacency matrix, an 

entry ai,j is 1 if atoms i and j are connected with a bond and 0 otherwise, while an entry di,j in the 

distance matrix is the topological distance of atoms i and j. Both matrices are symmetric (i.e. their 

information content can be represented by either their upper or their lower triangular alone). 

In the following part the most popular and “good to know” examples from the huge pool of 

topological indices will be discussed in detail. Nowadays, it is a very hard task to select those, 

which are highly recommended to know from the enormous amount of literature in this field. In 

the work of Randic and Basak the question has already been posed: do we need more molecular 

descriptors?
200

 (Naturally we do, because we want to have as diverse of a toolbox as possible and 

to cover the various possible descriptions of molecules as fully as possible. It is worth noting that 

this is true for other fields of science as well, in fact it is the essential part of making progress in 

science.) Although there are some novel topological descriptors in the literature, the most of the 

widespread ones were developed in the second part of the last century. 

Wiener index: The most well-known first generation topological index. First generation means 

that the integers are based on such graph properties like topological distances.
201

 It is calculated 

by the half sum of all distance matrix entries. It was defined originally in 1947 by Wiener,
202

 but 

there are several modified versions of it in the literature, for example Hyper-Wiener or All-path 

Wiener indices, etc.
179

 Basically we can conclude that in the past century the Wiener index has 



not just become popular, but it was used for the development of several other descriptors. The 

basic equation is the following: 

𝑊 =
1

2
∑ ∑ 𝛿𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1  , (6) 

where N is the number of atoms and 𝛿𝑖𝑗 is the distance matrix entry (shortest possible way 

between atoms i and j). 

Zagreb group index: Another first generation topological index, which is based on the vertex 

degrees of the atoms (denoted with δ and representing the number of σ bonds of the atom) in the 

molecule graph. The two types of this index were published in 1975.
203

 

𝑀1 = ∑ 𝛿𝑎
2

𝑎  and 𝑀2 = ∑ (𝛿𝑖 ∙ 𝛿𝑗)
𝑏𝑏  , (7) 

where a runs over the A atoms of the molecule and b over all of the B bonds of the molecule. 

𝛿𝑖, 𝛿𝑗 are the vertex degrees of the atoms incident to the considered bond. 

The 1
st
 Zagreb index (M1) is nowadays also called Gutman index and the 2

nd
 Zagreb index (M2) is 

also a part of the Schultz molecular topological index. 

Balaban J index: It was called “averaged distance sum connectivity” in the original article of 

Balaban.
199

 The formula is connected to the Randic index (see below), but here the vertex degrees 

are changed to the averaged distance sums, thus the equations was modified. 

𝐽 =
1

𝜇+1
∑ (𝜎𝑖𝜎𝑗)

𝑏

−0.5
𝑏 =  

𝐵

𝜇+1
∑ (𝜎𝑖𝜎𝑗)

𝑏

−0.5
𝑏 , (8) 

where B is the number of edges (bonds), μ is the cyclomatic number (the number of bonds that 

needs to be deleted to break all rings – which in the majority of cases is equal to the number of 

rings), 𝜎𝑖 and 𝜎𝑗 are the distance sums of the vertices i and j (i.e. the sum of the distances in the 

ith and jth row of the molecule’s distance matrix) and 𝜎𝑖 = 𝜎𝑖/𝐵 is the averaged distance sum of 

i.  

Kappa shape index: these are second generation topological indices, based on the work of 

Kier.
204,205

 Second generation indices are real numbers based on integer graph properties. This 

group of indices has current applications in drug discovery.
201

 

The first, second and third ordered shape attributes can be calculated in the following ways: 

1𝜅 = 𝑛(𝑛 − 1)2/( 𝑃0
1

𝑖)
2 (9) 

2𝜅 = (𝑛−1)(𝑛 − 2)2/( 𝑃0
2

𝑖)
2 (10) 

3𝜅 = (𝑛−1)(𝑛 − 3)2/( 𝑃0
3

𝑖)
2 , when n is odd (11) 



3𝜅 = (𝑛−3)(𝑛 − 2)2/( 𝑃0
3

𝑖)
2 , when n is even (12) 

Where 
l
Pi represents the number of paths of length l in molecule i, and n is the number of atoms. 

The maximum and minimum values of 
l
Pi are: 

l𝑃𝑚𝑎𝑥 =
𝑛(𝑛−1)

2
 (13) 

l𝑃𝑚𝑖𝑛 = (𝑛 − 1) (14) 

The kappa shape index was modified with a specific correction (α value), which can be calculated 

as: 

𝛼𝑋 = (
𝑟𝑋

𝑟𝐶𝑠𝑝3
) − 1 , (15) 

where α is the decrement or increment of n for a non-carbon element (X), r represents the 

covalent radius of atom X relative to sp
3
 carbon atom. The modified kappa shape indices can be 

found in the work of Kier and Hall
206

 or the article of Estrada et al.
201

 

Randic branching index: also called connectivity index, it was the first connectivity index, 

developed by Randic
207

 more than forty years ago. He introduced it at first for alkanes, with the 

intention to produce a graph invariant topological index. The equation is the following: 

𝜒 = ∑ (𝛿𝑖𝛿𝑗)−0.5
𝑎𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 , (16) 

where 𝛿𝑖 and 𝛿𝑗 are the number of non-hydrogen atoms bonded to atoms i and j and forming an 

edge (bond) ij. 

In the past decades several modifications of connectivity indices were created, such as mean 

Randic index, modified Randic index and edge connectivity index (ε).
208

 Regarding these, the 

reader is referred to the encyclopedia of Todeschini.
179

 

Other important topological indices are the E-state index
209,210

 or the valence molecular 

connectivity index.
211,212

 

There is a third generation of topological indices as well, which are real numbers based on real 

number local vertex invariants (LOVIs). Some third generation types are based on information 

theory, which is applied to non-symmetrical matrices or terms of distance sums. Balaban was the 

pioneer of this topic in the nineties.
213–215

 

4.1.3 Other 2D descriptors 

4.1.3.1 Indicator variables 



Indicator variables are one of the simplest or easiest way to describe constituents of a molecule, 

thus they have been applied in QSAR and related analyses for many decades. They can take 

positive, negative or zero values based on the state of a property (characteristic), for example it 

can indicate the cis, trans or no cis/trans isomer forms in the following way: –1 represents the cis 

isomers, +1 represents the trans isomers and 0 means the characteristic is not applicable, i.e. no 

cis/trans isomers. Some well-known examples for indicator variables are the following: Free-

Wilson descriptors (de novo approach),
216

 Fujita-Ban analysis (modified version of Free-Wilson 

analysis),
217

 Hansch or Hansch-Free-Wilson models.
218

 In the latter cases the models or 

descriptors contain not just indicator variables but also their combinations with other parameters 

such as physicochemical descriptors.  

We discuss indicator variables here, including the large group of substructure based descriptors. 

Indicator variables are also called dummy or Boolean descriptors, if they define the presence or 

lack of structural elements (1 or 0). They can indicate the presence of hydroxyl, carbonyl etc. 

groups or even the different positions of substituents like ortho, meta and para.
219

 (Note that they 

are closely related to substructure key-based fingerprints, see subchapter 3.1.) A typical example 

for Boolean descriptors can be found in the work of Devillers in which the descriptors indicate 

biodegradability.
220

 

In a related example, the recent work of Borysov et al. introduces the concept of extreme 

descriptors as “those variables that have the same value for almost all compounds and only a few 

values that are different from the common median”. Although it is a common practice in QSAR 

modeling to exclude such descriptors from model building, the authors have shown that they can 

be useful for activity prediction in a standard binary classification setting, and for the 

identification of mislabeled compounds. 

4.1.3.2 Thermodynamic descriptors 

Thermodynamic descriptors are a smaller segment of 2D descriptors, with some of them using 

3D parameters of the molecules as well (at least optionally). A typical example is the heat of 

formation (ΔHf) which can be calculated based on the method of Singh et al.
221

  

4.1.3.3 Molecular identification numbers 

In his 1989 work, Burden has introduced the concept of "molecular identification numbers", 

calculated from the matrix representation of the connection table of a molecule (without 

hydrogens).
222

 It is useful for substructure searching and diversity/similarity searching tasks. This 

approach was refined and further developed, first by Rusinko and Lipkus, and later by Pearlman 

and Smith to produce what is now known as the BCUT approach.
223

 BCUT descriptors are 

calculated as the first few highest and lowest eigenvalues of such matrices, with several options 

for the property that defines the diagonal elements (including e.g. partial charges, polarizabilities 

and hydrogen-bonding properties).
224

 

4.2 3D descriptors  



3D descriptors are calculated from the 3D representation of the molecule. Thus, 3D chemical 

structures (conformations) are needed, which in best case can be bioactive conformations of the 

molecules in the field of drug design. 3D descriptors are an as useful, large and well-known 

group as their 2D siblings, but they were typically developed later than 2D descriptors and their 

calculation is more time-consuming and computationally demanding. 3D descriptors (like 2D 

ones) are frequently applied for QSAR and similarity searching. Some of the descriptors are 

sensitive to the position and orientation of the molecular structure, but some of them are 

insensitive for these properties (in other words, they are alignment-independent or alignment-

free). The alignment of molecules is often a time-consuming step of the procedure and not 

necessarily unambiguous. 3D descriptors can be classified in several ways for example based on 

the work of Kunal et al.
180

 or Todeschini and Consonni.
179

 Some of the typical and frequently 

used descriptor classes in the literature are the electronic, size, volume, shape, molecular shape 

analysis (MSA), molecular field analysis (MFA) and receptors surface analysis (RSA) 

descriptors. The family of 3D descriptors is too large to cover every aspect of it, thus in the 

following section the most popular ones will be discussed. 

4.2.1 Electronic descriptors 

Electronic descriptors can be defined in the group of 2D descriptors as well (see the Hammett 

equation and related descriptors). They can be local or global descriptors, i.e. they can define the 

electronic properties either of specific regions of the molecule or the whole molecule.
225

 

Electronic charges and electron densities play an important role in different chemical reactions 

and physicochemical parameters. Charged partial surface area descriptors are also built up from 

electronic descriptors with the combination of shape and steric descriptors. One important class 

of electronic descriptors is charge descriptors, which contains for example the total absolute 

atomic charge (electronic charge index) descriptor. Some typical examples for electronic 

descriptors are detailed below. 

(Electric) Dipole moment: This is a quantum-chemical electronic descriptor (or also classified as 

electric polarization descriptor), based on the strength and orientation of the interaction of the 

examined molecule with an external electrostatic field. The magnitude of the dipole moment and 

its components μx, μy and μz are usually calculated. The SI unit of dipole moment is coulomb 

meter (Cm), but for practical reasons, Debye (≈ 3.34×10
-30

 Cm) is used more frequently. The 

components of μ are calculated in the following way: 

𝜇𝑥 = ∑ 𝑞𝑖 · 𝑥𝑖𝑖 ,  (17) 

𝜇𝑦 = ∑ 𝑞𝑖 · 𝑦𝑖𝑖 ,  (18) 

𝜇𝑧 = ∑ 𝑞𝑖 · 𝑧𝑖𝑖 , (19) 

where x,y and z are the coordinates and q is the charge of atom i. 

Highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energies: They are 

also quantum-chemical descriptors. εHOMO is the energy of the highest energy orbital that contains 

electrons. A molecule with high HOMO energy values can donate electrons easily. The ionization 



potential (IP) is closely connected to this: IP = -εHOMO. Sometimes the energies of the second or 

third highest occupied orbitals are also used as descriptors. These descriptors are closely related 

to the nucleophilicity of a molecule. 

εLUMO is the energy of the lowest energy molecular orbital that does not contain any electrons. A 

molecule with low LUMO energy values can accept electrons easily, thus this is connected to the 

definition of electronic affinity (EA): EA = -εLUMO. In other words, it measures the 

electrophilicity of a molecule. 

4.2.2 Size descriptors 

In addition to 3D descriptors, size descriptors can also be simple ones like molecular weight or 

the number of bonds and atoms. We can also find size descriptors in the group of topological 

indices, but several 3D size descriptors exist as well. Size, volume and shape descriptors are often 

connected to each other, for example steric descriptors account for the size and the shape of the 

molecule. On the other hand there are some volume descriptors, such as van der Waals volume, 

which can also be considered a size descriptor (see later). A popular 3D example is detailed 

below. 

Radius of gyration: This descriptor characterizes the distribution of atomic masses in a 

molecule,
226

 and provides an absolute measure of molecular compactness.
227

 It is defined as: 

𝑅𝐺 = √∑ 𝑚𝑖·𝑟𝑖
2𝐴

𝑖=1

𝑀𝑊
, (20) 

where ri is the distance of i-th atom from the center of mass of the molecule, mi means the atomic 

mass, A is the number of atoms and MW represents the molecular weight. 

4.2.3 Volume descriptors 

Volume descriptors are either steric or size descriptors (or both). There are both experimental and 

theoretical ways for determining the volume of the molecules. Some examples of volume 

descriptors are listed here (van der Waals volume is discussed later in detail). 

McGowan’s characteristic volume (Vx): As a steric descriptor it is calculated as the sum of the 

atomic volume parameters in the molecule. It can be used for example for cavity term 

measurements. The equation is the following: 

𝑉𝑥 = ∑ 𝑤𝑖 − 6.56 · 𝐵𝐴
𝑖=1 , (21) 

where 𝑤𝑖 means the McGowan volume parameter and B is the number of bonds. McGowan 

atomic parameters for the calculations can be found in his article from 1987.
228

 



Molecular volume index (MVI): This volume descriptor is based on the summation of van der 

Waals volumes of each groups of the molecule.
229

 With the double summation, each pair of non-

hydrogen atoms is involved. The equation is the following: 

𝑀𝑉𝐼 = ∑ ∑
𝑉𝑖

𝑣𝑑𝑤·𝑉𝑗
𝑣𝑑𝑤

𝐷𝑖𝑗
2

𝐴
𝑗=𝑖+1

𝐴
𝑖=1  , (22) 

where V
vdw

 represents the van der Waals volume of each group and 𝐷𝑖𝑗
2  is the square of the 

topological distance of vi and vj. 

Geometric volume: The atoms can be defined as point masses, which construct the solid 

geometric shape of the molecule. Thus the geometric volume is the volume of this solid 

geometric shape. In the concept of this volume, the atoms are interconnected and form some 

regular and irregular tetrahedrons. The volumes of these tetrahedrons are computable in 

analytical and numerical ways as well.
230

 

4.2.4 Shape descriptors 

Molecular shape descriptors are very useful in the modeling of physicochemical processes. This 

topic has a large scientific literature and in the past 30-40 years several novel shape descriptors 

were developed.
227,231

 Some of the most popular ones are shadow indices, WHIM shape 

descriptors
232

 or molecular shape analysis descriptors (see below in details). 

Shadow indices (Jurs shape indices): geometrical descriptors related to the size and shape of the 

molecule. The basic principle is the projection of the molecular surface onto three mutually 

perpendicular planes XY, XZ and YZ.
225

 The descriptors encode the conformation and also the 

orientation of the molecule. Rotational invariance is obtained by the previous alignment of the 

X,Y, and Z axes along the three axes of principal inertia.
233,234

 

4.2.5 van de Waals parameters 

Another interesting part is the van der Waals molecular surface (or area) (SA
vdw

), which can be 

included in the aforementioned descriptor groups as well. It is also called total molecular surface 

area (TSA) and it is connected to the hard-sphere model. The total van der Waals surface is 

calculated as the sum of the atomic van der Waals surfaces. This is related to binding, solubility 

etc. 

The van der Waals volume (V
vdw

) is the volume of the space inside the van der Waals molecular 

surface. The van der Waals volume is closely connected to the van der Waals radius (R
vdw

). The 

van der Waals radius is the distance, where the attractive and repulsive forces between the two 

nonbonded atoms are equal. Its calculation was originally described by Bondi,
235

 but less time-

consuming calculations have been developed as well by Zhao et al.
236

 There is a vast literature in 

this field between the 80’s and 90’s, for instance molecular mechanics based methods,
237

 as well 

as other techniques.
238

 

4.2.6 Molecular Shape Analysis descriptors 



Molecular shape analysis (MSA) is a common technique in QSAR analysis, which combines the 

molecular shape similarity and commonality measures (with other descriptors) to determine the 

similarities between molecules and build appropriate QSAR models.
239

 In this section we do not 

cover MSA QSAR in detail, only the commonly used molecular shape similarity descriptors 

(MSA descriptors). Molecular shape similarity is applied to the comparison of 3D molecular 

shapes, which are represented by atomic properties. On the other hand, molecular shape 

commonality is using conformational energy and molecular shape together to measure molecular 

similarity. The basic concept of MSA in QSAR analysis is that the shape of the molecule is 

related to the binding site cavity (or pocket), thus it is related to biological activity as well. Some 

popular molecular shape similarity descriptors are listed below: 

Common Overlap Steric Volume (COSV): It represents the overlapping volume of two 

superimposed molecules.
240

 Van der Waals volume of the molecules is used for the 

determination. 

𝑀0(𝑖, 𝑗) ≡ 𝑉0(𝑖, 𝑗) = 𝑉𝑖 ∩ 𝑉𝑗 (23) 

Non (Common) Overlap Steric Volume (NCOSV or Vnon): It is defined as the volume of molecule 

i, which does not overlap with the volume of the reference molecule j. (Thus, it can be related to 

steric misfit.) Basically Vnon is the difference between the Vi,j composite steric volume of two 

aligned molecules and Vj (reference molecule).
240

 

4.2.7 Molecular Field Analysis descriptors 

Molecular field analysis (MFA) is also a frequently used technique in QSAR. It is a grid-based 

QSAR technique, mostly applied in Comparative Molecular Field Analysis (CoMFA) based on 

the work of Cramer et al.
241

 (Here, we only briefly mention CoMFA, as a detailed introduction 

would be out of the scope of this chapter.) The molecular field can be represented by a 3D 

rectangular grid. MFA analysis is based on the calculation of interaction energies (steric and 

electrostatic interactions in the case of CoMFA) between some probes (H
+
 or CH3) and the 

molecule, represented by a rectangular grid. Thus the field of molecules can be described by 

MFA grids, and the energies associated with MFA grid points may serve as inputs (descriptors) 

for the calculation of QSAR models. 

4.2.8 Receptor Surface Analysis descriptors 

Receptor surface analysis (RSA) is another modeling method, primarily for such cases when the 

3D structure of a receptor is unknown.
242

 A hypothetical model can be created with this 

predictive tool for the receptor site. On the other hand, RSA descriptors are also useful in QSAR 

model building when the receptor surface is known. The RSA approach clearly differs from 

pharmacophore approaches, as it captures information about the receptor instead of the ligands. 

From receptor surface models, one can derive descriptors, which provide 3D information about 

the (steric or electrostatic) interaction energies between each point of the receptor surface and the 

ligand. RSA descriptors can be combined with other 3D or 2D descriptors for QSAR analysis. 

Some typical examples for RSA descriptors are IntraEnergy, InterEnergy, StrainEnergy, 

MinIntraEnergy, etc.
180

 



4.2.9 3D descriptor families 

4.2.9.1 WHIM descriptors 

Weighted holistic invariant molecular (WHIM) descriptors are based on statistical indices 

calculated on the projections of atoms around the x, y and z axes.
232

 The algorithm involves a 

principal component analysis (PCA) of the centered molecular matrix (coordinates of the 

molecule). Depending on the six different weighting schemes (such as atomic mass, van der 

Waals volume, etc.), different covariance matrices (and principal components) can be built. 

Directional WHIM descriptors can also be calculated. Typical groups of them are size descriptors 

(constructed from the eigenvalues of the covariance matrix), shape descriptors, symmetry 

descriptors, density descriptors, etc. In summary, there are 66 directional WHIM descriptors (11 

for each weighting scheme). Global WHIM descriptors are calculated as combinations of 

directional WHIM descriptors. 

4.2.9.2 GETAWAY descriptors 

GETAWAY (GEometry, Topology and Atom-Weights AssemblY) descriptors are based on the 

molecular influence matrix (H), which is calculated in the following way:
243

 

H = M × (M
T
 × M)

-1
 × M

T
  (24) 

, where M represents the molecular matrix (containing the centered Cartesian coordinates of the 

atoms of the molecule). 

The diagonal elements of the H matrix are called leverages. The combination of the molecular 

influence matrix with geometry matrix (G) is called the influence/distance matrix (R). It is very 

important, because a set of GETAWAY descriptors are calculated from both of them based on 

different concepts and matrix operators. The GETAWAY approach also employs different atom 

weighting schemes, similarly to WHIM. Some examples are: geometric mean of the leverage 

magnitude (HGM), total information content on the leverage equality (ITH), standardized 

information content on the leverage equality (ISH), mean information content on the leverage 

magnitude (HIC), average row sum of the influence/distance matrix (RARS), etc. 

There is another group of GETAWAY descriptors (denoted as R-GETAWAY), which combines 

the information mentioned above with geometric interatomic distances in the molecule. 

4.2.9.3 EVA descriptors 

EVA or EigenVAlue descriptors are based on the extraction of chemical structures from mid- and 

near-infrared spectra. The basic concept was developed in 1997 by Ferguson et al.
244

 The 

fundamental molecular properties can be characterized potential energy functions (vibrations). 

The normal coordinate eigenvalues (and eigenvectors) from vibrational frequencies or atomic 

displacements can be calculated with the use of quantum and molecular mechanical methods.  



EVA descriptors are 3D descriptors providing information about molecular size, shape and 

electronic properties. A modification of the original conception is EEVA (Electronic 

EigenVAlues), which defines a set of vectorial descriptors.
245,246

 Here the eigenvalues of the 

Schrödinger equation are used instead of the vibrational frequencies. 

4.2.9.4 MEDV (MEDV-13) descriptors 

The Molecular Electronegativity Distance Vector (MEDV) is a vectorial descriptor, which 

includes 91 terms that contain information about the relative electronegativities.
247

 The 

electronegativities are represented by the modified E-state indices and topological distances 

between each possible pair of 13 atom types. In the first step of the MEDV descriptor calculation, 

one has to assign each atom in the molecule to one of the aforementioned atom types. The atom 

types are based on the most frequently occurring atoms in organic molecules and also the number 

of bonded non-hydrogen atoms (vertex degree).
225

 The single molecular descriptor can be 

calculated with this equation: 

ℎ(𝑢, 𝑣) = ∑ ∑
𝑆𝑖

∗·𝑆𝑗
∗

𝑑𝑖𝑗
2𝑗∈𝑣𝑖∈𝑢 , 𝑢, 𝑣 = 1, 2, … , 13 , (25) 

where u and v are the atom types, S
*
 represents the modified E-state index, dij is the topological 

distance between vi and vj vertices. 

There is also an extension of MEDV-13, called Molecular Holographic Distance Vector 

(MHDV).
248

 It is developed to describe more specific molecular structures like peptide 

sequences, which contain heteroatoms and multiple bonds. 

4.2.9.5 GRIND descriptors 

Grid-Independent Descriptors (GRIND) are based on molecular interaction fields (MIF), which 

can be calculated with the GRID method and software
249

 (or other programs).
250

 The calculation 

of the descriptors involves two main steps. The first step is the computation of molecular 

interaction field (MIF). The second step involves a particular type of autocorrelation transform to 

create alignment-independent variables. On the other hand, we can also construct the steps in the 

following way: a) computing the MIF, b) filtering the MIF and c) encoding the virtual receptor 

site (VRS) into GRIND (GRIND encodes geometrical relationships between the VRS regions). 

The molecular descriptors can be used for the creation of “correlograms” and also for different 

types of chemometric analysis. The original MIF descriptors can be generated with appropriate 

software from the autocorrelation transform. 

4.2.9.6 VolSurf descriptors 

VolSurf descriptors have a quite similar basis to G-WHIM and GRIND descriptors. These 

descriptors also encode information about molecular interaction fields (MIF) with a GRID force 

field parametrization.
251

 The final descriptors are alignment independent and are related to 

molecular size or shape, distribution of hydrophobic or hydrophilic parts of the molecule, etc. 

Different probes such as H2O, DRY (hydrophobic) or O (carbonyl oxygen, represents hydrogen-



bonding donor groups) are used for the calculation of interaction fields. Some typical descriptors 

are: water-excluded volume (V) with H2O probe, accessible surface (traced also with H2O probe) 

of the water interaction field, rugosity (R), polarizability (POL, traced with DRY probe), 

elongation (E), volume of the interactions with the probe O (Wp1-Wp8), Integy moments 

(INTEraction enerGY moments), etc. 

4.3 4D and other special descriptors 

4.3.1 4D descriptors 

4D descriptors are also grid-based descriptors (but they are not derived from molecular 

interaction fields.) The fourth dimension represents ensemble sampling or conformational 

flexibility, which is defined by the conformational ensemble profile (CEP). The CEP is calculated 

with molecular dynamics (MD) simulations. 4D descriptors help to identify the active 

conformations of the flexible molecules and they are also useful tools in alignment problems. The 

pioneering work of Hopfinger et al. in 1997
252

 has introduced 4D descriptors to QSAR analysis. 

Hence, 4D descriptors are among the youngest members of the family of (now thousands of) 

molecular descriptors. There are two forms of 4D QSAR: receptor dependent and receptor 

independent.
253

 

4D descriptors can be assigned to the occupancy frequencies of the different atom types in the 

cubic grid cells during the molecular dynamics simulation.
254,255

 The generation of the descriptors 

has some basic steps, which are discussed here in detail. First the molecular structures are 

generated with a conformational search and the conformers with the minimum energies are kept 

as the initial structures. The cell grid (with a default grid spacing of 1.0 Å) is constructed based 

on the largest compound in the data set. In the next step the interaction pharmacophore elements 

(IPE) are introduced. Every atom of each molecule can be classified into one of the IPE classes: 

“any type” or generic, nonpolar (NP), polar-positive charge (P+), polar negative charge (P-), 

hydrogen bond acceptor (HA), hydrogen bond donor (HB), aromatic (Ar). These types are 

created based on the interactions between the active site and the pharmacophore groups. The third 

step of the process is the estimation of the conformational ensemble profiles (CEP) with MD 

simulations. After that, each conformation of the CEP for each molecule is implemented in a 

reference grid cell based on the trial alignment. Finally, the grid cell occupancy descriptors are 

calculated from CEPs. This is important because we use a conformational ensemble profile of 

each compound instead of using only one starting conformation (which is the essence of the 

fourth dimension). 

4.3.2 Other special descriptors and approaches (outlook) 

The list does not stop at 4D descriptors, as one can easily find interesting articles about the 

application of higher (such as five or six) dimensional descriptors.
253

 These are connected more 

to QSAR and related topics, thus they are only briefly mentioned. Five dimensional QSAR 

descriptions are calculated with the Quasar technology (and software) and are an extension of the 

4D siblings with the multiple representation of the topology of the quasi-atomistic receptor 

surrogate.
256,257

 Another dimension is introduced in 6D descriptors for QSAR modeling, enabling 



the simultaneous consideration of different solvation models. It can be achieved for example by 

mapping parts of the surface area with solvent properties .
258

 

Another interesting field is the discrimination of molecular shapes. Gaussian approximations can 

be used to optimize the alignment of two molecules, but Gaussian functions can also provide very 

good and realistic representations of molecular shapes.
259

 The rapid overlay of chemical 

structures (ROCS) program applies the atom-centered Gaussians for the discrimination and 

optimal alignment of molecules.
260,261

 ROCS alignments can be applied not just for similarity 

searching and virtual screening, but also for 3D QSAR and SAR analyses. Further examples of 

shape-based approaches include the normalized PMI (principal moments of inertia) ratios 

introduced by Sauer and Schwarz
262

, and Ultrafast Shape Recognition (USR), which employs 

three statistical moments (average, standard deviation and kurtosis) of atomic distances in four 

reference locations, providing a vector of 12 shape descriptors for each molecule.
263

 

 

5. Similarity - dissimilarity measures, distance metrics 

5.1 Introduction 

The old adage dates back to the ancient Roman-Greek period: “similis simili gaudet” [like 

rejoices in like] and corresponds to the observation that similar entities behave similarly.  

In the scientific domain of (medicinal) chemistry, there are some common formulations of the 

similarity principle, for example: 

i) Structurally similar molecules are presumed to exhibit similar properties and similar 

biological activities.
264

  

ii) “Molecular similarity in descriptor space is often called the “neighborhood principle” 

or “neighborhood behavior axiom”
265

  

iii) Other scientists formulate the same principle as the “concept of similarity”, where 

molecules may be grouped according to their biological effects or physicochemical 

properties.
266

  

iv)  “Structure-property similarity principle”: similar structures generally have similar 

properties
267

  

The similarity principle plays a ubiquitous role in rational drug design, lead discovery, synthesis 

design, molecular diversity analysis and compound optimization (e.g. optimization of ADMET 

properties (e.g. similar absorption, distribution, metabolism, excretion and toxicity) Virtual 

screening is able to find similar molecules from large databases. Finding a “patentable” 

compound with a desired property value is an important aim to be pointed out. 

Naturally there are many examples violating the similarity principle. A small change in the 

molecular structure (changing the configuration of a stereo center, introducing a small molecular 

weight substituent, etc.) can lead to a dramatic increase (or decrease) in biological activity (e.g. 

dramatic difference in the toxicity of dioxins, or the carcinogenicity of polycyclic aromatic 



hydrocarbons (PAHs), etc.). On the other hand, a lot of compound classes (steranes, 

amphetamines, sulphonamides, etc.) possess very similar biological activities. If there is 

insufficient information about a new compound, the scientific community should resort to similar 

compounds and make estimations from “similar” molecules. 

Similarity analysis can be simplified according to the following: First a molecule should be 

represented with an appropriate computational construct, such as a fingerprint or a set of 

descriptors (see subchapters 3 and 4). Then, a similarity measure (metric) should be applied for 

quantifying the similarities between pairs of molecules, and finally an algorithm can be applied 

for e.g. clustering the molecules according to their biological activity, properties, etc.  

As the available computing power has dramatically increased in recent years, application of 

similarity methods to large databases became feasible even with moderate computing resources. 

The goal of such calculations is usually either the identification of molecules that are similar to 

one or more reference molecules, or the compilation of a subset of molecules that are as diverse 

as possible. (The latter application is particularly important in early hit discovery where diverse 

molecular databases are desired.) The reader is referred to some straightforward reviews about 

similarity and diversity in the cheminformatics field.
265,268–270

 

5.2 Common measures of similarity and dissimilarity (distance) 

Similarity and dissimilarity (distance) are used more or less interchangeably, in spite of some 

important differences, e.g. their directions are reversed, their scales are different by definition, 

etc. It is also important to note that there is an inherent asymmetry in the distributions of these 

metrics. 

Holiday et al. have used three different clustering approaches and distinguished three types of 

measures: distance metrics, association coefficients and similarity (correlation) coefficients.
271

 

A distance metric DA,B between objects (molecules) A and B should obey four rules:
272

  

Distance values (D) must be positive for non-identical objects: DA,B, > 0 (1) 

The distance from an object to itself must be zero: DA,A, = DB,B, = 0 (2) 

A distance value must be symmetric: DA,B, = DB,A (3) 

A distance metric must obey the triangular inequality: DA,B ≤ DA,C + DC,B (4) 

If a distance coefficient fails to obey either of these four rules, it cannot be called a metric. 

Similarity measures (S) are reversely scaled (the higher the more similar) as opposed to 

dissimilarity or distance (the lower the more similar). A similarity measure has to obey three 

rules.
273

 It should be noted that Eq. (6) is erroneous in the original publication]: 

Similarity values for non-identical objects must be: 0 < SA,B < 1 (5) 



The similarity of an object to itself must be unity: SA,A, = SB,B, =1 (6) 

A similarity value must also be symmetric: SA,B, = SB,A (7) 

Both similarity and distance values are always non-negative, but their scales greatly differ:  

S ∈ [0; + 1] (or S ∈ [– 1; + 1] for some correlation-based similarity definitions) and D ∈ [0; + ∞]. 

In practice, an inherent asymmetry is present in similarity/dissimilarity calculations in terms of 

the resulting value ranges. It is relatively simple to convert to similarities to dissimilarities: 

𝐷𝐴,𝐵 = 1 − 𝑆𝐴,𝐵, such special distances will bear the constraint of D ∈ [0; + 1].  (8) 

However, conversion in the opposite direction is somewhat less straightforward, as similarity 

values should be recalculated between zero and one, while distances can be arbitrarily large. 

Thus, a suitable conversion rule is: 

𝑆𝐴,𝐵 =
1

1+𝐷𝐴,𝐵
 (9) 

It is easy to see that similarity values calculated with this equation will always have a value 

between 0 and 1 (with 1 corresponding to identical objects, where the distance is 0).  

It should be noted that the typical value ranges of different similarity metrics can be different,
274

 

even though they cannot fall outside of the predefined range (i.e. 0 ≤ S ≤ 1). 

As distances are measured on different scales, their comparison should be preceded by 

appropriate scaling. Four basic scaling methods are to be used: (i) range scaling (between 0 and 

1), (ii) standardization (autoscaling, i.e. centered and scaled to unit standard deviation), (iii) rank 

transformation and (iv) normalization (scaled to unit length). 

 

Table 2 summarizes the most frequently used similarity and distance measures. The first ten 

items in the table are distance measures, the remaining ones are similarity coefficients. For more 

binary similarity measures, the reader is referred to the work of Todeschini et al.
275

 Additionally, 

several graph-based similarity measures have been proposed in the literature for molecular 

similarity calculations.
276,277

 Some more specific similarity measures are defined in part 5.5.



Table 2. Formulas for frequently used similarity and distance measures.  

 

Similarity/Distance 

measure 
Definition/Formula for numerical variables

a
 

Formula for dichotomous 

variables
b
 

Hamming (Manhattan) 

distance 
𝐷𝐴,𝐵 = ∑|𝑥𝑗,𝐴 − 𝑥𝑗,𝐵|

𝑛

𝑗=1

 𝐷𝐴,𝐵 = 𝑎 + 𝑏 − 2𝑐 

Euclidean distance 𝐷𝐴,𝐵 = √∑(𝑥𝑗,𝐴 − 𝑥𝑗,𝐵)
2

𝑛

𝑗=1

 𝐷𝐴,𝐵 = √𝑎 + 𝑏 − 2𝑐 

Soergel distance 𝐷𝐴,𝐵 =
∑ |𝑥𝑗𝐴 − 𝑥𝑗𝐵|𝑛

𝑗=1

∑ 𝑚𝑎𝑥(𝑥𝑗𝐴, 𝑥𝑗𝐵)𝑛
𝑗=1

 𝐷𝐴,𝐵 = 1 −
𝑐

𝑎 + 𝑏 − 𝑐
 

Pearson correlation (r) 

distance (PCD) 

PCDA,B = 1 − abs(𝑟) for centered x variables r is identical with 

cosine coefficient otherwise: 

 

𝑟 =
∑ (𝑥𝑗,𝐴 − 𝑥̅𝑗)(𝑥𝑗,𝐵 − 𝑥̅𝑗)𝑛

𝑗=1

√∑ (𝑥𝑗,𝐴 − 𝑥̅𝑗)2𝑛
𝑗=1 ∑ (𝑥𝑗,𝐵 − 𝑥̅𝑗)2𝑛

𝑗=1

 

 

PCDA,B = 1 −
𝑐

√𝑎𝑏
 

Spearman rank 

correlation (𝜌) distance 

SRCDA,B = 1 − abs(𝜌)  

 

𝜌 =
∑ 𝑅(𝑥𝑗,𝐴)𝑅(𝑥𝑗,𝐵) − 𝑛 (

𝑛 + 1
2 )

2
𝑛
𝑗=1

√(∑ 𝑅(𝑥𝑗,𝐴)2 − 𝑛 (
𝑛 + 1

2 )
2

𝑛
𝑗=1 ) (∑ 𝑅(𝑥𝑗,𝐵)2 − 𝑛 (

𝑛 + 1
2 )

2
𝑛
𝑗=1 )

 

 

Not defined 



 

Pearson correlation 

squared distance 
PCSDA,B = 1 − 𝑟2

 PCSDA,B = 1 −
c2

𝑎𝑏
 

Spearman rank 

correlation squared 

distance 

SRCDA,B = 1 − 𝜌2 Not defined 

Minkowski distance 𝐷𝐴,𝐵 = (∑| 𝑥𝑗,𝐴 −  𝑥𝑗,𝐵|
𝑝

𝑛

𝑗=1

)

1/𝑞

 

Where p and q > 0 and generally p = q 

Not defined 

Chebishev distance 𝐷𝐴,𝐵 = lim
n→∞

(∑| 𝑥𝑗,𝐴 −  𝑥𝑗,𝐵|
𝑝

𝑛

𝑗=1

)

1/𝑞

 Not defined 

Correlation coefficient 

Pearson: 

𝑟 =
∑ (𝑥𝑗,𝐴 − 𝑥̅𝑗)(𝑥𝑗,𝐵 − 𝑥̅𝑗)𝑛

𝑗=1

√∑ (𝑥𝑗,𝐴 − 𝑥̅𝑗)2𝑛
𝑗=1 ∑ (𝑥𝑗,𝐵 − 𝑥̅𝑗)2𝑛

𝑗=1

 

Matthews: 

𝑆𝐴,𝐵

=
𝑐𝑑 − (𝑎 − 𝑐)(𝑏 − 𝑐)

√𝑎𝑏(𝑎 − 𝑐 + 𝑑)(𝑏 − 𝑐 + 𝑑)
 

Ochiai/Cosine coefficient 
𝑆𝐴,𝐵 =

∑ 𝑥𝑗,𝐴𝑥𝑗,𝐵
𝑛
𝑗=1

√∑ (𝑥𝑗,𝐴)
2𝑛

𝑗=1 ∑ (𝑥𝑗,𝐵)
2𝑛

𝑗=1

 𝑆𝐴,𝐵 =
𝑐

√𝑎𝑏
 

Dice coefficient 𝑆𝐴,𝐵 =
2 ∑ 𝑥𝑗,𝐴𝑥𝑗,𝐵

𝑛
𝑗=1

∑ (𝑥𝑗,𝐴)
2

+𝑛
𝑗=1 ∑ (𝑥𝑗,𝐵)

2𝑛
𝑗=1

 𝑆𝐴,𝐵 =
2𝑐

𝑎 + 𝑏
 

Tanimoto coefficient 𝑆𝐴,𝐵 =
[∑ 𝑥𝑗,𝐴𝑥𝑗,𝐵

𝑛
𝑗=1 ]

[∑ (𝑥𝑗,𝐴)
2𝑛

𝑗=1 + ∑ (𝑥𝑗,𝐵)
2

− ∑ 𝑥𝑗,𝐴𝑥𝑗,𝐵
𝑛
𝑗=1

𝑛
𝑗=1 ]

 𝑆𝐴,𝐵 =
𝑐

𝑎 + 𝑏 − 𝑐
 

Russell-Rao coefficient Not defined 
𝑆𝐴,𝐵 =

𝑐

𝑛
 



Forbes coefficient Not defined 𝑆𝐴,𝐵 =
𝑐𝑛

(𝑎 + 𝑐)(𝑏 + 𝑐)
 

Simpson coefficient Not defined 𝑆𝐴,𝐵 =
𝑐

𝑚𝑖𝑛(𝑎, 𝑏)
 

Simple matching 

coefficient 
Not defined 𝑆𝐴,𝐵 =

𝑐 + 𝑑

𝑛
 

Tversky coefficient Not defined 𝑆𝐴,𝐵 =
𝑐

𝛼(𝑎 − 𝑐) + 𝛽(𝑏 − 𝑐) + 𝑐
 

 

a
 In the definitions for continuous variables (such as physicochemical properties or biological activities), xj,A and xj,B are the values of feature j 

for molecules A and B respectively, 𝑥̅𝑗 is the average value of feature j, 𝑅(𝑥𝑗,𝐴) is the rank number of feature j of molecule A, and n is the 

number of features. 

b
 In the definitions for binary variables (such as fingerprints), a is the number of on bits in molecule A, b is number of on bits in molecule B, c 

is the number of bits that are on in both molecules, d is the number of common off bits and n is the bit length (total number of bits) of the 

fingerprint: n = a + b - c + d. 

 

 



The Minkowski distance is a generalization of distances, if p = q = 1, it equals the Manhattan 

distance whereas p = q = 2 equals the Euclidean distance. The Tversky coefficient can also be 

considered as a generalization of similarity coefficients. The α and β parameters are always non-

negative, but in medicinal chemistry applications, they are usually set within the unit interval [0, 

1]. If α ≠ β, then the Tversky coefficient is asymmetric. The case α = β = 1 equals the Tanimoto 

similarity. Similarity indices are intrinsically symmetric in nature, but asymmetric indices have 

some advantages: asymmetric forms allow for measuring and modulating the similarity of one 

molecule in the context of another i.e. they have the potential of alleviating the size dependency 

often observed in chemical similarity searching. Inspired by Tversky’s work, Mestres and 

Maggiora have defined an entire family of field-based molecular similarity indices.
278

  

Distance and similarity metrics have been the subject of several comparative studies focusing on 

their applications in several fields. Bender et al. have compared a vast selection of molecular 

fingerprints and visualized their similarities (i.e. the similarities between the methods themselves) 

with principal component analysis.
88

 Additionally, they have included some of the fingerprints in 

combination with the Cosine similarity metric (replacing the Tanimoto coefficient). Sum of 

ranking differences (SRD)
279

 corroborates the authors’ original observation that the exchange of 

the similarity metric from Tanimoto to Cosine does not affect the ranking behavior of these 

fingerprints significantly (see Figure 13). In addition, all of the examined fingerprint methods 

have ranked the datasets significantly differently than random ranking. 

More recently, Bajusz et al. have established that the Tanimoto index, Dice index, Cosine 

coefficient and Soergel distance were identified to be the best and in some sense equivalent 

measures for similarity calculations (in combination with the path-based Chemaxon Chemical 

Fingerprint), whereas the similarity metrics derived from the Euclidean and Manhattan distances 

are not recommended on their own, although their variability and diversity from other similarity 

metrics might be advantageous in certain cases. The behavior of these similarity coefficients was 

very similar for fragment-sized, leadlike and druglike compounds. Analysis of variance 

(ANOVA) showed that the choice of the data pre-processing method (such as interval scaling, 

standardization and rank transformation) does not affect the results significantly.
274

  



 
Figure 13. Leave-one-out cross-validated SRD (sum of ranking differences) values for the 

fingerprint methods compared by Bender et al.
88

 As SRD values measure a method’s distance 

from the consensus (in terms of ranking the observations – here, molecules), the smaller SRD 

values are better. Here, LCFP4 proved to be the best (most consistent) fingerprint for these eleven 

activity classes. The ranking has passed the randomization test, 5 % level of random ranking is 

shown in the figure. It can also be concluded that the similarity metrics (Tanimoto or Cosine, the 

latter is marked with red) do not affect the ranking behavior significantly. 

Haws et al. have described an easy way to unfold symmetric diagonal matrices into vectors (so 

that they can be compared with e.g. the similarity metrics included in Table 2).
280

 Their first 

figure uses the example of a dissimilarity map, but it can also be used for correlation matrices as 

well (see Figure 14). 



 
Figure 14. A process to “unfold” diagonal dissimilarity maps into vectors according to Haws et 

al.
280

 The dissimilarity map contains distances whereas the topological dissimilarity map is 

calculated with path counts. While the original work revolves around phylogenetic trees, the 

concept presented can be easily translated to be applicable to distance, similarity or correlation 

matrices, as well as topological distance matrices (as presented in subchapter 4.1.2). 

Schuffenhauer and Brown have grasped the problem reversely:
281

 “diversity selection can be … 

only of value if used with dissimilarity cut-offs in ranges where the similar property principle is 

at least partially valid.” Mean pairwise intermolecular dissimilarity has been calculated for a 

rapid selection of external datasets.
282

  

“There is clearly a lot of ‘art’ involved in defining similarity, and different definitions are useful 

for different purposes.” “Different methods select different subsets of actives for the same 

biological activity and the same method might work better on some activities than others in a way 



that is difficult to predict beforehand. In retrospect, this makes sense because receptors are 

diverse, and chemical groups that appear equivalent to one descriptor might not be equivalent to 

another.”
283

 Novel types of plots for the comparison of binary similarity coefficients have been 

elaborated by Salim et al. These plots clearly show the differences between coefficients in size, 

and the size bias of similarity coefficients is revealed.
284

 

There is no doubt that the Tanimoto coefficient is the most frequently applied similarity measure 

for bit strings. It can be advantageously applied in many cases, but it is not the best (or even 

deficient) in other cases. Below we summarize some (contradictory) findings concerning the 

Tanimoto coefficient. If a compound has a Tanimoto similarity coefficient (based on ‘Unity’ 

fingerprints) larger than 0.85 to an active compound, then the compound has an 80 % chance of 

itself being active in the same assay.
285

 Martin et al. have shown that similar biological activity 

might be expected from structurally similar compounds: “as the structural similarity is increased, 

so is the biological similarity.” The enrichment in active compounds is higher than the same of 

docking to proteins of known 3D structures. If setting the limit for Tanimoto coefficients higher 

than 0.85 in the case of Daylight fingerprints only 30% of compounds proved to be active.
264

 

Cosine and Tanimoto coefficients were compared. If the Cosine coefficient is used for the 

calculation of the intermolecular (dis)similarities, a set of dissimilar molecules is selected faster 

than earlier algorithms. The algorithm is applicable to any type of representation that 

characterizes a molecule by a set of attribute values and to any procedure that involves 

calculating a sum of inter-molecular similarities.
286

 The Tanimoto coefficient is not a perfect 

similarity measure, it also has some limitations. The distribution of Tanimoto coefficients for a 

comparison of 54-bit strings is peculiar: it is a multimodal skewed distribution.
287

 “The Jaccard 

coefficient, also known as the Tanimoto coefficient is the most widely used in practice.” “There 

cannot be one similarity measure and one descriptor that correlates with every molecular property 

at the same time. In different “similarities”, different features emerge as being important (and in 

our case, different bioactivities invariably require different descriptors).”
266

 Even the efficiency 

of the well-known Tanimoto coefficient can be increased using a single, bioactive reference 

compound (or using several reference structures) with data fusion (see later) and machine-

learning techniques.
288

 

“It was also found that different coefficients perform better in certain ranges of molecular size (or 

bit density). The Russell–Rao coefficient was found to perform better in the case of large queries, 

while the Forbes coefficient performed better on small queries. The Tanimoto coefficient was 

outperformed in many cases, but not consistently. The good performance of Russell–Rao and the 

weak performance of Forbes were also observed in an application using the dictionary of natural 

products database (DNP), where the Tanimoto coefficient was often outperformed by a factor of 

two.”
289

 “Certain coefficients whether single or in combination, appear repeatedly as best 

performers. One would definitely include the Russell/Rao, Forbes, and Simple Match in this pool 

and would probably add the Tanimoto, Cosine and others.”
284

 It was revealed that the size-bias 

and asymmetries that are inherent in most similarity coefficients lead to a bias in the selection of 

active compounds (altogether 14 coefficients were examined, including the Tanimoto 

coefficient).
290

 Considering the large number of studies about the inconsistent and not satisfactory 

behavior of the Tanimoto coefficient, it is somewhat surprising that it is still the “default” 

similarity metric. 



Association coefficients may be more suitable for 2D fragment-based similarity searching than 

distance values. Atom sequences seem to perform best among the studied descriptors. 

Combination of atom sequences and the set theoretic Tanimoto coefficient is strongly 

recommended in similarity searching.
291

 Fingerprint-based iterative similarity search with 

multiple active compounds as references performs better than 2D fingerprint similarity searching 

in a large-scale comparative analysis carried out on 208 well-defined compound activity 

classes.
292

  

In the work of Reisen et al., six types of similarity measure were tested for their use in high 

content screening (HCS):
293

 i) distance measures (Euclidean, Manhattan, and Mahalanobis 

distances), ii) linear correlation measures (Pearson correlation coefficient, Cosine similarity), iii) 

nonlinear correlation measures on a ratio scale (Maximum information coefficient, Distance 

correlation), iv) nonlinear correlation measures on an ordinal scale (Kendall’s τ, Spearman’s ρ), 

v) comparison of up- and downregulated features using a threshold (Tanimoto index, Dice 

coefficient), vi) CMAP-like similarity measures (see Figure 15). 

Receiver operating characteristic (ROC) curves are used to evaluate the performance of the 

similarity functions using the area under the curve (AUC). Data preprocessing greatly influences 

the results. The right choice of a similarity measure is a prerequisite for high-quality, high-

content screening fingerprints. The nonlinear rank-based correlation methods (Kendall’s τ and 

Spearman’s ρ) seem to be suitable for identifying similarities and dissimilarities among the high-

dimensional high-content screening readouts. 

 



 
Figure 15. Comparison of similarity metrics for high content screening (HCS) fingerprints in the 

work of Reisen et al.
293

 Left column: similarity analysis among replicates, right column: 

correlation between chemical and HCS fingerprints. Violin plots show the performance 

distribution over the 10 separate evaluation sets. © 2013 Society for Laboratory Automation and 

Screening. Copyright permission needed! 

Scaffold hopping plays an increasing role in the last decade. Sufficient degree of diversity should 

be preserved not to overlook promising drug candidates or classes. A set of methods is presented 

that are designed to find compounds that are structurally different to a certain query compound 

while retaining its bioactivity properties (scaffold hops). These methods utilize various indirect 

ways of measuring the similarity between the query and a compound that take into account 

additional information beyond their structure-based similarities.
294

 Stiefl et al. have defined 

scaffold hops based on whether the extended reduced graph approach (ErG) is able to switch 

among different chemotypes (and if yes, to what extent).
295

 Group fusion is suitable for scaffold-

hopping applications as well. Scaffold similarity searches were introduced by Ertl.
296

 Classical 

similarity search and scaffold keys similarity search was compared and the superiority of the 

latter has been proven. He also stated that the successful Tanimoto similarity measure is 

unfortunately not working well for scaffolds. 



Structural unit analysis identifies the molecular substructures or fragments that distinguish 

compounds with high activity from those with average activity. The method is suitable to scaffold 

hopping, as well. A set of techniques were elaborated using the nearest-neighbor graph-based 

similarity.
297

 Maggiora, in his editorial, discussed the reasons why QSAR modeling often fails, 

and mentioned the idea of activity cliffs: “identifying and removing outliers may not necessarily 

always be a statistical problem as some outliers may only be apparent and may, in fact, arise 

from activity cliffs in the data.”
298

 Maggiora et al. outlined the various similarity concepts in an 

easily perceivable way.
299

 Chemical, molecular, biological, global and local similarity all have 

different meanings. They reformulated the definition of the Tanimoto coefficient in a more 

intuitive way to interpret it “as the ratio of the number of features shared by A and B molecules to 

the number of their unique features.” The different results of similarity searching has been shown 

if using different fingerprints and similarity coefficients. 

Interestingly Muchmore et al. utilize a different terminology in their work, where they call 

fingerprints as similarity measures. A novel probabilistic framework was used for their 

interpretation. Tanimoto coefficients were calculated for ten different similarity methods 

(MACCS keys, Daylight fingerprints, maximum common subgraphs, rapid overlay of chemical 

structures (ROCS) shape similarity, and six connectivity-based fingerprints) combined with a 

database of more than 150 000 compounds and activity data against 23 protein targets. Different 

similarity measures were compared with receiver operating characteristic curves (ROC) and the 

Boltzmann-enhanced discrimination of receiver operating characteristics (BEDROC). Decision 

theory helped in the data fusion and the probability that any two molecules will exhibit similar 

biological activity is calculated.
300

 

Density in chemical space is one of the limitations when using similarity methods. Not sufficient 

density causes heavy computational time consumption and it can lead to sometimes inaccurate 

results.
93

 Todeschini et al. compared the largest pool of binary similarity coefficients.
275

 Five 

pairs and a triplet of coefficients were found to yield identical similarity values, i.e. the same 

coefficients were rediscovered and bear different names. The similarity coefficients were grouped 

differently: symmetric, asymmetric intermediate and correlation-based binary coefficients (their 

shapes were plotted for the simulated data sets). Other partitioning options include metric-

nonmetric, and – based on the shape behavior – increasing exponential, quasi-linear, logarithmic 

and sigmoidal. The best ranked coefficient was CT4 (Consonni-Todeschini coefficient, fourth 

version),
301

 which is basically the logarithmic transformation of the (shifted) Tanimoto index 

used for similarity analysis. Nonetheless, the Harris−Lahey, Tanimoto, Gower−Legendre, 

Sokal−Sneath and Jaccard (2012) coefficients are ranked similarly well on two real data sets 

(MDDR and WOMBAT). 

5.3 Similarity fusion, fusion rules, consensus scoring 

In analytical chemistry data fusion usually means uniting data of vastly different origins and 

scales, for example the fusion of NMR and mass spectrometry data
302

 or the combination of 

“fluorescence with the biomarkers… and traditional metabolomics measurements in the form of 
1
H NMR spectroscopy”, as reported in the work of Bro et al.

303
 



In chemoinformatics and medicinal chemistry, data fusion usually means “merging” different, 

eventually seriously conflicting rankings. The basic idea is far-reaching: multicriteria 

optimization, method comparison, feature ranking can all be considered as data fusion 

techniques. 

Selection of structurally diverse subsets of chemical structures is a valuable aim. Several different 

algorithms have been compared and all of them have been suggested for dissimilarity-based 

compound selection, provided that they are sufficiently rapid in execution for use with large files 

of compounds. MaxMin is the best algorithm currently available for non-focused, dissimilarity-

based compound selection.
304

 

Virtual screening based on fingerprints is rarely used as a standalone method. Methods such as 

group fusion, data fusion or voting have been introduced to combine similarities calculated from 

multiple fingerprint methods.
93

 Binary similarity coefficients (22) were compared using Unity 

fingerprints (2D fragment bit-strings), the coefficients were clustered and a consensus scoring 

was calculated.
271

 Two, three and four binary similarity coefficients were merged in the work of 

Salim et al., who have established that the best fusions were better than the best single 

coefficients for 12 data sets out of 15. Consensus scoring has been shown to improve the hit rates 

in virtual library screening.
284

 There are different possibilities to combine information from 

several scoring algorithms to provide a single prediction. Using several data sets, Ginn et al. used 

MIN, MAX and SUM rules, defining the combined prediction by the lowest, highest and average 

prediction of the individual methods. Both SUM and MAX are, overall, to be preferred to the 

individual results. The most effective for similarity fusion is generally the usage of the SUM rule 

with rank data. It was also found that consensus scoring performed better (and significant at p < 

0.05) in 28 out of 30 runs, if the SUM rule is used. In practice, one can use this information to 

determine how to deal with multiple known active structures: in particular it was shown that 

adding up individual scores of each pair of query and library compound improves the overall 

results.
305

 

As so many similarity methods have been defined, it became a valid research goal to provide 

guidance on which similarity measure is the most suitable for solving a special task. Sheridan and 

Kearsley provided some justification to use a large number of molecular similarity methods.
283

  

As some of the available similarity coefficients quantify different types of structural resemblance, 

it seems to be advantageous to use them in combination. Willett distinguishes between similarity 

fusion (combining the results of database searches that use a common reference structure but use 

different similarity coefficients) and group fusion (when several, structurally diverse reference 

structures are available, the reference molecule is allowed to vary and the similarity measure is 

kept constant).
89,306,307

 Consensus scoring (combination of the results of different search 

algorithms and/or scoring functions) is a similar data fusion technique for structure-based 

approaches, such as docking. 

Later, Willett extended the three accepted fusion rules (MIN, MAX and SUM) to include the 

average, median, geometric and harmonic means, Euclidian norm, and some other rules 

concentrating on the top ranks only. Fusion rules are to be used for similarity scores or the ranks 

alike. Supervised fusion rules are also interpreted in the Bayesian framework, when biological 

activity is also considered in the search.
307

 Willett devoted a chapter to answer the question: why 



does data fusion work? He has established that “the SUM rule is likely to out-perform the MAX 

rule in similarity fusion; that the converse applies in group fusion; and that group fusion is 

generally far superior to similarity fusion”. A further fusion rule is emphasized in Willett’s work: 

the reciprocal rank fusion (RRF) rule, which is applicable only to rank data and which derives 

from the fact that virtual screening often involves applying a cut-off on the similarity scores (such 

as the top-1%) so that only a small fraction of the database is considered further in a project.
89

 Let 

p (p ≤ n) be the number of times that an individual database structure dy, occurs above the chosen 

cut-off. Then the RRF rule involves summing the reciprocal ranks for those p occurrences to give 

a fused score: 

∑
1

𝑅𝐴𝑁𝐾𝑥(𝑑𝑦)

𝑝
𝑥=1  (10) 

The reciprocal rank fusion rule outperformed all of the other rules that Chen et al. considered in 

their comparative study of 15 different fusion rules.
308

 Group fusion is most effective when: i) as 

many reference structures as possible are used; ii) only a small proportion (1-5 %) of each ranked 

similarity list is submitted to the final fusion rule; and iii) when the reciprocal rank rule is used to 

combine the individual search outputs. The Pareto data fusion approach has been elaborated by 

Cross et al.
309

 The Pareto approach counts for each molecule the number of times other 

molecules achieve a better rank in all of the lists, thus the best molecules will receive a Pareto 

score of 0. (The ties are managed by successive interactive ranking). 

Independently from virtual screening and similarity coefficients, data fusion is extensively used 

for method and model comparison.
279,310,311

 Sum of ranking differences (SRD) are supported with 

theoretical considerations:
312,313

 in particular, the average of ranks (or scores) is a better option 

than any of the individual ranks (or scores), as derived from the maximum likelihood principle. 

The SRD procedure involves two kinds of validation: a randomization test and a leave-one-out or 

leave-many-out cross-validation. Maximum for correct classification rates or minimum for error 

rates is the natural data fusion choice.
312

 

Performance evaluations of ranking methods in the context of virtual screening cannot be 

evaluated without accepted, consensual metrics. Area under the receiver operating characteristic 

curve is not suitable to the “early recognition” problem. Performance indicators such as 

enrichment factors, robust initial enhancement, Boltzmann enhanced discrimination of receiver 

operating characteristic, area under the accumulation curve corresponding to an empirical 

cumulative density function, and their weighted variants were analyzed theoretically in detail.
314

  

5.4 Clustering algorithms 

Clustering is the collective name for a group of methods, where the molecules (samples, objects, 

etc.) are arranged in groups (or “clusters”) based on their distances from (in other words their 

similarities to) each other. Since clustering is not the main focus of this chapter, we refer the 

reader to recent, well-written reviews on clustering methods and applications from the fields of 

chemometrics
273

 and cheminformatics,
315

 and collect only a small set of diverse developments 

and applications in this subchapter. (Also, it would be virtually impossible to enumerate all 

clustering algorithms that were provided by the machine learning community.) 



“Using various stopping rules the grouping of similarity coefficients resulted in three, 11 or 13 

clusters.”
284

  

“The average clustering coefficient similarity threshold function can be characterized by the 

presence of a peak that covers a range of similarity threshold values. This peak is preceded by a 

steep decline in the number of edges of the similarity network. The maximum of this peak is well 

aligned with the best clustering outcome. If no reference set is available, choosing the similarity 

threshold associated with this peak would be a near-ideal setting for the subsequent network 

cluster analysis.”
316

  

“Despite the long tradition of pattern recognition research, there is no technique that yields the 

best classification in all scenarios. Therefore, as many techniques as possible should be 

considered in high accuracy applications. Typical related works either focus on the performance 

of a given algorithm or compare various classification methods.” Amancio et al. compared the 

performance of nine well-known classifiers and found that the k-nearest neighbor method 

frequently allowed the best accuracy.
317

  

Large margin nearest neighbors approach and its multi-metric extensions have recently been 

elaborated by Kireeva et al.
318

 Their algorithms cluster the compounds in the training set with the 

same property label together while the compounds from different classes are separated by a large 

margin. In most of the cases the metric learning algorithm leads to better classification; the 

performance dependence from the data density has been discussed. The k-medoids clustering 

method was favored by Jaskowiak et al.
319

 Saeh et al. generated robust models while combining 

3D pharmacophore fingerprints and the support vector machine classification algorithm. Lead-

hopping was also simulated: an entire class of compounds was excluded from the training set. 

Still, the model trained on the remaining compounds was able to recall 75% of the actives from 

the “new” lead series and correctly classifying >99% of the 5000 inactive compounds included in 

the validation set.
320

  

The generalized metric swarm learning (GMSL) algorithm has been developed by Zhang and 

Zhang, where a sample pair is represented as a similarity vector via the well-learned metric 

swarm. The sample pairs are transformed into a vectorized similarity space (metric swarm space) 

via an established joint similarity function, whereas SVM-like classification can be easily 

implemented.
321

 They have presented the efficiency of their approach on the example of face 

recognition but it should have great potential in medicinal chemistry, as well. Gaussian Ensemble 

Screening (GES) was developed by Perez-Nueno et al.
322

 “GES is a new and fast way to predict 

polypharmacological relationships between drug classes; it quantitatively provides an efficient 

way to measure the similarity between clusters of arbitrary numbers of members.” 

 

  



5.5 Similarity measures for special tasks 

5.5.1 Symmetric field-based similarity indices  

The first quantum chemical similarity index has been defined by the analogy of correlation 

coefficients in 1980: 

𝑟𝐴𝐵 =
∫ 𝜌𝐴𝜌𝐵𝑑𝑉

√∫ 𝜌𝐴
2 𝑑𝑉√∫ 𝜌𝐵

2 𝑑𝑉

 (11) 

where ρA and ρB are the first-order density functions for molecules A and B.
323

 This is the most 

frequently used field-based similarity index. Similar ones are defined by Hodgkin and Richards
324

 

and by Petke.
325

 A comparative analysis of quantum chemical similarity and dissimilarity indices 

has been carried out not long ago.
326

 

Standard Quantum-Based (SQB) similarity methods were compared with Tanimoto based 

similarity and it was established that “the use of a complex number format for molecular 

representation proved to be superior compared to real representation and benchmark Tanimoto 

method (TAN), where the complex SQB method outperformed TAN in nine cases”.
327

  

5.5.2. Similarities of 1D structures 

Gene expression data analysis requires special similarity measures. The Jackknife correlation 

coefficient (successively removed the outlying features) provided the best results, showing better 

enrichments than other distance measures whereas the second ranked measure is the Kendall tau. 

Good results were also shown by Manhattan distance, Popular distance measures in the gene 

expression clustering literature, namely, Euclidean distance, Spearman, and, Pearson coefficients 

displayed inferior results to at least five other distances under evaluation.
319

  

In another example, Dixon and Merz, Jr. have introduced a truly 1D representation of chemical 

structure. A 3D molecular model or a 2D chemical graph is projected onto a single coordinate of 

atomic positions. A novel measure of overall structural similarity has been defined after the 

alignment of 1D representations to match identical atom types:  

𝑆𝑖𝑚𝐴,𝐵 =
𝑆𝐴,𝐵

𝑚𝑎𝑥

√𝑆𝐴,𝐴
𝑚𝑎𝑥𝑆𝐵,𝐵

𝑚𝑎𝑥
 (12) 

1D similarity has been defined such a way: molecule B is aligned at various offsets with respect 

to molecule A, and the total overlap area SAB between rectangular regions of the same type is 

computed. The largest overlap area that can be achieved, 𝑆𝐴,𝐵
𝑚𝑎𝑥, is combined with normalization 

factors from aligning each molecule with itself. The constraint is valid: 0 < 𝑆𝑖𝑚𝐴,𝐵 < +1. These 

1D similarities have been reported to consistently outperform both Daylight 2D fingerprints and 

Cerius2 pharmacophore fingerprints.
181

 



Similarities of drug chemical structures, of drug protein targets and of drug side-effect profiles 

(Tanimoto similarities and protein sequence similarities) were calculated and fused into an 

overall prediction score using the k-nearest neighbor algorithm.
328

  

A web-interfaced target identification program (called TargetHunter) with a built-in powerful 

data-mining algorithm (TAMOSIC) has been elaborated for predicting potential biological targets 

of query compounds. Its performance has been compared with the multiple-category models 

(MCM) for predicting protein targets and therapeutic activities.
329

  

A revised algorithm based on Shannon’s information theory and the Neumann entropy 

characterizes each individual protein residue position with the number of significantly correlated 

pairs by computing the corresponding mutual information matrix.
330

 Chemogenomics aspects 

were summarized by Bender et al. focusing on target prediction of small molecules with 

molecular descriptor based models.
159

 Semantic links between compounds and proteins, 

including similarity neighboring links and interaction links were utilized to predict drug target 

interactions.
331

 Features are structured according to prior knowledge into groups based on 

similarity in gene expression.
332

 Pearson correlation similarity was calculated and heatmaps were 

plotted. 

5.5.3 Graph (tree) based similarities 

Direct similarity between the two feature trees have been created by Rarey and Dixon.
333

 The 

similarity value of the feature trees is computed by a weighted average over the similarity values 

of the matches. The weight factor for each match is the sum of the subtree sizes size(m) of the 

match. The total weight is the sum of the sizes of the matched subtrees plus a scaling factor u 

times the total size of the unmatched subtrees: 

𝑆𝑀(𝐴, 𝐵) =
∑ 𝑠𝑖𝑧𝑒(𝑚)𝑥∈𝑀 𝑠𝑖𝑚(𝑚)

𝑢(𝑠𝑖𝑧𝑒(𝐴)+𝑠𝑖𝑧𝑒(𝐵))+(1−𝑢) ∑ 𝑠𝑖𝑧𝑒(𝑚)𝑥∈𝑀
 (13) 

There is a notable research gap on comparing different approaches retrieving those models in the 

repository that most closely resemble a given process model or fragment thereof.
334

 Business 

process graphs use various notations and customs. Three types of parameterized similarity 

metrics between business process models have been elaborated: i) node matching similarity 

metrics based on properties of business process model elements (such as their labels and their 

other attributes); ii) structural similarity metrics based on the relations between these elements; 

and iii) behavior similarity metrics based on the intended behavior of process models. 

A detailed, comprehensive survey on techniques to define and calculate business similarity 

measures has been carried out. Nine properties of distance measures are enumerated and twenty-

one business similarity measures have been compared in their work.
335

 Sum of ranking 

differences using the average as reference provides the ordering presented in Figure 16. 



 

Figure 16. Ordering of business similarity measures by sum of ranking differences. Notations: 

Percentage of common activity names (Pcan), Label matching similarity (Lms), Similarity of 

activity labels (Sal), Feature-based activity similarity (Fbas), Percentage of common nodes and 

edges ( Pcne), Node-and link-based similarity (Nlbs), Graph edit distance (Ged), Graph edit 

distance (Ged2), Label similarity and graph edit distance (Lsged) Label similarity and graph edit 

distance (Lsged2), Number of high-level change operations (Nhlco) Comparing PMs represented 

as trees (CPrt) Edit distance between reduced models (Edbrm), Comparing dependency graphs 

(Cdg), Comparing dependency graphs (Cdg2), TAR-relationship (TARr) Causal behavioural 

profiles (Cbp) Causal foot prints (Cfp), Sets of traces as n-grams (Stng) Longest common 

subsequence of traces, Lcst, Similarity based on principal transition sequences (Spts) Similarity 

based on traces (Sbt). XX1 band corresponds to 5 % first kind error, i.e. many of the similarity 

measures are indistinguishable from random ranking (black distorted Gaussian like curve and 

right y axis). 

In a ligand-based virtual screening experiment, the similarity between every library molecule and 

a query molecule is measured by some similarity function. An extension of the optimal 

assignment method for chemical graphs was produced that uses evolutionary algorithms to 

optimize edge weights. A variety of similarity functions can be improved by optimizing the edge 

weights.
336

 The similarity between two chemical graphs can be evaluated by means of the 

maximum common subgraph approach.
337

 Ralaivola et al. reviewed graph kernels and developed 

new graph kernels (Tanimoto, MinMax and Hybrid kernel) for chemical molecules. These 

kernels measure the similarity between feature vectors, or molecular fingerprints, consisting of 

binary vectors or vectors of counts.
338

  

5.5.4 Semantic similarity measures 

Semantic similarity was defined by Resnik based on information content:
339

  

𝑠𝑖𝑚(𝑐1𝑐2) = max𝑐∈𝑆(𝑐1𝑐2)[−𝑙𝑜𝑔𝑝(𝑐)] (14) 
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where 𝑠𝑖𝑚(𝑐1𝑐2) ∈ [0; + ∞] and −𝑙𝑜𝑔𝑝(𝑐) is the negative log likelihood, or the information 

content of a concept c. 

A similar definition is given by Lin.
340

 Lin defines the similarity between two terms as the ratio 

of the commonality of the terms and the information needed to fully describe the two terms: 

𝑠𝑖𝑚(𝑐1𝑐2) = max𝑐∈𝑆(𝑐1𝑐2) [
2𝑙𝑜𝑔𝑝(𝑐)

𝑙𝑜𝑔𝑝(𝑐1)+𝑙𝑜𝑔𝑝(𝑐2)
] (15) 

 where 𝑠𝑖𝑚(𝑐1𝑐2) ∈ [0; + 1]. 

Schlicker et al. have combined Lin’s and Resnik’s similarities into relevance similarity:
341

 

𝑠𝑖𝑚(𝑐1𝑐2) = max𝑐∈𝑆(𝑐1𝑐2) [
2𝑙𝑜𝑔𝑝(𝑐)

𝑙𝑜𝑔𝑝(𝑐1)+𝑙𝑜𝑔𝑝(𝑐2)
(1 − 𝑝(𝑐))] (16) 

Their approach enables the comparison of the underlying molecular biology of different 

taxonomic groups and provides a new comparative genomics tool identifying functionally related 

gene products. 

A novel similarity measure for ligand-based virtual screening has been created from a text 

processing similarity measure called Adapted Similarity Measure of Text Processing 

(ASMTP).
342

 ASMTP was reported to outperform the Tanimoto coefficient-based virtual 

screening. 

Kendall’s τ has been the most widely used measure of similarity between two orderings, R* and 

R
F
; a novel similarity function is defined as: 

𝜏(𝑅∗, 𝑅𝐹) =
𝑃

𝑃+𝑄
=

𝑄

(
|𝐷|
2

)
 (17) 

where P is the number of concordant pairs and Q is the number of discordant pairs on a data set 

D.
343

 An optimal method has been derived based on rank support vector machine that selects the 

most ambiguous objects for ranking so that the ordering on the set maximizes the degree of 

learning. 

5.5.5 Supervised similarity measures 

Ligand similarity measures, such as shape similarity are defined such a way: each atom of a 

molecule is mapped to a five dimensional space, where the first three coordinates are determined 

by the 3D conformation of the molecule. The two remaining dimensions encode the atomic 

partial charges and the atomic lipophilicity (AlogP).
344,345

 Multiple logistic regression was 

applied to combine different similarity values. 

One popular measure of the roughness of a structure–activity landscape is the structure–activity 

landscape index, SALI:
346

  



𝑆𝐴𝐿𝐼𝐴,𝐵 =
|𝐴𝐴−𝐴𝐵|

1−𝑆𝑖𝑚𝐴,𝐵
, (18) 

where AA and AB are the affinities/activities of compounds A and B, while SimA,B is their 

similarity. Basic characteristics of molecular similarity and dissimilarity networks are reviewed 

by Sukumar et al.
347

 “The choice of descriptors affects the computed similarity—for instance, 

two molecules might be constructed from the same molecular scaffold and thus be very similar in 

size and shape, but have very different properties because of the different chemical natures of the 

functional groups or substituent atoms. Conversely, molecules with very different molecular 

scaffolds might look similar for binding to a protein.” 

Cuissart et al. have constituted two more similarity indices in the biodegradability context:
348

  

𝑆𝑖𝑚1(𝑄𝑆, 𝐼𝑆) =
|𝑀𝐶𝑆|

|𝑄𝑆|
 (19) 

and 

𝑆𝑖𝑚2(𝑄𝑆, 𝐼𝑆) =
|𝑀𝐶𝑆|

|𝑄𝑆|
×

|𝑀𝐶𝑆|

|𝐼𝑆|
 (20) 

where |𝑆| equals the number of non-hydrogen atoms within molecule S and MCS is the maximum 

common substructure between two molecules. “IS” means “Instance Structure”, whose 

biodegradability value is used to compute the prediction model, whereas QS means “Query 

Structure”, whose biodegradability is predicted by this model. Both similarity indices are 

discriminant to a group of compounds of similar activity. The index Sim2 operates more in 

conformity with the SAR principles than Sim1. 

Dropout training of artificial neural networks (ANNs) outperforms conventional ANNs, when 

using two types of fingerprints and two similarity metrics (Tanimoto and Buser).
349

 Dropout 

means randomly omitting a large portion of the nodes from an artificial neural network. 

Naderi et al. have predicted drug-likeness for molecular synthesis. Each active compound in the 

DUD-E library was decomposed into fragments and a molecular synthesis was simulated. A 

search space was constructed from small molecules, followed by the stochastic exploration of the 

chemical space by constructing multi-fragment molecules. Tanimoto coefficient was used to 

reveal the chemical similarity. Parent compounds are compared to those constructed with the 

eSynth computational package using molecular fingerprint matching.
350

  

Sixteen different feature ranking methods were compared by Jankowski and Usowicz in 

combination of six weighting schemes and the counts of winnings, defeats and draws were 

presented.
351

  

  



5.5.6 Chemometric/Spectral similarity 

An adaptive similarity measure (sample similarity) was proposed to construct highly accurate 

locally weighted partial least squares (LW-PLS) calibration models. The method is based on the 

weighted Euclidean distance and was used for weighting in regression.
352

  

Common mathematical methods to express similarity in NIR (near-infrared) spectroscopy are 

correlation coefficients and distances.
353

 The authors of a recent work have successfully 

transformed differences in spectra into Bayesian hypothesis testing.
354

 Logarithm values of the 

posterior odds ratios for the spectra are able to detect subtle differences, e.g. changes in the 

analytical process. 

A novel spectral similarity measure was introduced by Bodis et al.
355

 De Gelder and colleagues 

have shown that “various similarity and dissimilarity criteria previously described in literature 

can be written as special cases of a general expression.” The have introduced a new similarity 

criterion, based on this generalized expression.
356

 

The spectral-contrast-angle method introduced by Wan et al. is based on the vector representation 

of mass spectra and has been shown to perform better than the similarity index method for 

spectral comparison.
357

 The spectral contrast angle is defined as the angle between two mass 

spectrum vectors. 

The correlation and congruence coefficients (i.e. similarity values) of all total ion chromatograms 

relative to the reference chromatogram were calculated with median or averaged data. Principal 

component analysis and cluster analysis can successfully discriminate between mountain origins 

of green teas, and therefore can be further applied to identify and authenticate Pu-Erh green 

teas.
358

  

Three mass spectral similarity measures (NIST composite measure, the real part of Discrete 

Fourier Transform and the detail of Discrete Wavelet Transform) were compared and integrated 

with retention indices. As a consequence compound identification was enhanced by 1.7-3.5 %.
359

  

Similarity of infrared spectra were characterized by: correlation coefficient of mean centered 

absorbance (i.e. cosine measure), mean of the absolute absorbance differences, mean of the 

squared absorbance differences, dot product of the absorbance vectors, each normalized to unit 

length, whereas Tanimoto index has provided the chemical structure similarity. The definitions 

were given in vector notations and scaled properly. The first hits corresponding to the most 

similar spectra yield the highest structural similarity with the query compound. Among the four 

investigated spectral similarity measures the correlation coefficient of mean-centered absorbances 

performed best.
360

  

5.5.7 Fuzzy similarity measures 

Enormous progress took place in the development of fuzzy similarity measures. Fuzzy sets are 

sets whose elements have degrees of membership. Thus, instead of 0 (not a member) and 1 (is a 

member), the membership of an element in a fuzzy set can be any real number between 0 and 1. 



Fuzzy similarity measures are defined for the comparison of such fuzzy sets. A small but 

characteristic selection can be found below. 

Three new equations were suggested to calculate the distance between intuitionistic fuzzy sets 

(IFSs) on the basis of the Hausdorff distance. The proposed similarity measure is much simpler 

than the existing methods and is well suited to use with linguistic variables.
361

  

Existing similarity measures can provide unreasonable results in some special cases. Therefore, 

several new similarity measures were proposed to differentiate different IFSs. The proposed 

similarity measures can deal with problems more effectively and reasonably than some of the 

existing methods.
362

  

The degree of similarity between intuitionistic fuzzy sets A and B (B
c
 is the complement of B) is 

defined as:  

𝑠̇(𝐴, 𝐵) = ∑ 𝑠̇𝑛
𝑗=1 (𝛼𝑗 , 𝛽𝑗) =

1

𝑛
∑

𝑑(𝛼𝑗,𝛽𝑗
𝑐)

𝑑(𝛼𝑗,𝛽𝑗)+𝑑(𝛼𝑗,𝛽𝑗
𝑐)

𝑛
𝑗=1  (21) 

where 𝛼𝑗 and 𝛽𝑗 are the jth intuitionistic fuzzy values of A and B, respectively. The analogous 

formula has been used for interval-valued intuitionistic fuzzy sets, as well. Then, the developed 

similarity measure was applied for consensus analysis in group decision making based on 

intuitionistic fuzzy preference relations, and it was extended to the interval-valued intuitionistic 

fuzzy sets.
363

  

“Reasonable” measures to calculate the degree of similarity between intuitionistic fuzzy sets were 

proposed based on the Lp metric.
364

 A new similarity measure for IFSs was suggested and its 

usefulness in medical diagnostic reasoning was proven.
365

  

An axiomatic definition of a similarity measure between dual hesitant fuzzy sets was proposed 

and the shortcomings in existing similarity measures were enumerated.
366

  

Some new distance measures between intuitionistic fuzzy sets (IFSs) were suggested. Maximum 

degree of similarity between IFSs was applied for pattern recognition.
367

  

Some similarity measures were introduced between two triangular fuzzy numbers based on the 

vector similarity measures in vector space (which can be used to aggregate the decision 

information). A methodology for multiple criteria group decision-making (MCGDM) problems 

with triangular fuzzy information is proposed; the criteria values take the form of linguistic 

values. The weighted similarity measures between each alternative and ideal alternative, can be 

used to rank alternatives and select the most desirable alternative.
368

  

Dual hesitant fuzzy sets include fuzzy sets, intuitionistic fuzzy sets and hesitant fuzzy sets as its 

special cases. Some distance and similarity measures based on the Hamming distance, Euclidean 

distance and Hausdorff distance were derived for usage in decision making, pattern recognition, 

etc. Two examples illustrate these distance and similarity measures and their applications in 

pattern recognition.
369

 



Novel discrete and continuous hesitant fuzzy distance measures and hesitant fuzzy ordered 

distance measures between hesitant fuzzy sets were elaborated. A hesitant fuzzy clustering 

algorithm based on novel similarity measures was also created.
370

  

5.5.8 Other similarity measures 

An object is described by sets of features instead of geometric points in a metric space. A new 

measure of remoteness between sets of nominal values is proposed instead of considering the 

distance between two sets: a new measure of perturbation type 1 of one set by another was 

introduced. The consideration is based on set-theoretic operations and the proposed measure 

describes changes of the second set after adding the first set to it, or vice versa. The measure of 

the sets’ perturbation returns a value in the range [0, 1], and this measure is not symmetric in 

general.
371

  

The cosine formula often yields a similarity measure in citation studies that is twice the number 

of that obtained by the Jaccard index.
372

  

Most online shopping sites and many other applications now use collaborative recommender 

systems. The measurement of similarity plays a fundamental role in such systems. The accuracy 

of the most well-known similarity measures (Pearson's correlation coefficient, cosine similarity 

and mean squared differences) decreases due to data sparsity. Therefore, a user-user potential 

matrix is calculated; potential similarities between users from this matrix are computed; the 

potential similarities are modified based on the users' preliminary neighborhoods, and k users 

with the highest modified similarity values are selected.
373

  

 

6. Online web resources 

Since the pool of cheminformatics and molecular modeling software is quickly and constantly 

renewed, we refrain from providing a detailed overview of them: a current and prominent 

selection was presented recently by Cereto-Massagué et al.,
86

 and we have already referred to 

several of them throughout this chapter. However, online resources such as molecular databases 

are more permanent over time, thus we provide a short overview of top-level databases to provide 

some guidelines to anyone who wishes to apply them. These databases implement diverse ways 

of submitting search queries: besides recognizing chemical names and SMILES strings, many of 

them have an integrated sketching interface and support similarity searches (based on the entered 

queries). Most of these databases offer some possibilities for batch downloading and query 

automation as well, through a graphical user interface (GUI), an application programming 

interface (API) or other mechanisms. 

 Chemical Abstracts Service (CAS) Registry: The CAS Registry (operated by the 

American Chemical Society) is the largest molecular database to date.
3,4

 It is constantly 

updated and stores every reported chemical structure (cca. 111 million at the time these 

lines are written) with a uniquely assigned identifier, the CAS Registry number. In 

addition to the database itself, the CAS Registry powers the two major chemical 



information services of CAS: Scifinder (for querying chemical structures and reactions, 

primarily in the literature)
5
 and STN (a search engine that provides access to patent 

content).
6
 While these are paid services, a freely available website covering a subset of 

high interest of the CAS Registry entries – titled Common Chemistry – is also operated by 

CAS.
374

 

 Pubchem: An open chemistry database operated by the National Center for Biotechnology 

Information.
107,375

 The database covers a diverse set of information about the stored 

compounds, from chemical names, 2D and 3D structures and line notations (InChI, 

InChIKey, SMILES) to calculated properties and even vendor and patent information. 

Pubchem operates separate (overlapping) databases for substances (i.e. depositor-supplied 

molecules) and compounds (i.e. unique chemical structures, including stereoisomers and 

even tautomers). In addition, the Pubchem Bioassay database is a rich source of deposited 

biochemical screening data.
376

 

 ChemSpider: An open chemistry database operated by the Royal Society of Chemistry.
377

 

In addition to 2D and 3D representations and chemical names, ChemSpider also stores 

experimentally determined properties and NMR spectra, as well as links to literature 

articles and reference works. 

 ChEMBL: Operated by the European Bioinformatics Institute (EMBL-EBI), ChEMBL is 

today’s probably largest database of experimental bioactivity data.
378–380

 In addition to 

bioactivity data, line notations, links to external databases and drug-related information 

(availability type, route of administration, etc.) are also stored. ChEMBL integrates 

bioactivity data from various sources, including full-matrix datasets such as DrugMatrix 

or the GSK Published Kinase Inhibitor Set, as well as screening results contributed by 

pharma companies. Lately, ChEMBL has integrated the full bioactivity content of 

PubChem BioAssays, which currently accounts for more than half of the data points in the 

ChEMBL database. EMBL-EBI also operates an open, searchable patent database called 

SureChEMBL.
381

 

 Protein Data Bank (PDB): The Protein Data Bank is without question the largest and most 

commonly used repository for experimentally determined protein structures, hence it is 

one of the most important data sources for medicinal chemical and modeling work.
40

 The 

database is thoroughly linked and annotated and offers a detailed and highly configurable 

“Advanced search” mechanism for exploring and analyzing not only the protein-ligand 

complexes, but also the ligands themselves. 

 ZINC (ZINC Is Not Commercial): Probably the largest molecular database focusing on 

commercially available compounds (storing approx. 35 million compounds the time these 

lines are written).
382,383

 In addition to storing the molecules with calculated properties and 

links to vendor databases, ZINC also offers a plethora of subsets for downloading, 

categorized based on various attributes, such as physicochemical properties, targets, 

vendors or availability. Thus, it a flexible and customizable source of information for 

virtual screening. Other comprehensive vendor databases include eMolecules
384

 and 

Mcule
385

, with the latter offering a wide set of online virtual screening tools as well. 

 GDB databases: Besides commercially available compounds and experimentally 

determined data, databases of virtual compounds are also available, the most prominent of 

which are probably the GDB databases based on the work of the research group of 

Reymond.
149

 GDB databases are generated with a systematic enumeration of all possible 

combinations of a predefined number of common heavy atoms (C, N, O, S and halogens). 



For example, the latest database, GDB-17 enumerates molecules of up to 17 heavy atoms: 

a total of 166 billion molecules!
386

 Such approaches serve not only as a basis for 

analytical work, but also define the future directions in synthetic medicinal chemistry by 

providing an abundance of ideas for new scaffolds. In addition to downloadable subsets, 

the same group has implemented online browsers based on various fingerprints, as well as 

molecular quantum numbers (MQN)
111

 for the efficient exploration of the chemical 

universe. 

 

7. Outlook 

Cheminformatics – and by extension, computational medicinal chemistry – is a field that has the 

potential to change very quickly. Novel file formats and fingerprints, based on original ideas, 

continue to emerge, providing an always renewing toolbox for the researchers of these fields. 

However, applications seem to lag behind these technological advances. If we want to look for 

the reasons behind that, we might consider factors such as publication delays, customs and 

personal preferences (i.e. if I have learned to apply one method that seems to work, I might not be 

open to learning a new one), or a sort of “canonization” (the process of a scholarly community 

accepting some works as the most important – not to be confused with canonicalization!) similar 

to that in literature. For example, if ECFP4 fingerprints are widely accepted for quantifying the 

2D similarities of molecules, one might feel a motivation to prefer them over e.g. topological 

torsion fingerprints, when the latter might be in fact more suited for the given application. 

Similarly, the MDL mol (and sdf) formats continue to be the most prevalent chemical file formats 

despite their flaws and limitations. Since we maintain that true progress requires the thorough and 

independent testing, validation and application of the new computational tools, we expect a 

steady increase in the number of application-related works in this field. (Nonetheless, we hope to 

have provided useful guidance for that with this chapter.) 

In terms of descriptors, the question is always open: „Do we need more and more molecular 

descriptors?” This question has been raised already in 2001 by Randic and Basak.
200

 On the other 

hand, a distinguished publication of Cherkasov et al. paraphrases Mark Twain about QSAR (and 

thus molecular descriptors): „reports of [QSAR] death are an exaggeration”.
387

  

After carefully re-reading many publications in the field of molecular descriptors, we can infer 

the following: although there are some novel descriptors in the recent literature, most of the 

widespread ones were developed in the second part of the last century. In the near future we 

expect more application-related articles and somewhat fewer works about the development of 

new descriptors and fingerprints. However, it is also clear based on the aforementioned works 

and our previous experience that we want to have as diverse of a toolbox as possible, to cover the 

various possible descriptions of molecules as fully as possible. (It is worth noting that this is true 

for other fields of science as well, in fact it is an essential part of making progress in science.) 

Like molecular descriptors, similarity measures are abundantly developed recently. The machine 

learning community provides a plethora of novel algorithms, whose limitations, usefulness and 

applicability have been only scarcely studied as of yet. More and more specific applications are 



taken into account, e.g. the early recognition problem or the need for diverse data sets. 

Unfortunately, a lot of novel measures and algorithms require an elaborate computational and 

mathematical skill set and expertise from the user to understand and implement them. In addition, 

some factors (weighting, desirability) are too subjective to let the measures and algorithms spread 

widely and unambiguously.  

Consensus modeling (the usage of the average for more similarity measures) becomes more and 

more popular, and multicriteria optimization seems to be unavoidable nowadays. Multicriteria 

decision making (MCDM) and multiresponse optimization (MRO) intend to find compromising 

(optimal, consensus) solutions to unsolved problems. Recently the equivalency of MCDM with 

sum of ranking differences (SRD) has been proven.
388

 SRD provides optimal solutions without 

the above mentioned subjectivity, and its propagation can be predicted without much risk. Like 

molecular representations, various similarity measures and algorithms can be used for solving 

different types of problems; a complex interplay of the mentioned methods should be considered 

and are expected as a future trend. 

Novel similarity measures are to be expected from diverse disciplines (graph theoretical- business 

similarity-, fuzzy measures, etc. are transferrable to pharmaceutical applications) with great 

probability. Such measures will be tested and filtered by the drug design community – possibly 

slowly but definitely. 

While there are well-established methods and algorithms in cheminformatics, new problems and 

new approaches arise abundantly and the pharma industry needs economic and effective 

techniques. As the amount of the generated data increases, cheminformatics and rational drug 

design approach the domain of big data. Nevertheless, extensions of the current data analysis 

methodologies are already being developed and successfully applied in related fields. Machine 

learning algorithms can operate with extremely complex models (e.g. neural networks with many 

thousands or even millions of nodes, ant colony, support vector machines, random forest, etc.) 

and may solve problems that scientists only dreamed of – even just several years ago. However, 

the validation practices are developing slowly and more emphasis should be placed on 

developing suitable validation techniques. 

Finally, we refer to some recent reviews showing the present state of arts and some future trends 

in the cheminformatics field.
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