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Abstract

Antibiotic resistance carried out by antibiotic degradation has been suggested

recently as a new mechanism to maintain coexistence of microbial species com-

peting on a single limiting resource, even in well-mixed homogeneous environ-

ments. Species diversity and community stability, however, critically depend

on resistance against social cheaters, mutants that do not invest in production,

but still enjoy the benefits provided by others. Here we investigate how differ-

ent mutant cheaters affect the stability of antibiotic producing and degrading

microbial communities. We consider two cheater types, production and degra-

dation cheaters. We generalize the mixed inhibition-zone and chemostat models

introduced previously (Kelsic et al., 2015) to study the population dynamics of

microbial communities in well-mixed environment, and analyze the invasion of

different cheaters in these models. We show that production cheaters, mutants

that cease producing antibiotics, always destroy coexistence whenever there is

a cost of producing these antibiotics. Degradation cheaters, mutants that loose

their function of producing extracellular antibiotic degrading molecules, induce

community collapse only if the cost of producing the degradation factors is above
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a critical level. Our analytical studies, supported by numerical simulations,

highlight the sensitivity of antibiotic producing and degrading communities to

loss-of-function mutants.

Keywords: rock-paper-scissors, social parasite, evolutionary instability,

antibiotic-mediated microbiome, degradation resistance

1. Introduction1

Unraveling mechanisms that maintain high genetic and functional diversity2

of microbial communities has become one of the most challenging problems in3

theoretical and evolutionary ecology (Costello et al., 2012; Morris et al., 2012;4

Cordero and Polz, 2014). A great variety of bacteria form stable communi-5

ties in relatively homogeneous environments, competing for only a few limiting6

resources (Hibbing et al., 2010), seemingly contradicting with the competitive7

exclusion principle, which states that the number of species cannot be higher8

than the number of limiting resources (Gause, 1934).9

In bacteria, the most common forms of interactions are carried out by10

molecules secreted into the extracellular environment, such as exoenzymes to11

digest nutrients (Arnosti, 2011), iron scavenging siderophores (Ross-Gillespie12

et al., 2009), signaling molecules (Miller and Bassler, 2001), virulence factors13

(Hacker and Carniel, 2001), antibiotics (Bernier and Surette, 2013), or antibiotic14

degrading molecules (Wright, 2005). Via these molecules, microorganisms can15

be in competitive, antagonistic, or cooperative relationships (West et al., 2001;16

Coyte et al., 2015). Interestingly, these molecules are public goods, meaning17

that not only the producers, but all nearby individuals can enjoy the benefits18

delivered by them (West et al., 2001). Cheaters, individuals that do not produce19

such molecules and hence pay no cost of production, can also enjoy these ben-20

efits. Thus cheaters have higher fitness and can outcompete producers, leading21

to the loss of the diversity by ceasing the production of the public good (West22

et al., 2001). These antagonistic interactions carried out by the extracellular23

antibiotics make cyclic competition dominance possible, for example, among24
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antibiotic sensitive, producer, and resistant types. Since producing of an an-25

tibiotic and being resistant to it are both costly, the resistant strain wins over26

the producer, similarly the sensitive wins over the resistant, and the producer27

can take over the sensitive population. This ’rock-paper-scissors’ interaction28

cycle is the simplest example of cyclical competition dominance network, where29

each species is superior to one, but inferior to another (Fig. 1.a). Coexis-30

tence of species in such cyclical interaction networks is documented in spatially31

structured environments, in which interaction and dispersion are limited to the32

immediate neighbors of the focal individual (Kerr et al., 2002; Czárán et al.,33

2002; Károlyi et al., 2005; Müller and Gallas, 2010), but coexistence is much34

less prevalent in unstructured environments where individuals mix intensively35

(Kerr et al., 2002; Károlyi et al., 2005).
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Figure 1: Cyclical competition dominance of three species. (a) Topology of a general ’rock-

paper-scissors’ type interaction. Here species 1 wins over species 2, species 2 wins over species

3, and species 3 wins over species 1, as indicated by the arrows. (b) The interaction topol-

ogy where each species inhibits another by producing antibiotic (solid lines) and decomposes

antibiotic produced by that species (dotted lines) according to a cyclical interaction topology.

36

Recently, Kelsic et al. (2015) (KEA) employed theoretical models to demon-37

strate that bacterial species with different antibiotic production, intrinsic re-38

sistance, and extracellular degradation factors can coexist even in well-mixed39

microbial communities competing for one common limiting factor. Including40

degradation resistance has a key role in their model, since excreting antibiotic41

degrading molecules can weaken the inhibitory interaction between other species42

thus balance the fitnesses through the community. Their study focuses mainly43
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on three species systems, in which species produce one type of antibiotics and44

reduce the effect of another type via degrading molecules (Fig. 1.b). The au-45

thors showed that coexistence of species in this system is robust to variation46

of model parameters even in well-mixed environment. They further demon-47

strated that analogous systems with four or five species producing 4-6 different48

antibiotics and degradation factors can have coexistence, although robustness49

is significantly less prevalent in these richer communities (Kelsic et al., 2015).50

However, the explanatory power and significance of degradation resistance in51

explaining microbial diversity largely depends on whether these communities52

prove to be resistant to the invasion of mutants, mainly against the invasion of53

social cheaters. A community is defined to be resistant or robust to the invasion54

of a mutant if its species composition does not change significantly after the55

invasion. That is, the mutant will be present in the community only transiently,56

and after its disappearance, the community returns to its pre-invasion state.57

In the following, we study the generalized versions of KEA’s so-called mixed58

inhibition-zone and chemostat models (Kelsic et al., 2015), and show analytically59

that bacterial communities, independently of the interaction topology, are not60

robust against the invasion of social cheaters. More precisely, we show that61

mutant cheaters, loosing the costly function of antibiotic production, destroy any62

diverse community either in one step, or following a cascade of invasion steps.63

The other type of social cheaters considered in the model, the mutants loosing64

their functions of producing extracellular antibiotic degrading molecules have65

less dramatic effect on community stability, but species diversity still declines66

after the invasion of such mutants.67

2. Model description68

We assume that there are ns phenotypically different species and na different69

antibiotics that can be produced by these species. A phenotype (or species) is70

defined by its relation to an antibiotic: it can produce, can be resistant to, or can71

be sensitive to the given antibiotic. Naturally, a species producing an antibiotic72

4



is also resistant to it, where the resistance is carried out either by removing73

antibiotic molecules from the cell via efflux mechanisms, or by neutralizing these74

molecules within the cell (Kumar and Schweizer, 2005). Accordingly, a cell75

producing an antibiotic l (Pl) is also intrinsically resistant (Rl) to this antibiotic.76

Non-producing species can have two types of resistance: intrinsic resistance (Rl)77

and degradation resistance (Dl). Bacteria with degradation resistance produce78

molecules and secrete to the extracellular matrix which diffuse and degrade the79

target antibiotic molecules in a given neighborhood of the cell (Wright, 2005;80

Bastos et al., 2015). Phenotypes which are not resistant to antibiotics l carried81

out either by intrinsic or by degradation resistance, are considered sensitive82

(Sl) and the presence of this antibiotic in the locality reduces their fitnesses.83

Thus, every species i = 1, 2, ..ns is characterized by any of the four phenotypes84

Pl, Rl, Dl, Sl for each antibiotic l = 1, 2, ..na.85

Let xi be the abundance of species i per unit area, and assume that cells are86

dispersed randomly on a two-dimensional surface. The fitness wi of species i is87

determined by its intrinsic replication rate gi and the fraction of area 1−A(kill)
i88

in which individuals of species i are not killed by antibiotics, that is89

wi = gi(1−A(kill)
i ). (1)

Antibiotic l is effective within area K
(P )
l around the cell producing it and, sim-90

ilarly, degrading molecules protect every sensitive cell within area K
(D)
l around91

a cell producing this degrading molecule. A sensitive cell is killed if there is92

at least one cell producing antibiotic l within its K
(P )
l neighborhood and there93

is no bacterium producing degrading molecules for antibiotic l within its K
(D)
l94

neighborhood. Since the aim of this model is to show that coexistence is pos-95

sible in unstructured environment, it is assumed that bacteria are dispersed96

randomly, so the number of cells follows Poisson distribution within the defined97

areas. Thus, the probability that at least one antibiotic producer cell is in the98

K
(P )
l neighborhood of a cell is 1−e−K

(P )

l
xp , where xp is the abundance of species99

producing antibiotic l. This value gives the fraction of area in which sensitive100

cells are killed except if they are protected by individuals producing degrading101
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molecules within area K
(D)
l . If the abundance of species producing degrading102

molecules is xd, then the probability of having no cells in this area is e−K
(D)

l
xd .103

So, species i is killed by antibiotic l in the fraction of area is as follows104

Ai,l(xd, xp) = e−K
(D)

l
xd

(
1− e−K

(P )

l
xp

)
. (2)

Since not only one species can produce antibiotics l or molecules degrading it,105

the total area where at least one molecule of antibiotic l kills the sensitive species106

i is written as a product of the probabilities of all possible occurrences107

Ai,l(x1, x2...xi−1, xi+1...xns
) = Ai,l(x\xi) =

ns∏
j=1

e−δjlK
(D)

l
xj

1−
ns∏
j=1

e−εijlK
(P )

l
xj

 ,

(3)

where δjl = 1 if the j-th species degrades antibiotic l, otherwise δjl = 0. Simi-108

larly, εijl = 1 if species i is sensitive to antibiotic l which is produced by species109

j, otherwise εijl = 0 (for P and D type cells). Consequently, the fraction of110

area where individuals of species i are not killed by any antibiotics of any other111

species is112

1−A(kill)
i (x \ xi) =

na∏
l=1

(1−Ai,l(x \ xi)) . (4)

Thus, the fitness of species i will be113

wi = gi

(
1−A(kill)

i (x \ xi)
)
, (5)

and the average fitness is114

w̄ =

ns∑
i=1

wixi. (6)

By knowing fitness functions for every species, the population dynamics of115

the system can be described by the following discrete-time replication dynamics:116

xi(t+ 1) =
c+ wi(t)

c+ w̄(t)
xi(t), (7)

where the c > 0 constant depends on the time unit (Weibull, 1997). For the117

continuous time counterpart of the dynamics, see Appendix A.118

We note here that KEA have pointed out previously, that the three-species119

coexistence (see Fig 1.b) is robust if the areas of chemical activities (K
(P )
l and120
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K
(D)
l ) and replication rates (gi) of all the three species are relatively similar.121

KEA have also shown that the same dynamics can be observed in the agent-122

based and the chemostat versions of the mixed inhibition-zone model (Kelsic123

et al., 2015). The detailed analyses of the generalized chemostat model can be124

found in Appendix C. They studied a system where K
(P )
l = K(P ) and K

(D)
l =125

K(D) are constants for every antibiotic which assumption does not have to hold126

in our generalized model.127

Besides the ecological stability of three species models, KEA investigated128

the invasion of ”production cheaters”, that is, the mutants which do not pro-129

duce antibiotics and ”degradation cheaters” which do not produce degrading130

molecules. Losing these functions results in fitness increase for mutants, which131

is then translated into higher replication rates. Based on numerical simulations132

including cheaters in the community, they concluded that ”These interactions133

enable coexistence that is robust to substantial differences in inherent growth134

rates and to invasion by ’cheating’ species that cease to produce or degrade an-135

tibiotics.” Our discussions with the authors clarified that they studied the evolu-136

tionary stability of this system in the spatially extended agent-based version of137

the mixed inhibition zone model, and analyzed it numerically for 3- and 4-species138

networks (Kelsic et al., 2015, 2016). They found that networks are resistant to139

both degradation and production parasites in these systems if the colonization140

radius is small enough. In the following sections, we show that cheater mutants141

crash such communities not only in the three-species ’rock-paper-scissors’ in-142

teraction topology in the mixed inhibition model, but in the generalized mixed143

inhibition model, and similarly in the chemostat model with any interaction144

topology. In the discussion we explain briefly why the agent-based model with145

short range colonization behaves differently from the analytical model studied146

here.147
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3. Results148

3.1. Evolutionary instability in the mixed inhibition-zone model: introducing149

social cheaters150

Species having resistance Dl protect not only themselves but any other151

strains Sl in the neighborhood from the antibiotics, and similarly a strain Pl152

producing antibiotic l generates empty space by killing sensitive individuals not153

only for itself but for non-producing strains Rl as well. Therefore these de-154

grading molecules and antibiotics are public goods, so strains not producing the155

costly degradation or antibiotic molecules have advantage over producers; thus156

these are social cheaters (Hardin, 1968; Cordero et al., 2012b). We consider two157

types of mutants, ”production cheaters” that fail to produce antibiotics but re-158

tain intrinsic resistance to this antibiotic (Pl → Rl), and ”degradation cheaters”159

that lose their resistance through antibiotic degradation and become suscepti-160

ble to the antibiotics (Dl → Sl). The benefit of non-producing extracellular161

materials results in higher replication rates for cheaters, that is the growth rate162

of mutant increases with (1 + α), where α is an arbitrary, but generally small,163

positive number.164

3.1.1. Invasion of antibiotic production cheaters165

Assume that an antibiotic production cheater evolves in a community in166

which ns species are in a stable coexistence. (According to KEA, any type167

of species coexistence is possible from stable fixed points through limit cycles168

to chaotic behaviors. Our analysis remains valid for every type of dynamical169

coexistence.) Let us denote the mother species by m, and assume this species170

produces antibiotic l. The mutant m′ of the mother looses the costly production171

of antibiotic l and consequently its replication rate increases as gm′ = gm(1+α).172

It follows from the definition of the model that the fitness function of species m173

depends only on the abundances of the two types of species affecting survival:174

the species producing antibiotics for which the focal species is sensitive, and175

the species producing the molecules degrading this particular antibiotic (see176
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Eq. 3). Since m′ remains sensitive to the same antibiotic as m, its replication177

rate increases, but its fitness function does not change. Thus, the dynamics of178

mother and mutant species are179

xm(t+ 1) =
c+ wm(t)

c+ w̄′(t)
xm(t) (8)

xm′(t+ 1) =
c+ wm′(t)

c+ w̄′(t)
xm′(t), (9)

where w̄′(t) is the average fitness in the population including the mutant. Di-180

viding Eq. (8) by Eq. (9)181

xm(t+ 1)

xm′(t+ 1)
=

c+ wm
c+ (1 + α)wm

xm(t)

xm′(t)
(10)

that is182

xm(t+ 1)

xm′(t+ 1)
=

[
c+ wm(t)

c+ (1 + α)wm(t)

]t
xm(0)

xm′(0)
. (11)

Since 0 < [c+ wm(t)]/[c+ (1 + α)wm(t)] < 1 for any c ≥ 0 then183

limt→∞ ([c+ wm(t)]/[c+ (1 + α)wm(t)])
t

= 0 and consequently184

lim
t→∞

xm(t)/xm′(t) = 0. (12)

According to (12) three scenarios are possible: (i) both m and m′ are selected185

against in the community, but species m goes extinct faster than species m′;186

(ii) species m is selected against, and the invading mutant m′ is getting fixed187

in the community, but mutant m′ triggers the loss of another species besides188

the mother strain; (iii) species m is selected against, and species m′ replaces it189

in the community, so the number of coexisting species remains unchanged. In190

case of scenarios (i) and (ii), the number of coexisting species decreases after191

the invasion of the mutant. In scenario (iii) a non-producing cheater merely192

replaces a producer.193

Let us assume a sequence of production cheaters invading according to (iii).194

The number of coexisting species doesn’t change in this scenario, however if195

there were na number of different antibiotics in the community then the num-196

ber of antibiotics decreases to zero after at most na number of such a species197

replacements. As a result, neither of the coexisting species produces antibi-198

otics any more in this new community. However, survival of more than one199
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species becomes impossible in this situation, since the replication rate will be-200

come wi = gi for every i as there are no more interactions between the species,201

and thus only the species with the highest gi will survive (survival of the fittest).202

Consequently, in any of the above mentioned possible scenarios, species m (and203

consequently the community) is not resistant against the invasion of mutant m′204

that has any replication benefit (α > 0) due to its loss of antibiotic producing205

function. We show that continuous time replicator dynamics and the chemostat206

model lead to completely similar results (see Appendix A and C for details).207

3.1.2. Invasion of degradation cheaters208

The other type of social cheater is the degradation cheater m′, which ceases209

the production of degradation molecule synthesized by the mother species m210

against antibiotic l. By loosing this function, m′ becomes sensitive to antibiotic211

l if it is present in the environment but its replication rate increases as gm(1+α)212

at the same time. Thus, the equations of the mother and the mutant species213

dynamics are214

xm(t+ 1) =
c+ wm(t)

c+ w̄′(t)
xm(t) (13)

xm′(t+ 1) =
c+ (1 + α)(1−Am′,l(x \ xm′))wm(t)

c+ w̄′(t)
xm′(t). (14)

Dividing Eq. (13) by Eq. (14) we get215

xm(t+ 1)

xm′(t+ 1)
=

[
c+ wm(t)

c+ (1 + α)(1−Am′,l(x \ xm′))wm(t)

]t
xm(0)

xm′(0)
(15)

The fate of a mutant depends on the values of both α and Am′,l(x \ xm′),216

thus the advantage of the invading mutant m′ is insufficient yet. By defining217

A
(max)
m′,l = Max{Am′,l(x \ xm′) | xi ∈ [0, 1],

∑
i xi = 1} a sufficient condition for218

the invasion of mutant m′ can be set. For limt→∞ xm(t)/xm′(t) = 0 to be valid,219

the expression in the square bracket on the right hand side of (15) must be in220

the (0, 1) interval which leads to the following sufficient condition:221

α >
A

(max)
m′,l

1−A(max)
m′,l

. (16)
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Consequently, one of the above mentioned three possible scenarios describes222

the fate of mutant m′ in this case as well. However, besides the loss of species223

diversity, according to the above described three invasion scenarios, it is possible224

that the degradation-molecule producer and the sensitive mutant strains coexist.225

To prove this we show that it is possible that m′ invades the community where226

type m is resident, but m invades the community where m′ is resident. Let us227

assume first that m is resident in a stably coexisting community. For the sake of228

simplicity, we assume that coexistence is characterized by a stable fixed point,229

denoted by x̂(1). The mutant m′ emerges in small abundance, that is x′m � x̂
(1)
i230

for every i 6= m′, x̂
(1)
i > 0. Since xi(t + 1) = xi(t) for every i, x̂

(1)
i > 0 at the231

equilibrium the abundance of the rare mutant m′ increases in the community if232

(cf. Eq. (14))233

c+ (1 + α)(1−Am′,l(x̂(1) \ xm′))wm(t)

c+ w̄′(t)
> 1, (17)

which leads to the condition234

α >
Am′,l(x̂

(1) \ xm′)
1−Am′,l(x̂(1) \ xm′)

. (18)

Let us consider now m′ as the resident species of the same community but m is235

replaced by m′ and thus m is the rare mutant. Let x̂(2) denote the equilibrium236

abundances before invasion, so the rare mutant m spreads if237

c+ wm′ (t)

(1+α)(1−Am′,l(x̂
(2)\xm′ ))

c+ w̄′(t)
> 1, (19)

(cf. Eq. (14) that is if238

α <
Am′,l(x̂

(2) \ xm′)
1−Am′,l(x̂(2) \ xm′)

. (20)

Consequently, if Am′,l(x̂
(2)\xm′) < Am′,l(x̂

(1)\xm′) then both (18) and (20) can239

be satisfied simultaneously, thus the rare m and m′ mutants mutually invade240

the communities in which the other is resident, which guarantees the coexis-241

tence of these species. Naturally, this analysis assumes that beside species m242

and m′ there is at least one another species that produces an antibiotic lethal243
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for species m′. Furthermore, it is assumed that residents m and m′ are in co-244

existence with the same species, but their densities can be different. Identical245

conditions determine the invasion of mutants in a model based on continu-246

ous replicator dynamics (see Appendix B for details). Thus, according to our247

analytical investigation, degradation cheaters can coexist within the resident248

community, and can degrade resident community only if their replication rate249

is above a critical level. This level can be arbitrarily low or high depending on250

the parameters. In the next section, we will test the generality of our results251

using numerical investigations.252

3.2. Numerical studies253

Next, we run numerical investigations to test the effect of social cheaters, and254

for comparison we followed the methodology and parameters used by KEA in255

their simulations. In the first series of experiments we generated a statistically256

representative sample of ecologically stable communities of 3-5 coexisting species257

producing 2-5 different antibiotics, where the initially selected five species can258

be any of the four phenotypes (Sl, Dl, Rl, Pl) for each antibiotic l = 1, 2, ..., 5259

and the intrinsic replication rate for species i is: gi = 1+(i−1) ·0.005. The area260

of chemical activities were either K
(P )
l = K(P ) = 10 and K

(D)
l = K(D) = 3 or261

K
(P )
l = K(P ) = 30 and K

(D)
l = K(D) = 10. We randomly assembled communi-262

ties with five interacting species by assigning randomly selected phenotypes for263

each antibiotic l to each of the species. The initial abundances were 1/ns for264

each species. We repeated T = 10.000 update steps according to Eq. (7) with265

c = 0 and determined the number of coexisting species and the type of equilib-266

rium at the end (fixed point, limit cycle or chaotic behavior). (We note that267

c = 0 is the standard parameter choice used by KEA as well, although c > 0268

fits the mathematical deduction of the dynamics (Weibull, 1997). However, this269

modification does not alter the qualitative behavior of the model.) A species270

was considered to be extinct if its frequency went below 0.01/ns (Kelsic et al.,271

2015).272

In agreement with Kelsic et al. (2015, Extended data Figure 8), we experi-273
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enced that only an extremely small fraction of possible interaction topologies274

were suitable to maintain complex communities. While three species remain275

in coexistence from the the initial five species networks in 1 out of 102 − 103276

randomly selected networks, five species could coexist only in 1 out of 104− 106277

randomly selected networks on average (depending on the K(P ) and K(D) pa-278

rameters). That is, in line with the Extended Data Figure 8 of Kelsic et al.279

(2015), we found that the fraction of stable communities decreases dramatically280

as the number of coexisting species increases.281

After generating the sample of ecologically stable 3-5 species communities282

we tested the resistance of these communities against the production and degra-283

dation cheaters but only one function and only in one species could be lost at284

a time, thus either P→ R or D → S mutants could emerge in the community285

for each possible case. The mutants with fitness of (1 + α)gi were introduced286

at the 10.000th time step with density of 10−3, and the density of the corre-287

sponding mother species was decreased by the same amount. After subsequent288

10.000 update steps the coexistence was monitored again, and we recorded the289

communities that could not resist invasion and hence diversity declined. We290

declared communities not being resistant to the invasion of mutants if at least291

one mutant type caused the number of coexisting species (with frequency higher292

than 0.01) to be smaller after T time steps compared to the number of species293

before the invasion. That is, we consider only the cases when the invasion of294

mutants decreases the number of coexisting species within one step (scenarios295

(i) and (ii)).296

We tested the resistance of three, four, and five-species communities against297

the cheater mutants as the function of the α growth-rate advantage of the mu-298

tants. There is a critical α above which the fraction of unstable communities299

increases abruptly in a sigmoid manner (Fig. 2a). Species diversity declines300

dramatically in the majority of these communities even at as little as 0.1% rela-301

tive growth-rate advantage of mutants α∗ = α/ḡi where ḡi is the average growth302

rate in the community. The rapid decline of diversity results in the exclusion303

of all but one species in most of the cases (around 70% of the outcomes in the304
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case of five species communities in Fig 1a). Production cheaters are responsible305

for the decline of diversity in more than 99% of the cases.
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Figure 2: Measures of community instability fostered by cheater mutants. (a) The fraction of

unstable communities increases in a sigmoid manner (depicted by colored lines) as the relative

growth-rate advantage of cheater mutants increases. At 0.1% growth-rate advantage, the

majority of the modeled communities become unstable. Statistics are based on 103 randomly

selected communities composed of three (green circles), four (blue rectangles), and five (red

diamonds) species. (b) The critical level of relative growth-rate advantage of mutants (where

at least 99% of communities are not resistant to the invasion of at least one mutant type)

decreases as the duration of simulations (T ) increases for 103 randomly selected interaction

network topologies composed of 5 species. Parameters are: gi = 1 + (i − 1) · 0.05, K
(P )
j =

K(P ) = 30, K
(D)
j = K(D) = 10.

306

In our second analysis, we studied the dependence of community resistance307

on simulation time. According to Eq. (11), it is straightforward to assume308

that it takes more time to observe competitive exclusion if fitness differences309

are smaller. To test this hypothesis, we repeated the numerical experiments310

in five-species communities with parameters used in Figure 2a but for differ-311

ent simulation times (T ), and measured the critical α∗c , that is the α∗ value312

for which at least 99% of the communities proved to be unstable. As Figure313

2b demonstrates, α∗c decreases continuously as the duration of the simulations314

increases according to α∗c ∝ T−1.05±0.01. This relation is in concordance with315

our analytical results, since the necessary condition to detect collapse of com-316

munity is that xm(t)/xm′(t) ≤ xc where xc is a critical frequency below which317
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the species is selected out by definition. It follows from Eq. (11) that318

ln(xc) = T ln

(
1

1 + α

)
. (21)

For α� 1 ln[1/(1+α)] ≈ −α, consequently α ∝ 1/T determines the relationship319

between these two variables in the extinction dynamics.320

To investigate the different invasion scenarios discussed previously, we nu-321

merically analyzed the invasion dynamics of different production and degrada-322

tion cheaters in a community with the topology shown in Figure 3a. Note that323

in this case antibiotic production—sensitivity combinations are not cyclic as in324

Figure 1, but still each antibiotic is degraded by one of the species. This topol-325

ogy enables us to demonstrate all possible invasion events starting from the same326

community. We iterated the dynamics for 1000 time steps and then introduced327

mutants into the system. The number of coexisting species was monitored until328

t = 2000 (except in Fig. 4d in which case due to slow invasion dynamics the329

mutant was added at t = 2000 and the simulation was terminated at t = 4000).330

Investigating the three invasion scenarios in the numerical model discussed331

previously (see Eq. (12) and afterwards) confirms that the invasion of mutants332

can (i) result in the extinction of both the mutant and the mother species (Fig.333

3b); (ii) result in the exclusion of mother species leading to a decrease in species334

diversity (Fig. 3c); and (iii) exclude the mother species but the mutant remains335

in coexistence with the other species (Fig. 3d).336

Figure 3b shows the effect of the invasion of production cheater mutant337

for species 2 (mutant ceases producing the antibiotic that inhibits species 5).338

Although the invasion of this mutant is unsuccessful it triggers a community339

collapse and only one resident species (species 5 in this case) remains in the340

end. In Figure 3c the other possible production cheater mutant of species 2341

(mutant ceases producing the antibiotic that inhibits species 4) invades the342

system and reduces the number of coexisting species (to an odd number smaller343

than the original number of species; in our case to one).344

Finally, in Figure 3d the same type of mutant with lower fitness advantage345

invades the community and replaces the mother species preserving the number of346
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coexisting species but reducing the number of interactions by one. In accordance347

with Eq. (12) and discussions afterwards, these results suggest that the invasion348

of cheater mutants can result in the loss of species diversity, antibiotic diversity,349

or both.350

In case of degradation cheater invasion experiments (in model community351

with the same topology as in Fig. 3a) we found the four different outcomes in352

line with expectations from Eq. (16) and the discussion afterwards. In contrast353

to production cheater mutants, degradation cheaters cannot always invade the354

system, thus the community structure can remain intact, or the mutants can355

coexist with the original coalition (Fig. 4). In line with the first scenario of the356

production mutants, the degradation cheater (mutant of species 5) can destroy357

the coexistence and one of the original species survives (Fig. 4c), or the cheater358

(mutant of species 2) survives only after the community collapses (Fig. 4d).359

4. Discussion360

Our results imply that the counteraction of antibiotic production by ex-361

tracellular antibiotic degradation does not in itself guarantee high diversity in362

antibiotic producing microbial communities. In particular, we pointed out that363

production cheaters with increased reproduction rate demolish the coexistence364

of interacting species in well-mixed models. According to our studies, three365

scenarios are possible: in two cases (scenarios (i) and (ii)) the invasion of pro-366

duction cheaters causes immediate decrease of the number of coexisting species.367

In scenario (iii) it takes more than one invasion events to decrease the number of368

coexisting species, but eventually a sequence of invasion events also leads to the369

decrease of species diversity. These results are valid for the mixed inhibition-370

zone model and the chemostat model with any interaction topology and even371

if the different antibiotics and degradation molecules have different diffusion372

abilities (different K
(D)
l and K

(P )
l parameters). It follows that the invasion373

success of production cheaters is independent of the model details. Our con-374

clusions remain valid for any other systems where the fitness of phenotype i is375
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described by gifi(x1(t), x2(t), xi−1(t), xi+1(t), ..), where fi(x\xi) is an arbitrary376

continuous function and the replicator dynamic describes the selection among377

the different phenotypes (see Eqs. (9-12)). We found that the emergence of378

degradation cheaters causes less dramatic changes in the community; they are379

able to invade a stable community only if their fitness benefit is above a critical380

level, and in some cases the coexistence of mutant and resident types is possible381

after invasion.382

Our numerical simulations show (in line with Kelsic et al. (2015) Extended383

Data Figure 8.) that the proportion of ecologically stable communities among384

randomly selected interaction topologies becomes negligibly low as the number385

of coexisting species increases to five or more. As in the current study the386

focus was on the evolutionary stability of microbial communities against invasion387

by cheaters, this aspect of ecological stability received less attention in our388

analyses. Similarly, in the study of KEA this behavior of the system did not389

receive sufficient attention. However, we would like to emphasize that it becomes390

increasingly unlikely that stable communities can emerge when the number of391

species increases. That is, besides the evolutionary instability, the robustness392

of ecological stability of these communities is also problematic in well-mixed393

models without additional mechanisms promoting diversity.394

A more recent investigation by (Kelsic et al., 2016) pointed out that the395

spatially extended agent-based version of the mixed inhibition model exhibits396

resistance to invasion of cheaters. The crucial difference is that in this spatial397

extended model empty sites are colonized from a finite distance. A producer398

cell creates empty sites by killing sensitive cells in its neighborhood. Such cells399

have a greater chance for colonizing these empty sites than the non-producing400

cheaters being in the vicinity of the empty site. Thus producer cells have higher401

replication success than non-producers which can balance the higher per-capita402

replication rate of non-producer ones. The smaller the colonization distance403

the higher the benefit of producers compared to non-producers, and since the404

colonization distance tends to be infinite in the well-mixed models studied here405

this effect disappears.406
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We assumed in the analysis that the production of antibiotics and molecules407

degrading antibiotics is costly for the cells. In line with this assumption, there408

are numerous experiments demonstrating that the inactivation or loss of such409

genes have a significant positive effect on the fitness of such mutant types in a410

given environment (Lee and Marx, 2012; Koskiniemi et al., 2012; D’Souza et al.,411

2014). Moreover, other investigations reveal that such antibiotic resistance fac-412

tors can be the by-products of the general metabolism and thus the production413

costs are practically negligible (Melnyk et al., 2014). In some cases, switching414

off such gene can even be beneficial for the cell due to pleiotropic effects of the415

regulating genes (Dandekar et al., 2012; Mitri and Foster, 2016). However, the416

high population size which is typical in bacterial communities enhances selection417

and thus it can dominate over genetic drift even for small fitness differences.418

The mixed inhibition-zone and chemostat models consider the dynamics of419

well-mixed individuals producing diffusive antibiotics and degrading molecules.420

The assumptions behind these models enable us to handle the problem analyt-421

ically, however, these assumptions oversimplify some aspects of the dynamics.422

First and foremost a more realistic diffusion dynamics and chemical interactions423

among the dispersed molecules and cells are not taken into account. It is known424

from other studies that even minor modifications in the dynamics describing425

diffusion of public goods molecules, interaction of these molecules with cells,426

the non-linear relation between the molecule concentration and the fitness, and427

even timing of death and birth events in population dynamics can have signifi-428

cant effect on selection between producers and non-producers (Borenstein et al.,429

2013; Scheuring, 2014; Archetti, 2014).430

Recent studies pointed out that the secreted extracellular molecules are not431

completely mixing public goods, because due to the restricted motion of cells and432

of molecules in real bacterial communities, only the immediate neighborhood of433

the producer is able to enjoy the benefits (Morris, 2015). As the close neighbors434

of the producer are most probably the clones of the producer, non-producers435

further away from the source can benefit much less. According to the exper-436

iments, these definite spatial effects establish density-dependent and negative437
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frequency-dependent selection which stabilizes the coexistence of the producers438

and social cheaters (Kerr et al., 2002; Cordero et al., 2012a; Drescher et al., 2014;439

Kümmerli et al., 2014; Morris, 2015). In addition, our results highlight that in-440

teractions of antibiotic production and attenuation are insufficient in effectively441

stabilizing bacterial communities in well-mixed environments. Presumably mi-442

croscale spacial structure of the habitat, negative frequency-dependent selection,443

pleiotropy, auxotrophy, and top down control by phages play more significant444

role in maintaining microbiome diversity (Cordero and Polz, 2014; Morris et al.,445

2012, 2014; Morris, 2015; Koskiniemi et al., 2012; D’Souza et al., 2014; Velend,446

2010; Ross-Gillespie et al., 2007, 2009; Dandekar et al., 2012; Mitri and Foster,447

2016; Kelsic et al., 2016).448
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Appendix A. Continuous replicator dynamics: invasion of produc-454

tion cheaters455

The continuous replication dynamics of bacterial strains is generally written456

as457

ẋi(t) = (wi(t)− w̄(t))xi(t), (A.1)

where wi(t) and w̄(t) are the fitness values of individuals and the population458

average as defined in the main text. Let us denote the mother and production459

cheater mutant with m and m′, respectively. Thus, the dynamics of these two460

types are461

ẋm(t) = (wm(t)− w̄′(t))xm(t) (A.2)

ẋm′(t) = ((1 + α)wm(t)− w̄′(t))xm′(t). (A.3)
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Dividing the two equations by xm(t) and xm′(t), respectively, and subtracting462

Eq. (A.3) from Eq. (A.2), after some rearrangement we get463

ẋm(t)

xm(t)
− ẋm′(t)

xm′(t)
= −αwm(t), (A.4)

which leads to464

xm(t)

xm′(t)
= e
−α
∫ t

0
wm(τ)dτ

. (A.5)

Since wm(t) > wmin > 0, where wmin is a constant, we have limt→∞
∫ t
0
wm(τ)dτ =465

∞. Therefore, equation (12), and consequently the three scenarios described in466

the main text remain valid in continuous time dynamical systems as well.467

Appendix B. Continuous replicator dynamics: invasion of degrada-468

tion cheaters469

In case of continuous replicator dynamics, the time evolution of m and m′470

species is471

ẋm = (wm(t)− w̄(t))xm (B.1)

ẋm′ = ((1 + α)wm(t)(1−Am′,l(x \ xm′))− w̄′(t))xm′ , (B.2)

where m′ denotes the degradation cheater. Following the algebraic steps de-472

scribed in the previous subsection, we get473

ẋm(t)

xm(t)
− ẋm′(t)

xm′(t)
= [1− (1 + α)(1−Am′,l(x \ xm′)]wm(t). (B.3)

The sign of the right hand side of (B.3) depends on α and Am′,l(x\xm′). As be-474

fore, a sufficient condition for the invasion of mutant m′ can be determined with475

the help of the maximum value of Am′,l(x\xm′) : if
[
1− (1 + α)(1−A(max)

m′,l )
]
<476

0, that is if477

α >
A

(max)
m′,l

1−A(max)
m′,l

. (B.4)

To determine the criterion of mutual invasibility, let us assume first that478

type m is the resident species and type m′ invades the community. For sake479

of simplicity (as in the discrete model presented in the main text), we assume480
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that the dynamics of the resident population is in fixed point, the abundances481

before invasion are denoted by x(1). Mutant m′ spreads if482

ẋm′(t) =
(

(1 + α)(1−Am′,l(x̂(1) \ xm′))wm(t)− w̄(t)
)
xm′(t) > 0 (B.5)

which leads to483

α >
Am′,l(x̂

(1) \ xm′)
1−Am′,l(x̂(1) \ xm′)

. (B.6)

Let us consider now m′ as the resident species in a community and m as the484

rare mutant. Let x̂(2) denote the equilibrium abundances before invasion, so485

the rare mutant m spreads if486

ẋm(t) =

(
wm′(t)

(1 + α)(1−Am′,l(x̂(2) \ xm′))
− w̄′(t)

)
xm(t) > 0, (B.7)

which leads to the condition487

α <
Am′,l(x̂

(2) \ xm′)
1−Am′,l(x̂(2) \ xm′)

. (B.8)

Again, as in the discrete time dynamics, if Am′,l(x̂
(2) \ xm′) < Am′,l(x̂

(1) \ xm′)488

then both (B.6 ) and (B.8) can be satisfied simultaneously, thus the rare m489

and m′ mutants mutually invade each other which guarantees the coexistence490

of these species. (Naturally, this analysis assumes that beside species m and491

m′ at least one similar a species is present in the community which produces492

antibiotic affecting species m′.)493

Appendix C. Invasion of production cheaters in the chemostat model494

Here we review the chemostat model version of microbial community with495

interference competition. Following Kelsic et al. (2015), it is assumed that496

bacteria compete for a common limiting resource z and there is a constant497

dilution d from the chemostat. The dynamics of the resource is498

ż(t) = (z0 − z(t)) d−
∑ns

i=1 wi(t)xi(t)

µ
, (C.1)

where z0d is the constant inflow into the chemostat, wi(t) is the actual growth499

rate of species i with concentration xi and µ is a conversion factor between500
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resource and species concentration. The species concentrations change according501

to502

ẋi(t) = (wi(t)− d)xi(t), (C.2)

with503

wi(t) = gi
z(t)

kz + z(t)

na∏
j=1

e−σi,jK
(P )
j

cj(t), (C.3)

that is the growth rate wi(t) is determined by the intrinsic growth rate gi, the504

concentrations of the resource and the antibiotics z(t) and cj(t), respectively.505

The effect of z is saturated in line with the standard Michaelis-Menten kinetics506

with half saturation constant kz and the antibiotics cause exponential decay on507

total growth rate, σi,j = 1 if species i is sensitive to antibiotic j otherwise σi,j =508

0. The concentration of the antibiotics changes because of the production, the509

degradation, and the dilution of antibiotics, thus the dynamics can be written510

as511

ċj(t) = ρ

ns∑
i=1

ηi,jwi(t)xi(t)−K(D)
j cj(t)

ns∑
i=1

δi,jxi(t)− dcj(t), (C.4)

where ρ is the amount of antibiotics produced by unit concentration of cells,512

ηi,j = 1 if antibiotic j produced by species i, otherwise ηi,j = 0. Similarly513

δi,j = 1 if species i produces degradation molecules for antibiotic j, otherwise514

δi,j = 0. It follows from (C.1) and (C.2) that515

d

dt

(
ns∑
i=1

xi(t)

µ
+ z(t)− z0

)
= −d

(
ns∑
i=1

xi(t)

µ
+ z(t)− z0

)
, (C.5)

thus after a transient time516

z(t) = z0 −
∑
i

xi(t)

µ
. (C.6)

Therefore (C.1) can be eliminated when we study the stationary solutions of517

the system by substituting (C.6) into (C.3) (Kelsic et al., 2015).518

Let us assume that dynamics of a bacterial community is described by (C.1-519

C.4), and a species m is a member of a community (x̄m > 0 in the stationary520

state), and produces at least one type of antibiotic. The mutant m′ species521

looses the production of this antibiotic, thus it has an increased growth rate522
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(gm′ = (1 +α)gm, α > 1) as above. Thus, the difference of relative growth rates523

of m and m′ species is524

ẋm(t)

xm(t)
− ẋm′(t)

xm′(t)
= wm(t)− wm′(t) = −α z(t)

kz + z(t)

na∏
j=1

e−σm,jK
(P )
j

cj(t). (C.7)

Our aim here is to show that z(t)/(kz + z(t))
∏
j e
−σm,jK

(P )
j

cj(t) > W0 > 0 if525

t > tc which guarantees that limt→∞ xm(t)/xm′(t) = 0. It follows from (C.2)526

that xi(t) ≥ 0 if xi(0) > 0 and thus because of (C.6) z(t) ≤ z0 and xi < µz0 for527

every i. Therefore, wi(t) < giz0/(kz + z0) and the right hand side of (C.4) can528

be estimated above with529

ċj(t) < ρµ
z20

kz + z20
nsgmax −

(
K(D)µz0ns + d

)
cj(t) = α1 − α2cj(t) (C.8)

where gmax = max{gi, i = 1, ..ns},
∑ns

i=1 ηi,j and
∑ns

i=1 ηi,j can be estimated530

above by ns. Here α1, α2 are positive constants. By introducing function C(t)531

in such a way that its derivative estimates over ċ(t), we get532

ċj(t) < Ċj(t) = α1 − α2C(t) (C.9)

This estimation is valid as the ordering between derivatives guarantees C(t) >533

c(t) if t > t∗. It is easy to show that limt→∞ Ci(t) = C∗ where C is a finite534

positive constant, thus limt→∞ ci(t) ≤ C∗ for every i. Similarly, knowing that535 ∑ns

i=1 xi/µ ≤ z0 and using the estimation introduced above Eq. (C.1) can be536

estimated below with537

ż(t) ≥ Ż(t) = (z0 − Z(t))d− gmax
z0

µ(kz + z0)
Z(t), (C.10)

Since limt→∞ Z(t) = Z∗ > 0, thus limt→∞ z(t) ≥ Z∗. That is, z/(kz +538

z)Πje
−σi,jK

(P )
i

cj(t) > Z∗/(kz +Z∗)Πje
−σi,jK

(P )
i

C∗ = W0 > 0 for every t greater539

than a critical time tc. Thus540

lim
t→∞

xm(t)/xm′(t) = 0 (C.11)

as in the mixed inhibition model. We note here that the calculation remains541

valid if we use any monotonously decreasing function to model the effect of the542

antibiotic.543
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Figure 3: Invasion dynamics of different production cheaters in a model community. (a) The

interaction topology of the model community. Each species produces different antibiotics, and

species numbering represents the increments in reproduction rates as described in Methods.

Species 2 is not affected by any antibiotic, species 5 is inhibited by antibiotic produced by

species 2, and species 4 is inhibited by two different antibiotics produced by species 2 and 5.

Three different scenarios of production cheater mutant (depicted by dashed lines) invasions:

(b) both the introduced mutant and the corresponding mother species go extinct after the

invasion of production cheater mutant for species 2 (that ceases producing the antibiotic that

inhibits species 5, depicted by the green dashed line), (c) the invasion of production cheater

mutant of species 2 (that ceases producing the antibiotic that inhibits species 4, depicted

by the green dashed line) results in the exclusion of the mother type and triggers further

species loss, and finally (d) the production cheater mutant of species 2 (that ceases producing

the antibiotic that inhibits species 4, depicted by the green dashed line), similarly as in the

previous numerical experiment, but with lower fitness advantage, replaces the mother lineage.

Parameters are the same as in Fig. 2, α = 0.05 for (b,d), α = 0.1 for (c). Orange, green, blue

solid lines correspond to species 5, 2, 4, respectively. Dashed line denotes the actual mutant

colored similarly as its mother species.

28



1000

Time, T

0
1500 20005001

0.2

0.4

0.6

1

0.8

1000 1500 20005001

A
b

u
n

d
a

n
c
e

 o
f 
s
p

e
c
ie

s
, 
x
  
  
 

 i
  
  
 

Time, T

-3

10

0.01

1

0.1

0

0.2

0.4

0.6

1

0.8

0

0.2

0.4

0.6

1

0.8

-4

10
-5

10
-6

10

A
b

u
n

d
a

n
c
e

 o
f 
s
p

e
c
ie

s
, 
x
  
  
 

 i
  
  
 

a            b        

c            d       

Figure 4: Four different scenarios for the invasion of degradation cheater mutants (dashed

lines) in model communities depicted by Figure 3a. (a) Unsuccessful invasion of the degrada-

tion mutant of species 2 (that ceases to produce the factor degrading the antibiotic produced

by species 5, depicted by the green dashed line), where the resident community remains un-

changed after the invasion attempt. (b) Successful invasion of degradation mutant of species

5 (that ceases to produce the factor degrading one of the antibiotics produced by species 2,

depicted by the orange dashed line), leading to the coexistence of all species, the residents

and the mutant. (c) The invasion of degradation mutant of species 5 fails, but triggers species

extinctions in the community, and one resident species survives in the end. (d) The mutant of

species 2 successfully invades a stable community and excludes all other species. Parameters

and color coding are the same as in Figure 3, α = 0.05 for a and b, α = 0.08 for c, and

α = 0.1 for d.
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