1	THE NEEDLE IN A HAYSTACK: A SAUROPOD TOOTH FROM THE SANTONIAN OF
2	HUNGARY AND THE EUROPEAN LATE CRETACEOUS 'SAUROPOD HIATUS'
3	
4	Attila Ősi ^{1, 2, *} Zoltán Csiki-Sava ³ , Edina Prondvai ⁴
5	
6	¹ Eötvös University, Department of Paleontology, Pázmány Péter sétány 1/C, Budapest 1117,
7	Hungary; hungaros@gmail.com; Tel: +36 1 37 22 500/8003, Fax: +36 1 381-2130
8	² Hungarian Natural History Museum, Ludovika tér 2, Budapest, 1083, Hungary
9	³ Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, 1 N.
10	Bălcescu Blvd, 010041 Bucharest, Romania; zoltan.csiki@g.unibuc.ro
11	⁴ Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, K. L.
12	Ledeganckstraat 35, 9000 Gent, Belgium; edina.prondvai@gmail.com
13	
14	
15	Corresponding author: Attila Ősi, hungaros@gmail.com
16	
17	Competing financial interests: The authors declare no competing financial interests.
18	Author contributions statements: AŐ, ZCs-S, and EP contributed to all discussions
19	throughout and wrote the main manuscript text, and AÖ prepared figures 1-3 and
20	Supplementary information 1.
21	
22	
23	Key words: sauropods, Late Cretaceous, Santonian, 'sauropod hiatus', tooth, Hungary
24	
25	

27 Abstract

28	The lack of sauropod body fossils from the 20 My-long mid-Cenomanian to the late
29	Campanian interval of the Late Cretaceous in Europe is referred to as the 'sauropod hiatus',
30	with only a few footprints reported from the Apulian microplate (i.e. the southern part of the
31	European archipelago). Here we describe a single tooth from the Santonian continental beds
32	of Iharkút, Hungary, that represents the first European body fossil evidence of a sauropod
33	from this critical time interval. The mosaic of derived and plesiomorphic features documented
34	by the tooth crown morphology points to a basal titanosauriform affinity suggesting the
35	occurrence of a clade of sauropods in the Upper Cretaceous of Europe that is quite different
36	from the previously known Campano-Maastrichtian titanosaurs. Along with the footprints
37	coming from shallow marine sediments, this tooth further strengthens the view that the
38	extreme rarity of sauropod remains from this period of Europe is the result of sampling bias
39	related to the dominance of coastal over inland sediments, in the latter of which sauropod
40	fossils usually occur. This is also in line with the hypothesis that sauropods preferred inland
41	habitats to swampy environments.
42	
43	
44	
45	
46	
47	
48	
49	

52 Introduction

- 53 Sauropod dinosaurs were important elements of different Late Cretaceous continental 54 vertebrate communities in Europe. Their record comes, however, mainly from upper 55 Campanian to upper Maastrichtian sediments, and only a very few isolated and fragmentary remains are known from older Upper Cretaceous deposits^{1, 2, 3}. Almost all of these sporadic 56 57 remains, both skeletal elements and footprints, have been discovered in Cenomanian 58 localities^{4-++_13} with some of these even possibly reworked from older, Albian sediments. 59 Accordingly, the late Cenomanian to late Campanian time period, an approximately 20 My 60 long interval¹⁴², was long thought to represent a hiatus in the European sauropod record^{8, 135}. 61 The discovery of some Turonian-Coniacian sauropod footprints in Croatia^{1, 164} and a trackway of a probable small sauropod from the Santonian of Italy^{1, 175}, however, seem to challenge this 62 63 view, and suggest a sampling bias instead¹⁸⁶, mainly due to the "rarity of inland sediments 64 and dominance of coastal deposits" (Mannion and Upchurch 2011:529) in the European 65 Upper Cretaceous. Here we report a sauropod dinosaur tooth from the Santonian of Iharkút, Hungary, an 66 67 unexpected discovery that represents the first body fossil of the clade known from this poorly 68 sampled period of the sauropod fossil record in the European Cretaceous. 69 70 Material and methods
 - 71 The isolated tooth (MTM PAL 2017.1.1.) described here was collected in the Iharkút
 - 72 vertebrate locality (western Hungary) and is housed in the Vertebrate Paleontological
 - 73 Collection of the Hungarian Natural History Museum, Budapest. The specimen was prepared
 - 74 mechanically in the lab of the Hungarian Natural History Museum and the fragmentary
 - 75 margins of the tooth were fixed by cyanoacrylic glue.

formázott: Felső index

76	The description of the tooth follows the dental terminology proposed by Smith and Dodson ¹⁹⁷ .	
77	Quantitative shape descriptors such as Slenderness Index (SI: ratio of crown height to	
78	maximum mesiodistal width ²⁰¹⁸) and Compression Index (CI: ratio of the maximum	
79	labiolingual width to the maximum mesiodistal width of the crown ²) were also calculated.	
80		
81	Locality and geological setting	
82	The Iharkút vertebrate locality is in an open-pit bauxite mine near the villages of	formázott: Balra zárt
83	Németbánya and Bakonyjákó (Bakony Mountains, western Hungary, №47°-13'-52''-N, E17°	
84	39'-01''-E; Fig. 1A). The oldest rock unit at the locality is the Upper Triassic Main Dolomite	
85	Formation, the karstified sinkholes of which were filled up by Cretaceous (pre-Santonian)	
86	bauxites (Nagytárkány Bauxite Formation), formerly mined here. The bauxite and the	
87	karstified paleosurface is covered by alluvial floodplain deposits of the Santonian Csehbánya	
88	Formation consisting of alternating coarse basal breccia, sandstone, siltstone and paleosol	
89	beds deposited in a continental environment ²¹¹⁹ . Bones at the site are accumulated in	formázott: Betűtípus: Times New Roman
90	bonebeds, among which the most productive one (SZ-6 site, Fig. 1B, C), a greyish, coarse	formázott: Betűtípus: Times New Roman, 12 pt
91	basal breccia layer, produced most of the vertebrate remains including the tooth described in	
92	this study. Systematic excavations at the locality resulted in more than 50.3000 specimens,	
93	represented by isolated and associated bones and teeth of fishes, amphibians, turtles,	
94	mosasaurs and other lizards, pterosaurs, crocodyliforms, and dinosaurs, including birds. 220.	formázott: Betűtípus: 12 pt
95		
96	Results	
96 97	Results Crown morphology	
97	Crown morphology	
97 98	Crown morphology The tooth (MTM PAL 2017.1.1.; Fig. 2) has most of the crown preserved. Apically and	

101	mesiodistally narrow (4.8 mm) with a minimum SI value of 2.12 (Fig. 2). This refersgives to a	
102	minimum log10 value of minimum 0.326 for SI which that is either just falls just outside	_
103	from of or on the marginedge of the SI cluster of for Macronaria ²³ indicating a relatively wide	_
104	crown. The mesial and distal margins of the tooth extend parallel to each other before	
105	converging apically. Apically, the crown bends labially at first and then seems to incline	
106	backwards lingually near its very tip. The lingual surface of the crown (Fig. 2B) does not have	
107	a central longitudinal ridge, but is divided into three parts: the basal third is mesiodistally flat	
108	with a very shallow depression centrally bordered by shallow, low and rounded mesial and	
109	distal buttresses; the central third, albeit placed in the same plane, becomes slightly concave	
110	and is still bordered by subtly raised mesial and distal shoulders ('rounded edge' in Fig. 2B,	
111	E), while the apical third of the lingual surface, gently bending labially, is also slightly	
112	concave.	
113	The labial surface is strongly convex (Fig. 2A, D, E), resulting in a D-shaped transverse	
114	cross-section at mid-crown, with a CI of 0.79. The same D-shaped cross-section is still	
115	present at the base of the crown (Fig. 2G). Apically, the crown becomes more spatulate,	
116	labiolingually pinched, than atin its basal part. Here, the labial surface also shows a very	
117	curves mildly labiallymild labial leaning, mirroring the more marked labial bend of the	
118	lingual surface. No distinct grooves or ridges are present on any side of the crown. It is also	
119	void of marked carinae, presenting only the two parallel, lingually shifted, low and rounded	
120	edges that separate the mesial and distal sides from the lingual surface (Fig. 2B, F). Most of	
121	the enamel surface appears to be worn all around the crown; as such, the surface of the crown	
122	is smooth and unwrinkled, although covered by feeding-related scratches and pits (see below).	
123	The pulp cavity, filled with pyrite and calcite, can be observed both basally and apically.	
124	Whereas its basal section is subcircular in cross-section, apically the pulp cavity becomes	
125	strongly labiolingually compressed.	

formázott: Alsó index

formázott: Felső index

127	Tooth wear
128	The crown does not show well-distinguished wear facets with exposed dentine, or they may
129	not be preserved due to the missing crown apex (Fig. 3). It seems, nevertheless, that the entire
130	crown was more or less uniformly eroded during life, resulting in hundreds of shorter or
131	longer scratches that are mainly parallel or sub-parallel with the long axis of the crown (Fig.
132	3A-C). Accordingly, a high orientational consistency is characteristic, with very rare
133	crosswise oriented scratches occurring mainly apically. Scratches are the best developed and
134	longest (over 5-7 mm) along the mesiolabial and distolabial margins of the crown (Fig. 3A,
135	C). Some scratches on the mesial and distal sides are slightly oblique, starting basally from
136	the mesial or distal margin and ending apically on the labial surface. Although scratches are
137	dominant, shallow, apicobasally elongate and triangular pits are also present (Fig. 3F), mainly
138	in the apical third of the crown. A 'meteor shower' pattern of short scratches and pits, similar
139	to that reported on the titanosaur teeth from Lo Hueco, Spain ²⁴¹ , can be observed on the
140	lingual surface of the crown.
141	Since the tooth crown shows a uniformly eroded pattern, it cannot be ruled out that it is a
142	digested tooth etched by gut acid ²⁵² resulting in an unwrinkled, enamel-less surface but still
143	leaving the deeper scratches and pits preserved on the dentine surface.
144	
145	Discussion
146	Since this tooth represents the only indication of sauropod dinosaurs in Iharkút up to now, it
147	raises the question whether this specimen might have been reworked from older deposits, as
148	teeth are known to survive relatively long-distance transport and reworking without
149	significant damage ²⁶ already demonstrated by REFERENCIA (Ref. 27; 3) the tooth is completely void

150 of any signs of abrasion that would have eventually resulted from the interaction between

formázott: Felső index formázott: Felső index

151	sediment particles and tooth during reworking (REF); and, 4) the tooth surface is pristine,
152	well-preserved and shows ornamentation as well as features generated only by tooth-food
153	contact. Taken together, these taphonomic features indicate that, similarly to the other teeth
154	and bones preserved in site Sz-6 from Iharkút, the primary depositional setting of MTM PAL
155	2017.1.1. is represented by the bone-yielding beds of this site.
156	
157	Identification and comparisons
158	Teeth of almost all dentulous vertebrate taxa discovered at Iharkút (from fish to
159	enantiornithine birds) are known from the locality, and MTM PAL 2017.1.1. differs markedly
160	from all of these (see Supplementary information 1), suggesting that it represents a vertebrate
161	taxon not previously identified in the local assemblage. Furthermore, the general shape,
162	morphology and detailed features of the tooth differentiate it from those of most major Late
163	Cretaceous continental vertebrate clades (see Supplementary Information), although it shows
164	remarkable (and somewhat surprising) resemblances to sauropod teeth.
165	Among sauropods, the tooth MTM PAL 2017.1.1. can be referred to eusauropods based on
166	the possession of a concave lingual surface and a D-shaped crown cross-section $2\underline{83}$, $2\underline{94}$. The
167	wrinkled enamel texture characteristic of sauropod teeth283 cannot be observed on this tooth,
168	most probably as the result of extensive wear or perhaps of gut acid etching. This condition
169	suggests that the specimen was a functional tooth with prolonged tooth-food contact.
170	However, well distinguished wear facets (such as interlocking V-shaped, high- or low-angled
171	planar facets $\frac{3025}{2}$) are not present on the preserved part of the crown, making the assessment of
172	tooth-tooth occlusion details impossible. The specimen displays a mosaic of basal and
173	advanced dental features within Eusauropoda. It retains the lingual concavity and a D-shaped
174	cross section, but the tooth crown is narrow and not markedly expanded relative to the root,
175	the labial grooves are absent, and no denticulate mesial and distal margins are present.

176	The tooth differs from the peg-like teeth of diplodocoids, such as <i>Diplodocus</i> ^{3126, 3227} , and the	
177	spatulated, mesiodistally wide teeth of non-titanosauriform eusauropods (e.g.,	
178	Camarasaurus ³³²⁸), although the crown curvature in mesial/distal view and the lingual	
179	concavity are similar to those seen in Mamenchisaurus ³⁴²⁹ . MTM PAL 2017.1.1. is similar to	
180	a brachiosaurine tooth from the Lower Cretaceous of Galve, Spain ³⁵⁰ in having a D-shaped	
181	cross-section, concave lingual surface, and parallel, non-carinated mesial and distal margins,	
182	although the details of the crown curvature differ slightly. The general form and cross-section	
183	of the crown is reminiscent of the premaxillary teeth of the Early Cretaceous North American	
184	brachiosaurid <i>Abydosaurus</i> ^{23 (Chure et al. 2010)} as well. Some similarities can also be pointed out	formázott: Felső index
185	with the teeth of somphospondylan Euhelopus ³⁶¹⁻³⁸³ , and those of some indeterminate basal	
186	titanosauriforms from the Lower Cretaceous of Japan ³⁹⁴ that also have parallel-sided crowns	
 187	with concave lingual surface and relatively low SI values. Nevertheless, they differ from	
188	MTM PAL 2017.1.1. in their simple lingual apical curvature, as well as in the presence of a	
189	midline ridge within the lingual concavity and of basal lingual buttresses. On the other hand,	
190	the tooth markedly differs from the subcylindrical or cylindrical teeth of derived lithostrotian	
191	titanosaurs such as Rapetosaurus ⁴⁰³⁵ or Nemegtosaurus ^{4136, 4237} in having a much lower SI	
192	value and a morphologically more complex crown. Indeed, according to the character list of	
193	Mannion et al. ⁴³ , the Hungarian tooth does not represent a lithostrotian, since it lacks	formázott: Felső index
194	synapomorphies of this clade such as the high-angled planar wear facets (C105) and the	
195	cylindrical tooth crown (C109) with a convex lingual surface (C110). The only lithostrotian	
196	character present in MTM PAL 2017.1.1. is the absence of an apicobasally orientated lingual	
197	<u>ridge (C111).</u>	
198	New discoveries of European latest Cretaceous titanosaurs document an increasing diversity	
199	with at least six different taxa (Ampelosaurus, Lirainosaurus, Atsinganosaurus, Lohuecotitan,	
200	Magyarosaurus, and Paludititan), among which the first three genera preserve teeth as	

201	well ²¹ well ²⁴ , ³⁸⁴⁴ , and further isolated, indeterminate titanosaur tooth morphotypes are also
202	reported from different localities from Spain ²⁴ Spain ²⁴ , southern France ^{2, 39,45} and western
203	Romania (pers. observ.). Isolated titanosaur teeth from the Hateg Basin, Romania, possibly
204	referable to either Magyarosaurus or Paludititan, are very simple, cylindrical and peg-like,
205	with a mildly convex lingual surface and a high SI value (\sim 5) making these markedly
206	different from the Iharkút tooth. The single known tooth referred to Ampelosaurus, and found
207	in a bonebed from southern France ^{2, 4046, 4147} , is labiolingually flattened, mesiodistally
208	expanded with mesially and distally positioned longitudinal grooves, again, being clearly
209	distinct from MTM PAL 2017.1.1. Whereas the French taxon Atsinganosaurus has gracile,
210	spatulate teeth with a cylindrical crown and mesial and distal ridges extending from the apex
211	to the middle of the crown, the teeth of Lirainosaurus from northern Spain are simple
212	cylindrical with a circular cross section ^{2, $42_{-}48_{-}$} - both of these morphologies are also very
213	different from that of the Iharkút specimen. Besides these three Iberoarmorican taxa, Díez
214	Díaz and colleagues ²¹ colleagues ²⁴ described two additional morphotypes from the Spanish
215	locality of Lo Hueco. Among them, 'morphotype B' is more similar to the Iharkút tooth in
216	having mesiodistally parallel sided crown and shallow ridge-like margins mesially and
217	distally; however, crown curvature and cross section are different. Finally, the 'Massecaps'
218	titanosaur tooth morphotype reported by Díez Díaz et al. ² from southern France and described
219	as 'robust spatulate' has a flat lingual surface, without the complex morphology shown by the
220	Iharkút specimen, and lacks the labial bend of the crown in mesial/distal view.
221	Interestingly, MTM PAL 2017.1.1. bears some resemblance to the isolated and indeterminate
222	sauropod teeth reported from the mid-Lower Cretaceous of western France ⁴³ France ⁴⁹ ,
223	especially in the labial bend of the crown at mid-height, followed by a lingual leaning of the
224	tip. Although the teeth figured by Néraudeau et al. ^{43_49} are markedly different from the Iharkút
225	specimen in their overall shape, with a more leaf-like contour and asymmetrical, distally

226	deflected apical part, these as well as another unpublished tooth apparently originating from
227	the same site appear to have a similar lingual morphology with a concave basal half flanked
228	by rounded and lingually projecting edges and a more convex apical half. Unfortunately, the
229	affinities of these isolated teeth from western France remain poorly understood, and thus are
230	not useful in shedding light on the affinities of the Hungarian specimen either. Finally, MTM
231	PAL 2017.1.1. is somewhat reminiscent of the dental teeth of the 'mid'-Cretaceous
232	(Cenomanian-Turonian) basal somphospondylan Sarmientosaurus from South
233	America ⁴⁴ America ⁵⁰ . Although details of the morphology are different, the teeth of
234	Sarmientosaurus also show moderate SI values (regarded as intermediate between the broad
235	teeth of basal macronarians and the cylindrical, pencil-like teeth of derived titanosaurs), a D-
236	shaped cross-section of the crown, and more particularly the labially leaning crown at mid-
237	height, below a lingually recurved apical part.
238	To sum up, specimen MTM PAL 2017.1.1. is certainly a tooth composed of an extensive pulp
239	cavity and dentine covered by heavily worn enamel that shows a number of parallel, elongate
240	scratches along the entire crown. Its morphology, being an elongate non-carinated, spatula-
241	like and pointed tooth, is most closely reminiscent of those of certain sauropods. The mosaic
242	of derived and plesiomorphic characters displayed by the Iharkút tooth clearly suggests a
243	neosauropod affinity. It markedly differs from the peg-like diplodocoid and chisel-like
244	derived titanosaurian teeth (including most titanosaur morphotypes reported previously from
245	the uppermost Cretaceous of Europe), instead being more similar to some brachiosaurid teeth
246	or to those of the basal somphospondylan titanosauriform $Euclide{u} = Euclide{u} = Euclide{u}$ and
247	Sarmientosaurus ⁴⁴ Sarmientosaurus ⁵⁰ . Thus, we suggest a non-titanosaur titanosauriform
248	affinity for this specimen, pending discovery of further material that might reveal its more
249	precise taxonomic status.

251 Status of the European "sauropod hiatus"

252 Despite being a single piece of evidence, the sauropod tooth from the Santonian of Hungary is 253 of great importance for at least two reasons. First, this specimen is the first sauropod body 254 fossil from a 20 My long hiatus in the fossil record of this clade in Europe, extending from the 255 mid-Cenomanian to the late Campanian interval. Second, the mosaic of derived and 256 plesiomorphic features documented by the crown morphology points to a basal 257 titanosauriform affinity and suggests the occurrence of a clade of sauropods in the Upper 258 Cretaceous of Europe that is markedly different from that encompassing the previously 259 known Campano-Maastrichtian titanosaurs. 260 Similarly to the 'sauropod hiatus' hypothesis proposed by Lucas and Hunt⁴⁵-Hunt⁵¹ to account 261 for the absence of sauropod fossils for the largest part of the mid to Late Cretaceous interval 262 in North America, Le Loeuff⁸ and Le Loeuff and Buffetaut¹³-Buffetaut¹⁵ suggested that the 263 fossil record supports the absence of sauropods from the Cenomanian to late Campanian 264 continental vertebrate record of Europe. This assertion was based on the fact that until the end 265 of the 1990's not even a single bone or footprint, certainly referable to this group, was known from the, admittedly few, European vertebrate localities representing this time period. The 266 267 discovery of tracks identified as belonging to small sauropods from the Santonian of southern Italy¹⁵Italy¹⁷, 46_52 and trackways of larger sauropods¹⁴-sauropods¹⁶ (probably titanosaurs¹) 268 269 from the upper Turonian-lower Coniacian of Dalmatia, Croatia, however, indicates that 270 sauropods were present in the Cenomanian to Coniacian continental ecosystems of Europe as 271 well^{1, 3}. The sauropod tooth from Iharkút further strengthens this view, filling in the 272 previously hypothesized Late Cretaceous gap in the sauropod fossil record, and shows that 273 instead of their disappearance, the absence of sauropod fossils in European Late Cretaceous 274 assemblages is probably in part the by-product of sampling bias.

275	Mannion and Upchurch ⁵³ (2011:534) convincingly demonstrated ,,the abundance of
 276	titanosaurs during the Early and latest Cretaceous and their apparent absence during the mid-
277	Cretaceous" in Europe, and pointed out a positive correlation between the abundance (or lack)
278	of sauropod remains and the amount of terrestrial sediment deposition during the Cretaceous.
279	The Iharkút sauropod tooth came from the deposits of a flash flood event that was formed on
280	a low-lying alluvial floodplain developed not far from swampy/deltaic environments that
281	existed under humid <u>conditions¹⁹ conditions²¹</u> . Accordingly, this landscape was probably more
282	similar to a 'coastal' environment than to the much drier and open inland habitats likely
283	preferred by the titanosaur sauropods ²⁴ sauropods ²⁹ , ⁴⁷⁵³ . The fact that this tooth represents the
284	only fossil of a sauropod discovered so far among more than 50.000 bones and teeth of the
285	Iharkút assemblage fits well into this environmental scenario, but also confirms that
286	sauropods existed in pre-Campanian times within the European archipelago. In addition, the
287	Santonian sauropod fossil evidence from southern Italy and from Iharkút reveals their
288	presence in both the southern ¹⁵ -southern ¹⁷ and northern ¹⁹²¹ parts of the Apulian microplate,
289	and suggests their more widespread existence in this region.
290	The basal titanosauriform affinity of the Iharkút tooth, as assessed based on its mosaic
291	features, might further suggest that the Santonian-aged Iharkút sauropod apparently
292	represented a lineage different from, and more basal than, that of the known European
293	Campano-Maastrichtian sauropods ^{2, 2124, 3844, 3945, 4248, 4854, 4955} . If this suggested affinity is
294	upheld by future discoveries, the presence of the Iharkút titanosauriform expands the
295	apparently cryptic sauropod diversity in Europe during the Late Cretaceous, from where only
296	lithostrotian titanosaurs basal (Atsinganosaurus ⁵⁰) or derived (Lirainosaurus ^{3, 44, 56-48, 5849})
297	titanosaurs have been reported before. It further supports the endemic and relictual nature of
298	these latest Cretaceous European assemblages, highlighted by the presence of a basal

formázott: Felső index

299	titanosauriform sauropod clade that most probably went extinct by Santonian times in most
300	other landmasses ⁵⁴ landmasses ⁵⁹ .
301	However, the uncertain taxonomic status of the specimen does not allow a more precise
302	clarification of its affinities and relationships. As such, it also remains unknown whether this
303	form represents an immigrant from Gondwana or Asia, as suggested for some Late
304	Cretaceous European titanosaurs ^{1, 8, 1315} , or it is rather a relict form that survived in a
305	geographically limited refugium within the European Cretaceous Archipelago, a
306	biogeographical phenomenon already pointed out in the case of many other latest Cretaceous
307	continental vertebrates ^{3, 5260, 5361} . Certain morphological similarities with the Hauterivian-
308	Barremian aged sauropod teeth from Charentes, western France might support the second
309	scenario, while possible affinities with the 'mid'-Cretaceous Argentinian Sarmientosaurus
310	would rather argue for a southern immigrant. Hopefully further material of the enigmatic
311	Iharkút sauropod will be discovered and will help clarifying this problematic aspect of the
312	Late Cretaceous European biogeography as well.
313	

315 Acknowledgements

316 We are grateful to the two anonymous reviewers for their constructive comments that greatly improved the previous version of the manuscript. We thank the 2000-2016 field crew 317 318 for their assistance in the fieldwork. We are especially grateful to the Bakony Bauxite Mining 319 Company and the Geovolán Zrt. for their logistic help. We thank Réka Kalmár and Márton 320 Szabó (Hungarian Natural History Museum, Budapest) for their technical assistance. Field 321 and laboratory work was supported by the MTA-ELTE Lendület Dinosaur Research Group 322 (Grant no. 95102), Hungarian Scientific Research Fund (OTKA T-38045, PD 73021, NF 323 84193, K 116665), National Geographic Society (Grant No. 7228-02, 7508-03), Bolyai

324	Fellowship, Hungarian Natural History Museum, Eötvös Loránd University, the Jurassic
325	Foundation and the Hungarian Dinosaur Foundation. EP is funded by Bijzonders
326	Onderzoeksfonds (BOF) – Universiteit Gent (grant nr. 01P12815).
327	
328	
329	
330	
331	
332	References
333	1, Mannion, P. D., & Upchurch, P ₅ . A re-evaluation of the 'mid-Cretaceous sauropod hiatus'
334	and the impact of uneven sampling of the fossil record on patterns of regional dinosaur
335	extinction, Palaeogeo., Palaeoclim., Palaeoecol. 299, 529-540 (2011).
336	2, Díez Díaz, V., Tortosa, T. & Le Loeuff, J. Sauropod diversity in the Latest Cretaceous of
337	south-western Europe: The lessons of odontology. Ann. Paleont. 99 (2), 119-129 (2013).
338	3, Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in
339	the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-
340	living vertebrates on the Late Cretaceous European archipelago. Zookeys. 469, 1–161
341	(2015).
342	4, Seeley, H. G. On Macrurosaurus semnus (Seeley), a long tailed animal with procoelous
343	vertebrae from the Cambridge Upper Greensand, preserved in the Woodwardian Museum
344	of the Univ. Cambridge. J. Geol. Soc. London 32, 440-444 (1876).
345	5, Lydekker, R. Note on a new Wealden iguanodont and other dinosaurs. Q. J. Geol. Soc.
346	London 44, 46–61 (1888).
347	6, Huene, F. von. Die Besonderheit der Titanosaurier: Centralbl. Miner. Geol. Palaont
348	Stuttgart, Abhandlungen, Abt. A, 493-499 (1929).

349	7, Buffetaut, E. Archosaurian reptiles with Gondwanan affinities in the Upper Cretaceous of	
350	Europe. Terra Nova 1, 69–74 (1989).	
351	8, Le Loeuff, J. European titanosaurids. Rev. Paléobiol. 7, 105-117 (1993).	
352	9, Mezga, A, & Bajraktarevic, Z. Cenomanian dinosaur tracks on the islet of Fenoliga in	formázott: magyar
353	southern Istria, Croatia. Cret. Res. 20, 735–746 (1999).	formázott: magyar
354	10, Nicosia, U., Petti, F. M., Perugini, G., D'Orazi Porchetti, S., Sacchi, E., Conti, M. A.,	
355	Mariotti, N. & Zarattini, A. Dinosaur tracks as paleogeographic constraints: new scenarios	
356	for the Cretaceous geography of the Periadriatic region. Ichnos, 14, 69-90 (2007).	
357	11, Vullo, R., D. Néraudeau, & T. Lenglet <u>T</u> . Dinosaur teeth from the Cenomanian of	
358	Charentes, western France: evidence for a mixed Laurasian-Gondwanan assemblage. J.	
359	Vert. Paleont. 27, 931–943 (2007).	
360	12, Santos V.F. Dinosaur tracksites in Portugal: the Jurassic-Cretaceous record, J Encontro	formázott: román
		formázott: Betűtípus: Dőlt, román
361	Internacional sobre Paleobiologia dos Dinossáurios, pp. 7–16. (1998).	formázott: román
362	13, Antunes, M. T. & Mateus, O. (2003). Dinosaurs of Portugal. C.R. Palevol 2, 77-95.	formázott: román
		formázott: román
363	<u>(2003).</u>	formázott: Betűtípus: Dőlt, román
364	1214, Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, JX. The ICS International	formázott: román
		formázott: Betűtípus: Félkövér, román formázott: román
365	Chronostratigraphic Chart. Episodes 36, 199-204 (2013).	formázott: román
366	1315, Le Loeuff, J. & Buffetaut, E. The evolution of Late Cretaceous non-marine vertebrate	
367	fauna in Europe. In: 6th Symposium of Mesozoic Terrestrial Ecosystems and Biotas (eds.	
368	Sun, A. & Wang, Y.) 181-184 (China Ocean Press, Beijing, 1995).	
369	1416, Mezga, A., Meyer, C.A., Tesovic, B.C., Bajraktarevic, Z. & Gusic, I. The first record of	
370	dinosaurs in the Dalmatian part (Croatia) of the Adriatic-Dinaric carbonate platform	
371	(ADCP). Cret. Res. 27, 735–742 (2006).	

372	1517, Nicosia, U., Marino, M., Mariotti, N., Muraro, C., Panigutti, S., Petti, F. M., & Sacchi,	
373	E. 1999. The Late Cretaceous dinosaur tracksite near Altamura (Bari, southern Italy). I-	
374	Geological framework. Geol. Rom., 35, 231–236 (1999).	
375	4618, Wilson, J. A. & Upchurch, P. A revision of <i>Titanosaurus</i> (Dinosauria Sauropoda), the	
376	first 'Gondwanan' dinosaur genus. J. Syst. Palaeont. 1, 125-160 (2003).	
377	4719, Smith, J. B., & Dodson, P. A proposal for a standard terminology of anatomical	
 378	notation and orientation in fossil vertebrate dentitions. J. Vert. Paleontol. 23: 1-12 (2003).	
379	4820, Upchurch, P. The phylogenetic relationships of sauropod dinosaurs. Zool. J. Linn. Soc.	
380	London 124: 43–103 (1998).	
381	21. Argast, S., Farlow, J. D., Gabet, R. M., & Brinkman, D. L. Transport-induced abrasion of	
382	fossil reptilian teeth: Implications for the existence of Tertiary dinosaurs in the Hell Creek	
383	Formation, Montana. Geology 15: 927–930 (1987).	
384	19221, Botfalvai, G, Haas, J., Mindszenty, A. & Ősi, A. Facies Architecture and	
385	Paleoenvironmental implications of the Upper Cretaceous (Santonian) Csehbánya	
386	Formation at the Iharkút vertebrate locality (Bakony Mountains, northwestern Hungary)	
387	Palaeogeo., Palaeoclim., Palaeoecol. 441, 659–678 (2016).	
388	220, Ősi, A., Makádi, L., Rabi, M., Szentesi, Z., Botfalvai, G. & Gulyás P. The Late	
389	Cretaceous continental vertebrate fauna from Iharkút, western Hungary: a review. In:	
390	Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (ed. P. Godefroit)	
391	533-568 (Indiana University Press, 2012).	
392	23, Chure, D., Britt, B. B., Whitlock, J. A, Wilson J. A. First complete sauropod dinosaur	
393	skull from the Cretaceous of the Americas and the evolution of sauropod dentition. Die	

- 394 <u>Naturwissenschaften 97:379–391 (2010). Chure</u>,
- 395 241, Díez Díaz, V., Ortega, F., & Sanz, J. L. Titanosaurian teeth from the Late Cretaceous of

³⁹⁶ "Lo Hueco" (Cuenca, Spain). *Cret. Res.* **51**, 285-291 2014.

formázott: Betűtípus: Dőlt formázott: Betűtípus: Félkövér

- ³⁹⁷ 2<u>5</u>², Fisher, D. C. Crocodilian scatology, microvertebrate concentrations, and enamel-less
- 398 teeth. *Paleobiology* 7, 262–275 (1981).
- 399 <u>26, Argast, S., Farlow, J. D., Gabet, R. M., & Brinkman, D. L. Transport-induced abrasion of</u>
- 400 <u>fossil reptilian teeth: Implications for the existence of Tertiary dinosaurs in the Hell Creek</u>
- 401 Formation, Montana. *Geology* **15**: 927–930 (1987).
- 402 <u>27, Ősi, A., Apesteguía, S. & Kowalewski, M. Non-avian theropod dinosaurs from the early</u>
 403 Late Cretaceous of Central Europe. <u>Cretaceous Research</u> <u>31</u>:304-320 (2010).
- 283, Wilson, J. A. & Sereno, P. Early evolution and higher-level phylogeny of the sauropod
 dinosaurs. *Mem. Soc. Vert. Paleontol.* 5, 1–68 (1998).
- 406 294, Upchurch, P., Barrett, P. M. & Dodson, P. Sauropoda. In: *The Dinosauria*, second ed.
- (eds. Weishampel, D. B., Dodson, P. & Osmólska, H.) 259–322 (University of California
 Press, Berkeley, 2004).
- 409 <u>3025</u>, Wilson, J. A. Sauropod dinosaur phylogeny: critique and cladistic analysis. *Zool. J.*410 *Linn. Soc.* **136**, 217–276 (2002).
- 411 2<u>316</u>, Hatcher, J. B. *Diplodocus* Marsh, its osteology, taxonomy and probable habits, with a
- 412 restoration of the skeleton. *Mem. Carnegie Mus.* **1**, 1–64 (1901).
- 413 <u>32</u>27, Upchurch, P., & Barrett, P. M. The evolution of sauropod feeding mechanisms. In:
- 414 Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record
- 415 (ed. Sues, H.-D.) 79–122 (Cambridge University Press, Cambridge, 2000).
- 416 <u>3328</u>, Madsen, J. H., Jr., McIntosh, J. S., & Berman, D. S. Skull and atlas-axis complex of the
- 417 Upper Jurassic sauropod *Camarasaurus* Cope (Reptilia: Saurischia). *Bull. Carnegie Mus.*
- 418 Nat. Hist. **31**, 1–115 (1995).
- 419 <u>3429</u>, Ouyang, H. & Ye, Y. The First Mamenchisaurian Skeleton with Complete Skull:
- 420 *Mamenchisaurus youngi*. Sichuan Science and Technology Press, Chengdu, 111 p.
- 421 (2002).

formázott: Betűtípus: Dőlt formázott: Betűtípus: Félkövér

formázott: angol (brit)

422	3 <u>5</u> 0, Sanz, J. L. A sauropod dinosaur tooth from the Lower Cretaceous of Galve (Province of
423	Teruel, Spain). Géobios 15, 943–949 (1982).
424	316, Wiman, C. Die Kreide-dinosaurier aus Shantung. Palaeontol. Sin. (Ser. C) 6, 1-67
425	(1929).
426	372, Barrett, P.M. & Wang, XL. Basal titanosauriform (Dinosauria, Sauropoda) teeth from
427	the Lower Cretaceous Yixian Formation of Liaoning Province, China, Palaeoworld
428	doi:10.1016/j.palwor.2007.07.001. (2007).
429	383, Wilson, J.A. & Upchurch, P. Redescription and reassessment of the phylogenetic
430	affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Early Cretaceous of
431	China. J. Syst. Palaeont. 7, 199-239. (2009).
432	394, Barrett, P.M., Hasegawa, Y., Manabe, M., Isaji, S. & Matsuoka, H., Sauropod dinosaurs
433	from the Lower Cretaceous of eastern Asia: taxonomic and biogeographical implications.
434	Palaeontology 45, 1197–1217 (2002).
435	4035, Curry Rogers, K. & Forster, C. A. The skull of Rapetosaurus krausei (Sauropoda:
436	Titanosauria) from the Late Cretaceous of Madagascar. J. Vert. Paleontol. 24, 121-144
437	(2004).
438	4136, Nowinski, A. Nemegtosaurus mongoliensis n. gen., n. sp. (Sauropoda) from the
439	uppermost Cretaceous of Mongolia. Palaeontol. Pol. 25, 57-81 (1971).
440	4237, Wilson, J. A. Redescription of the Mongolian sauropod Nemegtosaurus mongoliensis
441	Nowiński (Dinosauria: Saurischia) and comments on Late Cretaceous sauropod diversity.
442	J. Syst. Palaeont. 3: 283–318 (2005).
443	43, Mannion, P. D., Upchurch, P, Barnes, R. N., Mateus, O. 20Osteology of the Late Jurassic
444	Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary
445	history of basal titanosauriforms. Zool J Linnean Soc 168:98-206 (2013).

446	3844, Díez Díaz, V., Mocho, P., Páramo, A., Escaso, F., Marcos-Fernández, F., Sanz J. L. &
l 447	Ortega, F. A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Lo
448	Hueco (Cuenca, Spain). Cret. Res. in press. <u>68: 49-60.</u> doi:10.1016/j.cretres.2016.08.001.

- 449 (2016).
- 450 3945, Díez Díaz, V., Garcia, G., Knoll, F., Suberbiola, X. P. & Valentin, X. New cranial
- remains of titanosaurian sauropod dinosaurs from the Late Cretaceous of Fox-AmphouxMétisson (Var, SE France). *Proc. Geol. Ass.* 123, 626–637. (2012).
- 453 4046, Le Loeuff, J. Ampelosaurus atacis (nov. gen., nov. sp.), un nouveau Titanosauridae
- 454 (Dinosauria, Sauropoda) du Crétacé supérieur de la Haute Vallée de l'Aude (France).
- 455 *Compt. Rend. Acad. Sci., Paris* **321**, 693-699 (1995).
- 4147, Le Loeuff, J. Osteology of *Ampelosaurus atacis* (Titanosauria) from Southern France.
 457 In: *Thunder-Lizards. The Sauropodomorph Dinosaurs* (eds. Tidwell, V. & Carpenter, K.)
- 458 115-137 (Indiana University Press, Bloomington, 2005).

459 4248, Díez Díaz, V., Pereda Suberbiola, X. & Sanz, J. L. Juvenile and adult teeth of the
460 titanosaurian dinosaur *Lirainosaurus* (Sauropoda) from the Late Cretaceous of Iberia.

- 461 *Geobios* **45**, 265-274 (2012).
- 462 4349, Néraudeau, D., Allain, R., Ballèvre, M., Batten, D. J., Buffetaut, E., Colin, J. P.,
- 463 Dabard, M. P., Daviero- Gomez, V., El Albani, A., Gomez, B., Grosheny, D., Le Loeuff,
- 464 J., Leprince, A., Martín-Closas, C., Masure, E., Mazin, J-M., Philippe, M., Pouech, J.,
- 465 Tong, H., Tournepiche, J. F. & Vullo, R. The Hauterivian-Barremian lignitic bone bed of
- 466 Angeac (Charente, south-west France): stratigraphical, palaeobiological and
- 467 palaeogeographical implications. *Cret. Res.* **37**, 1–14 (2012).
- 468 44<u>50</u>, Martínez, R. D. F., Lamanna, M. C., Novas, F. E., Ridgely, R. C., Casal, G. A.,
- 469 Martínez, J. E., Vita, J. R. & Witmer, L. M. A basal lithostrotian titanosaur (Dinosauria:

- 470 Sauropoda) with a complete skull: implications for the evolution and paleobiology of
- 471 Titanosauria. *PLoS ONE*, **11**(4): e0151661. doi:10.1371/journal.pone.0151661 (2016).
- 472 4551, Lucas, S. G. & Hunt, A. P. *Alamosaurus* and the sauropod hiatus in the Cretaceous of
- the North American Western Interior. *Geol. Soc. America Special Paper* 238, 75–85
 (1989).
- 475 4652, Dal Sasso, C. Dinosaurs of Italy. Compt. Rend. Palevol, 2, 45–66 (2003).
- 476 47<u>53</u>, Mannion, P.D. & Upchurch, P. A quantitative analysis of environmental associations in
 477 sauropod dinosaurs. *Paleobiology* 36, 253–282 (2010).
- 478 4854, Díez Díaz, V., Pereda Suberbiola, X. & Sanz, J. L. Appendicular skeleton and dermal
- 479 armour of the Late Cretaceous titanosaur *Lirainosaurus astibiae* (Dinosauria: Sauropoda)
 480 from Spain. *Palaeont. Elect.* 16(2), 19A, 1–18 (2013).
- 481 49<u>55</u>, Díez Díaz, V., Peredea Suberbiola, X. & Sanz, J. L. The axial skeleton of the titanosaur
 482 *Lirainosaurus astibiae* (Dinosauria: Sauropoda) from the latest Cretaceous of Spain. *Cret*.
- 483 *Res.* **43**, 145–160 (2013).
- 484 <u>56, Díez Díaz, V., Garcia, G., Pereda Suberbiola, X., Valentin, X. & Sanz, J. L. Phylogenetic</u>
- 485 relationships of the titanosaurian dinosaurs from the Late Cretaceous of the Ibero-
- 486 <u>Armorican Island. In: F.T. Fernández-Baldor and P. Huerta (Editors), VI Jornadas</u>
- 487 Internacionales sobre Paleontología de Dinosaurios y su Entorno. Colectivo Arqueológico
- 488 <u>y Paleontológico de Salas, C.A.S., Salas de los Infantes, Burgos, pp. 63-64, (2013).</u>
- 489 <u>57, Gorscak, E. & O'Connor, P.M., Time-calibrated models support congruency between</u>
- 490 Cretaceous continental rifting and titanosaurian evolutionary history. Biology Letters, 12:
 491 20151047. http://dx.doi.org/10.1098/rsbl.2015.1047) (2016).
- 492 <u>5058</u>, García, G., Amico, S., Fournier, F., Thouand, E. & Valentin, X. A new titanosaur genus
- 493 (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and its
- 494 paleobiogeographic implications. *Bull. Soc. Géol. France* 181, 269-277 (2010).

formázott: Nem Kiemelt	
formázott: Nem Kiemelt	
formázott: Nem Kiemelt	

formázott: Nem Kiemelt

formázott: Nem Kiemelt

495	5159, D'Emic, M. D. The early evolution of titanosauriform sauropod dinosaurs. Zool. J.	
496	Linn. Soc. 166, 624–671 (2012).	
497	5260, Benton, M. J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, P. M., Stein, K. &	
 498	Weishampel, D. B. Dinosaurs and the island rule: The dwarfed dinosaurs from Hațeg	
499	Island. Palaeogeo., Palaeoclim., Palaeoecol. 293, 438-454 (2010).	
500	5361, Weishampel, D. B., Csiki, Z., Benton, M. J., Grigorescu, D. & Codrea, V.	
501	501 Palaeobiogeographic relationships of the Hateg biota — between isolation and innovation.	
502	Palaeogeo., Palaeoclim., Palaeoecol. 293: 419–437 (2010).	
503 504		
505	A	
505		
507	Figure captions:	
	Figure 1. The Santonian Iharkút vertebrate locality (Hungary), and the geological background	
508		
509	of site SZ-6. A, Location map of the Iharkút vertebrate locality. (Maps were created by AŐ	
510	with Corel Draw 12, http://www.coreldraw.com/en/pages/coreldraw-12/) B, Aerial photo of	
511	the Iharkút open-pit, showing the position of site SZ-6. (Photo was taken by Péter Somogyi-	
512	Tóth) C, Stratigraphic section of the Csehbánya Formation exposed in the open-pit with site	
513	SZ-6 highlighted by green (modified after Botfalvai et al. ⁴⁹²¹).	
514		
515	Figure 2. Basal titanosauriform tooth (MTM PAL 2017.1.1.) from the Santonian of Iharkút,	
516	Hungary. in A, apical, B, lingual, C, labial, D, ?mesial, E, ?distal, F, oblique distolingual, and	
 517	G., basal views. Abbreviations: bap , broken apex of the crown; cla , convex labial surface; cli ,	
518	slightly concave lingual surface; pc, pulp cavity; re, rounded edge; sc, scratch.	
519		

- Figure 3. Wear pattern of the basal titanosauriform tooth (MTM PAL 2017.1.1.) from the
- 521 <u>Santonian of Iharkút, Hungary</u>. A-C, Details of the worn surface of labial (D) side. E, Lingual
- 522 view of the tooth crown; F, 'meteor shower' pattern of short scratches and pits on the lingual
- 523 surface of the crown. Abbreviations: msc, 'meteor shower' pattern of short scratches; pi, pit;
- 524 sc, scratch.