# Asoriculus and Neomys (Mammalia, Soricidae) remains from the late Early Pleistocene Somssich Hill 2 locality (Villány Hills, Southern Hungary)

Dániel BOTKA & Lukács Mészáros

Eötvös Loránd University, Department of Palaeontology, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary. E-mail: botkadani@gmail.com, lgy.meszaros@gmail.com

**Abstract** – The present paper is the last part of the series describing the shrew genera identified from the late Early Pleistocene Somssich Hill 2 locality. Two species – *Asoriculus gibberodon* (Petényi, 1864) and *Neomys newtoni* Hinton, 1911 – are reported here with taxonomic descriptions and with summaries of their European records. The number of the shrew species of the locality increased to nine with these new ones. Mainly the water shrew (*Neomys*), but very likely *Asoriculus* (its probable ancestor) as well indicates the presence of open water body in the surroundings of the site. With 8 figures and 5 tables.

Key words - Asoriculus gibberodon, Early Pleistocene, Neomys newtoni, Somssich Hill, Soricidae

# INTRODUCTION

The present article is the fourth part of the series published in this journal on the late Early Pleistocene Soricidae fauna of the Somssich Hill 2 locality, Villány Hills, Southern Hungary. Description of the locality and the history of the investigation of its fossil material are given by BOTKA & Mészáros (2014*b*; 2015*a*).

The fossil site was excavated by Dénes Jánossy (JÁNOSSY 1983), and his material was elaborated by the cooperative research group of the Hungarian Academy of Sciences, the Hungarian Natural History Museum, and the Eötvös Loránd University (OTKA K104506, project leader: Piroska Pazonyi) in the Department of Palaeontology and Geology of the Hungarian Natural History Museum. Seven shrew species were mentioned by BOTKA & MészáRos (2014*a*) in a preliminary report on this material. These shrew specimens were described also in detail in the following articles: *Beremendia* (BOTKA & MészÁROS 2014*b*, 2015*a*), *Crocidura* (BOTKA & MészÁROS 2015*b*), and *Sorex* (BOTKA & MészÁROS 2014*b*, 2015*a*). Ever since, two further species were identified from the shrew assemblage, which ones were mentioned only in preliminary faunal lists so far (MészÁROS & BOTKA 2017, PAZONYI *et al.* 2017).

These two forms, *Asoriculus gibberodon* (Petényi, 1864) and *Neomys newtoni* Hinton, 1911, are present in this paper in detail, with their taxonomic, biostratigraphical, and palaeoecological implications. The European occurrences of the two species were summarized in two tables just like in the earlier published papers of this series.

# MATERIAL AND METHODS

The 50 layers yielded only 7 *Asoriculus* and 42 *Neomys* remains. The studied material is stored in the Department of Palaeontology and Geology of the Hungarian Natural History Museum, Budapest. Abbreviations used in the descriptions and in the tables: I = incisor, A = antemolar, P = premolar, M = molar,  $M^x$  = upper tooth,  $M_x$  = lower tooth, L = length, W = width, H = height, BL = buccal length, LL = lingual length, AW = anterior width, PW = posterior width, n = number, min. = minimum, max. = maximum, SD = standard deviation, inv. n. = inventory number, spec. n. = number of specimens, teeth n. = number of teeth, MNI = minimum number of individuals. Morphological terms are used after REUMER (1984). Measurements are given in mm.

# SYSTEMATIC DESCRIPTION

Phylum Vertebrata Linnaeus, 1758 Classis Mammalia Linnaeus, 1758 Order Eulipotyphla Waddell *et al.*, 1999 Family Soricidae Fischer von Waldheim, 1817 Subfamily Soricinae Fischer von Waldheim, 1817 Tribe Neomyini Matschie, 1909 Genus *Asoriculus* Kretzoi, 1959

> Asoriculus gibberodon (Petényi, 1864) (Figs 1–3)

1864 Crocidura gibberodon n. sp. – PETÉNYI, pp. 73–76, pl. I, fig. 7a-c.
1911 Crocidura gibberodon (?) Petényi – KORMOS, pp. 158–159.
1934 Soriculus Kubinyii n. sp. – KORMOS, pp. 303–304, fig. 36.
1948 Neomys Castellarini n. sp. – PASA, pp. 11–14, fig. I: 12–15.
1959 Soriculus (Asoriculus n. sg.) gibberodon (Petényi) – KRETZOI, p. 238.
1962 Soriculus gibberodon (Petényi) – SULIMSKI, fig. 2a-b.
1962 Asoriculus gibberodon (Petényi) – KRETZOI, pp. 306, 353, pl. II, fig. 1.
1967 Episoriculus gibberodon (Petényi) – REPENNING, p. 48.
1973 Episoriculus tornensis n. sp. – JÁNOSSY, pp. 50–52, pl. I, figs 1, 10–12.

- 1973 Episoriculus borsodensis n. sp. JÁNOSSY, pp. 53–54, pl. I, figs 5–6, 9, 13.
- 1973 Soriculus kubinyii Kormos JÁNOSSY, pl. I, figs 2, 8.
- 1973 Episoriculus gibberodon (Petényi) JÁNOSSY, pl. I, figs 3–4, 7, 14.
- 1981 Episoriculus borsodensis Jánossy RZEBIK-KOWALSKA, pp. 236–238, tabs III–VI, figs 3–5.
- 1981 Episoriculus gibberodon (Petényi) RZEBIK-KOWALSKA, pp. 245–247, tabs VI–VII, fig. 6.
- 1982 Episoriculus gibberodon (Petényi) VAN DE WEERD et al., pp. 93-95, pl. 1, figs 2-4.
- 1983 *Episoriculus* cf. *gibberodon* (Petényi) FEJFAR & HORÁČEK, pp. 136–138, tab. 3, pl. VII, fig. 4a-c.
- 1983 *Episoriculus* cf. *castellarini* (Pasa) FeJFAR & HORÁČEK, pp. 136–138, tab. 3, pl. VII, figs 1a-3b, 5c-6b.
- 1984 Episoriculus gibberodon (Petényi) REUMER, pp. 92–100, tabs 36–42, figs 12–15, pl. 27, figs 3–11, pls 28–30, pl. 31, figs 1–2.
- 1985 Episoriculus gibberodon (Petényi) Reumer & Doukas, pp. 117–118, pl. 2, figs 3–4.
- 1996 Asoriculus gibberodon (Petényi) Dahlmann & Storch, pp. 184–185, pl. 1, fig. 15.
- 1998 Episoriculus gibberodon (Petényi) Mészáros, pp. 108–109, tab. 5, pl. 3, figs 1–11.



**Figs 1–3.** Asoriculus gibberodon (Petényi, 1864). – **1.** Right  $M^1$ , occlusal view, layer 2. – **2.** Left  $M^2$ , occlusal view, layer 28. – **3.** Left mandible fragment with  $M_2$  and  $M_3$ , buccal view, layer 8. Scale bars = 1 mm

2000 Asoriculus gibberodon (Petényi) – RZEBIK-KOWALSKA, p. 31, tabs XXIX–XXX, figs 10D-F, 11C-F.

2001 Asoriculus gibberodon (Petényi) - KOUFOS et al., pp. 59-60, tabs 9-10, pl. 2, figs 7-12. 2003 Asoriculus gibberodon (Petényi) – POPOV, pp. 64-68, tab. VI, figs 9-10. 2003 Asoriculus gibberodon (Petényi) - FURIÓ, p. 152, fig. 5a-b. 2003 Asoriculus gibberodon (Petényi) – VASILEIADOU et al., p. 553, fig. 4e-f. 2004 Asoriculus gibberodon (Petényi) - Ророv, p. 408, fig. 2С-D. 2006 Asoriculus gibberodon (Petényi) – ROFES & CUENCA-BESCÓS, pp. 306–310, tabs 3–4, fig. 5A-H. 2010 Asoriculus gibberodon (Petényi) – FURIÓ & ANGELONE, pp. 234–235, tab. 1, fig. 3: 1–5. 2010 Asoriculus gibberodon (Petényi) – MINWER-BARAKAT et al., pp. 536–538, tabs 1–2, fig. 1A-K. 2011 Asoriculus gibberodon (Petényi) - ANGELONE et al., p. 97, fig. 6: 5-7. 2012 Asoriculus gibberodon (Petényi) - MINWER-BARAKAT et al., fig. 4AS. 2012 Asoriculus gibberodon (Petényi) – VASILEIADOU et al., pp. 213–214, fig. 2a-e. 2013 Asoriculus gibberodon (Petényi) – CUENCA-BESCÓS et al., fig. 4H. 2013 Asoriculus gibberodon (Petényi) - RZEBIK-KOWALSKA, p. 22, tab. 25, fig. 5: 1-3. 2014 Asoriculus gibberodon (Petényi) - SIORI et al., pp. 408-409, tab. 4, fig. 3D-E, G-H. 2016b Asoriculus gibberodon (Petényi) – PAZONYI et al., pp. 109–110, figs 8–9. 2017 Asoriculus gibberodon (Petényi) – JONIAK et al., p. 16, fig. 3C-D.

*Studied material and measurements* – For the overview of the measurements see Table 1. Specimen numbers and MNI data by layers are given in Table 3.

# Layer 8

- Left mandible fragment with M<sub>2</sub> (L: 1.33, W: 0.80) and M<sub>3</sub> (L: 1.00, W: 0.63).

#### Layer 21

- Left I1 fragment.

#### Layer 25

- Right M<sup>1</sup> (LL: 1.43, BL: 1.40, AW: 1.75, PW: 1.68).

# Layer 27

- Left I1 fragment.

#### Layer 28

- Left M<sup>2</sup> (LL: 1.33, BL: 1.33, AW: 1.75, PW: 1.33).

#### Layer 45

- Right mandible fragment with  $M_3$  (L: 1.00, W: 0.53); - Left  $M_2$  (L: 1.18, W: 0.65). Description – The tip of some teeth is pigmented with light orange colour.

 $I^1$  – The upper incisor is fissident. The dorsal margin and the buccal posterior margin make a sharp angle; the posterior margin has a slight undulation and a weak cingulum.

 $M^1$  and  $M^2$  – Metaloph is present. The protocone and the hypocone are separated by a not too wide valley, which has a little cingulum at its lingual end. The metastyle of  $M^1$  protrudes, but it protrudes less in  $M^2$ . Therefore, PW relatively to AW is more significantly less at  $M^2$  than at  $M^1$ . The anterior margin bends obliquely beside the protocone. The hypocone is placed further towards the lingual side than the protocone (Figs 1–2).

 $M_2$  – The buccal edge of the hypoconid is slightly convex. The talonid is wider than the trigonid. Cingula are week, but well visible on both lingual and buccal sides. The lingual one is slightly undulate. The entoconid is high. The entoconid crest is present, but it is much lower. The buccal re-entrant valley opens directly above the cingulum (Fig. 3).

 $M_{3}$  – The buccal cingulum is week and slightly undulate, while the lingual one is less developed. The talonid is basined, and possessing both entoconid and hypoconid. The talonid is narrower than the trigonid (Fig. 3).

#### Genus Neomys Kaup, 1829

Neomys newtoni Hinton, 1911 (Figs 4–6)

```
1911 Neomys newtoni n. sp. – HINTON, p. 535, text-fig. 1a, tab. II, pl. XXV, fig. 1.
1949 Neomys newtoni Hinton – FRIANT, fig. 15: 1.
1991 Neomys newtoni Hinton – RZEBIK-KOWALSKA, pp. 405–407, tabs XXXIV–XXXV, text-fig. 19.
2000 Neomys cf. newtoni Hinton – RZEBIK-KOWALSKA, p. 35, fig. 10C.
2002 Neomys newtoni Hinton – ZAITSEV & BARYSHNIKOV, pp. 301–302, tab. II, fig. 10C-D.
2006 Neomys newtoni Hinton – HARRISON et al., fig. 3b.
2010 Neomys newtoni Hinton – MAUL & PARFITT, p. 96, tab. 4, fig. 2H-I.
2013 Neomys newtoni Hinton – RZEBIK-KOWALSKA, p. 22, tab. 26, fig. 5: 4–5.
2016 Neomys newtoni Hinton – RZEBIK-KOWALSKA & REKOVETS, p. 21, tab. 9, fig. 9: 4–6.
```

Studied material and measurements – For the overview of the measurements see Table 2. Specimen numbers and MNI data by layers are given in Table 3.

Layer 4 – inv. n.: V.82.85.

- Right mandible fragment without dentition.

#### Layer 5 – inv. n.: V.82.54.

- Left mandible fragment with M<sub>1</sub> (L: 1.75, W: 1.10) and M<sub>2</sub> (L: 1.60, W: 1.05);
- Left I<sup>1</sup> (L: 2.15, H: 1.45);
- Left M<sub>1</sub> (L: 1.73, W: 1.00).

# Layer 15 – inv. n.: V. 89.51.

- Right I<sup>1</sup> fragment;

- Left M1 fragment.

#### Layer 22

- Left I<sup>1</sup> (L: 1.78, H: 1.30);
- 2 right I<sup>1</sup> fragments;
- Right I, (L: 4.60, H: 0.80);
- Right I<sub>1</sub> (L: 4.95, H: 1.03).



**Figs 4–6.** Neomys newtoni Hinton, 1911. – **4.** Left I<sup>1</sup>, buccal view, layer 22. – **5.** Left M<sup>1</sup>, occlusal view, layer 29. – **6.** Right mandible fragment with  $M_1$ ,  $M_2$ , and  $M_3$ , buccal view, layer 40. Scale bars = 1 mm

Fragmenta Palaeontologica Hungarica 34, 2017

|                |    |   |      | are and and and | inouo y |        |
|----------------|----|---|------|-----------------|---------|--------|
|                |    | n | min. | mean            | max.    | SD     |
| $M^1$          | LL | 1 | -    | 1.43            | -       | -      |
|                | BL | 1 | _    | 1.40            | -       | -      |
|                | AW | 1 | _    | 1.75            | -       | -      |
|                | PW | 1 | _    | 1.68            | -       | _      |
| $M^2$          | LL | 1 | _    | 1.33            |         | _      |
|                | BL | 1 | _    | 1.33            | -       | _      |
|                | AW | 1 | _    | 1.75            | -       | _      |
|                | PW | 1 | _    | 1.33            | -       | -      |
| M <sub>2</sub> | L  | 2 | 1.18 | 1.25            | 1.33    | 0.1061 |
|                | W  | 2 | 0.65 | 0.73            | 0.80    | 0.1061 |
| M <sub>3</sub> | L  | 2 | 1.00 | 1.00            | 1.00    | 0.0000 |
|                | W  | 2 | 0.53 | 0.58            | 0.63    | 0.0707 |

 Table 1. Measurements of Asoriculus gibberodon teeth from the Somssich Hill 2 locality (for the abbreviations see "Material and methods")

 Table 2. Measurements of Neomys newtoni teeth from the Somssich Hill 2 locality (for the abbreviations see "Material and methods")

\_

|                  |    | n | min. | mean | max. | SD     |
|------------------|----|---|------|------|------|--------|
| $\mathbf{I}^1$   | L  | 5 | 1.78 | 1.96 | 2.15 | 0.1408 |
|                  | Н  | 5 | 1.28 | 1.34 | 1.45 | 0.0762 |
| $\mathbf{M}^{1}$ | LL | 4 | 1.68 | 1.71 | 1.75 | 0.0315 |
|                  | BL | 4 | 1.65 | 1.66 | 1.68 | 0.0102 |
|                  | AW | 4 | 1.70 | 1.73 | 1.76 | 0.0298 |
|                  | PW | 4 | 1.85 | 1.92 | 1.98 | 0.0515 |
| $M^2$            | LL | 4 | 1.39 | 1.53 | 1.68 | 0.1280 |
|                  | BL | 4 | 1.43 | 1.50 | 1.68 | 0.1156 |
|                  | AW | 4 | 1.58 | 1.80 | 1.94 | 0.1552 |
|                  | PW | 4 | 1.60 | 1.73 | 1.89 | 0.1203 |
| $\mathbf{P}^4$   | BL | 2 | 1.75 | 1.81 | 1.88 | 0.0884 |
|                  | LL | 2 | 1.33 | 1.39 | 1.46 | 0.0972 |
|                  | W  | 2 | 1.75 | 1.78 | 1.80 | 0.0354 |
| I <sub>1</sub>   | L  | 5 | 4.45 | 4.67 | 4.95 | 0.1867 |
|                  | Н  | 5 | 0.80 | 0.93 | 1.03 | 0.1081 |
| M <sub>1</sub>   | L  | 6 | 1.58 | 1.68 | 1.78 | 0.0838 |
|                  | W  | 6 | 0.88 | 0.99 | 1.10 | 0.0737 |
| M <sub>2</sub>   | L  | 8 | 1.29 | 1.15 | 1.60 | 0.0970 |
|                  | W  | 8 | 0.80 | 0.88 | 1.05 | 0.0791 |
| M <sub>3</sub>   | L  | 2 | 1.08 | 1.19 | 1.30 | 0.0591 |
| 2                | W  | 2 | 0.68 | 0.71 | 0.75 | 0.0530 |

# Layer 24

- Left I<sup>1</sup> fragment;
- Right I<sup>1</sup> (L: 2.00, H: 1.28);
- Right P<sup>4</sup> (BL: 1.75, LL: 1.46, W: 1.80);
- Left M<sup>1</sup> (LL: 1.75, BL: 1.66, AW: 1.70, PW: 1.85);
- Right M<sup>1</sup> (LL: 1.70, BL: 1.66, AW: 1.75, PW: 1.93);
- Left M<sup>2</sup> (LL: 1.60, BL: 1.68, AW: 1.84, PW: 1.89);
- Left M<sup>2</sup> fragment;
- Left I<sub>1</sub> (L: 4.73, H: 1.00).

# Layer 25

- Left M<sup>1</sup> fragment;
- Right I<sub>1</sub> (L: 4.45, H: 0.83).

Table 3. Number of the specimens (n) and minimum number of individuals (MNI) of the Somssich Hill 2 *Asoriculus* and *Neomys* material, layer by layer

| Layer | A. gił | berodon | N. n | ewtoni | Layer | A. gibberodon |     | N. 1 | iewtoni |
|-------|--------|---------|------|--------|-------|---------------|-----|------|---------|
|       | n      | MNI     | n    | MNI    |       | n             | MNI | n    | MNI     |
| 1     | -      | -       | -    | -      | 26    | -             | -   | -    | -       |
| 2     | -      | -       | -    | -      | 27    | 1             | 1   | 4    | 1       |
| 3     | -      | -       | -    | -      | 28    | 1             | 1   | -    | -       |
| 4     | -      | -       | 1    | 1      | 29    | -             | -   | 3    | 1       |
| 5     | -      | -       | 3    | 2      | 30    | -             | -   | -    | -       |
| 6     | -      | -       | -    | -      | 31    | -             | -   | 1    | 1       |
| 7     | -      | -       | -    | -      | 32    | -             | -   | 1    | 1       |
| 8     | 1      | 1       | -    | -      | 33    | -             | -   | 2    | 2       |
| 9     | -      | -       | -    | -      | 34    | -             | -   | -    | -       |
| 10    | -      | -       | -    | -      | 35    | -             | -   | -    | -       |
| 11    | -      | -       | -    | -      | 36    | -             | -   | 2    | 1       |
| 12    | -      | -       | -    | -      | 37    | -             | -   | -    | -       |
| 13    | -      | -       | -    | -      | 38    | -             | -   | -    | -       |
| 14    | -      | -       | -    | -      | 39    | -             | -   | 2    | 1       |
| 15    | -      | -       | 2    | 1      | 40    | -             | -   | 2    | 1       |
| 16    | -      | -       | -    | -      | 41    | -             | -   | 1    | 1       |
| 17    | _      | -       | -    | -      | 42    | -             | -   | -    | -       |
| 18    | -      | -       | -    | -      | 43    | -             | -   | -    | -       |
| 19    | -      | -       | -    | -      | 44    | -             | -   | 2    | 1       |
| 20    | -      | -       | -    | -      | 45    | 2             | 1   | 1    | 1       |
| 21    | 1      | 1       | -    | -      | 46    | -             | -   | -    | -       |
| 22    | -      | -       | 5    | 2      | 47    | -             | -   | -    | -       |
| 23    | -      | -       | -    | -      | 48    | -             | -   | -    | -       |
| 24    | -      | -       | 8    | 1      | 49    | -             | -   | -    | -       |
| 25    | 1      | 1       | 2    | 1      | 50    | -             | -   | -    | -       |

# Layer 27

- Left A<sub>1</sub>;
- Left M<sub>1</sub> (L: 1.58, W: 1.00);
- Left  $M_2$  (L: 1.43, W: 0.85);
- Right M<sub>2</sub> (L: 1.29, W: 0.83).

# Layer 29

- Right mandible fragment without dentition;
- Left M<sup>1</sup> (LL: 1.70, BL: 1.65, AW: 1.76, PW: 1.98);
- Right M<sup>2</sup> (LL: 1.39, BL: 1.46, AW: 1.58, PW: 1.60).

# Layer 31

– Left I<sup>1</sup> (L: 1.88, H: 1.28).

# Layer 32

- Right M<sup>2</sup> (LL: 1.68, BL: 1.45, AW: 1.94, PW: 1.73).

# Layer 33

Right I<sub>1</sub> (L: 4.60, H: 1.00);
 Right I<sub>1</sub> fragment.

# Layer 36

- Right mandible fragment with  $M_1$  (L: 1.60, W: 0.88),  $M_2$  (L: 1.38, W: 0.80), and  $M_3$  (L: 1.08, W: 0.68);
- Right I<sup>1</sup> (L: 1.98, H: 1.38).

# Layer 39

- Left mandible fragment with M<sub>1</sub> fragment and M<sub>2</sub> (L: 1.50, W: 0.85);

- Right M1 fragment.

# Layer 40

- Left maxillary fragment with P<sup>4</sup> (BL: 1.88, LL: 1.33, W: 1.75), M<sup>1</sup> (LL: 1.68, BL: 1.68, AW: 1.71, PW: 1.93), and M<sup>2</sup> (LL: 1.48, BL: 1.43, AW: 1.84, PW: 1.69);
- Right mandible fragment with  $M_1$  (L: 1.78, W: 1.00),  $M_2$  (L: 1.53, W: 0.90), and  $M_3$  (L: 1.30, W: 0.75).

# Layer 41

- Right M<sup>1</sup> fragment.

# Layer 44

- Right I<sup>1</sup> fragment;
- Left M<sub>2</sub> (L: 1.40, W: 0.83).

#### Layer 45

- Right mandible fragment with A<sub>1</sub>, M<sub>1</sub> (L: 1.64, W: 0.95), and M<sub>2</sub> (L: 1.46, W: 0.90).

*Description – Neomys* remains differ from the ones of *Asoriculus* not only in their morphology, but also in their somewhat bigger size (Fig. 7). Pigmentation on the *Neomys* teeth is red to orange.

Mandible – Structure of the condyloid process is typical for genus Neomys. The upper and lower condyloid facets are separated by a narrow interarticular area (Fig. 6). The morphology of the condyloid and coronoid processes agrees with the description given by RZEBIK-KOWALSKA (2013): "The coronoid process is narrow and its tip is rounded. The coronoid spicule is distinct, situated in 2/3 of the height of the coronoid process. The upper facet of the condyloid process is small, the lower is wide on the buccal side and narrow on the lingual side. The interarticular area is very narrow in the middle and it widens towards the upper and lower facets."



Fig. 7. Scatter plot of the measurements ( $M_2$  L/W ratio) of the *Asoriculus* and *Neomys* remains from the Somssich Hill 2 locality

 $I^1$  – The buccal cingulum is week and undulate. The lower margin of the talon is concave. The apex even as the talon are pointed. The upper margin of the apex is rounded (Fig. 4).

 $P^4$  – The parastyle is big with a low parastylar crest. The protocone is separated from the hypocone by a broad valley. The hypoconal flange is surrounded by a well-developed cingulum.

 $M^1$  and  $M^2$  – The protocone is high, but its metaloph is low. It is separated from the hypocone by a broad valley. The hypocone is placed further towards the lingual side than the protocone. A wide cingulum runs along the flat hypoconal flange. AW<PW at  $M^1$ , but AW>PW at  $M^2$  (Fig. 5).

 $I_1$  – The lower incisor is monocuspulate with up-turned apex. There is a weak cingulum on the posterior margin of its buccal side.

 $M_1$  and  $M_2$  – The first two molars are very similar to each other in morphology.  $M_2$  is slightly smaller than  $M_1$ . Low entoconid crests are present. The lingual cingulum is wider than the buccal one; the latter is slightly undulate (Fig. 6).

 $M_{3}$  – It is typically smaller than  $M_{2}$ , but it is not reduced in morphology. Its talonid is basined (Fig. 6).

# CONCLUSIONS

Asoriculus gibberodon is a long-lived species. Its FAD is mentioned by Mészáros (1998) from Tardosbánya, Hungary (Late Miocene, MN 12 zone). The species was present in Europe to the middle Early Pleistocene. Its youngest record is from the Żabia Cave, Poland (Early Biharian; RZEBIK-KOWALSKA 2013) (Table 4). Neomys newtoni is a typical element in the Early and Middle Pleistocene vertebrate faunas. Its oldest occurrence data originate from the Żabia Cave (RZEBIK-KOWALSKA 2013) and the LAD of the species is mentioned from Schöningen, Germany (ca. 330 ka) by VAN KOLFSCHOTEN (2014) (Table 5). The present record is the first report on its appearance in Hungary (Fig. 8).

CO-OCCURRENCE of the two species is known from some localities (Żabia Cave, Poland and Monte Peglia and Soave Cava Sud, Italy) (RZEBIK-KOWALSKA 2013; KOTSAKIS *et al.* 2003), although the latter two Italian records are uncertain. Therefore, it is likely that *Asoriculus* is the ancestor of *Neomys* (MAUL & RZEBIK-KOWALSKA 1998), nevertheless, the phylogenetic approach made by ROFES & CUENCA-BESCÓS (2009) does not confirm this hypothesis. Thus, the rare common occurrence of the two species supports the theory of PAZONYI *et al.* (2016*a*, 2017) that a few specimens of the site were re-deposited. Preservation and number of the specimens suggest that *Neomys* was autochthonous, while *Asoriculus* was re-transported (Table 3).

| Age (Ma)                                                    | Series      | Sub-<br>series,<br>Stages | Central &<br>Western European<br>Rodent Zones<br>MAUL et al. (2014) | Land<br>Mammal<br>Ages<br>MAUL et al.<br>(2014) |               | stu         | Strat                       | igra<br>shre | ohic<br>w sp    | rang<br>becie        | jes o<br>es in | f the<br>Euro | ope            |  |
|-------------------------------------------------------------|-------------|---------------------------|---------------------------------------------------------------------|-------------------------------------------------|---------------|-------------|-----------------------------|--------------|-----------------|----------------------|----------------|---------------|----------------|--|
| 0.1                                                         |             | Late                      | Arvicola amphibius                                                  |                                                 |               |             |                             |              |                 |                      |                |               |                |  |
| 0.2<br>0.3<br>0.4<br>0.5<br>0.6                             |             | Middle                    | Arvicola<br>mosbachensis                                            | Toringian                                       | Sorex minutus | runtonensis |                             | kornfeldi    | rocidura obtusa |                      |                |               |                |  |
| 0.7                                                         |             |                           | Mimomys savini                                                      |                                                 |               | orex        |                             | dura         | G               |                      |                |               |                |  |
| 0.8                                                         |             |                           |                                                                     |                                                 |               | S           |                             | Croci        |                 |                      |                |               |                |  |
| 0.9<br>1.0                                                  |             |                           |                                                                     |                                                 |               |             |                             |              |                 |                      |                |               | ?              |  |
| 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br>1.8<br>1.9 | Pleistocene | Early                     | Mimomys savini-<br>M. pusillus                                      | Biharian                                        |               |             | Sorex (Drepanosorex) savini |              |                 | Beremendia fissidens | india minor    |               | Neomys newtoni |  |
| 2.1<br>2.2<br>2.3                                           |             |                           | Mimomys<br>pliocaenicus                                             |                                                 |               |             |                             |              |                 |                      | Bereme         | u<br>u        |                |  |
| 2.4<br>2.5<br>2.6                                           |             |                           |                                                                     | nyian                                           |               |             |                             |              |                 |                      |                | is gibberodo  |                |  |
| 2.0<br>2.7<br>2.8<br>2.9<br>3.0                             | iocene      | Piacenzian                | Mimomys<br>polonicus                                                | Villá                                           |               |             |                             |              |                 |                      |                | Asoriculu     |                |  |
| 3.1                                                         | Ы           |                           | Mimomys hassiacus-<br>M. stehlini                                   |                                                 |               |             |                             |              |                 |                      |                |               |                |  |

Fig. 8. Stratigraphical position of the Somssich Hill 2 locality (grey area, after PAZONYI *et al.* 2016*a*), and the stratigraphical range of the shrew species identified at the locality (BOTKA & MÉ-SZÁROS 2014*b*, 2015*b*, 2016, and this study). Rodent Zones and Land Mammal Ages are used according to MAUL *et al.* (2014)

| Table 4. List of the     | Euro    | opean | occu<br>the | irrenc<br>e co-c | es of | Asor<br>rence | <i>iculus</i><br>of bo | <i>gibberodon</i> . Underlined localities indicate the species |
|--------------------------|---------|-------|-------------|------------------|-------|---------------|------------------------|----------------------------------------------------------------|
| Countries,<br>localities | Miocene |       | Pliocene    |                  | Pl    | eisto         | cene                   | References                                                     |
|                          | MN      | MN    | MN          | MN               | MN    | MN            | Early                  | ,                                                              |
|                          | 12      | 13    | 14          | 15               | 16    | 17            | ,                      |                                                                |
| Poland                   |         |       |             |                  |       |               |                        |                                                                |
| Podlesice                |         |       | +           |                  |       |               |                        | Stefaniak <i>et al.</i> (2009)                                 |
| Zamkowa Dolna            |         |       | +           |                  |       |               |                        | Stefaniak <i>et al.</i> (2009)                                 |
| Cave B                   |         |       |             |                  |       |               |                        |                                                                |
| Zalesiaki 1B             |         |       | +           | +                |       |               |                        | Rzebik-Kowalska (2005 <i>a</i> )                               |
| Wże 1                    |         |       |             | +                |       |               |                        | Rzebik-Kowalska (2005 <i>a</i> )                               |
| Rbielice                 |         |       |             |                  | +     |               |                        | Rzebik-Kowalska (2005 <i>a</i> )                               |
| Królewskie 1A, 2         |         |       |             |                  |       |               |                        |                                                                |
| Kielniki 3B              |         |       |             |                  |       | +             |                        | Stefaniak <i>et al.</i> (2009)                                 |
| Zamkowa Dolna            |         |       |             |                  |       | +             |                        | Stefaniak <i>et al.</i> (2009)                                 |
| Cave A                   |         |       |             |                  |       |               |                        |                                                                |
| <u>Żabia Cave</u>        |         |       |             |                  |       |               | +                      | Rzebik-Kowalska (2013)                                         |
| Hungary                  |         |       |             |                  |       |               |                        |                                                                |
| Tardosbánya              | +       |       |             |                  |       |               |                        | Mészáros (1998)                                                |
| Vértesacsa               | +       | +     |             |                  |       |               |                        | JONIAK <i>et al.</i> (2017)                                    |
| Osztramos 1, 9, 13       |         |       | +           |                  |       |               |                        | <b>Reumer</b> (1984)                                           |
| Csarnóta 2               |         |       |             | +                |       |               |                        | <b>Reumer</b> (1984)                                           |
| Dunaalmás 4              |         |       |             | +                | +     |               |                        | Jánossy (1986)                                                 |
| Beremend 5               |         |       |             |                  | +     |               |                        | Jánossy (1986)                                                 |
| Osztramos 7              |         |       |             |                  | +     |               |                        | Jánossy (1986)                                                 |
| Villány 3                |         |       |             |                  |       | +             |                        | <b>Reumer</b> (1984)                                           |
| Beremend 1–3, 17         |         |       |             |                  |       |               | +                      | Jánossy (1996)                                                 |
| Villány 5                |         |       |             |                  |       |               | +                      | Jánossy (1986)                                                 |
| Somssich Hill 1, 2       |         |       |             |                  |       |               | +                      | JÁNOSSY (1986); PAZONYI <i>et al.</i> (2017);                  |
|                          |         |       |             |                  |       |               |                        | present article                                                |
| Spain                    |         |       |             |                  |       |               |                        |                                                                |
| Fuente del Viso          |         | +     |             |                  |       |               |                        | van den Hoek Ostende & Furió                                   |
|                          |         |       |             |                  |       |               |                        | (2005)                                                         |
| Purcal 4                 |         | +     |             |                  |       |               |                        | van den Hoek Ostende & Furió<br>(2005)                         |
| Alhaurín el              |         |       | +           |                  |       |               |                        | GUERRA-MERCHÁN <i>et al.</i> (2013)                            |
| Grande-1                 |         |       | ·           |                  |       |               |                        |                                                                |
| Cuzo 1                   |         |       | +           |                  |       |               |                        | van den Hoek Ostende & Furió                                   |
|                          |         |       |             |                  |       |               |                        | (2005)                                                         |
| La Gloria 4              |         |       | +           |                  |       |               |                        | van den Hoek Ostende & Furió<br>(2005)                         |
| Peralejos E              |         |       | +           |                  |       |               |                        | van den Hoek Ostende & Furió<br>(2005)                         |
| Villalta Alba Rio 1      |         |       | +           |                  |       |               |                        | van den Hoek Ostende & Furió<br>(2005)                         |

Fragmenta Palaeontologica Hungarica 34, 2017

| Table 4. (continued)              |     |      |      |      |    |       |       |                                        |  |
|-----------------------------------|-----|------|------|------|----|-------|-------|----------------------------------------|--|
| Countries,<br>localities          | Mio | cene | Plio | cene | Pl | eisto | cene  | References                             |  |
|                                   | MN  | MN   | MN   | MN   | MN | MN    | Early |                                        |  |
|                                   | 12  | 13   | 14   | 15   | 16 | 17    |       |                                        |  |
| Asta Regia                        |     |      |      | +    |    |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| El Arquillo 3                     |     |      |      | +    |    |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| La Calera                         |     |      |      | +    |    |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| Layna                             |     |      |      | +    |    |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| Lomas de Casares<br>1             |     |      |      | +    |    |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| Orrios 7                          |     |      |      | +    |    |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| Tollo de Chiclana<br>1, 1B, 3, 13 |     |      | +    | +    | +  |       |       | MINWER-BARAKAT et al. (2012)           |  |
| Moreda                            |     |      |      |      | +  |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| Orrios 3                          |     |      |      |      | +  |       |       | van den Hoek Ostende & Furió<br>(2005) |  |
| Barranco León                     |     |      |      |      |    |       | +     | Agustí <i>et al.</i> (2010)            |  |
| 5/D                               |     |      |      |      |    |       |       |                                        |  |
| Venta Micena                      |     |      |      |      |    |       | +     | Agustí <i>et al</i> . (2010)           |  |
| Fuente Nueva 3                    |     |      |      |      |    |       | +     | Rofes & Cuenca-Bescós (2006)           |  |
| Sima del Elefante<br>(TELRU)      |     |      |      |      |    |       | +     | Rofes & Cuenca-Bescós (2006)           |  |
| Greece                            |     |      |      |      |    |       |       |                                        |  |
| Maritsa                           |     | +    |      |      |    |       |       | Doukas (2005)                          |  |
| Maramena                          |     | +    | +    |      |    |       |       | Doukas (2005)                          |  |
| Kessani                           |     | +    | +    |      |    |       |       | VASILEIADOU <i>et al.</i> (2012)       |  |
| Silata                            |     | +    | +    |      |    |       |       | Doukas (2005)                          |  |
| Apolakkia                         |     |      |      | +    |    |       |       | Doukas (2005)                          |  |
| Tourkobounia 1                    |     |      |      |      | +  |       |       | Doukas (2005)                          |  |
| Marathoussa                       |     |      |      |      |    |       | +     | KOUFOS <i>et al.</i> (2001)            |  |
| Slovakia                          |     |      |      |      |    |       |       |                                        |  |
| Ivanovce                          |     |      |      | +    |    |       |       | Fejfar & Sabol (2005)                  |  |
| Plesivec                          |     |      |      |      |    | +     |       | Rofes & Cuenca-Bescós (2006)           |  |
| Koliňany 1                        |     |      |      |      |    | cf.   |       | Fejfar & Horaček (1983)                |  |
| Včeláre 3, 4                      |     |      |      |      |    | cf.   | cf.   | Fejfar & Horaček (1983)                |  |
| Bulgaria                          |     |      |      |      |    |       |       | - · ·                                  |  |
| Dorkovo                           |     |      | +    |      |    |       |       | Rzebik-Kowalska & Popov (2005)         |  |
| Muselievo                         |     |      |      | +    |    |       |       | Rzebik-Kowalska & Popov (2005)         |  |
| Varshets                          |     |      |      |      |    | +     | +     | Rzebik-Kowalska & Popov (2005)         |  |

| Table 4. (continued)        |     |      |      |      |    |       |       |                                      |
|-----------------------------|-----|------|------|------|----|-------|-------|--------------------------------------|
| Countries,<br>localities    | Mio | cene | Plio | cene | Pl | eisto | cene  | References                           |
|                             | MN  | MN   | MN   | MN   | MN | MN    | Early |                                      |
|                             | 12  | 13   | 14   | 15   | 16 | 17    |       |                                      |
| Romania                     |     |      |      |      |    |       |       |                                      |
| Dranic-0, -2, -3            |     |      |      | +    |    |       |       | Rzebik-Kowalska (2005 <i>b</i> )     |
| Betfia VII/1, IX,           |     |      |      |      |    |       | +     | Rzebik-Kowalska (2002)               |
| X, XI, XIII                 |     |      |      |      |    |       |       |                                      |
| Germany                     |     |      |      |      |    |       |       |                                      |
| Gundersheim-                |     |      |      | +    |    |       |       | ZIEGLER <i>et al.</i> (2005)         |
| Findling                    |     |      |      |      |    |       |       |                                      |
| Austria                     |     |      |      |      |    |       |       |                                      |
| Deutsch-Altenburg<br>9, 20  |     |      |      | +    | +  |       |       | Ziegler & Daxner-Höck (2005)         |
| Italy                       |     |      |      |      |    |       |       |                                      |
| Brisighella                 |     | +    |      |      |    |       |       | Rofes & Cuenca-Bescós (2006)         |
| Monticino                   |     | +    |      |      |    |       |       | Rofes & Cuenca-Bescós (2006)         |
| Moncucco                    |     | +    |      |      |    |       |       | ANGELONE et al. (2011)               |
| Torinese                    |     |      |      |      |    |       |       |                                      |
| Cascina Arondelli           |     |      |      |      | +  |       |       | Kotsakis <i>et al.</i> (2003)        |
| Rivoli Veronese             |     |      |      |      |    | +     |       | Kotsakis <i>et al.</i> (2003)        |
| Capo Mannu D1<br>(Sardinia) |     |      |      |      |    |       | +     | Furió & Angelone (2010)              |
| Monte Peglia                |     |      |      |      |    |       | cf.   | Котѕакі <i>s et al.</i> (2003)       |
| Soave Cava Sud              |     |      |      |      |    |       | +     | Котѕакі <i>s et al.</i> (2003)       |
| Monte La Mesa               |     |      |      |      |    |       | +     | Котѕакі <i>s et al.</i> (2003)       |
| Monte Argentario            |     |      |      |      |    |       | +     | SIORI <i>et al.</i> (2014)           |
| France                      |     |      |      |      |    |       |       |                                      |
| Mont Héléne                 |     |      | +    |      |    |       |       | Rofes & Cuenca-Bescós (2006)         |
| Balaruc 2                   |     |      |      |      | +  |       |       | Rofes & Cuenca-Bescós (2006)         |
| Seynes                      |     |      |      |      | +  |       |       | Rofes & Cuenca-Bescós (2006)         |
| Montoussé 5                 |     |      |      |      |    | +     |       | Rofes & Cuenca-Bescós (2006)         |
| Les Valerots                |     |      |      |      |    |       | +     | Rofes & Cuenca-Bescós (2006)         |
| Mas Rambault                |     |      |      |      |    |       | +     | Rofes & Cuenca-Bescós (2006)         |
| Ukraine                     |     |      |      |      |    |       |       |                                      |
| Odessa                      |     | cf.  |      |      |    |       |       | Rzebik-Kowalska & Rekovets<br>(2016) |

Asoriculus and Neomys (Mammalia, Soricidae) remains from the late Early Pleistocene 119

Genus *Neomys* is considered as an indicator of open water bodies based on recent analogues (extant water shrews). The remains occur only in certain layers with low number of specimens. This fact suggests that the open water surface was not within the nearest environment of the site. Only those individuals fell into the karstic cavity of the locality that moved away from the water for some reason.

| the co-occurrence of both species |        |        |                                               |  |  |  |  |  |  |
|-----------------------------------|--------|--------|-----------------------------------------------|--|--|--|--|--|--|
| Countries, localities             | Pleist | ocene  | References                                    |  |  |  |  |  |  |
|                                   | Early  | Middle |                                               |  |  |  |  |  |  |
| Poland                            |        |        |                                               |  |  |  |  |  |  |
| <u>Żabia Cave</u>                 | +      |        | Rzebik-Kowalska (2013)                        |  |  |  |  |  |  |
| Zalesiaki 1A                      | +      |        | Rzebik-Kowalska (1994)                        |  |  |  |  |  |  |
| Kozi Grzbiet                      | +      | +      | Rzebik-Kowalska (1994)                        |  |  |  |  |  |  |
| England                           |        |        |                                               |  |  |  |  |  |  |
| West Runton                       |        | +      | Maul & Parfitt (2010)                         |  |  |  |  |  |  |
| Westbury                          |        | cf.    | Maul & Parfitt (2010)                         |  |  |  |  |  |  |
| Italy                             |        |        |                                               |  |  |  |  |  |  |
| <u>Monte Peglia</u>               | cf.    |        | Котѕакі <i>s et al.</i> (2003)                |  |  |  |  |  |  |
| <u>Soave Cava Sud</u>             | aff.   |        | Котѕакі <i>s et al.</i> (2003)                |  |  |  |  |  |  |
| Hungary                           |        |        |                                               |  |  |  |  |  |  |
| Somssich Hill 2                   | +      |        | PAZONYI <i>et al.</i> (2017); present article |  |  |  |  |  |  |
| Ukraine                           |        |        |                                               |  |  |  |  |  |  |
| Medzhybozh                        |        | +      | Rzebik-Kowalska & Rekovets (2016)             |  |  |  |  |  |  |
| Kuznetsovka                       |        | +      | Agadjanian & Kondrashov (2007)                |  |  |  |  |  |  |
| Germany                           |        |        |                                               |  |  |  |  |  |  |
| Miesenheim I                      |        | cf.    | van Kolfschoten & Turner (1996)               |  |  |  |  |  |  |
| Schöningen                        |        | +      | van Kolfschoten (2014)                        |  |  |  |  |  |  |
| Voigstedt                         |        | +      | Maul & Parfitt (2010)                         |  |  |  |  |  |  |
| Czech Republic                    |        |        |                                               |  |  |  |  |  |  |
| Přezletice                        |        | +      | Maul & Parfitt (2010)                         |  |  |  |  |  |  |
| Romania                           |        |        |                                               |  |  |  |  |  |  |
| Betfia VII/3                      | cf.    |        | Rzebik-Kowalska (2000)                        |  |  |  |  |  |  |
| Russia                            |        |        |                                               |  |  |  |  |  |  |
| Treugolnaya Cave                  |        | +      | ZAITSEV & BARYSHNIKOV (2002)                  |  |  |  |  |  |  |

 Table 5. List of the European occurrences of Neomys newtoni. Underlined localities indicate the co-occurrence of both species

Acknowledgements – The work was supported by the Hungarian Scientific Research Fund (OTKA K104506 project). The authors are indebted to the members of the OTKA Research Team, mainly to Piroska Pazonyi (project leader), Zoltán Szentesi, Mihály Gasparik, and Attila Virág for their useful help and valuable suggestions. Special thanks to Piroska Pazonyi for her useful reviewer comments.

\*

# REFERENCES

AGADJANIAN A. K. & KONDRASHOV P. E. 2007: Mollusks and small mammals from the Kuznetsovka locality, Pleistocene of the Oka-Don Plain. – *Paleontological Journal* 41(4): 395–406. https://dx.doi.org/10.1134/S0031030107040053

AGUSTÍ J., BLAIN H.-A., FURIÓ M., DE MARFÁ R. & SANTOS-CUBEDO A. 2010: The early Pleistocene small vertebrate succession from the Orce region (Guadix-Baza Basin, SE Spain)

and its bearing on the first human occupation of Europe. – *Quaternary International* 223: 162–169. https://dx.doi.org/10.1016/j.quaint.2009.12.011

- ANGELONE C., COLOMBERO S., ESU D., GIUNTELLI P., MARCOLINI F., PAVIA M., TRENKWALDER S., VAN DEN HOEK OSTENDE L. W., ZUNINO M. & PAVIA G. 2011: MONCUCCO Torinese, a new post-evaporitic Messinian fossiliferous site from Piedmont (NW Italy). – Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 259(1): 89–104. https://dx.doi.org/10.1127/0077-7749/2010/0108
- ВОТКА D. & MÉSZÁROS L. 2014*a*: A Somssich-hegy 2-es lelőhely alsó-pleisztocén Soricidae faunája. [The Lower Pleistocene Soricidae fauna of the Somssich Hill 2 locality.] – In: BOSNAKOFF M. & DULAI A. (eds): *Program, Előadáskivonatok, Kirándulásvezető, 17. Magyar Őslénytani* Vándorgyűlés, Győr, pp. 10–11. (in Hungarian)
- ВОТКА D. & MészáROS L. 2014*b*: *Beremendia* (Mammalia, Soricidae) remains from the late Early Pleistocene Somssich Hill 2 locality (Southern Hungary) and their taxonomic, biostratigraphical, palaeoecological and palaeobiogeographical relations. – *Fragmenta Palaeontologica Hungarica* **31**: 83–115. http://dx.doi.org/10.17111/FragmPalHung.2014.31.83
- ВОТКА D. & MÉSZÁROS L. 2015*a*: A Somssich-hegy 2-es lelőhely (Villányi-hegység) alsó-pleisztocén *Beremendia fissidens* (Mammalia, Soricidae) maradványainak taxonómiai és paleoökológiai vizsgálata. (Taxonomic and palaeoecological studies on the Lower Pleistocene *Beremendia fissidens* (Mammalia, Soricidae) remains of the Somssich Hill 2 locality (Villány Hills).) – *Földtani Közlöny* 145(1): 73–84. (in Hungarian, with English abstract)
- ВОТКА D. & Mészáros L. 2015b: Crocidura (Mammalia, Soricidae) remains from the late Early Pleistocene Somssich Hill 2 locality (Villány Hills, Southern Hungary). – Fragmenta Palaeontologica Hungarica **32**: 67–98. http://dx.doi.org/10.17111/FragmPalHung.2015.32.67
- BOTKAD.&MÉSZÁROSL.2016: Sorex (Mammalia, Soricidae) remains from the late Early Pleistocene Somssich Hill 2 locality (Villány Hills, Southern Hungary). – Fragmenta Palaeontologica Hungarica 33: 135–154. http://dx.doi.org/10.17111/FragmPalHung.2016.33.135
- CUENCA-BESCÓS G., ROFES J., LÓPEZ-GARCÍA J. M., BLAIN H.-A., RABAL-GARCÉS R., SAUQUÉ V., ARSUAGA J. L., BERMÚDEZ DE CASTRO J. M. & CARBONELL E. 2013: The small mammals of Sima del Elefante (Atapuerca, Spain) and the first entrance of *Homo* in Western Europe. – *Quaternary International* **295**: 28–35. https://dx.doi.org/10.1016/j.quaint.2011.12.012
- DAHLMANN T. & STORCH G. 1996: Eine pliozäne (ober-ruscinische) Kleinsäugerfauna aus Gundersheim, Rheinhessen. 2. Insektenfresser: Mammalia, Lipotyphla. – Senckenbergiana lethaea 76(1/2): 181–191.
- DOUKAS C. S. 2005: Greece. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The fossil record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – Scripta Geologica Special Issue 5: 99–112.
- FEJFAR O. & HORÁČEK I. 1983: Zur Entwicklung der Kleinsäugerfaunen im Villányium und Alt-Biharium auf dem Gebiet der ČSSR. – Schriftenreihe für Geologische Wissenschaften 19–20: 111–207.
- FEJFAR O. & SABOL M. 2005: Czech Republic and Slovak Republic. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – Scripta Geologica Special Issue 5: 51–60.
- FRIANT M. 1949: Les Musaraignes (Soricidae) quaternaires et actuelles de l'Europe occidentale. Annales de la Societe Geologique du Nord 67: 222–269.
- FURIÓ B. M. 2003: Los insectívoros (Mammalia) del Pleistoceno inferior de Fuente Nueva 3 y Barranco León (Orce, Granada). In: TORO I., AGUSTÍ J. & MARTÍNEZ-NAVARRO B. (eds): El Pleistoceno inferior de Barranco León y Fuente Nueva 3, Orce (Granada). Memoria científica campañas 1999–2002. Arqueología Monografías, Junta de Andalucía, Sevilla, pp. 147–157.

- FURIÓ M. & ANGELONE C. 2010: Insectivores (Erinaceidae, Soricidae, Talpidae; Mammalia) from the Pliocene of Capo Mannu D1 (Mandriola, central-western Sardinia, Italy). – Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 258(2): 229–242. https://dx.doi.org/10.1127/0077-7749/2010/0100
- GUERRA-MERCHÁN A., SERRANO F., RUIZ BUSTOS A., GARCÉS CRESPO M., INSUA-ARÉVALO J. M. & GARCÍA-AGUILAR J. M. 2013: Approach to the Lower Pliocene marine-continental correlation from southern Spain. The micromammal site of Alhaurín el Grande-1 (Málaga Basin, Betic Cordillera, Spain). – *Estudios Geológicos* 69(1): 85–96. http://dx.doi.org/10.3989/egeol.40875.175
- HARRISON D. L., PARFITT S. A. & STUART A. J. 2006: Occurrence of Macroneomys brachygnathus Fejfar, 1966 in the British Middle Pleistocene, with a review of the status of Beremendia fissidens (Petényi, 1864) in Britain (Mammalia, Lipotyphla, Soricidae). – Acta Zoologica Cracoviensia 49A(1-2): 119-124. https://dx.doi.org/10.3409/00000006783995553

HINTON M. A. C. 1911: The British Fossil Shrews. – Geological Magazine (Decade V) 8(12): 529–539.

- JÁNOSSY D. 1973: New species of *Episoriculus* from the Middle Pliocene of Osztramos (North Hungary). – *Annales historico-naturales Musei nationalis hungarici* **65**: 49–55.
- JÁNOSSY D. 1983: Lemming-remain from the Older Pleistocene of Southern Hungary (Villány, Somssich Hill 2). – Fragmenta Mineralogica et Palaeontologica 11: 55–60.

JÁNOSSY D. 1986: Pleistocene Vertebrate Faunas of Hungary. - Akadémiai Kiadó, Budapest, 208 pp.

- JÁNOSSY D. 1996: Lower Pleistocene vertebrate faunas from the localities 16 and 17 of Beremend (Southern Hungary). – *Fragmenta Mineralogica et Palaeontologica* 18: 91–102.
- JONIAK P., HÍR J., ŠUJAN M. & MÉSZÁROS L. 2017: Small mammals from Vértesacsa as a contribution to chronology of the late Miocene Zagyva Formation (W Hungary). – Acta Geologica Slovaca 9(1): 15–24.
- KORMOS T. 1911: Canis (Cerdocyon) Petényii n. sp. és egyéb érdekes leletek Baranya megyéből. [Canis (Cerdocyon) Petényii n. sp. and some other findings from Baranya County.] Magyar Királyi Földtani Intézet Évkönyve 19(4): 153–178. (in Hungarian)
- KORMOS T. 1934: Neue Insektenfresser, Fledermäuse und Nager aus dem Oberpliozän der Villányer Gegend. – Földtani Közlöny **64**(1): 296–321.
- KOTSAKIS T., ABBAZZI L., ANGELONE C., ARGENTI P., BARISONE G., FANFANI F., MARCOLINI F. & MASINI F. 2003: Plio-Pleistocene biogeography of Italian mainland micromammals. – In: REUMER J. W. F. & WESSELS W. (eds): Distribution and Migration of Tertiary Mammals in Eurasia. A Volume in Honour of Hans De Bruijn. – *Deinsea* 10: 313–342.
- KOUFOS G. D., VASSILIADOU K. V., KOLIADIMOU K. K. & SYRIDES G. E. 2001: Early Pleistocene small mammals from Marathoussa, a new locality in the Mygdonia basin, Macedonia, Greece. – Deinsea 8: 49–102.
- KRETZOI M. 1959: Insectivores, rodents and lagomorphs of the early Pleistocene fauna of Csarnóta in the Villány area (South Hungary). *Vertebrata Hungarica* 1: 237–246.
- KRETZOI M. 1962: A Csarnótai Fauna és Faunaszint. (Fauna und Faunenhorizont von Csarnóta.) Magyar Állami Földtani Intézet Évi Jelentése az 1959. évről, pp. 297–395.
- MAUL L. C., MASINI F., PARFITT S. A., REKOVETS L. & SAVORELLI A. 2014: Evolutionary trends in arvicolids and the endemic murid *Mikrotia* – New data and a critical overview. – *Quaternary Science Reviews* **96**: 240–258. https://dx.doi.org/10.1016/j.quascirev.2013.09.017
- MAUL L. C. & PARFITT S. A. 2010: Micromammals from the 1995 Mammoth Excavation at West Runton, Norfolk, UK: Morphometric data, biostratigraphy and taxonomic reappraisal. – *Quaternary International* 228(1-2): 91-115. https://dx.doi.org/10.1016/j.quaint.2009.01.005
- MAUL L. & RZEBIK-KOWALSKA B. 1998: A record of *Macroneomys brachygnathus* Fejfar, 1966 (Mammalia, Insectivora, Soricidae) in the early Middle Pleistocene (Late Biharian) locality

of Voigtstedt (Germany) and the history of the genus *Macroneomys. – Acta Zoologica Cracoviensia* **41**: 79–100.

- MÉSZÁROS L. 1998: Late Miocene Soricidae (Mammalia) fauna from Tardosbánya (Western Hungary). – *Hantkeniana* 2: 103–125.
- MÉSZÁROS L. & ВОТКА D. 2017: A Somssich-hegy 2-es lelőhely Soricidae faunájának taxonómiája és paleoökológiája. [Taxonomy and palaeoecology of the Soricidae fauna of the Somssich Hill 2 locality.] – In: VIRÁG A. & BOSNAKOFF M. (eds): *Program, Előadáskivonatok, Kirándulás*vezető, 20. Magyar Őslénytani Vándorgyűlés, Tata-Tardos, p. 72. (in Hungarian)
- MINWER-BARAKAT R., GARCÍA-ALIX A., SUÁREZ E. M. & FREUDENTHAL M. 2010: Soricidae (Soricomorpha, Mammalia) from the Pliocene of Tollo de Chiclana (Guadix Basin, Southern Spain). – Journal of Vertebrate Paleontology **30**(2): 535–546. https://dx.doi.org/10.1080/02724631003622001
- MINWER-BARAKAT R., GARCÍA-ALIX A., SUÁREZ E. M., FREUDENTHAL M. & VISERAS C. 2012: Micromammal biostratigraphy of the Upper Miocene to lowest Pleistocene continental deposits of the Guadix basin, southern Spain. – *Lethaia* 45(4): 594–614. https://dx.doi.org/10.1111/j.1502-3931.2012.00324.x
- PASA A. 1948: I mammiferi di alcune antiche brecce ossifere veronesi. Memorie del Museo Civico di Storia Naturale di Verona I (1947–1948): 1–111. (in Italian)
- PAZONYI P., MÉSZÁROS L., SZENTESI Z., GASPARIK M., VIRÁG A., GERE K., MÉSZÁROS R., BOTKA D., BRAUN B. & STRICZKY L. 2016a: Taxonomical, taphonomical and paleoecological aspects of a late Early Pleistocene vertebrate fauna from the Somssich Hill 2 site (South Hungary). – In: HOLWERDA F., MADERN A., VOETEN D., VAN HETEREN A., MEIJER H. & DEN OUDEN N. (eds): XIV Annual Meeting of the European Association of Vertebrate Palaeontologists, Programme and Abstract Book, Koninklijke Nederlandse Akademie van Wetenschappen, Haarlem, The Netherlands, p. 36.
- PAZONYI P., MÉSZÁROS L., HÍR J. & SZENTESI Z. 2016b: The lowermost Pleistocene rodent and soricid (Mammalia) fauna from Beremend 14 locality (South Hungary) and its biostratigraphical and palaeoecological implications. – *Fragmenta Palaeontologica Hungarica* 33: 99–134. http://dx.doi.org/10.17111/FragmPalHung.2016.33.99
- PAZONYI P., VIRÁG A., GERE K., BOTFALVAI G., SEBE K., SZENTESI Z., MÉSZÁROS L., BOTKA D., GASPARIK M. & KORECZ L. 2017: Sedimentological, taphonomical and palaeoecological aspects of the late early Pleistocene vertebrate fauna from the Somssich Hill 2 site (South Hungary). – Comptes Rendus Palevol in press. https://dx.doi.org/10.1016/j.crpv.2017.06.007
- PETÉNYI S. J. 1864: A beremendi mészkőbánya természetrajz- és őslénytanilag leírva. Hátrahagyott munkái. [Geological and palaeontological description of the Beremend limestone quarry. Posthumus works.] – Magyar Tudományos Akadémia kiadása 1: 35–81. (in Hungarian)
- Ророv V. V. 2003: Late Pliocene Soricidae (Insectivora, Mammalia) from Varshets (North Bulgaria). – Acta Zoologica Cracoviensia 46: 43–72.
- Ророv V. V. 2004: Pliocene small mammals (Mammalia, Lipotyphla, Chiroptera, Lagomorpha, Rodentia) from Muselievo (North Bulgaria). – *Geodiversitas* 26(3): 403–491.
- REPENNING C. A. 1967: Subfamilies and genera of the Soricidae. *Geological Survey Professional* Paper **565**: 1–74.
- REUMER J. W. F. 1984: Ruscinian and early Pleistocene Soricidae (Insectivora, Mammalia) from Tegelen (The Netherlands) and Hungary. – *Scripta Geologica* 73: 1–173.
- REUMER J. W. F. & DOUKAS C. S. 1985: Early Pleistocene Insectivora (Mammalia) from Tourkobounia (Athens, Greece). – *Proceedings Koninklijke Nederlandse Akademie van Wetenschappen* **B88**(1): 111–121.

- ROFES J. & CUENCA-BESCÓS G. 2006: First evidence of the Soricidae (Mammalia) Asoriculus gibberodon (Petényi, 1864) in the Pleistocene of north Iberia. – Rivista Italiana di Paleontologia e Stratigrafia 112(2): 301–315. https://dx.doi.org/10.13130/2039-4942/6343
- ROFES J. & CUENCA-BESCÓS G. 2009: A new genus of red-toothed shrew (Mammalia, Soricidae) from the Early Pleistocene of Gran Dolina (Atapuerca, Burgos, Spain), and a phylogenetic approach to the Eurasiatic Soricinae. – *Zoological Journal of the Linnean Society* **155**(4): 904– 925. https://dx.doi.org/10.1111/j.1096-3642.2008.00470.x
- RZEBIK-KOWALSKA B. 1981: The Pliocene and Pleistocene Insectivora (Mammalia) of Poland. IV. Soricidae: Neomysorex n. gen. and Episoriculus Ellerman et Morrison-Scott 1951. – Acta Zoologica Cracoviensia 25(8): 227–250.
- RZEBIK-KOWALSKA B. 1991: Pliocene and Pleistocene Insectivora (Mammalia) of Poland. VIII. Soricidae: Sorex Linnaeus, 1758, Neomys Kaup, 1829, Macroneomys Fejfar, 1966, Paenelimnoecus Baudelot, 1972 and Soricidae indeterminata. – Acta Zoologica Cracoviensia 34(2): 323–424.
- RZEBIK-KOWALSKA B. 1994: Pliocene and Quaternary Insectivora (Mammalia) of Poland. Acta Zoologica Cracoviensia 37(1): 77–136.
- RZEBIK-KOWALSKA B. 2000: Insectivora (Mammalia) from the Early and early Middle Pleistocene of Betfia in Romania. I. Soricidae Fischer von Waldheim, 1817. – *Acta Zoologica Cracoviensia* 43(1–2): 1–53.
- RZEBIK-KOWALSKA B. 2002: The Pliocene and Early Pleistocene Lipotyphla (Insectivora, Mammalia) from Romania. Acta Zoologica Cracoviensia 45(2): 251–281.
- RZEBIK-KOWALSKA B. 2005*a*: Poland. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – *Scripta Geologica Special Issue* 5: 119–134.
- RZEBIK-KOWALSKA B. 2005b: Romania. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – *Scripta Geologica Special Issue* 5: 135–147.
- RZEBIK-KOWALSKA B. 2013: Sorex bifidus n. sp. and the rich insectivore mammal fauna (Erinaceomorpha, Soricomorpha, Mammalia) from the Early Pleistocene of Żabia Cave in Poland.
   *Palaeontologia Electronica* 16(2/12A): 1–35. palaeo-electronica.org/content/2013/428-a-new-shrew-species
- RZEBIK-KOWALSKA B. & POPOV V. V. 2005: Bulgaria. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – *Scripta Geologica Special Issue* 5: 31–35.
- RZEBIK-KOWALSKA B. & REKOVETS L. I. 2016: New data on Eulipotyphla (Insectivora, Mammalia) from the Late Miocene to the Middle Pleistocene of Ukraine. – *Palaeontologia Electronica* 19(1): 1–31. https://dx.doi.org/10.26879/573
- SIORI M. S., BOERO A., CARNEVALE G., COLOMBERO S., DELFINO M., SARDELLA R. & PAVIA M. 2014: New data on Early Pleistocene vertebrates from Monte Argentario (Central Italy). Paleoecological and biochronological implications. – *Geobios* 47(6): 403–418. https://dx.doi.org/10.1016/j.geobios.2014.10.001
- STEFANIAK K., TYC A. & SOCHA P. (eds) 2009: Karst of the Częstochowa Upland and of the Eastern Sudetes: palaeoenvironments and protection. – Studies of the Faculty of Earth Sciences University of Silesia, Wroclaw, 535 pp.
- SULIMSKI A. 1962: Supplementary studies on the insectivores from Weze 1 (Poland). Acta Palaeontologica Polonica 7: 441–502.
- VAN DE WEERD A., REUMER J. W. F. & DE VOS J. 1982: Pliocene mammals from Apolakkia Formation (Rhodes, Greece). – Proceedings Koninklijke Nederlandse Akademie van Wetenschappen B85(1): 89–112.

- VAN DEN HOEK OSTENDE L. W. & FURIÓ M. 2005: Spain. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – Scripta Geologica Special Issue 5: 149–284.
- VAN KOLFSCHOTEN T. 2014: The Palaeolithic locality Schöningen (Germany): a review of the mammalian record. – *Quaternary International* **326–327**: 469–480. https://dx.doi.org/10.1016/j.quaint.2013.11.006
- VAN KOLFSCHOTEN T. & TURNER E. 1996: Early Middle Pleistocene mammalian faunas from Kärlich and Miesenheim I and their biostratigraphical implications. – In: TURNER E. (ed.): *The early Middle Pleistocene in Europe*, Balkema, Rotterdam, pp. 227–253.
- VASILEIADOU K., KONIDARIS G. & KOUFOS G. D. 2012: New data on the micromammalian locality of Kessani (Thrace, Greece) at the Mio-Pliocene boundary. – *Palaeobiodiversity and Palaeoenvironments* 92(2): 211–237. https://dx.doi.org/10.1007/s12549-012-0075-7
- VASILEIADOU K. V., KOUFOS G. D. & SYRIDES G. E. 2003: Silata, a new locality with micromammals from the Miocene/Pliocene boundary of the Chalkidiki peninsula, Macedonia, Greece. – Deinsea 10(1): 549–562.
- ZAITSEV M. V. & BARYSHNIKOV G. F. 2002: Pleistocene Soricidae (Lipotyphla, Insectivora, Mammalia) from Treugolnaya Cave, Northern Caucasus, Russia. – *Acta Zoologica Cracoviensia* **45**(2): 283–305.
- ZIEGLER R., DAHLMANN T., REUMER J. W. F. & STORCH G. 2005: Germany. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – Scripta Geologica Special Issue 5: 61–98.
- ZIEGLER R. & DAXNER-HÖCK G. 2005: Austria. In: VAN DEN HOEK OSTENDE L. W., DOUKAS C. S. & REUMER J. W. F. (eds): The Fossil Record of the Eurasian Neogene insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. – Scripta Geologica Special Issue 5: 11–29.