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Abstract

The family Lumbricidae is arguably the most well-known and well-studied earthworm group

due to its dominance in the European earthworm fauna and its invasion in temperate regions

worldwide. However, its North American members, especially the genus BimastosMoore,

1893, are poorly understood. We revised the systematics of the genus Bimastos and tested

the hypothesis of the monophyly of North American lumbricids using morphological charac-

ters and eight molecular markers. Phylogenetic analyses based on our extensive sampling

of Bimastos and inclusion of Dendrodrilus and Allolobophoridella indicated a well-supported

clade containing Bimastos and EisenoidesGates, 1969, and provided the first evidence

supporting that North American lumbricids are monophyletic. Assuming the available diver-

gence time estimations and dating of land bridges are correct, it would suggest that the

ancestor of this clade arrived North America through Beringia or the De Geer route during

Late Cretaceous, and since then the clade has diverged from its Eurasian sister group,

Eisenia. The peregrine genera Dendrodrilus and Allolobophoridella are nested within the

Bimastos clade; we propose to treat them as junior synonyms of the genus Bimastos, and,

contradictory to the commonly held belief of being European, they are indeed part of the

indigenous North American earthworm fauna. Morphological characters, such as red-violet

pigmentation, proclinate U-shaped nephridial bladders and calciferous diverticula in segment

10 further support this placement. The East Mediterranean–Levantine Spermophorodrilus

Bouché, 1975 andHealyellaOmodeo & Rota, 1989 are nested within the Dendrobaena

sensu lato clade; therefore their close relationship with the North American Bimastos is

refuted. Species fit the revised diagnosis of Bimastos are reviewed and keyed, and a new

species, Bimastos schwerti sp. nov., is described.
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Introduction

Earthworms of the family Lumbricidae are native to the Holarctic. They represent a keystone

group of macrofauna in temperate soils, with about 30 common species spread globally by

human activity [1]. The family currently has around 750 described species within approxi-

mately 40–60 genera [2–4]. While the majority of the species and genera are native to the Pale-

arctic region, two genera, Bimastos Moore, 1895 and Eisenoides Gates, 1969, are generally

believed to be native to North America [5], with nine and two described species, respectively.

In the USA, species belonging to the two genera frequently co-occur with introduced Euro-

pean lumbricids, such as Lumbricus rubellus, Aporrectodea caliginosa, and Octolasion cyaneum

[6–8], but usually at lower abundance.

The validity, taxonomic boundary and origin of Bimastos, aptly called a “systematic waste-

basket” by Gates [9], have been widely debated [5, 10–16]. Taking into account previously

overlooked morphological characters, including the shape and orientation of nephridial blad-

ders and the structure and position of calciferous glands, Gates [5] argued that the name

Bimastos should be restricted only for North American species. This concept of Bimastos was

later supported by Omodeo and Rota [14], who separated the Balkanic and Anatolian Spermo-

phorodrilus Bouché, 1975 andHealyella Omodeo & Rota 1989 from North American Bimastos.

However, Omodeo and Rota’s concepts of the three genera suffered severely from ambiguous

morphological descriptions and overlapping diagnosis. For this reason, Zicsi [13, 15] con-

cluded that the three genera form a homogenous group, and both Spermophorodrilus andHea-

lyella are junior synonyms of Bimastos. In contrast to Gates’ restricted definition of Bimastos

to the Nearctic, Zicsi’s concept of Bimastos encompasses species not only from North America

but also from the Balkans and the Anatolia, thus creating a biogeographic puzzle with ques-

tions on how this genus achieved its current native range of distribution.

The biogeographic puzzle concerning the two competing hypotheses of Bimastos is further

complicated by the close affinity among Bimastos and two monotypic genera, Allolobophoridella

andDendrodrilus [17, 18]. This affinity has been suggested in preliminary molecular analyses

[19, 20], and was recently confirmed in the multigene molecular phylogeny of Lumbricidae [21].

The genus Allolobophoridella was created to host two enigmatic species, Lumbricus eiseni Levin-

sen, 1884 and Allolobophora parva Eisen, 1874 [17]. The latter was soon transferred to Bimastos

[3], making Allolobophoridella monotypic. In the past few decades, Allolobophoridella eiseni has

been moved around among Allolobophora [22], Eisenia [15], and Bimastos [18] and has also

been suggested to show affinities with several Dendrobaena species [23]. Clearly, a phylogenetic

re-evaluation of the species and the status of the genus Allolobophoridella were urgently needed.

While morphological similarities, such as proclinate U-shaped nephridial bladders, and

Nearctic distributions imply that Bimastos and Eisenoidesmay be closely related, a hypothe-

sized North American clade composed of only Bimastos and Eisenoides were put through a for-

mal test only recently. Molecular phylogeny of Lumbricidae constructed by Dominguez et al.

[21] showed that the North American Bimastos is monophyletic, and is nested within a clade

consisting Bimastos, Dendrodrilus, and Allolobophoridella, with the former two genera being

the sister groups of each other. While the hypothesis that Eisenoides is closely related to the

aforementioned clade gained some support in Dominguez et al. [21], the inferred phylogeny

did not support a strict Bimastos-Eisenoides monophyly. Moreover, the result was insufficient

for making definitive inferences regarding the status of Bimastos, Healyella, and Spermophoro-

drilus as only three out of the nine nominal species of Bimastos were included, and the genus

Spermophorodrilus and the type species ofHealyella were missing from the analyses. Neverthe-

less, the molecular phylogenetic study of Lumbricidae by Dominguez et al. [21] provided a

solid basis for further analysis.
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Here we report on a detailed morphological and molecular analysis of Bimastos and related

genera. Our objectives were to (1) evaluate the monophyly of North American lumbricids, (2)

test the two competing hypotheses of Bimastos outlined by Gates (1969) and by Zicsi (1981),

(3) investigate the phylogenetic position of the genera Allolobophoridella, Dendrodrilus, Sper-

mophorodrilus, andHealyella, and (4) conduct a full revision of the genus Bimastos. We inte-

grated morphology with the multigene-phylogeny approach [24–28], using both nuclear and

mitochondrial genes to acquire a concatenated sequence length of 5715 bp. We expanded sam-

pling of Bimastos from three to eight species and included the type species of all of the con-

cerned genera, including Allolobophoridella eiseni, Bimastos palustris, Dendrodrilus rubidus

rubidus, Eisenoides lonnbergi, Healyella syriaca, and Spermophorodrilus antiquus.

Materials andmethods

Specimens

Between 2000 and 2015 we collected in Turkey, the Levant, Middle East, and in the mid-Atlantic

region of North America. We also examined the Bimastos collection in the National Museum of

Natural History inWashington D.C., where several type specimens are kept, as well as the materi-

als in the Hungarian Natural History Museum where severalHealyella and Spermophorodrilus

species are housed. Earthworms were collected by both the diluted formalin method [29] and by

digging and hand searching. Specimens were killed in 75% ethanol and fixed in 4% formalin then

transferred to 75% ethanol after several days. Specimens used for molecular analysis were pre-

served in 96% ethanol without formalin fixation. All of the specimens collected and/or examined

are permanently archived at either the National Museum of Natural History, Smithsonian Insti-

tution (USNM), Washington D.C., USA or the Soil Zoology Collection of the Hungarian Natural

History Museum (HNHM), Budapest, Hungary. The detailed catalog numbers of specific speci-

mens sequenced can be found in Table 1. For morphological analysis the following specimens

were examined: Allolobophoridella eiseni 17 specimens (HNHM/12484, HNHM/14565, HNHM/

14743);Dendrodrilus rubidus 15 specimens (HNHM/14185, HNHM/14228, HNHM/14445,

HNHM/15283, HNHM/16384, HNHM/6519); Spermophorodrilus antiquus 10 specimens (HN

HM/8857, HNHM/9247, HNHM/15756, HNHM/15819, HNHM/15840);Healyella syriaca 16

specimens (HNHM/11131, HNHM/12169, HNHM/14045, HNHM/15141, HNHM/16507);

Healyella jordanis 14 specimens (HNHM/12914, HNHM/12915, HNHM/12918, HNHM/14620);

Bimastos gieseleri 11 specimens (USNM 25848); Bimastos heimburgeri 44 specimens (USNM

123883, USNM 123879, HNHM/14186, HNHM/14906, HNHM/16498, HNHM/16502); Bimas-

tos longicinctus 64 specimens (USNM 24599, USNM 25871, USNM 47867, HNHM/17151);

Bimastos palustris 34 specimens (HNHM/13039, HNHM/14183, HNHM/14189, HNHM/14215,

HNHM/14224, HNHM/14227); Bimastos parvus 10 specimens (HNHM/14301, HNHM/14886,

HNHM/15170, HNHM/16067, HNHM 16464); Bimastos schwertiHolotype (HNHM/16614)

Paratypes 39 specimens (HNHM/16615, HNHM/14184, HNHM/4188, HNHM/16500, HNHM/

16510, HNHM/16566, HNHM/16567, HNHM/17158); Bimastos tumidus 55 specimens (USNM

1164, USNM 123878, USNM 123889, USNM 25848, USNM 19683, HNHM 14193, HNHM/

14198,. HNHM/16503, HNHM/16497); Bimastos welchi one specimen (USNM 16782); Bimastos

zeteki eight specimens (USNM 16782, USNM 26214, USNM 123897, USNM 123898).

Ethics statement

Permission to collect earthworm samples at Jug Bay was issued by the Jug Bay Wetlands Sanc-

tuary under Director Chris Swarth. None of the other locations from which samples were col-

lected required specific permissions. None of the earthworms collected in this study are listed

Revision of the earthworm genus Bimastos

PLOSONE | https://doi.org/10.1371/journal.pone.0181504 August 9, 2017 3 / 36

https://doi.org/10.1371/journal.pone.0181504


as endangered or protected. All of the specimens included in this study are archived in the

institutions stated above and are publicly accessible.

Histological methods

For histological study of the longitudinal musculature, several postclitellar segments were

embedded in paraffin, sliced to 10 μm thin cross-sections using a Microm rotary-microtome,

and stained with hematoxylin and eosin [30]. For comparison of the structure of calciferous

glands, several longitudinal sections of the preclitellar regions were also sliced and treated as

above. The microscopic slides were examined and photographed using a Nikon Eclipse 660

DIC microscope.

Table 1. Specimens newly collected for phylogenetic analyses and their Hungarian Natural History Museum catalog numbers (HNHM).

Species HNHM Locality

Allolobophoridella eiseni 15811 Koula Mts., Greece

Allolobophoridella eiseni 16448 Col d’Aspin, France

Aporrectodea caliginosa 17163 Mayo Beach Park, MD, USA

Aporrectodea tuberculata 17164 Mayo Beach Park, MD, USA

Bimastos heimburgeri 16498 Gunpowder Falls, USA

Bimastos heimburgeri 16502 Smithsonian Environmental Research Center, MD, USA

Bimastos longicinctus 17157 Game land 242, Siddonsburg PA, USA

Bimastos palustris 16565 Jug Bay Wetlands Sanctuary, MD, USA

Bimastos parvus 16357 Wadi Kelt, Israel

Bimastos schwerti 16500 Jug Bay Wetlands Sanctuary, MD, USA

Bimastos schwerti 16566 Jug Bay Wetlands Sanctuary, MD, USA

Bimastos schwerti 17158 Game land 242, Siddonsburg, PA, USA

Bimastos tumidus 16497 Gunpowder Falls, USA

Bimastos tumidus 16503 Smithsonian Environmental Research Center, MD, USA

Dendrobaena alpina 16077 Radjuva Planina, Bulgaria

Dendrobaena attemsi 16299 Socolau Valley, Maramures, Romania

Dendrobaena attemsi 16468 Palmeira de Faro, Portugal

Dendrobaena byblica 16660 Kakopetros, Crete, Greece

Dendrobaena byblica olympiaca 15835 Peristeri, Greece

Dendrobaena octaedra 16212 Treskovac Mts., Montenegro

Dendrobaena octaedra 16528 Payolle Valley, France

Dendrodrilus rubidus rubidus 15657 Cerová Highlands, Slovakia

Dendrodrilus rubidus rubidus 15816 Istrancha Mts., Turkey

Dendrodrilus rubidus subrubicundus 15283 Borşa, Romania

Eisenia fetida 17161 Baltimore, MD, USA

Eisenoides carolinensis 17160 Hawk Mountain, PA, USA

Eisenoides lonnbergi 17159 Plummers Island, MD, USA

Fitzingeria platyura platyura 16439 Velem, Hungary

Healyella jordanis 16369 Rehaniya, Israel

Healyella syriaca 16273 Nahal Tabor, Israel

Healyella syriaca 16507 Samandog, Turkey

Lumbricus rubellus 17165 Smithsonian Environmental Research Center, MD, USA

Octolasion lacteum 17162 Smithsonian Environmental Research Center, MD, USA

Spermophorodrilus antiquus 15756 Sapka Mts., Greece

https://doi.org/10.1371/journal.pone.0181504.t001
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Taxon sampling for phylogenetic analysis

To unravel the phylogenetic relationships among Bimastos, Healyella, Spermophorodrilus, Dendro-

drilus andAllolobophoridella, and to test the hypothesis that North American lumbricids are mono-

phyletic, we sampled a total of 14 taxa from the above genera, including two Bimastos species

reported in Domı́nguez et al. [21], and both of the known species belonging to the North Ameri-

can native genus Eisenoides (Table 1). Our overall taxon sampling comprises eight of the 10 valid

species of Bimastos, including a new species described in the present study, and fully represents the

monotypic genera Allolobophoridella andDendrodrilus. We also included nine species (three from

GenBank; S1 Table) fromDendrobaena and Fitzingeria as the two genera are closely related and

species inHealyella and Spermophorodrilus have been classified intoDendrobaena [11]. While our

sampling of the latter four genera was far from exhaustive,Healyella, Spermophorodrilus and Fitzin-

geria have only 10, three, and three valid species, respectively [4]. Furthermore, our samples

encompassed the type species of all of the targeted genera (Allolobophoridella eiseni, Bimastos palus-

tris,Dendrobaena octaedra, Dendrodrilus rubidus rubidus, Eisenoides lonnbergi, Fitzingeria platyura

platyura,Healyella syriaca, and Spermophorodrilus antiquus, respectively), providing a strong taxo-

nomic basis for drawing unequivocal conclusions. Samples of the lumbricid species Eisenia fetida,

Lumbricus rubellus,Octolasion lacteum,Aporrectodea caliginosa and Aporrectodea tuberculata were

also included. Overall, sequences from 34 specimens representing 25 species/subspecies were

newly acquired, and were combined with selected taxa from the Lumbricidae dataset reported in

Domı́nguez et al. [21] and Pérez-Losada et al. [31] for phylogenetic analyses.

DNA extraction, polymerase chain reactions, and sequencing

Genomic DNAwas extracted from earthworm tissues using the Qiagen DNeasy Blood and Tissue

Kit (QIAGEN, Valencia, CA, USA). Regions of eight molecular markers, including three nuclear

rRNAs (18S, 5.8S and 28S), twomitochondrial rRNAs (12S and 16S), and three mitochondrial pro-

tein coding genes (cytochrome c oxidase subunit 1 and 2 (COI, COII) and NADH dehydrogenase

subunit 1 (ND1)), were acquired using polymerase chain reaction (PCR) with primers listed in S2

Table. PCR was conducted in a 50 ul total volume with 1x reaction buffer, 1.25 units JumpStart Taq

Polymerase (Sigma, St Louis, MO, USA), 200 uM of each dNTP, 1.5 mMMgCl2, 0.24 mg/mL BSA,

5%DMSO, 200 nM of each primer, and 10 or 20 ng template DNA. Cycling conditions were set to

one cycle of 94˚C for 2 min, followed by 35 cycles of 94˚C for 15 s, 45˚C (for COI), 47˚C (for COII

and ND1), 49˚C (for 16S rRNA) or 50˚C (for 12S, 18S, 5.8S and 28S rRNAs) for 15 s, and 72˚C for

90 s, with a final cycle of 72˚C for 5min. The amplified products were sequenced at Beckman Coul-

ter Genomics using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster,

CA, USA) and analyzed on an ABI PRISM 3730XL (Applied Biosystems). Chromatograms were

visualized and assembled in DNA Baser v4.31.0 (Heracle BioSoft, Romania). All new sequences

have been deposited in GenBank under the accession numbers KX651115-KX651415.

Phylogenetic analysis

Two datasets were analyzed. First, sequences from selected species representing the major

clades of Lumbricidae and the outgroupHormogaster reported in Domı́nguez et al. [21] and

Pérez-Losada et al. [31] were combined with our data (S1 Table). The combined dataset, com-

posed of 12S, 16S, 18S rRNAs, COI, COII, and ND1, contains 64 samples representing 57 spe-

cies/subspecies and is 3940 bp after alignment (the ‘short dataset’ hereafter). Second, data

acquired in this study were analyzed. Octolasion lacteum was used as the outgroup based on

the inferred phylogeny in Domı́nguez et al. [21]. This dataset, 5715 bp after alignment, is lon-

ger (due to both longer sequences and some longer alignments) and allows us to focus on

unravelling the phylogeny within Bimastos (the ‘long dataset’ hereafter).
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Nucleotide sequences from each gene were aligned usingMAFFT v7 [32] under the default set-

tings. The aligned sequences were concatenated using DAMBE 5 [33]. For the short dataset, the

aligned sequences are 3940 bp in length, including 18S rRNA (768 bp), 12S rRNA (392 bp), 16S

rRNA (516 bp), COI (651 bp), COII (681 bp), and ND1 (932 bp). For the long dataset, the aligned

sequences are 5715 bp in length, including 18S rRNA (1578 bp), 5.8 S rRNA (122 bp), 28S rRNA

(867 bp), 12S rRNA (388 bp), 16S rRNA (496 bp), COI (651 bp), COII (681 bp), and ND1 (932

bp). The most appropriate models of evolution were selected using jModelTest 2 [34] under the

Akaike information criterion (AIC) for each gene partition in each dataset. For each protein-coding

gene, the third codon was further treated as a separate partition. Different partitions were treated as

unlinked andmodel parameters were estimated independently for each partition in all analyses.

Phylogenies were inferred using maximum likelihood (ML) analyses and Bayesian infer-

ences. ML analyses were conducted using RAxML v8 [35] as implemented in the CIPRES Sci-

ence Gateway 3.3 web portal [36](www.phylo.org) using the general time reversible model with

proportion of invariable sites and gamma distribution (GTR + I + G) estimated for each indi-

vidual gene partition. Clade support was evaluated using the non-parametric bootstrapping pro-

cedure with 1000 bootstrapping replicates. The best ML tree was compared to alternative tree

topologies using the Shimodaira–Hasegawa (SH) test as implemented in RAxML v8. Bayesian

inferences coupled with Marko chain Monte Carlo (MCMC) were conducted using MrBayes

v3.2.6 [37] with default priors and random starting trees. Three independent MCMC searches,

each with three heated and one cold chains, were run for 2 x 107 generations. The resulting

trees were sampled every 1000 generations after discarding the first 20% trees as burn-in. The

posterior probabilities and the topologies of the resulting consensus trees from separate analyses

were compared for congruency and combined in a 50%majority-rule consensus tree.

We originally considered estimating divergence time and conducting ancestral area recon-

struction but decided not to do so for three reasons. First, there are no earthworm fossils avail-

able for calibration. Molecular clock estimation in earthworms has been conducted exclusively

using geological events [21, 24, 26]. However, doing so would imply vicariance, an assumption

that has been repeatedly questioned [28]. Second, external calibration points are not available

in our phylogenetic trees. Third, with the lack of native lumbricid samples from East Asia and

a priori knowledge about the origin of Allolobophoridellaa eiseni and Dendrodrilus rubidus,

ancestral area reconstruction cannot be properly conducted.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are avail-

able under that Code from the electronic edition of this article. This published work and the

nomenclatural acts it contains have been registered in ZooBank, the online registration system

for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated

information viewed through any standard web browser by appending the LSID to the prefix

"http://zoobank.org/". The LSID for this publication is: urn:lsid:zoobank.org:pub:236DD001-

3F6B-4D1C-AAB2-D3E08FFEC0B3. The electronic edition of this work was published in a

journal with an ISSN, and has been archived and is available from the following digital reposi-

tories: PubMed Central, LOCKSS.

Results

Phylogeny

In both of the short (3940 bp) and the long (5715 bp) datasets, the maximum likelihood (ML)

analyses and Bayesian inferences generate similar topologies and have no incongruence
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regarding supported clades (bootstrap support values� 50 or posterior probabilities� 0.90).

Therefore, the ML and Bayesian trees are considered together and only the ML trees are

shown.

The trees inferred from the short dataset (Fig 1) provided little support for some of the

basal internal branches, which is what we expected as the genes included in the short dataset

are only a part of those used in Domı́nguez et al. [21]. As our goal is to understand the phylog-

enies of Bimastos, Allolobophoridella, Dendrodrilus, Spermophorodrilus andHealyella with an

extended sampling, the lack of phylogenetic resolution among other lumbricid genera does

not affect our ability to draw meaningful conclusions, and can reasonably be compensated

with our current understanding on Lumbricidae phylogeny [21, 31].

The phylogenies inferred from both datasets strongly support a monophyletic group (the

Bimastos clade hereafter) composed of Bimastos, Allolobophoridella, and Dendrodrilus (boot-

strap/posterior probability values = 100/1.0 for both datasets). However, the genus Bimastos

sensu Gates [5], is paraphyletic due to the exclusion of Allolobophoridella or Dendrodrilus.

Within the Bimastos clade, Bimastos palustris is basal relative to all the other species. Bimastos

parvus and Dendrodrilus rubidus are sister species; the two together are the sister group of Allo-

lobophoridella eiseni (Fig 2). We compared the best ML tree (Fig 2) with two alternative topolo-

gies using the SH test with the following constraints: (1) monophyly of the Bimastos genus;

and (2) monophyly of the Bimastos genus except B. parvus. Both comparisons suggested that

the best ML tree and the two alternative topologies are not significantly different from each

other (P> 0.05).

The sister group of the Bimastos clade is Eisenoides (bootstrap/posterior probability val-

ues = 95/1.0 and 97/1.0 for the short and long datasets, respectively). Together, the two genera

form a clade that includes all lumbricid species of North American origin (the North American

clade hereafter) (Figs 1 and 2). The phylogenetic trees inferred from the long dataset also sug-

gested that Eisenia is the sister group of the North American clade (bootstrap/posterior proba-

bility values = 64/1.0).

The tree topologies do not support the hypothesis that Spermophorodrilus and Healyella are

associated with Bimastos. Instead, the two genera form a weakly supported clade (bootstrap/

posterior probability values = 59/0.85 and 56/0.72 for the short and long datasets, respectively)

nested within a clade (bootstrap/posterior probability values = 86/0.99 and 94/1.0 for the short

and long datasets, respectively) that also includes Fitzingeria platyura platyura and nine Den-

drobaena taxa. These nine taxa encompass all Dendrobaena species included in our analyses

except Dendrobaena byblica byblica. Accordingly, Dendrobaena, as currently defined, is

polyphyletic.

Taxonomic treatment

One of our main research goals was to revise the systematics of the genus Bimastos. The

inferred phylogenies and the non-significant SH test result suggest two possible relationships

among Bimastos, Dendrodrilus and Allolobophoridella: (1) Bimastos is paraphyletic due to the

existence of Dendrodrilus rubidus and Allolobophoridella eiseni, or (2) Bimastos is monophy-

letic. Regardless of the relationship, the three groups formed a highly supported clade (Figs 1

and 2). Given the weak morphological distinction among these three genera [38], we prefer an

unambiguously supported, more inclusive Bimastos, and herein propose to treat Dendrodrilus

and Allolobophoridella as junior synonyms of Bimastos. This taxonomic treatment accommo-

dated both scenarios of phylogenetic relationships. Furthermore, Mršič [38], in his original

description of Allolobophoridella, noted: "Should it be stated, that in the species of the genus

Bimastos from North America the glandular part of the nephridial bladder is oriented in the
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Fig 1. Maximum likelihood tree based on the short dataset forBimastos,Dendrodrilus,Allolobophoridella,
Healyella, Spermophorodrilus,Dendrobaena, and other lumbricids. Bootstrap support values (if� 50) and Bayesian
posterior probabilities (if� 0.90) are shown above and below the branches, respectively. The four genera that were
previously hypothesized to be related to Bimastos are colored. The annotated-and-shaded areas on the right correspond
to the two major clades characterized in Results. Specimens newly reported in this study were marked with their five-digit
HNHM catalog numbers.

https://doi.org/10.1371/journal.pone.0181504.g001
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same way as in eiseni and parvus, the genus Allolobophoridella will be just a synonym of the

genus Bimastos."

Genus SpermophorodrilusBouché, 1975. Eophila Rosa, 1893 [39]: Černosvitov 1938 [40]:
198 (partim).

Bimastos Moore, 1893 [41]: Zicsi 1981 [13]: 432 (partim); Zicsi & Michalis 1981 [42]: 244

(partim); Blakemore 2008b [43]: 536 (partim).

Spermophorodrilus Bouché, 1975 [44]: 2; Omodeo & Rota, 1989 [14]: 169; 1991[45]: 172;

Csuzdi et al. 2006 [46]: 26; Pavlı́ček et al. 2010 [47]: 2000.
Diagnosis. Setae strictly paired, pigmentation lacking (Fig 3). Prostomium epilobous, first

dorsal pore around 5/6. Male pore on 15 large, just above setal line b, facing ventrad. Female

pores small on 14 just above setae b. Clitellum annular, evenly developed, spermathecae and

Fig 2. Maximum likelihood tree based on the long dataset forBimastos,Dendrodrilus,Allolobophoridella,Healyella, Spermophorodrilus,
Dendrobaena, and other lumbricids. Bootstrap support values (if� 50) and Bayesian posterior probabilities (if� 0.90) are shown above and below the
branches, respectively. The four genera that were previously hypothesized to be related to Bimastos are colored. The annotated-and-shaded areas on the
right correspond to the two major clades characterized in Results. Specimens were marked with their five-digit HNHM catalog numbers.

https://doi.org/10.1371/journal.pone.0181504.g002
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tubercles lacking. Nephridial pores irregularly alternate between b and above d. Two pairs of

testes in 10, 11, and two pairs of seminal vesicles in 11, 12. Calciferous glands in segments 10–

12, with small diverticula in segment 10. Excretory system holoic, nephridial bladders sausage-

shaped throughout. Typhlosole bifid, the cross-section of longitudinal muscle layer is of pin-

nate type.

Type species: Eophila antiqua Černosvitov, 1938 (= Spermophorodrilus albanianus Bouché,

1975)

Distribution. From the Balkan Peninsula to North Anatolia.

Remarks. Omodeo & Rota [14] noted that the species of Spermophorodrilus differed from

the type species of the genus Bimastos, B. palustris, “in many relevant points” (p. 169). However,

they did not discuss it in details, and the only difference mentioned is the one segment longer

Fig 3. Setal ratios in the genusBimastos. Letters ab, bc, cd refers to setal intervals.

https://doi.org/10.1371/journal.pone.0181504.g003
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gizzard (17−19 vs. 17−18, respectively). Perhaps the presence of red pigment in Bimastos was a

key point, but in the Omodeo & Rota’s diagnosis of Spermophorodrilus, they stated: “epidermis

devoid or almost devoid of pigment”, a statement that can reasonably be applied also to B. palus-

tris, as the live specimen of B. palustris is almost devoid of pigment throughout its body except

for the head dorsad.

GenusHealyella Omodeo & Rota, 1989. Helayella Omodeo & Rota, 1989 [14]: 172; 1991

[45]: 173; Csuzdi et al. 2006 [46]: 20; Blakemore 2008b [43]: 537; Pavlı́ček et al. 2010 [47]: 1999.
Bimastos: Zicsi & Michalis 1993 [15]: 303 (partim); Csuzdi & Pavlı́ček 1999 [48]: 470; 2002

[49]: 109.

Diagnosis. Setae moderately paired or distant, pigmentation brownish or purple at least

dorsad on the several first segments. Prostomium epilobous, first dorsal pore around 5/6. Male

pore on 15 large, facing ventrad between ab or just above setal line b. Female pores small on 14

between setae ab or just above b. Clitellum annular, evenly developed, spermathecae and

tubercles lacking. Nephridial pores irregularly alternate between b and above d. Two pairs of

testes in 10, 11, and two pairs of seminal vesicles in 11, 12. Calciferous glands in segments 10

−12, with moderate diverticula in segment 10 (Fig 4). Excretory system holoic, nephridial

Fig 4. Calciferoous glands in the generaBimastos andHealyella (longitudinal sections). A = Bimastos schwerti sp.
nov., B =Healyella syriaca (Rosa, 1893), C = Bimastos eiseni (Levinsen, 1884), C = Bimastos rubidus (Savign, 1826).
Numbers 10 and 11 refer to segments. Arrows point to diverticula.

https://doi.org/10.1371/journal.pone.0181504.g004
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bladders sausage-shaped throughout. Typhlosole lamellar or bifid, cross-section of longitudi-

nal muscle layer is of pinnate type.

Type species: Allolobophora syriaca Rosa, 1893

Distribution. FromWest Anatolia to the Levant.

Remarks. Similar to Spermophorodrilus, Omodeo and Rota’s concepts ofHealyella and

Bimastos suffer overlapping diagnoses. The only distinguishing characters ofHealyella were

the position of the genital pores between setal line a and b and the calciferous glands devoid of

lateral diverticles [14]. However, the description ofHealyella naja [14] (p. 176) has male pores

above b and the description ofHealyella schweigeri [13] (described as Bimastos schweigeri) has

calciferous diverticula in 10, make the defining characters of Bimastos andHealyella sensu

Omodeo & Rota [14] overlapping. Description of the nephridial bladders, which is the defini-

tive difference [5] between Bimastos and the two Eurasian genera, was entirely missing in

Omodeo & Rota [14, 45].

Genus BimastosMoore, 1893. Bimastos Moore, 1893 [41]: 333; Moore 1895 [50]: 473;

Gates 1942 [51]: 103 (partim); Gates 1969 [5]: 306; Gates 1975 [52]: 4; Reynolds 1977 [53]: 61;

Zicsi 1981 [13] (partim); Gates 1982 [54]: 27; Fender 1985 [55]: 111; Omodeo & Rota 1989

[14]: 169; Mrsic 1991 [17]: 657; Zicsi & Michalis 1993 [15]: 303 (partim); McKey-Fender,

Fender & Marshall 1994 [56]: 1338; Qiu & Bouché 1998a [18]: 211 (partim); Blakemore 2008b

[43]: 536.

Bimastus: Stephenson 1930 [57]: 930; Omodeo 1956 [58]: 178 (partim).

Allolobophora (Bimastus): Michaelsen 1899 [59]: 13.

Helodrilus (Bimastus): Michaelsen 1900 [10]: 501 (partim); Smith 1917 [60]: 169.

Eisenia: Pop 1941 [11]: 509 (partim); Zicsi 1982 [61]: 443 (partim).

Allolobophora (Allolobophoridella) Mršić, 1990 [38]: 49. syn. nov.
Allolobophoridella: Mrsic 1991 [17]: 252; Csuzdi & Zicsi 2003 [3]: 69; Blakemore 2008b [43]:

500.

Dendrobaena (Dendrodrilus)Omodeo, 1956 [58]: 175. syn. nov.

Dendrodrilus: Perel 1976 [12]: 834; 1979 [62]: 200; Mršić 1991 [17]: 260, Csuzdi & Zicsi

2003 [3]: 131; Blakemore 2008b [43]: 562.

Diagnosis. Setae strictly or moderately paired, pigmentation red-violet at least dorsad on

the several first segments. Prostomium epi- or tanylobous, first dorsal pore around 5/6. Male

pore on 15 large, just above setal line b. Female pores small on 14 just above setae b. Clitellum

annular or saddle-shaped. Spermathecae usually lacking, if present, frequently empty in 9/10-

10/11 and open in setal line c. Tubercles usually lacking, if present, indistinct bands on the ven-

tral edge of the clitellum. Nephridial pores irregularly alternate between b and above d. Two

pairs of testes in 10, 11, and two pairs of seminal vesicles in 11, 12 (sometimes lacking or three

pairs in 9, 10, 11). Calciferous glands in segments 10–12, 13 with variable sized diverticula in

segment 10 (Fig 4). Excretory system holoic, nephridial bladders in the anterior part of the

body U-shaped with proclinate ental limb, that might partly merge with the ectal limb toward

the hind end of the body. Typhlosole lamellar or bifid, the cross-section of longitudinal muscle

layer is of pinnate or fasciculated type.

Type species: Bimastos palustrisMoore, 1895.

Distribution. Western Canada (Vancouver Island) and eastern USA. Several species are

peregrine, and introduced all over the temperate regions.

Remarks. This extended definition of Bimastos includes Lumbricus eiseni Levinsen, 1884

(placed previously in Allolobophoridella by Mršić [17]) and also Dendrodrilus rubidus (Savigny,

1826). It keeps apart, however, the species ofHealyella and Spermophorodrilus differing in the

structure of the nephridial bladders, which are simple, sausage-shaped throughout the body in

Healyella and Spermophorodrilus and U-shaped in at least the first several segments in Bimastos
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(Table 2). Although it is clear that Spermophorodrilus, Healyellla and Bimastos are distinct

clades based on Domı́nguez et al. [21] as well as our study, and that there are numerous taxo-

nomic descriptions in the literature [13–15], we have summarized the differences among these

clades in Table 2 in order to resolve the long standing taxonomic confusions and help both tax-

onomists and ecologists better distinguishing them. In the genus Bimastos the phoral insemi-

nation prevails. It means that the spermathecae disappeared and the sperm of the copulating

partner is stored in spermatophores [63, 64]. This type of insemination is regarded as a plesio-

morphy in annelids; however in Lumbricidae it is surely a secondary reversion from thecal (by

means of spermathecae) insemination [63]. Spermatophores can be of variable shape from the

falciform in B. palustris to the flattened spermatophores found in B. schwerti sp. n. and usually

they are attached to the body in the region of either the male pores or the clitellum. As they are

present only for a short period after copulation, the species without spermathecae were fre-

quently regarded as parthenogenetic [65, 66].

Bimastos eiseni (Levinsen, 1884) comb. nov. Figs 3 and 5

Lumbricus eiseni Levinsen, 1884 [67]: 241.

Allolobophora eiseni: Rosa 1893 [39]: 462; Easton 1983 [68]: 475; Zicsi 1991 [22]: 182.

Allolobophora (Bimastus) eiseni: Michaelsen 1900 [10]: 503.

Allolobophora rubra Bretscher, 1900 [69]: 454.

Dendrobaena merciensis Friend, 1911 [70]: 192.

Bimastos eiseni gracilis Friend, 1911 [70]: 368.

Bimastus oltenicus Pop, 1938 [71]: 146.

Eisenia parva f. typica (part.): Pop 1949 [72]: 89.

Bimastus eiseni: Omodeo 1956 [58]: 178.

Eisenia parva: Zicsi 1959 [73]: 182.

Eisenia eiseni: Zicsi 1968 [74]: 132; 1982: 443.

Allolobophora (Allolobophora) eiseni: Perel 1979 [62]: 187.

Bimastos eiseni: Fender 1985 [55]: 110; Qiu & Bouché 1998a [18]: 197.

Allolobophoridella eiseni: Mršić, 1991 [17]: 255; Reynolds 1995 [75]: 10; Csuzdi & Zicsi 2003

[3]: 69; 1999 [2]: 999; Blakemore 2008b [43]: 499.

Diagnosis. Body length 30–85 mm, diameter 2–4 mm. Color dark red-violet dorsally and

paler ventrally. Prostomium tanylobous, first dorsal pore in 5/6. Setae strictly paired (Fig 3),

glandular tumescences usually on 16 ab. Clitellum 24, 25–32 saddle-shaped. Male pore on 15,

equatorial just above setae b, on a porophore bulging somewhat into the neighbouring seg-

ments. Female pore on 14 small, dorsad of b. Nephropores irregularly alternate between b and

Table 2. Morphological comparison among the generaBimastos, Spermophorodrilus andHealyella. Characters distinguishing one genus from the
other two are in boldface.

Character BimastosMoore, 1993 Spermohorodrilus Bouché, 1975 HealyellaOmodeo & Rota, 1989

Prostomium Epi- or tanylobous Epilobous Epilobous

Clitellum Annular or saddle-shaped Annular Annular

Tubercles Usually absent Absent Absent

Genital pores Above b Within ab or above b Within ab or above b

Setae Moderately or closely paired Closely paired Moderately paired or distant

Pigmentation Red-violet Absent Red-violet

Spermathecae Usually absent Absent Absent

Nephridial bladders Proclinate U-shaped Sausage-shaped Sausage-shaped

Longitudinal muscle Pinnate or fasciculated Pinnate Pinnate

Calciferous gland diverticula in 10 Variable Small Moderate

https://doi.org/10.1371/journal.pone.0181504.t002
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above d. No septa notably thickened. Calciferous glands in segments 10–12 with large divertic-

ula in segments 10, 11 (Fig 4). Excretory system holoic. Nephridial bladders U-shaped

throughout, with forward-bent ental limbs. Typhlosole well developed, lamellar. The cross-sec-

tion of longitudinal muscle layer is of fasciculated type (Fig 5).

Remarks. With no knowledge on the nepheridial system of B. palustris and the majority of

North American Bimastos, Mršić [17] kept his Allolobophoridella separated from Bimastos, but

noted that if the nephridial bladders of the North American genus Bimastos is “oriented in the

same way as in eiseni. . .. . .the genus Allolobophoridella will be just a synonym of Bimastos”

[17]. It turns out Mršić was correct on this point. Pop [11] erroneously synonymised B. eiseni

with B. parvus, causing a long lasting confusion. Perel [62] demonstrated that the two species

names should not be in synonymy because eiseni has fasciculated type of musculature, whereas

parvus has pinnate type of musculature. Furthermore, the prostomium of B. eiseni is tanylo-

bous and not epilobous as in case of B. parvus. Our molecular results completely support this

view.

Bimastos gieseleri (Ude, 1895). Figs 3 and 6

Allolobophora gieseleriUde, 1895 [76]: 127.

Allolobophora (Bimastus) gieseleri: Michaelsen 1899 [59]: 16.

Helodrilus (Bimastus) gieseleri: Michaelsen 1900 [10]: 502.

Helodrilus (Bimastus) gieseleri forma typica: Smith 1917 [60]: 171.

Bimastos giessleri: Gates 1942 [51]: 103; 1982 [54]: 27; Reynolds andWetzel 2004 [77]: 83;

Blakemore 2008b [43]: 538.

Fig 5. Longitudinal musculature ofB. eiseni (cross section).

https://doi.org/10.1371/journal.pone.0181504.g005
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Bimastos giessleri gieseleri: Blakemore 2008a [78]: 5.

Bimastos tumidus: Gates 1956 [65]: 1 (partim); 1969 [5]: 306 (partim); Zicsi 1981 [13]: 433

(partim); Schwert 1990 [79]: 353 (partim).

Material examined. USNM 25848, 11 ex. Florida, USA. 03. 1896. Leg. A. Hempel.

Diagnosis. Body length 65–100 mm, diameter 2–2.5 mm. Color slightly red dorsally and

paler ventrally. Prostomium epilobous, first dorsal pore in 5/6. Setae strictly paired (Fig 3),

glandular tumescences lacking. Clitellum almost annular but ventrally less developed, on½21,

22–29,½30. Male pore on 15, equatorial just above setae b, on a porophore bulging somewhat

into the neighbouring segments (Fig 6). Female pore on 14 small, dorsad of b. Nephropores

irregularly alternate between b and above d. Septa 6/7, 10/11–14/15 slightly, 7/8–9/10 moder-

ately thickened. Calciferous glands in segments 10–12 with diverticula in segment 10. Excre-

tory system holoic. Nephridial bladders U-shaped throughout, with forward-bent ental limbs.

Typhlosole well developed, bifid. There is no data on the structure of the longitudinal

musculature.

Remarks. B. gieseleri is similar to B. tumidus, but differs from it in the presence of thickened

septa, the bifid type of the typhlosole and by its larger size. Therefore, in line with other authors

(e.g. [43, 78, 79]) we regard it as a valid species.

Bimastos heimburgeri (Smith, 1928). Figs 3 and 7

Helodrilus heimburgeri Smith, 1928 [80]: 353.

Bimastos heimburgeri: Gates 1942 [51]: 103; Gates 1969 [5]: 306; Reynolds et al. 1974 [81]:

25; Zicsi 1981 [13]: 433; Schwert 1990 [79]: 353; Reynolds andWetzel 2004 [77]: 83; Blakemore

2008a [78]: 5, 2008b [43]: 538.

Material examined. USNM 123883, 15 ex. 4 mi towards Durham, Orange Co., N. Carolina,

USA. 29. 02. 1972. Leg. R. Crawford and P. Jinright. USNM 123879, 15 ex. William B. Umstead

Fig 6. B. giesleri, ventral view of the clitellar region.mp =male pore, numbers refer to segment numbers.

https://doi.org/10.1371/journal.pone.0181504.g006
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State Park, Wake County, North Carolina, USA. 11. 01. 1972. Leg. R. Crawford and P. Jinright.

New Records: HNHM/14186, 8 ex. On the bank of a streamlet near to the Visitor Center, Jug

Bay Wetlands Sanctuary, Anne Arundel Co. MD, USA. 27. 04. 2001. Leg. Cs. Csuzdi and K.

Szlávecz. HNHM/14906, 1 ex. Louisville, KY, USA. 22.06.2004. Leg. K. Szlávecz. HNHM/

16498, 4 ex. Gunpowder Falls, MD, USA. 19.05.2012. Leg. Cs. Csuzdi and K. Szlávecz.

HNHM/16502, 1 ex. Smithsonian Environmental Research Center, Edgewater, MD, USA.

18.05.2012. Leg. Cs. Csuzdi and Ch-H. Chang.

Diagnosis. Body length 40–70 mm, diameter 3–4 mm. Color dark red dorsally and paler

ventrally. Prostomium epilobous, first dorsal pore in 5/6. Setae closely paired (Fig 3), glandular

tumescences lacking. Clitellum almost annular but ventrally less developed, extends on seg-

ments½24, 25–32,½33. Male pore on 15, equatorial, just above setae b, on an oval porophore

intruding into the neighbouring segments. Female pore on 14 small, slightly dorsad of b.

Nephropores irregularly alternate between b and above d. Flat spermatophores present in 20/

21, 23, 24 at the setae ab (Fig 7). No notably thickened septa. Calciferous glands in segments

10–12 with large diverticula in segment 10. Excretory system holoic. Nephridial bladders U-

shaped throughout, with forward-bent ental limbs. Typhlosole bifid. There is no data on the

structure of the longitudinal musculature.

Remarks. This species was thought to be parthenogenetic [66, 81]; however, the presence of

spermatophores in the specimens examined indicates biparental reproduction with phoral

insemination [63, 64].

Bimastos lawrenceae Fender, 1994. Bimastos lawranceae Fender, 1994 in McKey-Fender

et al. 1994 [56]: 1338; Reynolds &Wetzel 2004 [77]: 83; Marshall & Fender 2007 [82]: 34; Bla-

kemore 2008 [78]: 5.

Fig 7. B. heimburgeri, ventral view of the clitellar region.mp =male pore, numbers refer to segment numbers, arrows point to the spermatophores.

https://doi.org/10.1371/journal.pone.0181504.g007
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Diagnosis. Body length and diameter unknown. Color reddish dorsally and paler ventrally.

Prostomium epilobous, first dorsal pore in 5/6. Setae closely paired, glandular tumescences

lacking. Clitellum saddle-shaped on segments 25–34, 35. Male pore unknown, most likely on

15. Female pore unknown. Nephropores irregularly alternate between b and above d. Septa 12/

13–14/15, moderately thickened. Calciferous glands in segments 10–12 with diverticula in seg-

ment 10. Excretory system holoic. Nephridial bladders U-shaped throughout, with forward-

bent ental limbs. Typhlosole bifid. There is no data on the structure of the longitudinal

musculature.

Remarks. Unfortunately, the original description is incomplete. Most importantly, the

descriptions of the male pore and biometry are missing. Fender [56] compared B. lawranceae

with B. zeteki and wrote that the new species is slightly smaller than B. zeteki, which is the larg-

est species in the genus with 100–135 mm by 5-6 mmmeasures. Therefore B. lawranceae

might be around 100 mm long.

Bimastos longicinctus (Smith and Gittins 1915). Figs 3 and 8

Helodrilus (Bimastus) longicinctus Smith and Gittins, 1915 [83]: 548; Smith 1917 [60]: 174.

Bimastos longicinctus: Gates 1942 [51]: 103; 1969 [5]: 306; Reynolds et al. 1974 [81]: 26;

Gates 1982 [54]: 27; Schwert 1990 [79]: 353; Reynolds andWetzel 2004 [77]: 83; Blakemore

2008a [78]: 5.

Bimastos parvus: Gates 1972 [9]: 87, Blakemore 2008b [43]: 538.

Material examined. USNM 24599Holotype. Urbana Illinois. 05. 04. 1911. Leg. F. Smith.

USNM 25871 Paratypes 12 ex. Urbana, Illinois, USA. 28. 04. 1910. Leg. F. Smith. USNM

47867, 50 ex. Rail Road & Highway Bridge, SW Of Sharon, Route 211, York County, South

Carolina, USA. 13. 11. 1962. Leg. W. Murchie. New record: HNHM/17158, 1 ex. Gameland

242, Siddonsburg, PA, USA. 23.04.2013. Leg. Ch-H. Chang, K. Szlávecz and M. Bernard.

Diagnosis. Body length 60–70 mm, diameter 2–3 mm. Color reddish dorsally and paler ven-

trally. Prostomium epilobous, first dorsal pore in 5/6. Setae closely paired (Fig 3), glandular

tumescences lacking. Clitellum saddle-shaped, ventrally extends to setae a on segments½22,

23–32,½33. Male pore on 15, equatorial just above setae b, surrounded by prominent glandu-

lar crescents bulging slightly into the neighbouring segments. Female pore on 14 small, dorsad

of b. Nephropores irregularly alternate between b and above d. Flat spermatophores are scat-

tered ventrally on the clitellar region (Fig 8). Septa on 6/7 slightly thickened, on 7/8–11/12

strongly thickened. Calciferous glands in segments 10–12 with moderate diverticula in

Fig 8. B. longicinctus, ventral view of the clitellar region.mp =male pore, numbers refer to segment numbers, arrow point to a spermatophore.

https://doi.org/10.1371/journal.pone.0181504.g008
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segment 10. Excretory system holoic. Nephridial bladders U-shaped throughout, with for-

ward-bent ental limbs. Typhlosole bifid with manicate limbs. There is no data on the structure

of the longitudinal musculature.

Remarks. Based upon the clitellar position, this species is very close to B. heimburgeri, but

differs from it by its paler color, and the presence of thickened septa. The structure of the clitel-

lum is also somewhat different, being almost circular in B. heimburgeri and ventrally incom-

plete in B. longicinctus. Some authors consider B. longicinctus to be a synonym of B. parvus (cf.

[9, 43]). However, the presence of thickened septa, larger size and longer clitellum clearly sepa-

rate the two species and, as demonstrated in the present study, they are also genetically

distinguishable.

Bimastos palustrisMoore, 1895. Figs 3, 9 and 10

Bimastos sp. Moore, 1893 [41]: 333.

Bimastos palustrisMoore, 1895 [50]: 473; Gates 1942 [51]:103; 1956 [65]: 9; 1969 [5]: 306;

Reynolds et al. 1974 [5]: 27; Zicsi 1981 [13]: 433; Gates 1982 [54]: 27; Schwert 1990 [79]: 353;

Reynolds andWetzel 2004 [77]: 83.

Allolobophora (Bimastus) palustris: Michaelsen 1899 [59]: 16.

Helodrilus (Bimastus) palustris: Michaelsen 1900 [10]: 502; Smith 1917 [60]: 169.

Bimastus palustris: Omodeo 1956 [58]: 178; Zicsi 1981 [13]: 433.

Eisenia palustris: Zicsi 1982 [61]: 443.

Material examined. New Records: HNHM/13039, 2 ex. Smithsonian Ecological Research

Centre, Edgewater, Anne Arundel Co. MD, USA. 18. 04. 1999. Leg. K. Szlávecz, HNHM/

14183, 18 ex. On the bank of a streamlet near to the Visitor Center, Jug Bay Wetlands Sanctu-

ary, Anne Arundel Co. MD, USA. 27. 04. 2001. Leg. Cs. Csuzdi and K. Szlávecz, HNHM/

14189, 2 ex. Railroad trail, Jug Bay Wetlands Sanctuary, Anne Arundel Co. MD, USA. 27. 04.

2001. Leg. Cs. Csuzdi and K. Szlávecz, HNHM/14215, 5 ex. On a stream bank, Oregon Ridge

Fig 9. B. palustris, A = ventrolateral view of the clitellar region, Spt = spermatophore, Mp = male pore. B = Enlarged view of
the male pore with falciform spermathophores.

https://doi.org/10.1371/journal.pone.0181504.g009
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Nature Park, Baltimore County, MD, USA. 26. 04. 2001. Leg. Cs. Csuzdi and K. Szlávecz,

HNHM/14224, 4 ex., 14227, 3 ex., Smithsonian Environmental Research Center, Anne Arun-

del Co. MD, USA. 28. 04. 2001. Leg. Cs. Csuzdi and K. Szlávecz.

Diagnosis. Body length 18–30 mm, diameter 1.5–2.5 mm. Color pale with reddish hints on

dorsum. Prostomium epilobous, first dorsal pore in 5/6. Setae moderately paired (Fig 3), glan-

dular tumescences lacking. Clitellum annular extends on segments 23–28. Male pore on 15,

postsetal and ventral, just above setae b, surrounded by well-developed glandular crescents

(Fig 9). Female pore on 14 small, slightly dorsad of b. Nephropores irregularly alternate

between b and above d. Septa 7/8–8/9 slightly thickened. Crop in 15–16, gizzards small in 17–

18. Calciferous glands in segments 10–12 with moderate diverticula in segment 10. Sperm

duct open through a muscular copulatory chamber. Excretory system holoic. Nephridial blad-

ders proclinate U-shaped throughout. Typhlosole small, lamellar, the cross-section of longitu-

dinal muscle layer is of pinnate type (Fig 10).

Remarks. The species, contrary to the widely accepted view [66], does not seem to be par-

thenogenetic but biparental with phoral insemination. Almost all specimens collected in April

bore several falciform spermatophores attached around the male pore (Fig 9).

Bimastos parvus (Eisen, 1874). Allolobophora parva Eisen, 1874 [84]: 46.

Allolobophora beddardi Michaelsen, 1894 [85]: 182.

Allolobophora (Bimastus) parva: Michaelsen 1899 [59]: 14.

Allolobophora (Bimastus) beddardi: Michaelsen 1899 [59]: 13.

Helodrilus (Bimastus) parvus: Michaelsen 1900 [10]: 502; Smith 1917 [60]: 173.

Helodrilus (Bimastus) beddardi: Michaelsen 1900 [10]: 502 (partim); Smith 1917 [60]: 173.

Bimastos beddardi: Gates 1942 [51]: 103; 1969 [5]: 306; 1982 [54]: 27; Reynolds et al. 1974

[81]: 24; Schwert 1990 [79]: 353; Reynolds andWetzel 2004 [77]: 83.

Bimastos parvus: Gates 1942 [51]: 103; 1956 [65]: 6; 1969 [5]: 306; Reynolds et al. 1974 [66]:

27; Reynolds 1977 [53]: 61; Gates 1982 [54]: 27; Schwert 1990 [79]: 353; Qiu & Bouché 1998a

[18]: 197; Reynolds andWetzel 2004 [77]: 83; Blakemore 2008a [78]: 5; 2008b [43]: 537.

Fig 10. Longitudinal musculature ofB. palustris (cross section).

https://doi.org/10.1371/journal.pone.0181504.g010
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Eisenia parva: Bouché 1972 [86]: 386; Zicsi 1982 [61]: 436.

Allolobophoridella parva: Mršić, 1991 [17]: 257.
Non Bimastos beddardi sophiae Mercandal de Barrio & Barrio, 1988 [87]: 2 [= Aporrectodea

rosea (Savigny, 1826) syn. nov.]

Material examined. HNHM/14301, 2 ex. Ein Cedem, Mount Carmel, Israel. 10.11.2001.

Leg. T. Pavlı́ček. HNHM/15170, 1 ex. Kibutz Yagur, garden Center, Israel. 11.08.2005. Leg. T.

Pavlı́ček. New Records: HNHM/14886, 4 ex. North Suna, Jordan. 13.03.2005. Leg. T. Pavlı́ček.
HNHM/16067, 2 ex. South Tirol, Austria. 26.10.2011. Leg. T. Peham. HNHM/16464, 1 ex. Rio

Cévada, Barcelos, Portugal. 10.09.2012. Leg. T. Pavlı́ček.
Diagnosis. Body length 20–35 mm, diameter 2–2.5 mm. Color reddish-brown dorsally and

paler ventrally. Prostomium epilobous, first dorsal pore in 5/6. Setae closely paired (Fig 3),

genital papillae usually lacking. Clitellum saddle-shaped, 24, 25–30, 31, 1/n32. Male pore on

15, equatorial just above setae b, on a small porophore confined to its own segment. Female

pore on 14 small, dorsad of b. Nephropores irregularly alternate between b and above d. No

septa notably thickened. Calciferous glands in segments 10–12 with small diverticula in seg-

ment 10. Excretory system holoic. Nephridial bladders U-shaped throughout, with forward-

bent ental limbs. Typhlosole well developed lamelliform. The cross-section of longitudinal

muscle layer is of pinnate type.

Remarks. B. parvuswas introduced all over the world in the temperate regions. The species

was placed in synonymy with other Bimastos species multiple times resulting in further confu-

sion within the genus. In Europe, it was frequently lumped together with Bimastos eiseni

(Levinsen, 1884) because of false synonymyzation by Pop [11, 22, 74]. These European data

probably refer to the latter species, because they report on clitellum extending 32, 33. Gates [9]

put B. longicinctus in synonymy of B. parvus also extending erroneously the clitellar position to

32, 33. Bimastos beddardi (Michaelsen, 1894) is usually placed in synonymy of B. parvus [9, 43,

55, 61, 65]. Because the somewhat longer clitellum (24, 25–31, 1/n32) fits well into the range

given for B. parvus here we support this placement. Mercandal de Barrio & Barrio [87] sug-

gested a new subspecies, Bimastos beddardi sophiae. According to the original description and

the accompanied figure, this name refers to a parthenogenetic morph of the widely distributed

peregrine Aporrectodea rosea (Savigny, 1826).

Bimastos rubidus (Savigny, 1826) comb. nov. Figs 3, 4D and 11

Enterion rubidum Savigny, 1826 [88]: 182.

Allolobophora tenuis Eisen, 1874 [84]: 44.

Allolobophora subrubicunda Eisen, 1873 [89]: 51.

Dendrobaena (Dendrodrilus) rubida: Omodeo 1956 [58]: 175.

Dendrobaena (Dendrodrilus) rubida f. tenuis: Omodeo 1956 [58]: 175.

Dendrobaena (Dendrodrilus) rubida f. subrubicunda: Omodeo 1956 [58]: 175.

Dendrodrilus rubidus species complex: Blakemore 2008b [43]: 561 (for complete

synonymy).

Diagnosis. Body length 20–90 mm, diameter 2–4 mm. Color red-violet, darker dorsally.

Prostomium epilobous, first dorsal pore in 5/6. Setae moderately paired, closer ventrally and

wider laterally (Fig 3) Glandular tumescences usually on 9, 16, 22–25 ab. Clitellum saddle-

shaped, 25, 26–31, 1/n32. Tubercles when present on 29–30 or 28–30. Male pore on 15, equa-

torial just above setae b, on a small porophore confined to its own segment. Female pore on 14

small, dorsad of b. Nephropores irregularly alternate between b and above d. Septa 5/6–10/11

slightly thickened. Calciferous glands in segments 10–12 with large diverticula in segment 10

(Fig 4D). Excretory system holoic. Nephridial bladders U-shaped throughout, with forward-

bent ental limbs. Typhlosole well developed lamelliform. The cross-section of longitudinal

muscle layer is of pinnate type with slight intermediate feature (Fig 11).
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Remarks. Bimastos rubidus is a morphologically variable peregrine species with implied

parthenogenesis [3]. The tenuis morph completely lacks tubercles as well as spermathecae. In

the rubidus form the spermathecae are sometimes present but usually empty and indistinct

tubercles can be seen in 29–30. In the subrubicundus form, even filled spermathecae can be

seen and the tubercles are easily recognized on 28–30. These forms sometimes are regarded as

separate species [18], however, our molecular results did not corroborate this treatment.

Bimastos schwertiCsuzdi & Chang sp. nov. urn:lsid:zoobank.org:act:B6CE0640-0677-

4238-920D-822DAF451732.

Figs 3, 4A and 12–16

Etymology. This species is named in honor of the collector Donald P. Schwert.

Type material.Holotype,HNHM/16614, State Game-lands 7 km S of Siddonsburg, York

Co., PA, USA (40.10˚ N; 76.95˚ W). Leg. D. P. Schwert, 17. 04. 1977. Paratypes, HNHM/

16615, 10 ex., State Gamelands 7 km. S of Siddonsburg York Co. PA, USA. Leg. D. P. Schwert,

17. 04. 1977. HNHM/14184, 11 ex. Jug Bay Wetlands Sanctuary, Anne Arundel Co. MD, USA.

27. 04. 2001. Leg. Cs. Csuzdi and K. Szlávecz. HNHM/14188, 8 ex., Jug Bay Wetlands Sanctu-

ary, Anne Arundel Co. MD, USA. 27. 04. 2001. Leg. Cs. Csuzdi and K. Szlávecz. HNHM/

16500, 2 ex. Jug Bay Wetlands Sanctuary, Anne Arundel Co. MD, USA. 17.05.2012. Leg. Cs.

Csuzdi, K. Szlavecz and Ch-H. Chang. HNHM/16510, 3 ex. Jug Bay Wetlands Sanctuary,

Anne Arundel Co. MD, USA. 22.06.2007. Leg. K. Szlávecz. HNHM/16566, 3 ex. Jug Bay Wet-

lands Sanctuary, Anne Arundel Co. MD, USA. 19.04.2003. Leg. K. Szlávecz and S. Pitz.

HNHM/16567, 1 ex. Jug Bay Wetlands Sanctuary, Anne Arundel Co. MD, USA. 12.06.2003.

Fig 11. Longitudinal musculature ofB. rubidus (cross section).

https://doi.org/10.1371/journal.pone.0181504.g011
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Leg. K. Szlávecz. HNHM/17158, 1 ex. Gameland 242, Sidddonsburg, PA, USA. 23.04.2013.

Leg. Ch-H- Chang, K. Szlávecz and M. Bernard.

Diagnosis. Body length 25–62 mm, diameter 2–5 mm. Color red-violet (Fig 12). Prosto-

mium epilobous, first dorsal pore in 5/6. Setae moderately paired, glandular tumescences lack-

ing. Clitellum annular, on segments 21, 22, 23,½23–½30, 30. Male pores on 15, equatorial,

just above setae b, on extremely large porophores. Female pores on 14 small, slightly dorsad of

b. Nephropores irregularly alternate between b and above d. Septa 6/7–8/9 and 12/12–14/15

strengthened. Calciferous glands in segments 10–13 with small diverticula in segment 10 (Fig

4A). Excretory system holoic. Nephridial bladders with forward-bent ental limbs. Typhlosole

bifid, the cross-section of longitudinal muscle layer is of pinnate type.

Description. Length of the holotype 62 mm, diameter just after the clitellum 5 mm. Number

of segments 117. Paratypes 25–62 mm long and 2–5 mm wide. Number of segments 88–120.

Color preserved brown, alive dark red-violet (Fig 12). Prostomium epilobous 1/3 open. First

dorsal pore in the intersegmental furrow 5/6. Setae abmoderately cdmore closely paired (Fig

3). Setal formula at segment 35; aa:ab:bc:cd:dd = 5:2:5:1:10. Male pores prominent, facing ven-

trad on the segment 15 surrounded by huge genital crescents stretching on segments 14–17

(Fig 14). Above the male pore an oval glandular field can be seen similar in structure to the

tubercles sometimes with attached flat spermatophore (Fig 15). Nephridiopores irregularly

alternating between setal lines b and above d. Clitellum on 23–30 annular, evenly developed

also on the ventral side. In some specimens also 21 and 22 possess tumidity (Fig 13). Tubercula

pubertatis lacking. Genital papillae around setae 13–16 ab and cd. Genital setae S-shaped ca.

1.3 mm long and 0.03 mm wide. Septa 6/7–8/9 and 12/13–14/15 moderately, 9/10–10/11

slightly thickened. Testes and funnels paired in segments 10, 11 surrounded by perioesopha-

geal testis sacs. Two pairs of vesicles prominent in segments 11 and 12. Corresponding to the

genital crescents surrounding the male pores large glandular pads appear ventrally on 13–17

Fig 12. A live specimen ofB. schwerti sp. nov. collected from Siddonsburg, dorsal view.

https://doi.org/10.1371/journal.pone.0181504.g012
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and laterally on 13–16. Calciferous glands in 10–13 with small diverticula in 10. Paired hearts

appear in segments 7–11 and a pair of small extraoesophageal vessel in 12. Nephridial bladders

up to segment 7 hooked proclinate behind clitellum by fusing the two limbs becoming inverted

ocarina-shaped or sausage-shaped. Crop in segments 15–16 large saccular, gizzard in segments

17–18 moderately muscular. Typhlosole appears on segment 23 gradually increasing to large,

bifid organ filling up 1/4 of the intestine. Longitudinal muscle layer of pinnate type (Fig 16).

Remarks. Bimastos schwerti sp. nov. is the second species after B. palustris with completely

developed annular clitellum but differs from it in the position of the clitellum (21,22,23-30 vs.

23–28), the structure of the male pore, and setal arrangement. Between the two populations

(Siddonsburg, Pennsylvania and Jug Bay Wetlands Sanctuary, Lothian, Maryland) there are

some slight morphological differences. The specimens collected in Maryland are smaller (25–

42 mm) and neither of the specimens collected show tumidity in segment 21 or 22. At the

Pennsylvania site, B. schwerti co-occurs with B. longicinctus, Aporrectodea caliginosa, Ap. trape-

zoides, Ap. rosea, Lumbricus rubellus, Octolasion lacteum, and Eisenoides carolinensis (Chang &

Szlavecz, personal observation). In the Maryland site it co-occurs with B. heimburgeri, B. palus-

tris, B. rubidus, Ei. lonnbergi, L. rubellus, Eis. tetraedra, Diplocardia patuxentis, Di. texensis.

Bimastos tumidus (Eisen, 1874). Fig 3 and 17

Allolobophora tumida Eisen, 1874 [84]: 45.

Allolobophora (Bimastus) tumida: Michaelsen 1899 [59]: 16.

Allolobophora (Bimastus) gieseleri: Michaelsen 1899 [59]: 16.

Helodrilus (Bimastus) tumidus: Michaelsen 1900 [10]: 502; Smith 1917 [60]: 170.

Helodrilus (Bimastus) gieseleri var. hempeli Smith, 1915 [83]: 551; Smith 1917 [60]: 172.

Bimastos ducis Stephenson, 1933 [90]: 939; Gates 1942 [51]: 103.

Fig 13. B. schwerti sp. nov. (Siddonsburg holotype). A = dorsal view, B = ventral view, Mp = male pore.

https://doi.org/10.1371/journal.pone.0181504.g013
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Bimastos tumidus: Gates 1942 [51]: 103; 1956 [65]: 1 (partim); 1969 [5]: 306; Reynolds et al.

1974 [81]: 28; Gates 1982 [54]: 27; Zicsi 1981 [13]: 433; Schwert 1990 [79]: 353; Reynolds and

Wetzel 2004 [77]: 83; Blakemore 2008a [78]: 6; 2008b [43]: 542.

Material examined. USNM 1164Holotype. Mount Lebanon, California, USA. Leg. G. Eisen

(half of sagittally sectioned anterior end with clitellum). USNM 123878, 10 ex. Thomasville,

Grady County, Georgia, USA. 04. 02. 1972. Leg. E. Komarek. USNM 123889, 17 ex. Broaddus,

San Augustine County, Texas, USA. 08. 08. 1968. Leg. W. Baker, P. Jinright. Bimastos gieseleri

USNM 25848, 1 ex. Florida, USA. 03. 1896. Leg. A. Hempel. B. gieseleri hempeli USNM 19683,

20 ex. Guadalupe River, on the bottom, Victoria County, Texas, USA. 25. 04. 1914. Leg. J. D.

Mitchell. New records: HNHM/14193, 2 ex. Cross Keys, Baltimore, MD, USA. 24. 04.2001.

Leg. K. Szlávecz, Cs. Csuzdi. HNHM/14198, 1 ex. Stony Run stream bank, JHU Homewood

Campus, Baltimore, MD, USA. 30. 04.2001. Leg. K. Szlávecz, Cs. Csuzdi. HNHM/16503, 2 ex.

Fig 14. B. schwerti sp. nov (Jug Bay paratype). A = lateral view of the clitellar region, B = ventral view of the clitellar region,
Mp =male pore.

https://doi.org/10.1371/journal.pone.0181504.g014
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Smithsonian Environmental Research Center, Edgewater, MD, USA. 18. 05. 2012. Leg. K. Szla-

vecz, Cs. Csuzdi. HNHM/16497, 1 ex. Gunpowder Falls State Park, Baltimore Co. MD, USA.

19. 05. 2012. Leg. K. Szlávecz, Cs. Csuzdi.

Diagnosis. Body length 30–40 mm, diameter 2.5–3 mm. Color red-violet dorsally and paler

ventrally. Prostomium epilobous, first dorsal pore in 5/6. Setae moderately paired (Fig 3), glan-

dular tumescences lacking. Clitellum saddle-shaped,½21, 22–29,½30. Male pore on 15, equa-

torial just above setae b, on a small porophore confined to its own segment (Fig 17). Female

pore on 14 small, dorsad of b. Nephropores irregularly alternate between b and above d. No

septa notably thickened. Calciferous glands in segments 10–12 with small diverticula in seg-

ment 10. Excretory system holoic. Nephridial bladders U-shaped throughout, with forward-

bent ental limbs. Typhlosole well developed lamelliform. The cross-section of longitudinal

muscle layer is of pinnate type.

Remarks. Gates [65] put B. gieseleri (Ude, 1985) and B. gieseleri hempeli (Smith, 1915) in

synonymy of B. tumidus. This action was generally accepted in case of B. gieseleri hempeli [43,

54, 75, 81]. However most of the authors [54, 75, 78, 79, 81] keep B. gieseleri separate.

Bimastos welchi (Smith, 1917). Helodrilus welchi Smith, 1917 [60]: 174.

Bimastos welchi: Gates 1942 [51]: 103; 1969 [5]: 306; 1982 [54]: 27; Schwert 1990 [79]: 353;

Reynolds andWetzel 2004 [77]: 83; Blakemore 2008a [78]: 6; 2008b [43]: 537.

Material examined. USNM 16782Holotype. Manhattan, Kansas, USA. 02. 04. 1914. Leg. P.

S. Welch.

Fig 15. B. schwerti sp. nov. (Jug Bay paratype). Ventral view of the clitellar region with a flat spermatophore above the
male pore.

https://doi.org/10.1371/journal.pone.0181504.g015
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Diagnosis. Body length 135 mm, diameter 4.5 mm. Color pale throughout. Prostomium

epilobous, first dorsal pore in 5/6. Setae closely paired (Fig 3), glandular tumescences lacking.

Clitellum almost annular, ventrally less developed on½25–35. Male pore on 15, equatorial just

above setae b. Female pore on 14 small, dorsad of b. Nephropores irregularly alternate between

b and above d. Septa 6/7–7/8, 12/13 slightly, 8/9–11/12 strongly thickened. Calciferous glands

in segments 10–12 with small diverticula in segment 10. Excretory system holoic. Nephridial

bladders U-shaped throughout, with forward-bent ental limbs. There is no data on the struc-

ture of the longitudinal musculature.

Bimastos zeteki (Smith and Gittins, 1915). Helodrilus (Bimastus) zeteki Smith and Git-

tins, 1915 [83]: 545; Smith 1917 [60]: 175.

Bimastos zeteki: Gates 1942 [51]: 103; 1969 [5]: 306; Reynolds et al. 1974 [81]: 29; Zicsi 1981

[13]: 433; Gates 1982 [54]: 27; Schwert 1990 [79]: 353; Reynolds andWetzel 2004 [77]: 83; Bla-

kemore 2008a [78]: 6; 2008b [43]: 537.

Material examined. USNM 16782Holotype. Under rotten log, Urbana, Cottonwood

Woods, Crossing, Illinois, USA. 25. 03. 1911. Leg. J. Zetek. USNM 26214, 3 ex. Culver, Indiana,

USA. 19. 06. 1914. Leg. H.V. Heimburger. USNM 123897, 2 ex. Addison, W of town, Winston

Co., Alabama, USA. 17. 04. 1970. Leg. E. Komarek. USNM 123898, 2 ex. Double Springs, Win-

ston Co., Alabama, USA. 18. 04. 1970. Leg. E. Komarek.

Fig 16. Longitudinal musculature ofB.schwerti (cross section).

https://doi.org/10.1371/journal.pone.0181504.g016
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Diagnosis. Body length 100–140 mm, diameter 5–6 mm. Color dark red-violet anterio-

dorsally and paler ventrally. Prostomium epilobous, first dorsal pore in 5/6. Setae closely

paired (Fig 3), glandular tumescences lacking. Clitellum saddle-shaped with slight ventral

development on ½27, 27–37. Male pore on 15, equatorial just above setae b on a small por-

ophore confined to its own segment. Female pore on 14 small, dorsad of b. Nephropores

irregularly alternate between b and above d. Septa 7/8–12/13 slightly, 13/14–14/15 moder-

ately thickened. Calciferous glands in segments 10–12 with small diverticula in segment 10.

Excretory system holoic. Nephridial bladders U-shaped throughout, with forward-bent

ental limbs. Typhlosole large, lamelliform. There is no data on the structure of the longitu-

dinal musculature.

Key to the species of the genus BimastosMoore, 1893.

Fig 17. B. tumidus, lateral view of the clitellar region, mp =male pore, numbers refer to segments.

https://doi.org/10.1371/journal.pone.0181504.g017
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Discussion

Our phylogenetic analyses showed that the genus Bimastos as revised in this study is monophy-

letic and also includes the former Allolobophoridella eiseni and Dendrodrilus rubidus. Largely

in agreement with Gates [5], the revised Bimastos is characterized by shared character states

that include proclinate U-shaped nephridial bladders, the presence of calciferous diverticula in

10, and having porphyrin-based red pigments. Contrary to Zicsi [13] and Zicsi and Michalis

[15], the genera Spermophorodrilus andHealyella are not related to Bimastos. They form a

clade nested among several Dendrobaena species, and can be distinguished morphologically

from Bimastos by their sausage-shaped nephridial bladders.

Close relationships among Bimastos, Allolobophoridella eiseni and Dendrodrilus rubidus

have been consistently revealed in phylogenetic analyses based on DNA sequences [19–21].

With DNA data comparable in length (5715 bp) to that in Dominguez et al. [21] (5866 bp)

while having extensive sampling of Bimastos for the first time, our results corroborated previ-

ous molecular results and led to our taxonomic treatment that both Allolobophoridella eiseni

and Dendrodrilus rubidus indeed belong to the Nearctic genus Bimastos. Although B. eiseni

and B. rubidus have been exclusively referred to as “European” and considered non-native in

North America [9, 55, 91], there has been no genetic evidence suggesting that the two species

are truly of European origin. Based on our phylogenetic analyses and the fact that the two spe-

cies are also reported in North America, of which one is widespread [3, 43, 78, 91], we herein

propose that B. eiseni and B. rubidus, like B. parvus, are of North American origin and thus

non-native in Europe. The discovery of an earthworm cocoon attributed to B. rubidus from

lake sediment dated over 7,000 years old in Ontario, Canada [92] provides additional proof

that the species was present thousands of years before Europeans had reached the continent.

1. Clitellum annular evenly developed also on the ventral side 2

Clitellum saddle shaped, ventrally always less developed 3

2. Male pore postsetal, clitellum on 23-28 B. palustrisMoore, 1895

Male pore setal on a huge porophore, clitellum ends on 30 B. schwerti sp. nov.

3. Clitellum ends on or after segment 34 4

Clitellum ends on or before segment 33 6

4. Clitellum on 24, 25-34, 35 5

Clitellum on 27-37 B. zeteki (Smith & Gittins, 1915)

5. Septa 8/9-11/12 thickened, setal ratio ab:cd = 1.5:1 B.welchi (Smith, 1917)

Septa 12/13-14/15 thickened, setal ratio ab:cd = 1:1 B. lawrenceae Fender, 1994

6. Clitellum ends before segment 31 7

Clitellum ends on or after 31 9

7. Septa 7/8-9/10 thickened, typhlosole bifid B. gieseleri (Ude, 1895)

All septa membranous, Typhlosole lamellar 8

8. Clitellum on 24 (25) -30, color dark brown-red B. parvus (Eisen, 1874)

Clitellum on½21, 22-29,½30, color light red-violet B. tumidus (Eisen, 1874)

9. Septa strongly 7/8-11/12 thickened, clitellum on 22, 23-32,
33

B. longicinctus (Smith & Gittins,
1915)

All septa membranous or just slightly thickened 10

10. Prostomium tanylobic B. eiseni (Levinsen, 1884)

Prostomium epilobic 11

11. Clitellum on½24, 25-32,½33 B. heimburgeri (Smith, 1928)

Clitellum on 26-31,½23 B. rubidus (Savigny, 1826)

https://doi.org/10.1371/journal.pone.0181504.t003
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Bimastos as herein re-defined is the sister group of Eisenoides Gates, 1969, the other North

American genus in the family Lumbricidae, confirming the ‘Bimastos-Eisenoides clade that

also contains Allolobophoridella and Dendrodrilus revealed in Dominguez et al. [21]. The two

genera, therefore, form a clade that comprises exclusively North American Lumbricidae, sug-

gesting for the first time that North American lumbricids are indeed monophyletic. This rela-

tionship is consistent with that presented in Dominguez et al. [21], and is supported by the

proclinate U-shaped nephridial bladders shared by both genera.

Eisenia is the sister group of the North American clade both in our extensive dataset and in

Dominguez et al. [21]. With the exception of a few Central European species (E. lucens, E. spe-

laea and E. balatonica), Eisenia is primarily a temperate Asian genus originally from Central

and Northeast Asia (the Turanian-Far Eastern earthworm domain [93]), whereas the majority

of the endemic North American lumbricids are distributed in eastern US [94]. This geographic

distribution, an East Palearctic-East Nearctic disjunction, presents a biogeographic challenge

that requires proper explanation.

Molecular clock estimation in Dominguez et al. [21] suggested that the North American

Bimastos-Eisenoides clade diverged from the Eurasian Eisenia in the Late Cretaceous, about

72.6 (69.2–76.1) mya, providing some insights into several possible biogeographic scenarios.

Three land bridges between Eurasia and North America during the Late Cretaceous (100–66

mya) and Paleocene (66–56 mya) have been proposed to explain distributions of fauna and

flora across the two continents: Beringia (connecting Siberia and Alaska), the De Geer route

(connecting Northern Europe and Northeastern North America), and the Thulean land bridge

(connecting Northwestern Europe and Northeasten North America). When the divergence

between closely related taxa is dated back to the Late Cretaceous-Paleocene, the majority of

present-day East Palearctic-East Nearctic disjunctions in animals have been attributed to the

North Atlantic land bridges (i.e. the De Geer and/or Thulean routes) [95], while those involved

Beringia took place more recently (e.g. [96–98]). However, recent evidence has shown that the

Thulean land bridge existed only around 57 and 56 mya [99], which is later than the estimated

time of cladogenesis between Eisenia and the North America clade. Meanwhile, Beringia and

the De Geer route existed earlier than the Thulean land bridge (Beringia: 100–75 mya, 65.5

mya, 58 mya; De Geer route: 71–63 mya; [95, 99]), providing possible paths for faunal

exchange. A viable hypothesis would thus require ancestral range expansion from Eurasia to

North America through either Beringia or the De Geer route followed by extinction in western

North America or Europe, respectively. The current native distribution of most Eisenia (Cen-

tral Asia and Northeast Asia,) and the existence of Beringia during Late Cretaceous appear to

favor the Beringia hypothesis, but dispersal through the De Geer route is logically equally likely

and cannot be ruled out. To test these hypotheses requires more extensive sampling of Eisenia

covering the native range of the genus and rigorous ancestral range reconstruction using likeli-

hood-based evolution models.

The inferred phylogeny also suggested that Spermophorodrilus andHealyella form a weakly

supported clade. As only three out of the 13 described species from the two genera were sam-

pled, we were unable to conclude whether any of the two is monophyletic. In both of our short

and long datasets, the Spermophorodrilus-Healyella clade, together with Fitzingeria platyura

platyura, was nested among as many as eight Dendrobaena species, including the type species

D. octaedra. Therefore, without synonymizing any of the other three genera, Dendrobaena as

currently defined is at best paraphyletic. This heterogeneous genus has more than 100

described species [4] and, with some species falling outside of the “Dendrobaena clade” as

revealed in this study, is in urgent need of revision. Our phylogenetic analyses encompassed

the type species of all four genera, and from the nomenclature point of view, it is justifiable to

synonymize the four names. However, we strongly oppose to do this, because (1) it would lead
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to losing evolutionarily meaningful morphological information that is currently included in

the diagnosis of the respective genera, and (2) it would impede further research towards a

comprehensive revision of the genus Dendrobaena. We also believe that any nomenclature act

regarding the involved genera should only be done along with a full revision of the genus

Dendrobaena.

The chaos in the systematics of Bimastos, Allolobophoridella, Dendrodrilus, Spermophorodri-

lus, andHealyella highlighted the difficulty of understanding character evolution and the

respective synapomorphy and autapomorphy in earthworm systematics. The striking morpho-

logical similarity among Bimastos, Spermophorodrilus, andHealyella is an example of homo-

plasy. The annular clitellum was believed to be the defining synapomorphy uniting Bimastos

andHealyella, [13, 15], but it turned out to be acquired independently in the Bimastos clade

and in the Spermophorodrilus-Healyella clade. All three genera shifted to phoral dissemination

which resulted in disappearance of the spermathecae and tubercles. Disappearance of tubercles

made it possible to develop an annular clitellum, which is more appropriate for cocoon forma-

tion. However, to facilitate the successful copulation, glandular genital ridges (pseudotuber-

cles) developed in the male pore region [14, 100].

The revised Bimastos genus shares proclinate U-shaped nephridial bladders, the presence of

calciferous diverticula in 10, and porphyrin based red pigments among its species, while at the

same time allows both tanylobous and epilobous prostomium and both pinnate and fascicu-

lated longitudinal musculature in the genus. The presence of tanylobous prostomium, an auta-

pomorphy in the case of Bimastos, was part of the reason why B. eiseni was originally classified

as a Lumbricus [67], a genus whose species shares tanylobous prostomium as synapomorphy.

Similarly, Pop [11] believed that inclusion of more than one type of musculature in a genus

renders it polyphyletic. However, two types of musculature can be seen in Bimastos, as is also

the case in Eisenia, in which the musculature of Eisenia lucens (Waga, 1857) is fasciculated

while the other three species in Dominguez et al.’s [21] monophyletic Eisenia genus possess

pinnate musculature [3].

The native range of most Bimastos species is currently restricted to Eastern North America,

with the distribution of some species, such as Bimastos welchi, well extending into the Great

Plains, states of Kansas and Colorado in the USA [5, 91, 101]. Gates [9] believed that the genus

once had a much wider range that had significantly reduced due to glaciations. This hypothesis

is supported by the discovery of Bimastos lawrenceae Fender, 1994 from Vancouver Island in

Northwestern North America, a location far north of the last glacial boundary [56]. The fossil

cocoon attributed to B. rubidus from lake sediment in Ontario, Canada [92] lends further sup-

port that Bimastos might have covered also the terrain that is now Canada, and its representa-

tives were able to survive, at least in a few favorable refuges, during the Ice Age.

Our understanding of the peregrine Bimastos eiseni and B. rubidus, has been misled by the

poor knowledge of the systematics of this genus, especially in Europe, where they have been

mistakenly categorized as indigenous for more than a century [3, 9]. The interception of the

two species in imported soil at US ports was further viewed, again mistakenly, as direct evi-

dence for introduction to North America [102]. It is now clear that like B. parvus, both B. eiseni

and B. rubidus are native to North America, and, in contrast to the commonly held belief,

should be categorized as introduced in Europe.

Bimastos parvus is considered a peregrine species that also has been intercepted in ship-

ments at North American ports [9]. Similar to other peregrine earthworms, the three Bimastos

species were likely to be transported back and forth between continents and even today can

easily enter into countries without strict regulations on soil, plants and timber import. Both B.

eiseni and B. rubidus have been found in different types of wetlands, along streams, and under

bark of trees, rotting logs, pile of leaf litter, compost, moss, and dung [55, 103]. It appears that
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cool, moist, sometimes acidic habitats with high organic matter content are optimal for these

species [55]. This might explain the occurrence of B. rubidus at high elevations in the tropics

[9, 43] and at high latitudes, although temperature may still limit their distribution if it does

not reach the degree days necessary for individual development [104]. It also highlights why

they might travel well, as they were often intercepted in potted plants covered with Sphagnum

moss.

We conclude that the combined morphological, molecular and biogeographical anaysis was

necessary to reveal interesting, novel information about the phylogeny and distribution of the

Bimastos genus. On the one hand, the classical, purely morphology-based taxonomy proved to

be wrong in the past; on the other hand, relying on DNA analysis alone is insufficient to define

genera. It is our hope that such integrated approach will lead to a more consistent system of

Lumbricidae.

The study also highlights that not all peregrine lumbricid species in North America came

from Europe; reverse introduction also occurred. Additionally, our results generated exciting

biogeographical hypotheses to be tested in the future.
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45:92−384.

68. Easton EG. A guide to the valid names of earthworms (Oligochaeta). In: Satchell JE, editor. Earth-
worm ecology from Darwin to vermiculture. London: Chapman and Hall; 1983. p. 475–85.
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