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ABSTRACT. Cross metatheses of tung oil, a non-edible vegetable oil and a-eleostearic acid 

((9Z,11E,13E)-octadeca-9,11,13-trienoic acid, ESA) methyl ester (1), obtained from tung oil 

containing the same highly unsaturated, conjugated double bonds, have been carried out with cis-

1,4-diacetoxy-2-butene (2) using Hoveyda-Grubbs (3-HG2), Grubbs second or third generation 

catalysts (3-G2 or 3-G3). The reactions followed by Pd/C-catalyzed hydrogenation, give methyl 

11-acetoxyundecanoate (4) as a polyester raw material, 1,6-diacetoxy-hexane (5) as a precursor 

of 1,6-hexanediol (6) polyurethane monomer and heptyl acetate as a flagrance (7) in 53-99% 

yields after Pd/C-catalyzed hydrogenation. The one-pot isomerization metathesis of a-linolenic 

acid ((9Z,12Z,15Z)-9,12,15-octadecatrienoic acid, ALA) methyl ester (7) using 2 as cross 

coupling agent, RuHCl(CO)(PPh3)3 (9) as isomerization and 3-G2 as metathesis catalyst 

followed by Pd/C catalyzed hydrogenation leads also to the formation of 5 and the homologs of 4 

and 7 in reasonable yield. Thus, in the latter approach, the key step of the synthesis of 5 is the 

one-pot isomerization of the isolated double bonds of 7 into conjugated ones along the fatty acid 

chain in combination with a subsequent cross-metathesis by using cross-coupling agent 2. 

The conversion of unsaturated fatty acid esters via olefin metathesis including self and 

cross metathesis has been an emerging research area in the last decade.1-4 Alternative routes have 

already been demonstrated from these renewable chemical resources to a wide range of 

chemicals including polyester and polyamide monomers.1-7 However, conjugated fatty acids 

which, are produced on a vast scale by the oleochemical industry8 have not been investigated as 

potential resources for metathesis reactions yet. It is known that the metathesis reaction of 

conjugated olefins is generally less efficient comparing to polyunsaturated systems containing 
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isolated double bonds  and often requires high catalyst loading (5 – 15 mol%) and vigorous 

reaction conditions.9,10 

The 1,6-hexanediol (6) is used in several polymer syntheses including polyurethanes, 

acrylates, unsaturated polyesters, coatings and plasticizers. The market of 6 is estimated at USD 

730 million in 2016 and is projected to grow over 1 billion USD by 2021.11 Rennovia Inc. has 

started piloting a renewable, sugar-based production of 6 this year.12 However, the synthesis of 

this important plastic building block from unsaturated fatty acids such as a-eleostearic or 

a-linolenic acid has not been reported yet.  

 Algae oils, especially from microalgae with high lipid concentration have incredible 

potential as green and sustainable material13,14 and energy sources.15,16 Algae oil from microalgae 

or as also called oilgae can have 10-30 times higher yield per hectare than usual oil crops.17,18 

Algae as photosynthetic organisms generate mainly proteins, lipids, carbohydrates and small 

amounts of nucleic acids.19,20 The lipids, which are the most important for biofuel manufacture, 

contain isoprenoids, triacylglycerides (TGAs) and phospholipids.21-23 Some of the algae contains 

up to 40-50% unsaturated fatty acids24,25 (Scheme 1), which can be readily obtained from TGAs 

or phospholipids by hydrolysis or transesterification,26 respectively. Algae oils also contain vital 

omega-3 fatty acids, such as docosahexaenoic acid (DHA, x = 1; y = 5; z = 1) and 

eicosapentaenoic acid (EPA, x = 1; y = 4; z = 1), which are involved in human physiology.27 

ALA, α-linolenic acid (x = 6; y = 2; z = 1) can also be found in some plant oils in vast amount as 

discussed below (Scheme 1).  
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Scheme 1. General structure of polyunsaturated fatty acids produced by algae. 

Among others, the presence of highly unsaturated compounds causes a technical hurdle to 

produce biodiesel for the time being.28,29 However, these fatty acids are ideal green stock material 

for the synthesis of sustainable chemicals via metathesis, such as innovative polymers, fine 

chemicals and pharmaceuticals, albeit their availability from algae is yet limited.  

 Fortunately, polyunsaturated fatty acids can also be found in some of the seed oils 

including tung oil and linseed oil (or flax oil). Tung oil contains about 80% of the valuable 

conjugated polyunsaturated a-eleostearic acid, (ESA) (Scheme 2: methyl ester of ESA [1]), 

which is obtained from the kernels and the nuts of tung tree. The world production of tung oil 

was about 143 kt in 1970 and was projected to reach 200 kt by 1980.30 Instead, the production 

dropped back to 90 kt by the end of 90’s and stayed at that level up to date, because of the 

persisting cultivation in China.31 Farming of tung tree plunged or ceased in many countries 

because of its weak agronomic attributes as compared to other crop plants. The reasons for this 

are that the tung tree requires warm climate, high humidity and had proven to be an aggressive 

sort causing irritation to many.32 Thus, current research focuses on obtaining of the key 

intermediate of the tung tree instead of growing the tree itself. For example, ESA, 1 can be 

generated by genetic engineering of crop plants such as soybean33,34 or by metabolic engineering 

of other crop oils.35 

 As presented in this communication, derivatives of 1 can also be obtained by the 

isomerization of 8. The linseed contains about 41% of oil including 57% of ALA.36 The global 

production of linseed oil was around 580 kt in 2014.37 This important compound, ALA can also 
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be found in many other crops including that of the sea buckthorn, which has an increasing 

reputation and growing area.38,39 
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Scheme 2. Chemical structures of α-eleostearic (1) acid and α-linolenic acid (8) methyl ester. 

The application of olefin metathesis on the field of green chemistry, especially in 

oleochemistry is emerging.40,41 The most active and widely used catalysts are molybdenum-42 or 

ruthenium-based systems.43 The molybdenum-based systems are sometimes more active than the 

ruthenium systems, however, they often suffer from low functional group tolerance, high air and 

moisture sensitivity. Therefore, their industrial and large-scale applications are often limited. 

Comparing to this, the ruthenium catalyst systems are much more robust and have higher 

functional group tolerance (i.e. remains active toward conjugated systems and tolerates OH 

functionalities)44 (Scheme 3). Nowadays many metathesis catalysts have become commercially 

available and are widely used in industrial applications.45-50 
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Scheme 3. Grubbs catalysts tested for cross-metathesis of 1. 
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A unique methodology reported here combines the one-pot isomerization and cross-

metathesis of polyunsaturated fatty acid derivatives to obtain commercially relevant, high value 

added chemicals. The cross-metathesis of 1 has recently been investigated using cis-stilbene as 

model cross-coupling agent indicating the formation of a species containing mono =CH-CH= 

building block units in reasonable yields.51 Following these preliminary studies our attention 

turned to the cross-metathesis of 1 with cis-1,4-diacetoxy-2-butene, 2 to obtain the unsaturated 

derivative – hexa-2,4-diene-1,6-diyl diacetate (10) – of 1,6-hexandiol diacetate (5), the precursor 

of 1,6-hexanediol (6). Some preliminary catalytic tests have also been carried out with non-

acylated species, however, due to the relatively fast catalyst decomposition low conversion and 

only traces of target compound formation were observed. Compound 2 can be readily 

synthetized from allyl alcohol via olefin metathesis. Allyl alcohol is considered as a renewable 

material as it can be obtained from glycerol.52 Although, allyl acetate and 2 have already been 

investigated as active cross-coupling agent giving a,v-diffunctional substrates such as methyl 

11-acetoxyundec-9-enoate (11) the precursor of 11-hydroxynonanoic acid (13), polyester 

monomer in oleochemistry, 53,54 their metathesis with conjugated fatty acid based feedstocks 

leading to the formation of high value added polyurethane monomer 6 have not been examined 

yet. It was found that the CM reaction of 1 at room temperature in the presence of nine-fold 

excess (three-fold excess per double bond) of 2 using 1-5 mol% catalyst (3-HG2, 3-G2 or 3-G3) 

loading (0.33 – 1.66 mol% per double bond of 1) the formation of methyl 11-acetoxyundec-9-

enoate (11), 1,6-diacetoxy-2,4-hexadiene 10 and hept-2-en-1-yl acetate (12) were observed. Due 

to some undesired side reactions – mainly isomerization55 – some homolog analogues of 11 and 

12 were also observed especially in the reactions conducted at elevated reaction temperature. The 

reaction mixtures were hydrogenated off in one-pot by Pd/C using atmospheric hydrogen 
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pressure to obtain methyl 11-acetoxy-undecanoate, 4, 1,6-diacetoxy-hexane, 5 and heptyl 

acetate, 7 in reasonable yields referenced to 1 (99%, 53% and 94%, respectively) (Scheme 4). 

Beside the mass spectra analysis of the reaction products the formation of the target compounds 

was also confirmed by spiking technique. As the ultimate goal is the development of a 

convenient, one-pot synthesis of 5, the metathesis reaction mixture was always followed by 

hydrogenation and the configurational isomers of the unsaturated intermediates were not 

investigated in detail. However, based on the interim GC-MS data analysis, 80% trans and 20% 

cis bond formation is suspected, which is align with the ratio of the configurational isomers 

reported in the literature for metathesis reaction products using catalysts 3.56,57 The slightly lower 

yield of 5 can be explained by the presence of octane-1,8-diyl diacetate (5*), which can form via 

hydrogenation from the unreacted, intermediate the hexa-1,3,5-triene-1,6-diyl diacetate (10*) 

homolog, being less active for metathesis (see Scheme 4). This is well aligned with the literature 

data indicating that due to the less nucleophilic nature of the conjugated double bonds, the 

metathesis reaction of these species is often cumbersome.10 It is also supposed that some side 

reactions, including self-metathesis of 10 and 10* giving non-soluble polyacetylene species may 

also be responsible for the reduced yield of 5 (and 5*) comparing to 4 and 7.   
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Scheme 4. Synthesis of polyester and polyurethane monomers via cross-metathesis (CM) of 1 

and 2. 

 The activities of the catalysts (Scheme 3) have been investigated at room (RT, 24 h) and 

elevated (100°C, 2h) temperatures in neat 2, using it in nine-fold excess (i.e. three-fold excess 

per double bond of 1). Interestingly, 3-HG2 showed the highest activity at RT, while at elevated 

temperature 3-G3 was the best catalyst (Table 1). The highest yield of 1,6-diacetoxy-hexane, 5 

(53%) was obtained by using catalyst 3-G3 at 100°C with complete conversion of the starting 

material 1. At elevated temperature, homologs of 11 were formed because of isomerization side 

reactions, which were not observed when the reactions were conducted at room temperature even 

for extended reaction times. The reactions carried out at lower catalyst loading (1 mol%, 0.33 

mol% per double bond of 1) resulted in a slight decrease in the conversion of 1 (80%). However, 
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the formation of 4 and 7 was significantly lowered (36% and 23%) and 5 was not detected at all 

in the reaction mixture (only 5* in 6%). Considering that the 1 contains three times more double 

bond than methyl oleate the optimal, 1.66 mol% catalyst loading per double bound is well-

aligned with the literature data reported for the cross-metathesis of methyl oleate and allyl 

acetate or 2, indicating that the optimal Ru metathesis catalyst loading is around 1-2 mol% at 

similar reaction condition.54,58 
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Table 1. Yield of 4, 5 and 7 referenced to 1 using different Grubbs catalyst systems (3). Neat 

(20 V/V% toluene is used for the dissolution of the catalysts), catalyst loading: 5 mol% (1.66 

mol% per double bond referenced to 1), [1] = 0.34 M; [2] = 4.1 M (12 mol equiv.); Condition A: 

100°C, 2h; Condition B: RT, 24h.  

Catalyst 
Condition A (Yields %) Condition B (Yields %) 

4 5 (5*) 7 4 5 (5*) 7 

3-G2 84 36 (13) 98 81 37 (10) 81 

3-HG2 99 21 (11) 88 99 49 (17) 99 

3-G3 99 53 (12) 94 87 22 (13) 97 

 

 The cross-metathesis of natural unsaturated triglycerides using 3 has already been 

reported. When the reaction is conducted in the presence of 2-butene using at –5 °C, very high 

turnover number (TON > 104) was observed.43 Based on the analogy, the synthesis of 5, 7 from 

the glycerol ester of ESA, 1 was carried out in neat, using 3-HG2 catalyst and crude, dried and 

pre-treated59 tung oil as renewable feedstock at 15 mol% catalyst (1.66 mol% per ESA double 

bond) loading. Cis-1,4-diacetoxy-2-butene, 2 was used in three-fold excess per double bond of 

the lipid. After metathesis, the reaction mixture was hydrogenated by Pd/C. The GC-MS analysis 

revealed the formation of compound 5 and 7 as major products in 26% and 99% yields, 

respectively, including 5* in 14%. Increasing the excess of 2 had no impact on the overall yield 

of 5. These experiments clearly indicate the feasibility of the synthesis of 1,6-hexanediol 

derivatives, 5 via direct CM of crude tung oil and 2 using 3-HG2 catalysts (Scheme 5). 
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Scheme 5. Synthesis of 5 and 7 via CM of crude tung oil with 2 (leading also to 5* in 14% yield) 

  

Following these studies our attention turned to the possibility of a ruthenium double-

catalyzed in situ synthesis of the 1,6-diol precursor, 5 and homologs of 4 and 7 using methyl 

linoleate, 8 as crude starting material via a one-pot isomerization and cross-metathesis, called 

isomerization metathesis reaction. The combined isomerization and metathesis of olefins60,61 has 

been reported for the synthesis of homologs of unsaturated compounds from oleo chemicals62,63 

and also quite common in petro chemistry in OCT (Olefin Conversion Technology). Although 

some data for linoleic acid derivatives containing two isolated double bonds has been reported,64 

the isomerization metathesis of three isolated double bonds containing methyl linoleate 8 has not 

been investigated yet.  



 

12 

First, the Ru-catalyzed isomerization of 8 has been investigated using RuHCl(CO)(PPh3)3 

(9) catalyst. According to in-situ 1H NMR investigation, it could be concluded that the isolated 

double bonds of 8 can be readily isomerized into conjugated ones at relatively low catalyst 

loading (0.5 mol%) giving a mixture of compounds having similar chemical structures (spectra 

1-7) – with random configurational isomers – like that of 1 (spectra 8, Figure 1).  

MeO
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7

MeO
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Figure 1. Top: In-situ stacked 1H NMR spectra of the isomerization reaction mixture (spectra 1-

7) of methyl ester of ALA, 8 (toluene-d8, 9 (0.5 mol%), 90°C, [8] = 0.947 M; [9] = 4.51 mM) 
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and 1H NMR of 1 (spectra 8). Bottom: conversion of 8 (disappearance of –CH2– proton signal at 

2.85 ppm) versus reaction time.  

 

 The disappearance of the =CH-CH2-CH= signal at 2.85 ppm and the downfield shift of 

the =CH- from 5.5 to 6.5 ppm has clearly indicated the formation of conjugated systems (Figure 

1, top).65 Ninety percent conversion of the starting material (crude mixture of 8) was observed 

after two hours of reaction time (see Figure 1, bottom).  

 The one-pot isomerization and cross-metathesis using 8 gave similar reaction mixture 

composition than that of the metathesis of 1. As expected, the formation of 5 in 44% - and 5* in 

17% yield (as referenced to 8) - and a statistical distribution of 4 and 6, and their homologs were 

observed using similar catalyst systems (Figure 2). The statistical distribution of 4 and 7 can be 

explained by the random migration (isomerization) of the isolated double bounds over the fatty 

acid chain to form a thermodynamically favored conjugated system. As it can be clearly seen in 

Figure 2, the major reaction product is 5. The homologs of 7 contain C4-C13 acylated alcohols, 

meanwhile the homologs of 4 involve C7-C14 species. The n=4 (C7-Ac) corresponds to 4 and 

m=7 (C11-Ac) to 7, respectively. There was neither 1 nor 8 remaining starting material detected 

after metathesis. Compound 5 as major reaction product is indicated on the chromatogram 

(Figure 2, top). 
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Figure 2. TIC of the reaction mixture of the one-pot isomerization metathesis and hydrogenation 

of 8. (*The CM agent, 2 is also visible as a major peak at 12.7 min.) (Yield is referenced to 8)  

 

Conclusions 

 

 The synthesis of polyester and polyurethane monomers including 1,6-diacetoxy-hexane 

(5), acetoxy-alkanoates, 4 and 1-heptyl acetate (7) using polyunsaturated conjugated feedstock 

has been demonstrated. ESA, a-eleostearic acid methyl ester, 1 is an ideal feedstock to produce 

value added chemicals such as 4, 5 and 7, polymer raw materials using Grubbs (3) catalyst 

systems. The synthesis of 5 and the homologs of 4 and 7 is also possible using ALA, α-linolenic 

acid methyl ester (8) via ruthenium catalysed one-pot isomerization and cross metathesis 

reaction.  
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 It has been shown that the synthesis of some commercially available so far petrochemical 

based chemicals is feasible from renewable feedstocks. This chemical procedure makes the 

synthesis of polyurethane and polyester monomers possible using a wide range of 

polyunsaturated fatty acids of different origin containing conjugated or isolated double bonds. 

The combination of one-pot isomerization and cross-metathesis reactions of polyunsaturated 

fatty acid feedstocks (either vegetable oil or algae oil based) provides new alternatives for the 

replacement of fossil based materials into carbon dioxide neutral, sustainable ones. 
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One pot isomerization, metathesis and hydrogenation of polyunsaturated vegetable oils provide a 
wide range of polyester and polyamide precursors. 

 


