CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 165

Editorial Board B. BOLLOBÁS, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO

CENTRAL SIMPLE ALGEBRAS AND GALOIS COHOMOLOGY

The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others.

Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin.

This second edition has been carefully revised and updated, and contains important additional topics.

Philippe Gille is a Research Director (CNRS) at Camille Jordan Institute, Lyon, France. He has written numerous research papers on linear algebraic groups and related structures.

Tamás Szamuely is a Research Adviser at the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences and a Professor at Central European University, Budapest, Hungary. He is the author of Galois Groups and Fundamental Groups, also published in this series, as well as numerous research papers.

CAMBRIDGE

Cambridge University Press 978-1-107-15637-1 — Central Simple Algebras and Galois Cohomology Philippe Gille , Tamás Szamuely Frontmatter <u>More Information</u>

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board: B. Bollobás, W. Fulton, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: www.cambridge.org/mathematics.

Already published

- 130 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, II
- 131 D. A. Craven The theory of fusion systems
- 132 J. Väänänen Models and games
- 133 G. Malle & D. Testerman Linear algebraic groups and finite groups of Lie type
- 134 P. Li Geometric analysis
- 135 F. Maggi Sets of finite perimeter and geometric variational problems
- 136 M. Brodmann & R. Y. Sharp Local cohomology (2nd Edition)
- 137 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, I
- 138 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II
- 139 B. Helffer Spectral theory and its applications
- 140 R. Pemantle & M. C. Wilson Analytic combinatorics in several variables
- 141 B. Branner & N. Fagella Quasiconformal surgery in holomorphic dynamics
- 142 R. M. Dudley Uniform central limit theorems (2nd Edition)
- 143 T. Leinster Basic category theory
- 144 I. Arzhantsev, U. Derenthal, J. Hausen & A. Laface Cox rings
- 145 M. Viana Lectures on Lyapunov exponents
- 146 J.-H. Evertse & K. Győry Unit equations in Diophantine number theory
- 147 A. Prasad Representation theory
- 148 S. R. Garcia, J. Mashreghi & W. T. Ross Introduction to model spaces and their operators
- 149 C. Godsil & K. Meagher Erdős-Ko-Rado theorems: Algebraic approaches
- 150 P. Mattila Fourier analysis and Hausdorff dimension
- 151 M. Viana & K. Oliveira Foundations of ergodic theory
- 152 V. I. Paulsen & M. Raghupathi An introduction to the theory of reproducing kernel Hilbert spaces
- 153 R. Beals & R. Wong Special functions and orthogonal polynomials
- 154 V. Jurdjevic Optimal control and geometry: Integrable systems
- 155 G. Pisier Martingales in Banach spaces
- 156 C. T. C. Wall Differential topology
- 157 J. C. Robinson, J. L. Rodrigo & W. Sadowski The three-dimensional Navier-Stokes equations
- 158 D. Huybrechts Lectures on K3 surfaces
- 159 H. Matsumoto & S. Taniguchi Stochastic analysis
- 160 A. Borodin & G. Olshanski Representations of the infinite symmetric group
- 161 P. Webb Finite group representations for the pure mathematician
- 162 C. J. Bishop & Y. Peres Fractals in probability and analysis
- 163 A. Bovier Gaussian processes on trees
- 164 P. Schneider Galois representations and (φ , Γ)-modules
- 165 P. Gille & T. Szamuely Central simple algebras and Galois cohomology (2nd Edition)
- 166 D. Li & H. Queffelec Introduction to Banach spaces, I
- 167 D. Li & H. Queffelec Introduction to Banach spaces, II
- 168 J. Carlson, S. Müller-Stach & C. Peters Period mappings and period domains (2nd Edition)
- 169 J.M. Landsberg Geometry and complexity theory

Central Simple Algebras and Galois Cohomology

Second Edition

PHILIPPE GILLE Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan, Lyon

TAMÁS SZAMUELY Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest

CAMBRIDGE

Cambridge University Press 978-1-107-15637-1 — Central Simple Algebras and Galois Cohomology Philippe Gille , Tamás Szamuely Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107156371 DOI: 10.1017/9781316661277

© Philippe Gille and Tamás Szamuely 2006, 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2006 Second edition 2017

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-15637-1 Hardback ISBN 978-1-316-60988-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		
1	Quaternion algebras		1
	1.1	Basic properties	1
	1.2	Splitting over a quadratic extension	4
	1.3	The associated conic	7
	1.4	A theorem of Witt	10
	1.5	Tensor products of quaternion algebras	13
2	Central simple algebras and Galois descent		19
	2.1	Wedderburn's theorem	19
	2.2	Splitting fields	22
	2.3	Galois descent	27
	2.4	The Brauer group	33
	2.5	Cyclic algebras	36
	2.6	Reduced norms and traces	42
	2.7	A basic exact sequence and applications	47
	2.8	Index and period	52
	2.9	Central simple algebras over complete discretely valued fields	59
	2.10	K_1 of central simple algebras	61
3	Techniques from group cohomology		70
	3.1	Definition of cohomology groups	70
	3.2	Explicit resolutions	77
	3.3	Relation to subgroups	82
	3.4	Cup-products	92
4	The	cohomological Brauer group	105
	4.1	Profinite groups and Galois groups	105
	4.2	Cohomology of profinite groups	111

vi		Contents	
	4.3	The cohomology exact sequence	118
	4.4	The Brauer group revisited	123
	4.5	Another characterization of the index	127
	4.6	The Galois symbol	130
	4.7	Cyclic algebras and symbols	133
5	Seve	eri–Brauer varieties	139
	5.1	Basic properties	140
	5.2	Classification by Galois cohomology	142
	5.3	Geometric Brauer equivalence	147
	5.4	Amitsur's theorem	152
	5.5	An application: making central simple algebras cyclic	159
6	Res	idue maps	163
	6.1	Cohomological dimension	163
	6.2	C_1 -fields	170
	6.3	Cohomology of complete discretely valued fields	177
	6.4	Cohomology of function fields of curves	182
	6.5	Application to class field theory	187
	6.6	Application to the rationality problem: the method	190
	6.7	Application to the rationality problem: the example	197
	6.8	Residue maps with finite coefficients	202
	6.9	The Faddeev sequence with finite coefficients	208
7	Mil	nor K-theory	215
	7.1	The tame symbol	215
	7.2	Milnor's exact sequence and the Bass-Tate lemma	222
	7.3	The norm map	228
	7.4	Reciprocity laws	237
	7.5	Applications to the Galois symbol	243
	7.6	The Galois symbol over number fields	249
8	The	Merkurjev–Suslin theorem	258
	8.1	Gersten complexes in Milnor K-theory	259
	8.2	Properties of Gersten complexes	263
	8.3	A property of Severi–Brauer varieties	268
	8.4	Hilbert's Theorem 90 for K_2	275
	8.5	The Merkurjev–Suslin theorem: a special case	283
	8.6	The Merkurjev–Suslin theorem: the general case	288
	8.7	Reduced norms and K_2 -symbols	296
	8.8	A useful exact sequence	302
	8.9	Reduced norms and cohomology	310

CAMBRIDGE

Cambridge University Press 978-1-107-15637-1 — Central Simple Algebras and Galois Cohomology Philippe Gille , Tamás Szamuely Frontmatter <u>More Information</u>

		Contents	vii
9	Symbols in positive characteristic		
	9.1	The theorems of Teichmüller and Albert	317
	9.2	Differential forms and p-torsion in the Brauer group	325
	9.3	Logarithmic differentials and flat <i>p</i> -connections	329
	9.4	Decomposition of the de Rham complex	336
	9.5	The Bloch–Gabber–Kato theorem: statement and reductions	340
	9.6	Surjectivity of the differential symbol	345
	9.7	Injectivity of the differential symbol	351
	9.8	Application to <i>p</i> -torsion in Milnor K-theory	359
Appendix: a breviary of algebraic geometry			367
	Bibliography		
Index			413

Preface

This book provides a comprehensive and up-to-date introduction to the theory of central simple algebras over arbitrary fields, emphasizing methods of Galois cohomology and (mostly elementary) algebraic geometry. The central result is the Merkurjev-Suslin theorem. As we see it today, this fundamental theorem is at the same time the culmination of the theory of Brauer groups of fields initiated by Brauer, Noether, Hasse and Albert in the 1930s, and a starting point of motivic cohomology theory, a domain which is at the forefront of current research in algebraic geometry and K-theory - suffice it here to mention the recent spectacular results of Voevodsky, Suslin, Rost and others. As a gentle ascent towards the Merkurjev-Suslin theorem, we cover the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, residue maps and, finally, Milnor K-theory and K-cohomology. These chapters also contain a number of noteworthy additional topics. The last chapter of the book rounds off the theory by presenting the results in positive characteristic. For an overview of the contents of each chapter we refer to their introductory sections.

Prerequisites. The book should be accessible to a graduate student or a nonspecialist reader with a solid training in algebra including Galois theory and basic commutative algebra, but no homological algebra. Some familiarity with algebraic geometry is also helpful. Most of the text can be read with a basic knowledge corresponding to, say, the first volume of Shafarevich's text. To help the novice, we summarize in an appendix the results from algebraic geometry we need. The first three sections of Chapter 8 require some familiarity with schemes, and in the proof of one technical statement we are forced to use techniques from Quillen K-theory. However, these may be skipped in a first reading by those willing to accept some 'black boxes'.

Х

Preface

Acknowledgments

Our first words of thanks go to Jean-Louis Colliot-Thélène and Jean-Pierre Serre, from whom we learned much of what we know about the subject and who, to our great joy, have also been the most assiduous readers of the manuscript, and suggested many improvements. Numerous other colleagues helped us with their advice during the preparation of the text, or spotted inaccuracies in previous versions. Thanks are due to Spencer Bloch, Jean-Benoît Bost, Irene Bouw, Gábor Braun, Ferenc Bródy, Jérôme Burési, Baptiste Calmès, Mathieu Florence, Ofer Gabber, Skip Garibaldi, Luc Illusie, Bruno Kahn, Max-Albert Knus, David Leep, David Madore, Alexander Merkurjev, Ján Mináč, Arturo Pianzola, Peter Roquette, Joël Riou, Christophe Soulé, Jean-Pierre Tignol, Burt Totaro and Stefan Wewers.

Parts of the book formed the basis of a graduate course by the first author at Université de Paris-Sud and of a lecture series by the two authors at the Alfréd Rényi Institute. We thank both audiences for their pertinent questions and comments, and in particular Endre Szabó who shared his geometric insight with us. Most of the book was written while the first author visited the Rényi Institute in Budapest with a Marie Curie Intra-European Fellowship. The support of the Commission and the hospitality of the Institute are gratefully acknowledged. Last but not least, we are indebted to Diana Gillooly for assuring us a smooth and competent publishing procedure.

Note on the second edition

The first edition of our book has been well received by the mathematical community, and we have received a lot of feedback from experts and graduate students alike. Based partly on their comments, we have tried to correct in this new edition all misprints and inaccuracies known to us. We have updated the text in order to take into account the most important developments during the last ten years, and have also included new material. The most substantial changes to the text of the first edition are as follows.

- We have considerably expanded the material in Section 2.6 on reduced norms.
- There is a new Section 2.8 on a different approach to period-index questions from that of the first edition (which remains in Chapter 4), mainly based on recent work of Antieau and Williams.
- There is a new Section 2.9 on central simple algebras over complete discretely valued fields. Compared to the previous section, this one is much more traditional.

Preface

- Section 6.3 has been thoroughly revised: it now includes statements over arbitrary complete discretely valued fields.
- Section 8.6 now includes a theorem of Merkurjev on the generators of the *p*-torsion in the Brauer group of fields of characteristic different from *p*.
- Arguably the most important addition to the text is contained in three new sections (8.7–8.9) devoted to the cohomological characterization of reduced norms. This is also a major result in the groundbreaking paper of Merkurjev and Suslin. More recently, it has played a key role in the study of cohomological invariants of algebraic groups. Our approach partly differs from the original one.
- Section 9.1 now includes a recent result of M. Florence on the symbol length in positive characteristic.
- The discussion of the differential symbol in Section 9.5 has been extended to cover mod p^i differential symbols with values in logarithmic de Rham–Witt groups as well.
- There is a new Section 9.8 devoted to Izhboldin's theorem on *p*-torsion in Milnor K-theory of fields of characteristic *p*, a fundamental result that was only briefly mentioned in the first edition.

Thanks are due to Menny Aka, Alexis Bouthier, Gábor Braun, Eric Brussel, Jean-Louis Colliot-Thélène, Anamaria Costache, J. P. Ding, Christian Hirsch, Ofer Gabber, Qing Liu, Ján Mináč, Joël Riou, Damian Rössler, Jean-Pierre Serre, Endre Szabó, Charles Vial and Tim Wouters for their comments on the first edition. We are also indebted to Ben Antieau, Cyril Demarche, David Harari, János Kollár, Joël Riou, Jean-Pierre Tignol, Burt Totaro and Gergely Zábrádi for their help with the present one.

xi