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Preface

This book provides a comprehensive and up-to-date introduction to the the-
ory of central simple algebras over arbitrary fields, emphasizing methods of
Galois cohomology and (mostly elementary) algebraic geometry. The central
result is the Merkurjev–Suslin theorem. As we see it today, this fundamental
theorem is at the same time the culmination of the theory of Brauer groups
of fields initiated by Brauer, Noether, Hasse and Albert in the 1930s, and a
starting point of motivic cohomology theory, a domain which is at the fore-
front of current research in algebraic geometry and K-theory – suffice it here
to mention the recent spectacular results of Voevodsky, Suslin, Rost and others.
As a gentle ascent towards the Merkurjev–Suslin theorem, we cover the basic
theory of central simple algebras, methods of Galois descent and Galois coho-
mology, Severi–Brauer varieties, residue maps and, finally, Milnor K-theory
and K-cohomology. These chapters also contain a number of noteworthy addi-
tional topics. The last chapter of the book rounds off the theory by presenting
the results in positive characteristic. For an overview of the contents of each
chapter we refer to their introductory sections.

Prerequisites. The book should be accessible to a graduate student or a non-
specialist reader with a solid training in algebra including Galois theory and
basic commutative algebra, but no homological algebra. Some familiarity with
algebraic geometry is also helpful. Most of the text can be read with a basic
knowledge corresponding to, say, the first volume of Shafarevich’s text. To
help the novice, we summarize in an appendix the results from algebraic geom-
etry we need. The first three sections of Chapter 8 require some familiarity with
schemes, and in the proof of one technical statement we are forced to use tech-
niques from Quillen K-theory. However, these may be skipped in a first reading
by those willing to accept some ‘black boxes’.

ix
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Note on the second edition

The first edition of our book has been well received by the mathematical com-
munity, and we have received a lot of feedback from experts and graduate
students alike. Based partly on their comments, we have tried to correct in
this new edition all misprints and inaccuracies known to us. We have updated
the text in order to take into account the most important developments during
the last ten years, and have also included new material. The most substantial
changes to the text of the first edition are as follows.

● We have considerably expanded the material in Section 2.6 on reduced
norms.

● There is a new Section 2.8 on a different approach to period-index questions
from that of the first edition (which remains in Chapter 4), mainly based on
recent work of Antieau and Williams.

● There is a new Section 2.9 on central simple algebras over complete dis-
cretely valued fields. Compared to the previous section, this one is much
more traditional.
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original one.
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