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UPEC, CNRS, F-94010, Créteil, France. email: seuret@u-pec.fr

HOMOGENEOUS MULTIFRACTAL

MEASURES WITH DISJOINT SPECTRUM
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Abstract

We proved in an earlier paper that the support of the multifractal
spectrum of a homogeneously multifractal (HM) measure within [0, 1]
must be an interval. In this paper we construct a homogeneously mul-
tifractal measure with spectrum supported by [0, 1] ∪ {2}. This shows
that there can be a different behaviour for exponents exceeding one.
We also provide details of the construction of a strictly monotone in-
creasing monohőlder (and hence HM) function which has exact Hölder
exponent one at each point. This function was also used in our paper
about measures and functions with prescribed homogeneous multifractal
spectrum.

1 Introduction

In this paper we provide details of the construction of two examples an-
nounced in [1, Propositions 1.7 and 1.16]. Before stating them in Propositions
7 and 8 we recall some definitions and earlier results.

We denote by B(x0, r) the open ball with center x0 and radius r. Recall
that the support Supp(µ) of a positive Borel measure is the smallest closed
set E such that µ(Ec) = 0.
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Definition 1. The local exponent (or local dimension) of a positive Borel
measure µ on R at a given x0 ∈ Supp(µ) is defined as

hµ(x0) = lim inf
r→0+

logµ(B(x0, r))

log r
. (1)

In this paper we will consider only diffuse (non-atomic) measures. The
definition of the local regularity exponent of functions is slightly different and
we recall it now.

Definition 2. Let Z be a locally bounded function on R, x0 ∈ R and α > 0.
The function Z belongs to Cα(x0) if there is a polynomial P of degree less
than [α] and a constant K > 0 such that

for every x in a neighborhood of x0, |Z(x)− P (x− x0)| ≤ K|x− x0|
α. (2)

The pointwise Hölder exponent of Z at x0 is hZ(x0) = sup{α ≥ 0 : f ∈
Cα(x0)}.

There exists a relation between the local exponent of a measure µ at x0

and the pointwise Hölder exponent of the primitive of µ at x0, that we will
explain later.

Definition 3. The multifractal spectrum of a measure µ is the mapping dµ
defined as

h ≥ 0 7−→ dµ(h) := dimEµ(h), where Eµ(h) := {x : hµ(x) = h}. (3)

Here, by definition, dim ∅ = −∞.

Definition 4. We call the support of the multifractal spectrum of µ the set

Support (dµ) = {h ≥ 0 : dµ(h) ≥ 0}. (4)

Analogous definitions hold for the multifractal spectrum and its support
for functions Z.

Homogeneously multifractal measures, or functions, have the same spec-
trum in any neighborhood of any point of their support. The precise definition
is the following:

Definition 5. A measure µ supported on [0, 1] is homogeneously multifractal
(or HM) if for any non-empty subinterval U ⊂ [0, 1],

for any h ≥ 0, dim{x ∈ U : hµ(x) = h} = dim{x ∈ [0, 1] : hµ(x) = h} = dµ(h).

Homogeneously multifractal functions Z : [0, 1] → R are defined similarly.
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In [1, Theorem 1.5] we proved the following Darboux-like theorem about
the connectedness in [0, 1] of the support of the multifractal spectra of HM
measures.

Theorem 6. For any diffuse HM measure µ supported on [0, 1], Support (dµ)∩
[0, 1] is necessarily an interval of the form [α, 1], where 0 ≤ α ≤ 1.

This theorem holds for HM measures, but not for HM functions. Indeed,
there are (necessarily non-monotone) HM functions with disconnected spectra.
The most famous example of such a function is the non-differentiable Riemann
function

∑

n≥1

sinπn2x

n2
,

which, as shown by S. Jaffard in [5], is HM, and whose support of its multifrac-
tal spectrum is [1/2, 3/4] ∪ {3/2}. In this paper we prove that for exponents
greater than one, Theorem 6 does not hold, that is, HM measures can also
have disconnected spectra.

Proposition 7. There is a HM measure µ on [0, 1] such that Support (dµ) =
[0, 1] ∪ {2}.

The other result of this paper is the construction of a monohölder function
with exponent one everywhere. Here is some motivation for this example.

For exponents less than 1 the Hölder exponents of a diffuse measure µ
and the monotone increasing function Fµ(x) = µ([0, x]) coincide. For higher
exponents these values may differ. For example if µ is the uniform distribution
on [0, 1] then Fµ(x) = x belongs to C∞(R), while hµ(x) = 1 everywhere in
[0, 1]. The function constructed in the proof of the next proposition (which
was stated as Proposition 1.16 in [1]) was a tool used in some arguments of [1]
to eliminate points where {x ∈ [0, 1] : hZ(x) > 1} for some strictly monotone
increasing HM function Z.

Proposition 8. There exists Z : [0, 1] → [0, 1] a strictly monotone increasing
HM function with hZ(x) = 1 for all x ∈ [0, 1].

We will need an upper bound for multifractal spectra of monotone func-
tions. Recall part of Proposition 2.2 of [4] (see also Proposition 4.9 of [3]):

Proposition 9. Let E ⊂ R
n be a Borel set, let µ be a finite Borel measure

on R
n and 0 < c < ∞. If lim supr→0+ µ(B(x, r))/rs ≥ c for all x ∈ E then

Hs(E) ≤ 2sµ(E)/c.
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Here Hs denotes the s-dimensional Hausdorff measure. From Proposition
9 one can easily deduce the following upper bound, the details can be found
for example at the beginning of the proof of assertion (ii) in [2].

Proposition 10. For any monotone continuous function Z : [0, 1] → R for
every h ∈ [0, 1],

dZ(h) = dimEZ(h) = dim{x : hZ(x) = h} ≤ h. (5)

In [2] it is also verified that for the typical monotone continuous function
we have equality everywhere in (5).

2 An HM measure with a spectrum gap when h > 1

The function 11∗
[α0,β0]

(h) is an indicator function of the interval [α0, β0], i.e.

it equals 1 if h ∈ [α0, β0] and equals −∞ otherwise. The oscillation of Z on
B(x, r) is denoted by ωB(x,r)(Z):

ωB(x,r)(Z) = sup
x∈B(x,r)

Z(x)− inf
x∈B(x,r)

Z(x).

We recall [1, Theorem 4.1], which allows one to construct measures with
arbitrary increasing affine multifractal spectrum:

Theorem 11. Let 0 < α0 ≤ β0 < 1. Let 0 < d < α0 and η > 0 satisfy

d(1 + ηβ0) ≤ β0 and d(1 + ηα0) ≤ α0. (6)

Then there exists a monotone continuous function Z with the following prop-
erties: Z(x) = 0 when x ≤ 0, Z(x) = 1 when x ≥ 1, dZ(+∞) = 1 and

dZ(h) = d(1 + ηh)11∗
[α0,β0]

(h) for h ∈ [0,∞). (7)

Moreover, Z can be constructed with the additional properties:

(i) {x : hZ(x) < +∞} = {x : hZ(x) < 1} = {x : hZ(x) ≤ β0} is located on
a Cantor set C, strictly included in [0, 1],

(ii) [0, 1]\C consists of a countable number of open intervals whose maximal
length is less than 1/10,

(iii) there exists 0 < r0 < 1 such that for every x ∈ [0, 1] and 0 < r < r0,

ωB(x,r)(Z) = |Z(x+ r)− Z(x− r)| ≤ (2r)α0 . (8)
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Next we prove Proposition 7. Our construction is quite technical, but we
do not know any other ”easy” construction of such a measure. Actually, we
will rather build a continuous increasing HM function.

Definition 12. Given a non-degenerate closed interval J = [a, b] we call
ϕ : J → R a Cantor-type interpolating function if ϕ is continuous, non-
decreasing and there exists a closed set Eϕ of zero Lebesgue measure such that
ϕ is constant on the intervals contiguous to Eϕ. Moreover, it has a multifractal
spectrum as bad as possible, that is dϕ(h) = h, for all h ∈ [0, 1].

Remark 13. It is not too difficult to provide direct constructions of such
functions, but using Theorem 11 we can easily verify their existence. Indeed,
consider sequences α0,n, β0,n, dn and ηn such that all possible rational values
of parameters satisfying the assumptions of Theorem 11 appear among them.
Denote by Zn the sequence of monotone continuous functions which we obtain
from Theorem 11 by using these parameter values. Set ϕ(a) = 0 and

ϕ(x) =
1

2n−1
Zn

((b− a

n
−

b− a

n+ 1

)−1(
x−

b− a

n+ 1

))

for x ∈
( b− a

n+ 1
,
b− a

n

]
, n = 1, 2, ....

Definition 14. A finite set of real numbers S = {s1, ..., sn} ⊂ (0, 1) is said
to be δ-discrete (with δ > 0) if

the distance between any two intervals [si − δ, si + δ], i = 1, ..., n, (9)

is larger than 2δ, and the distance of these intervals from 0 or

from 1 is also larger than 2δ.

Now we are turning to the proof of Proposition 7. We are going to construct
the HM measure µ by defining its Borel integral F (x) =

∫ x

0
dµ. The function

F will be an infinite sum of monotone increasing continuous functions Fn.

2.1 First part of the definition of the functions Fn by induction

We introduce several sequences of numbers, sets and functions, which will
be the basis of our induction.

First, we fix a sequence of intervals (In := [an, bn])n≥1 satisfying In ⊂
I1 := (0, 1), bn − an ց 0 and {an : n = 1, ...} is dense in [0, 1]. The sequence
of intervals (In) is thus also dense.

We start with δ0 = 1, S0 = ∅, H0 = ∅, I ′1 = [0, 1], T0 = ∅, Ĩ1 = I1.
We assumme that for some integer n ≥ 0, we have built the following:
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(i) n+ 1 real numbers δ0 > ... > δn > 0, satisfying for 1 ≤ p ≤ n

(2−p + p)δ2p <
δ2p−1

2
. (10)

(We remark that for the case n = 0 here and later there is no p satisfying
1 ≤ p ≤ n, which means that in the n = 0 case these assumptions are
not needed.)

(ii) for 1 ≤ p ≤ n, an increasing sequence of finite sets of points Sp =
{s1, ..., sp} ⊂ (0, 1) that are δp-discrete and such that sp ∈ Ip. We put

Hp =

p⋃

i=1

[si − δp, si + δp]. (11)

(iii) closed intervals (Ĩp)p=1,...,n+1, such that Ĩp ⊂ Ip and for 1 ≤ p ≤ n,

Ĩp+1 \Hp and Ip+2 \Hp contain closed intervals of length larger than 2δp.
(12)

(iv) monotone non-decreasing continuous functions Fp : [0, 1] → [0, 1], 1 ≤
p ≤ n satisfying:

(a) Fp is constant on the intervals [si − δp, si + δp/2], i = 1, ..., p,

(b) on the intervals [si + δp/2, si + δp], i = 1, ..., p, the function Fp co-
incides with a Cantor-type interpolating function whose increment
on this interval is given by

Fp(si + δp)− Fp(si + δp/2) = δ2p for i = 1, ..., p.

We call Tp,i the nowhere dense closed set associated with the restric-
tion of Fp to [si+δp/2, si+δp], and Tp =

⋃p
i=1 Tp,i. By construction,

Fp is constant on the intervals contiguous to Tp.

(c) for all x 6∈ Hp there exists an interval Ix,p = [ax,p, bx,p] such that

x ∈ Ix,p, bx,p−ax,p < δp and Fp(bx,p)−Fn(ax,p) ≥ (bx,p−ax,p)
1+ 1

p .
(13)

(d) for 1 ≤ p < i ≤ n, Fp is constant on the intervals of Hi (see (11)).
In other words, Hn ”avoids” the Cantor sets Tp, p ≤ n− 1 of zero
Lebesgue measure where the functions Fp increase.
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(e) finally, for 1 ≤ p ≤ n,

Fp(1)− Fp(0) ≤ pδ2p +
δ2p
2p

. (14)

Observe that part (iii) implies that S = ∪nSn is dense in [0, 1].

2.2 The next step of the induction

Suppose n ≥ 0. We need to define sn+1, δn+1, Ĩn+2, Tn+1 and Fn+1. We
assume that

δ2n+1

2n+1
+ (n+ 1)δ2n+1 <

δ2n
2
.

Using (12) we select a closed subinterval Ĩn+2 ⊂ In+2 \Hn of length 2δn.
Then,

in the interior of Ĩn+1 \Hn, we select a point sn+1 6∈ Tn. (15)

Hence, by choosing a sufficiently small 0 < δn+1 < δn/2, we can ensure that
for all 1 ≤ p ≤ n the functions Fp are constant on [sn+1−δn+1, sn+1+δn+1] ⊂
[0, 1] \ Tn, and thus on Hn+1.

By (15), we suppose that δn+1 is also so small that

[sn+1 − δn+1, sn+1 + δn+1] ⊂ int(Ĩn+1 \Hn). (16)

Now we build Fn+1. Set Fn+1(0) = 0.
Next we define Fn+1 on [0, 1]\Hn+1, which is constituted by finitely many

intervals contiguous toHn+1∪{0}∪{1}. Observe that by choosing a sufficiently
small δn+1, we can ensure that for all intervals [α, β] contiguous toHn+1∪{0}∪

{1}, β − α > 2δn+1. In addition, we can also suppose that both Ĩn+2 \Hn+1

and In+3 \Hn+1 contain a closed interval of length 2δn+1.
Now fix an interval J = [α, β] contiguous to Hn+1 ∪ {0} ∪ {1}. We pick an

integer κ ∈ N such that

β − α

κ
≤

δ
2(n+1)
n+1

2(n+1)2
(17)

and subdivide J into subintervals

Jl =
[
α+ (l − 1)

β − α

κ
, α+ l

β − α

κ

]
= [αl, βl], l = 1, ..., κ. (18)

We define Fn+1 so that:
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• the increments on Jl are

Fn+1(βl)− Fn+1(αl) = (βl − αl)
δ2n+1

2n+1
, for all l = 1, ..., κ. (19)

• On the interior of Jl, Fn+1(x)−Fn+1(αl) is a Cantor type interpolating
function ϕl and (19) is also satisfied.

From (17) it follows that

(βl − αl)
1

n+1 =
(β − α

κ

) 1
n+1

≤
δ2n+1

2n+1
.

By (19) we obtain

Fn+1(βl)− Fn+1(αl) ≥ (βl − αl)
1+ 1

n+1 .

By construction, if x 6∈ Hn+1, then with the above notation, x belongs to
an interval Jx = [αx

lx
, βx

lx
], for some interval [αx, βx] and some suitable integer

lx. We put ax,n+1 = αx
lx
, bx,n+1 = βx

lx
and this choice yields part (iv)(c) of

the induction.

Finally, it remains to impose the behavior of Fn+1 on Hn+1. We impose
that for every i = 1, ..., n+ 1, the function Fn+1 coincides with a Cantor type
interpolating function on [si+δn+1/2, si+δn+1], is constant on [si−δn+1, si+
δn+1/2] and Fn+1(si+δn+1)−Fn+1(si+δn+1/2) = Fn+1(si+δn+1)−Fn+1(si−
δn+1) = δ2n+1. Hence, the increment of Fn+1 is defined on all components of
Hn+1, and thus on [0, 1].

Since Hn+1 consists of n+ 1 many component intervals, (19) gives

Fn+1(1)− Fn+1(0) ≤ (n+ 1)δ2n+1 +
δ2n+1

2n+1
. (20)

The attentive reader has checked that all the parts of the induction are
verified for n+ 1 instead of n.

Definition 15. Iterating the procedure, we construct a sequence of functions
(Fn)n≥1 and define the continuous strictly increasing function

F =

+∞∑

n=1

Fn.

The continuity follows from the uniform convergence guaranteed by (20),
and the strict monotonicity from the density of the In and the fact that the
Fn do not increase at the same locations.
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2.3 Multifractal properties of F

Proposition 16. For every x ∈ [0, 1] which is not one of the sn, one has
hF (x) ≤ 1.

Proof. Consider a real number x ∈ [0, 1] which is not one of the sn.

Lemma 17. There exists an infinite number of integers n such that x 6∈ Hn.

Proof. Assume that there exists n0 such that x ∈ Hn0
. Choose n1 ≥ n0

such that for n0 ≤ n < n1,

x ∈
n0⋃

i=1

[si − δn, si + δn] ⊂ Hn but x 6∈
n0⋃

i=1

[si − δn1
, si + δn1

]. (21)

This integer n1 exists, because the sequence δn converges to zero.
Since x ∈ Hn1−1, x 6∈ Ĩn1

\Hn1−1. Moreover, (9), (15) and (21) imply that
x 6∈ ∪n1−1

i=n0+1[si − δn1−1, si + δn1−1]. By (16), x 6∈ [sn1
− δn1

, sn1
+ δn1

], which

is included in the interior of Ĩn1
\Hn1−1. Therefore x 6∈ Hn1

.
Since this argument can be repeated, there are infinitely many nj ’s, j =

1, 2, ... such that x 6∈ Hnj
.

Now, if x 6∈ Hn, then item (iv)(c) of the induction provides us with an
interval Ix,n = [ax,n, bx,n] such that (13) holds with n. Since by Lemma 17,
this holds for infinitely many intervals whose size goes to zero, this implies
hF (x) = hµ(x) ≤ 1.

We take care of the points sn, where F is more regular.

Proposition 18. For every n ≥ 1, hF (sn) = hµ(sn) = 2. Hence, dF (2) =
dµ(2) = 0.

Proof. Consider one of the points sn0
, and n ≥ n0. Then sn0

∈ Hn and by
part (iv)(d) of the induction, the functions Fp with 1 ≤ p < n are constant on
[sn0

− δn, sn0
+ δn].

By parts (iv)(a) and (iv)(b) of the induction, we have

Fn(sn0
+ δn)− Fn(sn0

) = Fn(sn0
+ δn)− Fn(sn0

− δn) = δ2n. (22)

Suppose y ∈ [sn0
− δn, sn0

+ δn] \ [sn0
− δn+1, sn0

+ δn+1]. Then

|F (y)− F (sn0
)| ≤

n−1∑

k=1

|Fk(y)− Fk(sn0
)|+ |Fn(y)− Fn(sn0

)|+
∞∑

k=n+1

|Fk(y)− Fk(sn0
)|

= 0 +∆n +Σn+1.
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If δn/2 ≤ |y − sn0
| ≤ δn, then |∆n| ≤ δ2n ≤ 4|y − sn0

|2 and |Σn+1| ≤ δ2n ≤
4|y − sn0

|2.
If δn+1 < |y−sn0

| < δn/2 then ∆n = 0. By using the definition ofHn+1 and

the choice of δn and δn+1, we obtain that |Σn+1| < 3δ2n+1+
∑∞

k=n+2(kδ
2
k+

δ2k
2k
) <

4|y − sn0
|2.

We have used that (10) and (14) hold for all n ≥ n0. This combined with
(22) implies that hF (sn0

) = hµ(sn0
) = 2. Since all the other points have an

exponent less than 1, this concludes the proof.

Proposition 19. For every h ∈ [0, 1], dF (h) = h.

Proof. Obviously, by Proposition 10, only the lower bound needs to be
proved.

By construction, in each interval Jl = [αl, βl] (recall (18)), if F̃l stands
for the restriction of F onto Jl, one has d

F̃l
(h) ≥ h for all h ∈ [0, 1]. Hence

d
F̃l
(h) = h for h ∈ [0, 1]. The fact that F is homogeneously multifractal

follows from the density of the intervals In (which implies the density of the
Jl).

3 Construction of a monotone function with Hölder ex-

ponents 1

In this section we prove Proposition 8. The function Z we obtain is a sort
of monotone increasing Weierstrass-like function.

Proof. First we need positive sequences (an)n≥N and (bn)n≥N . The sequence
(an) will tend to zero sufficiently fast, while (bn) will consist of integers growing
to infinity. The sequences are built inductively. Set a1 = 1, b1 = 4. Suppose
that n > 1 and the terms of an′ and bn′ have already been selected for n′ < n.
We select an ∈ (0, 1) and

bn ∈ N is congruent to 3 modulo 4 (23)

such that
an−1

300
> an > (4bn)

−1

n and
anbn
100

>

n−1∑

n′=1

an′bn′ . (24)

Iterating the scheme gives the sequences (an)n≥N and (bn)n≥N . From the left
handside inequality in (24), it follows that

an
100

>

∞∑

n′=n+1

an′ . (25)
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0 x1 542 63

g(x)

Figure 1: The function g

Put g(x) = 0 on [0, 1], g(x) = 1 on [2, 3], g(4) = 0 and suppose that g is
linear on [1, 2] and [3, 4], moreover to define g on R we also assume that it is
periodic by 4 (see Figure 1). Further, we set

G(x) =
∞∑

n=1

ang(bnx) and Z(x) =

∫ x

0

G(t)dt.

Then one can easily see that G is continuous as uniform limit of continuous
functions, and Z is continuously differentiable with Z ′(x) = G(x) for all x ∈
[0, 1]. In particular, we have hZ(x) ≥ 1 for all x ∈ [0, 1]. If we can verify that
for every x0 ∈ [0, 1] and for every sufficiently large n1 ∈ N we can find x1,
depending on n1, such that |x1 − x0| ≤ 4/bn1

and

|Z(x1)− Z(x0)− Z ′(x0)(x1 − x0)| >
1

162
|x1 − x0|

1+ 1
n1 , (26)

then hZ(x) ≤ 1 for all x ∈ [0, 1]. Combining this with the differentiability of
Z, we obtain that hZ(x) = 1 for all x ∈ [0, 1], proving Proposition 8.

Observe that g is a Lipschitz function with Lipschitz constant one, hence

|g(bn1
x)− g(bn1

x)| ≤ bn1
|x− y| for all x, y ∈ R. (27)

Fix x0 ∈ [0, 1]. It remains us to check that (26) holds true. If x0 = 0, then
g(bn1

x0) = 0 and if x0 = 1, then g(bn1
x0) = 1, by (23).

From the definition of g, if n1 is sufficiently large, we can find x1 ∈ [0, 1]
such that:

• |x1 − x0| ≤ 4/bn1
,

• g(bn1
x) − g(bn1

x0) is of constant sign for x in the interval I0,1 with
endpoints x0 and x1,
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• there exists a subinterval I ′0,1 ⊂ I0,1 of length 1
bn1

such that |g(bn1
x) −

g(bn1
x0)| ≥ 1/2 for all x ∈ I ′0,1.

Without limiting generality, we suppose that x1 > x0, [x0, x1] = I1,0, and

|x1 − x0| ≤ 4/bn1
, g(bn1

x)− g(bn1
x0) ≥ 0 for x ∈ I1,0 (28)

g(bn1
x)− g(bn1

x0) ≥ 1/2 for all x ∈ [x′, x′ + 1/bn1
] = I ′0,1 ⊂ I1,0.

Then

I := |Z(x1)− Z(x0)− Z ′(x0)(x1 − x0)| =
∣∣∣
∫ x1

x0

G(t)dt−G(x0)(x1 − x0)
∣∣∣

=
∣∣∣

∞∑

n=1

an

(∫ x1

x0

g(bnt)dt− g(bnx0)(x1 − x0)
)∣∣∣

by the uniform convergence of the series. Dividing the sum into three parts,
and using successively (27), (28), and the fact that |g| ≤ 1, we obtain

I =
∣∣∣
n1−1∑

n=1

(
an

∫ x1

x0

g(bnt)− g(bnx0)dt
)
+ an1

∫ x1

x0

g(bn1
t)− g(bn1

x0)dt

∞∑

n=n1+1

(
an

∫ x1

x0

g(bnt)− g(bnx0)dt
)∣∣∣

≥ an1

∫ x1

x0

g(bn1
t)− g(bn1

x0)dt−
n1−1∑

n=1

(
an

∫ x1

x0

|g(bnt)− g(bnx0)|dt
)

−
∞∑

n=n1+1

(
an

∫ x1

x0

|g(bnt)− g(bnx0|dt
)

≥
an1

2bn1

−
n1−1∑

n=1

(
an

∫ x1

x0

bn|t− x0|dt
)
−

∞∑

n=n1+1

an|x1 − x0|

Then, by (24), (25) and (28), one finally has

I ≥
an1

2bn1

−
n1−1∑

n=1

anbn
16

2b2n1

−
∞∑

n=n1+1

an
4

bn1

≥
an1

4bn1

≥ (4bn1
)−1− 1

n1 ≥
( |x1 − x0|

16

)1+ 1
n1

.

This implies (26).
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