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ABSTRACT 

Increasing global CO2 emissions have profound consequences for plant biology, not least 

because of direct influences on carbon gain. However, much remains uncertain regarding how 

our major crops will respond to a future high CO2 world. Crop models inter-comparison studies 

have identified large uncertainties and biases associated with climate change. The need to 

quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and 

biology and climate change modelling closer together. Comparing data from different models 

that have been used to assess the potential climate change impacts on soybean and maize 

production, future yield losses have been predicted for both major crops. However, when CO2 

fertilisation effects are taken into account significant yield gains are predicted for soybean, 

together with a shift in global production from the Southern to the Northern hemisphere. Maize 

production is also forecast to shift northwards. However, unless plant breeders are able to 

produce new hybrids with improved traits, the forecasted yield losses for maize will only be 

mitigated by agro-management adaptations. In addition, the increasing demands of a growing 

world population will require larger areas of marginal land to be used for maize and soybean 

production. We summarise the outputs of crop models, together with mitigation options for 

decreasing the negative impacts of climate on the global maize and soybean production, 

providing an overview of projected land-use change as a major determining factor for future 

global crop production. 
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INTRODUCTION 

 

Atmospheric CO2 concentrations have risen from about 280 𝛍LL-1 in pre-industrial times to 

400 𝛍LL-1 at present (IPCC 2013). The increasing concentration rate has accelerated in recent 

years to the extent that [CO2] may reach between 530 and 970 𝛍LL-1 by the end of the 21st 

century, leading to significant global warming (IPCC 2013). Higher temperatures and high 

[CO2] can be both beneficial and detrimental to plants, leading to changes in the global 

agricultural landscape. Average global temperatures have increased by 0.76 °C over the last 

150 years and are likely to increase by at least another 1.7 °C by the end of this century. It is 

generally assumed that most plants are adapted to atmospheric [CO2] below 300 𝛍LL-1 and that 

they will be slow to adapt to the ongoing rapid increases (Ort et al. 2015). 

 

Since high [CO2] will favor photosynthetic carbon assimilation and depress photorespiration in 

plants with the C3 pathway of photosynthesis, it is generally assumed that C3 plants will benefit 

from increased carbon gain that will translate into increased biomass and yield. However, many 

aspects of plant metabolism, molecular physiology, structure and development are modified by 

growth under high atmospheric [CO2], not least because the assimilation of carbon is tightly 

linked to primary nitrogen assimilation.  Moreover, increased [CO2] reduces the density of 

stomata and also aperture of the stomatal resulting in decreased evapotranspiration (Mansfield 

et al. 1990, Kim et al. 2010, Vavasseur and Raghavendra 2005). Stomatal development is also 

controlled by both [CO2] and the phytohormone abscisic acid (ABA, Woodward 1987, 

Woodward and Kelly 1995, Tanaka et al. 2013). Several components have been identified in 

the signaling pathway that reduces stomatal apertures in response to elevated [CO2] including 

β-carbonic anhydrases (Hu et al. 2010), the HT1 protein kinase, the RHC1 MATE transporter 

and the NtMPK4  protein kinase (Hashimoto et al. 2006, Marten et al. 2008, Tian et al. 2015). 

However, the generation of reactive oxygen species (ROS) is involved in both high [CO2]-

induced decreases in stomatal density and stoma, requiring the presence of ABA, PYR/RCAR 

and ABA receptors (Chater et al. 2015). Despite extensive research efforts over the last 50 

years, the complex interplay between metabolic and environmental signals that determine the 

plant response to high CO2 is far from resolved, particularly at the whole plant level. Much of 

our current understanding of the responses of crop growth to high atmospheric [CO2] has come 

from either studies in free air CO2 enrichment (FACE) sites or chamber (closed or open-top) 

experiments. However, such studies have not always yielded consistent results. CO2 enrichment 

does not necessarily enhance plant growth or yield and differences in the responses of these 
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traits have been reported even within the same species (Ainsworth and Long 2005, Luo et al. 

2006, Leakey et al. 2009a,b, Hasegawa et al. 2013, Bishop et al. 2015). These studies provide 

the essential foundation data underpinning crop models, predicting future changes in crop 

production and their implications for food security.  

 

Crop models have a central role in informing agro-industry and policymakers about the risks 

and potential of adaptation strategies to counter climate change, as well as directing plant 

scientists and breeders towards the required traits in improved varieties and cropping systems’ 

management practices to mitigate global climate change impacts. Crop model inter-comparison 

studies have identified large uncertainties and biases (e.g. Asseng et al. 2013, 2014, Bassu et 

al. 2014), and unfortunately they do not often incorporate current knowledge of plant responses 

to growth under high atmospheric [CO2] (Durand et al. 2017). This review summarises current 

crop models and the complexity of analysis, within the context of our current knowledge on the 

impacts of a high [CO2] on the C3 crop plant soybean (Glycine max), and the C4 crop maize 

(Zea mays), which has an internal CO2 concentrating mechanism. Maize and soybean are used 

to produce a wide range of food and non-food products including pharmaceuticals and biofuels, 

as well as important sources of livestock feed. Here, we consider the projected impacts of a 

future high CO2 world on the global production of maize and soybean. Currently, maize is the 

most important grain crop and soybean the fourth most important in terms of global production. 

Since 1960, soybean and maize grain yields increased 7.6 and 2.6 times, respectively. Together, 

the USA, Brazil and Asia (mainly China and India) account for respectively 92% and 84% of 

the world soybean and maize production. However, while the land area on which grain legumes, 

such as soybean are grown has gradually increased over the past 50 years, this is still only a 

quarter of that planted to cereals, such as maize  (Foyer et al. 2016). In addition, while increases 

in cereal production over this period have been predominantly due to increases in yield, driven 

by the introduction of new varieties and improvements in agronomic practices, whereas 

increases in grain legume production are due to both increases in land area planted and grain 

yield (Foyer et al. 2016). For soybean in particular, grain yields have increased in proportion to 

the land area planted. Moreover, year-on-year increases in soybean yields are slowing while 

area planted is increasing, suggesting that more marginal land is being planted. 

 

In this review, we will provide a brief overview of our current understanding of the molecular, 

metabolic and physiological responses of plants to increasing atmospheric [CO2] and briefly 

summarise the history and types of crop models that are currently available. We then 
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specifically address the question of how increasing atmospheric [CO2] will alter global soybean 

and maize production patterns. Using 118 peer-reviewed publications (31 for soybean and 87 

for maize), we review the main issues that should be taken into account when modelling of 

these two important crops, namely model inputs, the roles of [CO2] adaptation, mitigation, and 

modelling uncertainties. Finally, we discuss projected land-use change as a major determining 

factor for future global crop production. 

 

THE PLASTICITY OF PLANT RESPONSES TO HIGH CO2 

 

There is now an extensive literature on the responses of plant biology to growth under high 

[CO2] conditions, with reviews ranging from the control of photosynthetic electron transport 

and re-programming of photosynthetic gene expression that accompanies the suppression of 

photorespiration (Foyer et al. 2012) to effects on abiotic stress tolerance (AbdElgawad et al. 

2016). It is not our intention therefore to describe the complex and many-faceted responses of 

plants to CO2 enrichment but rather to highlight a few of the salient points that form the basis 

for current assumptions made in crop models.  

 

Current atmospheres have a CO2:O2 ratio of 0.0018 but this may increase to values as high as 

0.0047 by the end of this century (IPCC 2013), because CO2 is currently increasing with an 

annual rate average of 2.1 𝛍LL-1 (Dlugokencky and Tans 2017). This will benefit plants such 

as soybean that rely on C3 photosynthesis. High atmospheric [CO2] in FACE experiments 

resulted in increased soybean photosynthesis rates of up to 46 % (Leakey et al. 2009a). This 

enhancement is possible because the current atmospheric [CO2] of 400 𝛍LL-1 is insufficient to 

saturate the enzyme responsible for photosynthetic carbon assimilation, ribulose-1,5-

bisphosphate carboxylase-oxygenase (Rubisco). Gaseous CO2 is much more soluble in water 

than O2, and thus the local CO2:O2 ratio in the chloroplast environment is currently about 0.026 

at 25 °C. Rubisco has about a 100-fold greater affinity for CO2 than O2 in higher plants, dictating 

that this enzyme catalyses 2/3 cycles of carboxylation for every cycle of oxidation. In this way, 

carbon is partitioned between the assimilatory C3 cycle and the photorespiratory pathways. 

Hence, higher CO2:O2 ratios will competitively inhibit the oxygenase activity of Rubisco and 

C3 carbon fixation will be favoured over photorespiration. However, the potential benefits 

offered by increased carbon gain are often not fully realized because of insufficient sink 

capacity when C3 plants are grown at elevated [CO2] (Paul and Foyer 2001, Bernacchi et al. 

2005). This results in carbohydrate accumulation in source leaves, a signal that causes 
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repression of genes encoding photosynthetic proteins leading to a down-regulation of 

photosynthesis and a decrease in leaf nitrogen (N) content (Leakey et al. 2009a). Limitations in 

soil nitrate availability can also lead to down-regulation of photosynthesis in plants grown at 

elevated [CO2].  The “progressive N limitation” hypothesis suggests that under CO2 enrichment, 

plant N uptake from soils fails to keep pace with photosynthesis and shoot carbohydrate 

accumulation (Foyer et al. 2009). A decline in soil quality is accompanied by increases in 

microbial immobilization because of high C/N ratios, a decline in soil N availability so that 

plants become increasingly N-limited, and as a result there is a decrease in photosynthesis 

(Foyer et al. 2009). It has also been argued that photorespiration plays an important role in 

providing the reductant required to drive the assimilation of nitrate into ammonium 

(Rachmilevitch et al. 2004). Hence, that increasing [CO2] will favor C3 plants particularly in 

environments where NH4+ is available as a nitrogen source. 

   

The effects of increasing [CO2] on plant architecture and partitioning of biomass between roots 

and shoots remains uncertain. Much depends on the C/N balance in roots and shoots. N-

availability signals in the shoot influence the root system. The shoot promotes root growth in 

proportion to total N-demand. Plant architecture responses to increasing [CO2] are likely to 

involve complex pathways of root-to-shoot and shoot-to-root signaling. Signaling molecules 

include the small C-TERMINALLY ENCODED PEPTIDE (CEP) family peptides, which 

control root system architecture in a non-cell-autonomous manner (Mohd-Radzman et al. 

2015). In N-deprived roots CEP peptides are produced and transported to the shoot, where they 

induce of expression of ‘CEP-DOWNSTREAM’ peptides that are transported back to the root 

to increase the expression of N-uptake transporters. There is a paucity of literature to date 

concerning how high [CO2] influences whole plant signaling.  

 

One particularly important result of the growth of C3 plants under elevated CO2 is the priming 

of pathogen defenses (Mhamdi and Noctor 2016).  Multiple pathogen defense pathways are 

activated when C3 plants are grown with atmospheric CO2 enrichment, leading to increased 

resistance to bacterial and fungal pathogens. This high [CO2]-dependent priming of pathogen 

defenses is linked to metabolic adjustments involving redox signaling (Mhamdi and Noctor 

2016). While growth under elevated [CO2] may enhance the resistance/resilience of C3 plants 

to pests and pathogens, a FACE study showed no effects on aphid performance (Mondor et al. 

2005). 
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C4 plants such as maize are able to concentrate CO2 in the Rubisco-containing photosynthetic 

cells of the bundle sheath. The CO2-concentrating mechanism allows high rates of 

photosynthesis to occur even when stomata are closed while limiting flux through the 

photorespiratory pathway. Hence the C4 pathway of photosynthesis provides a competitive 

advantage under growth conditions that promote carbon loss through photorespiration, such as 

high temperatures or decreased water availability (Lopes and Foyer 2011). The transpiration 

rates and water status of maize leaves, particularly the older leaf ranks, are changed under 

conditions of atmospheric CO2 enrichment even when plants are maintained under well-watered 

conditions (Prins et al. 2010). Under well-watered conditions, elevated CO2 has little effect on 

the photosynthesis or growth of C4 plants in controlled environment (Soares et al. 2007, Prins 

et al. 2010) or in the FACE studies (Leakey et al. 2009a,b, Manderscheid et al. 2014). Moreover, 

the negative impact of drought on yield is attenuated at high CO2 because of stomatal closure 

(Lopes et al. 2011, Manderscheid et al. 2014). Such observations indicate that maize should 

perform better under drought stress conditions when plants are grown at high [CO2]. While 

higher temperatures should favor C4 plants over C3 plants (Long and Ort 2010), a negative 

response of global yields has been projected for maize as well as wheat and barley as a result 

of increased temperatures (Tatsumi et al. 2011, Asseng et al. 2014).  Elevated temperatures 

have been reported to exert a negative influence on a range of plant processes such as 

photosynthesis through decreased activation of Rubisco, stomatal closure, flower development, 

pollen viability and hence fertility, and fruit ripening but in many cases the precise mechanisms 

remain to be characterised.    

 

THE RISE OF CROP MODELLING 

 

Crop models are designed to calculate crop yield (and other important parameters of the soil-

plant system) as a function of weather and soil conditions, plant-specific characteristics as well 

as a choice of agricultural management practices. Models of cropping systems were first 

conceived of in the 1960s (Jones et al. 2016). Although it is fundamentally a curiosity-driven 

activity, the development of crop models received major boosts from various economic, 

technological and political events. During the Cold War, fueled by the unexpected large volume 

purchase of wheat by the Soviet Union in 1972, another type of curiosity played an important 

role in the development of key components of the DSSAT model suite (Jones et al. 2003) 

enabling the USA to predict the yield of major crops produced and traded worldwide, especially 
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in the COMECON (Council for Mutual Economic Assistance) countries (Ritchie 2000). 

Governmental funds helped experts from different disciplines to develop crop models with new 

capabilities: EPIC (Williams et al. 1989) with a soil erosion module, APSIM (Keating et al. 

2003) able to simulate large number of different crops including trees and weeds. The release 

of the first personal computers in the early 1980s revolutionized not only the use and 

development of crop models but it led to many innovations in other fields (computer graphics, 

statistical analysis, GIS, etc.) that have contributed to the modeling of agricultural systems 

(Jones et al. 2016).  

Crop modelling has been used for various applications over the past few decades. Field-scale 

applications for decision support have a long history (Hoogenboom et al. 1994) that in turn 

enabled work with seasonal weather forecasting (Hansen 2005), frameworks to link crop and 

climate models (Challinor et al. 2003), or integrated assessments within watersheds or across 

multiple sectors (Warszawski et al. 2014, Wriedt et al. 2009). Crop models have been used to 

develop adaptation options (Webber et al. 2014, Challinor 2009) and there is now recognition 

of the need for combined assessments of adaptation and mitigation, in support of achieving 

emissions targets (Jarvis et al. 2011, Shirsath et al. 2017). The need to quantify uncertainty 

(Challinor et al. 2013) and to improve models has led to an increasing number of international 

collaborations across modelling groups (Rosenzweig et al. 2013), and to work supporting the 

use of crop models with climate model ensembles (Ramirez-Villegas et al. 2013). Recognition 

of the importance of vulnerability and agricultural management in determining impacts and 

adaptation options has led to work across the natural-social science interface (Simelton et al. 

2012). For a detailed history of crop models see the comprehensive work of Jones et al. (2016). 

 

MAJOR TYPES OF CROP MODELS 

 

Approaches used to assess the impacts of climate change on agriculture include four major 

types. 1) Climate or more generally, environmental index-based methods (Olesen et al. 2011) 

utilize a multidimensional scoring system of production determining factors to provide a quasi-

quantitative assessment of the vulnerability of the investigated agricultural system or area. 2) 

Statistical models express the relationship between yield or yield components and weather 

parameters in a form of regression equations (Lobell and Burke 2010) or other type of more 

“black-box” models (Delerce et al. 2016) which are calibrated by using corresponding observed 

yield and weather data varying in time or space or in both domains. 3) Niche-based models 
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describe the geographical distribution of a crop species using either a set of explicit fuzzy-logic 

equations that describe the crop’s response to various environmental factors (Zabel et al. 2014) 

or a statistical model fitted with presences and absences (Estes et al. 2013). 4) Process-based 

models (Rosenzweig et al. 2014, Ewert et al. 2015, Müller et al. 2017) are the mathematical 

(and nowadays usually computer-based) representation of the most important processes of the 

soil-plant system consisting of a set of ordinary or partial differential equations and empirical 

equations organised into procedures or modules where the outputs of one procedure can serve 

as input to other procedures and the model as a whole is able to describe the temporal pattern 

of the key system parameters. That is why these models are also called crop simulation models. 

Each type of model has advantages and disadvantages as well as limitations. However, all are 

useful tools in considerations of the potential impacts of climate change. Researchers select the 

model that best suits the application. From the point of view of the present question, the major 

limitations of the first three approaches are that they cannot capture future climate-soil-crop 

relationships, adaptation and carbon dioxide fertilization effect, though there are techniques to 

estimate the latter in statistical methods (McGrath and Lobell 2011). Probably this is the main 

reason why process-based crop models are the most commonly used tools for climate impact 

assessments (White et al. 2011). 

 

STATE OF THE ART OF CROP MODELLING 

 

The capabilities of crop models depend in large part on the observed data used for developing 

and testing the model, and on modelling the crop at a degree of complexity that is appropriate 

to the aims of the study (Sinclair and Seligman 2000). The results of any one particular study 

are highly dependent upon input data quality and adequate quantification of uncertainty, though 

synthesis across many studies helps achieving consensus (Challinor et al. 2014b). Crop model 

ensembles should represent the underlying distribution of probabilities, which is not 

straightforward (Wallach et al. 2016). Attention should be paid to bias correction of climate 

data where necessary (Hawkins et al. 2013). The assumptions underlying the results of the study 

should be made explicit, for example using a common uncertainty reporting format (Wesselink 

et al. 2015). For adaptation, there are number issues that need attention when formulating a 

study (see Lobell 2014). 

 

Whilst the spread of results produced by crop models has increased over time, robust 

conclusions can still result from analysis of outputs (Challinor et al. 2014b). Crop models are 
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increasingly used for global assessments (Rosenzweig et al. 2014). There are currently two 

large modelling initiatives, AgMIP (agmip.org) and Modelling European Agriculture for 

Climate Change (MACSUR: macsur.eu). These networking hubs coordinate and support crop 

model development, together with crop model based studies and impact assessments, providing 

information for producers, policy-makers and the public in the area of integrated climate change 

risk assessment for global agriculture and food security. The [projections described for maize 

and soybean below are the derived from integrated MACSUR model development and 

application. 

 

Understanding the influence of land use on crop production is an important challenge for such 

studies (Challinor et al. 2015). Effective use of crop models within integrated assessment 

models is another important challenge (Ewert et al. 2015). Coupling crop models with general 

equilibrium models to bring demand and supply together and consider global trade as a major 

driver of future land use change is another step forward in the evolvement of crop models 

(Mauser et al. 2015). These challenges for the use of crop models do nothing to detract from 

the need for continued model improvement and representation of processes (Hollaway et al. 

2012, Challinor et al. 2014a), particularly where experimental limitations occur (Reich and 

Hobbie 2013). 

 

 PROJECTIONS FOR THE FUTURE OF C3 AND C4 CROPS, FOCUSING ON 

SOYBEAN AND MAIZE 

 

Crop models have been widely used to estimate the potential impacts of climate change on 

future agricultural productivity. The protocols of the assessments vary to such an extent that 

they impose serious limitations to cross-study syntheses and increase the potential for bias in 

projected impacts (White et al. 2011). Despite this fact, the available results allow us to draw 

some robust conclusions that are outlined below. With the help of the SCOPUS database, we 

reviewed 118 peer-reviewed publications (31 for soybean and 87 for maize) that used crop 

models to investigate the impact of climate change on the production of maize and soybean 

worldwide in the second half of the 21st century. These modelling studies covered all the most 

important production areas in America, Asia, Europe and Africa. Using these studies, we draw 

conclusions on model inputs, consideration of [CO2] response, adaptation and mitigation for 

both crops. 
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MODELS AND KEY MODEL INPUTS IN THE SOYBEAN STUDIES 

Fifteen different models were used to assess the potential climate change impacts on soybean. 

However, only two models were used in more than 2 studies. CROPGRO and EPIC model 

results were reported in 15 and 4 papers, respectively. 17 studies investigated more than one 

location (from 2 to 100) within the study area (point-based studies) and 11 studies used the 

gridded modelling approach covering the total investigated area with a specific spatial 

resolution. No studies used gridded and point-based estimates jointly. Regarding uncertainty 

quantification, only 2 papers used more than one crop model, though this technique helps 

avoiding model related biases in the climate change impact projections. Conversely, with the 

exception of two studies, all used several (2-72) future climate projections to assess (or show) 

the uncertainty arising from different climate model- and/or climate change scenario-related 

issues. The projected temperature rise used in the climate projections (compared to the baseline) 

varied between 0.9 and 9 °C, but the majority of the studies examined the effect of a 2-4 °C 

temperature rise. These temperature changes were associated with an increase in the 

atmospheric [CO2] from 450-700 𝛍LL-1, although the majority of the papers postulated a [CO2] 

of 550-650 𝛍LL-1 for the future. 

 

THE EFFECT OF HIGH [CO2] AND ADAPTATION OPTIONS ON FUTURE 

SOYBEAN PRODUCTION  

 

Of the literature use in this analysis, six studies failed to consider the direct effect of high [CO2] 

on soybeans.  All studies projected yield losses for soybean, which might be mitigated by  

agricultural management adaptations such as changing the planting date (do Rio et al. 2016), 

change of cultivars (Battisti et al. 2017) or introducing double-cropping systems (Lant et al. 

2016). The global study of Tatsumi et al. (2011) projected yield decrease for all the major 

soybean producing areas. However, this study applied several significant simplifications such 

as use of monthly step climatic data, ignoring CO2 fertilisation effects and the water holding 

capacity of soils. Twenty seven studies that took into account CO2 fertilisation effects projected 

significant yield gains. Of these, only one global assessment that took into account the added 

carbon gain arising from future high atmospheric [CO2], projected moderate (5-15%) yield 

losses and this was only for regions in US and Latin-America (Deryng et al. 2014). The same 

study did not investigate the potential of management adaptation options. In relation to 

adaptation, in fact, we find that some 16 out of the 37 studies investigated adaptation options. 

These studies suggest that management adaptation options can have a significant effect in 
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counterbalancing the negative effects of climate change (Tubiello et al. 2000, Challinor et al. 

2014b). According to some simulations, some crop management options (e.g. winter rye cover) 

have no effect on future yields but they have the potential to reduce soil erosion and nitrous 

oxide emissions significantly (Basche et al. 2016). 

 

THE ROLE OF CLIMATE CHANGE MITIGATION POLICIES IN FUTURE 

SOYBEAN PRODUCTION 

 

Representative Concentration Pathways (RCPs) are four greenhouse gas concentration 

trajectories (IPCC, 2013), all of which are plausible depending on how much greenhouse gases 

(GHG) are emitted in the years to come. The four RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, 

are named after the prospective radiative forcing values in the year 2100 relative to pre-

industrial values (+2.6, +4.5, +6.0, and +8.5 Wm-2, respectively). The ultimate aim of climate 

change mitigation policies is to reduce emissions consistent with specific targets, thus helping 

to avoid high-end emissions scenarios such as RCP8.5. The Paris Agreement (2015), for 

example, aims at maintaining global average temperature well below 2 °C above pre-industrial 

levels; this has been reported to significantly reduce the risks and impacts of climate change 

(Schleussner et al. 2016). This aim could be achieved in many ways including the use of low-

carbon technologies, renewable energy sources, transportation optimization, as well as 

promoting individual-lifestyle changes (cycling instead of driving, alternative diets, etc.). In the 

agricultural sector, climate change mitigation policies may be implemented via promoting 

reforestation, low input soil management, resource efficient farm management, more 

sustainable fertiliser subsidy provision, and improving knowledge and transfer mechanisms all 

aiming at increasing carbon sequestration and/or decreasing GHG emissions. Climate 

mitigation policies have an important role in ensuring the implementation of technologies, 

meeting mitigation targets, ultimately helping avoid global yield losses. 

 

Across the soybean studies reviewed here, mitigation policies are typically addressed by 

modelling crop yields for different RCPs. Comparison between different RCPs allows 

determination of the likely benefits of climate change mitigation. For example, the yield 

reduction reported by Deryng et al. (2014) was the result of using the most extreme RCP8.5 

based climate projections which is in fine agreement with the findings of Bhattarai et al. (2017) 

who, on the other hand, used not only RCP8.5 but RCP2.6 and RCP4.5 based projections 

resulting in marginal yield losses (-2%) for RCP8.5 and yield gains (11 and 13%) for RCP2.6 
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and RCP4.5, respectively. The studies reviewed thus indicate that successful climate change 

mitigation policies that secure the future [CO2] pathway below RCP4.5, will allow future 

resolution of soybean production problems. 

 

Another important aspect of future crop production is the extent to which areas where crops are 

grown may shift as conditions change. Some studies have shown that land that is suitable for 

soybean production displays a large northward shift (Lant et al. 2016). This shift incorporates 

significant areas of the Northern hemisphere reaching as far as Ireland (Holden and Brereton 

2003). Soybeans are already grown in Canada and varieties are already being trialled for 

production in the UK. Thus, due to the projected future yield and sowing area gains an 

expansion of soya production could be expected worldwide, although as with projected yield 

changes, these shifts in production areas could change depending upon the emissions pathway. 

 

MODELS AND KEY MODEL INPUTS IN THE MAIZE STUDIES 

 

Twenty one different models were used for assessing the potential climate change impacts on 

maize. The two most frequently used models were the CERES and EPIC that were used in 45 

and 8 studies, respectively. About a third  (23) of the assessments were based on data of only 

one particular site of the study area and/or applied only one climate projection for the future. 

The projected temperature rise and the associated atmospheric carbon dioxide increase of the 

climate projections of the maize studies were similar to those of the soybean studies. Regarding 

crop model uncertainty, twenty two studies used the gridded modelling approach and five 

papers used more than one crop model for the impact assessments. The most comprehensive of 

these was the study of Bassu et al. (2014), which evaluated 23 maize simulation models for four 

locations representing a wide range of maize production conditions in the world. They found 

that only an ensemble of models (a minimum of about 8 to 10 needed) was able to simulate 

absolute yields accurately and that there was a large uncertainty in the yield response to [CO2] 

among models. The uncertainty envelope is mainly due to inconsistency in the way models 

simulate assimilation, as well as in whether or not models simulate enhanced [CO2] effects on 

transpiration. 

 

MODEL AND SCALE RELATED UNCERTAINTY IN THE MAIZE STUDIES 
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In a global study, Blanc and Sultan (2015) showed that the projected changes for maize 

production were highly model-dependent, ranging from a 15% decrease to a 20% increase in 

yield in the Corn Belt. However, large scale investigations may contradict local (country scale) 

studies even if the same model was used. For example, Supit et al. (2012) projected a yield 

increase for Turkey as a result of climate change while Sen et al. (2012) predicted that yields 

will decrease in this region. One reason for this kind of discrepancy could be the lack of use or 

quality in the soil data used for yield projections (Tatsumi et al. 2011). The impact of climate 

change on specific regions could vary significantly because of differences in soil characteristics 

(Chipanshi et al. 2003). Surprisingly, no local model-based impact studies were found for 

France, Indonesia, Ukraine or South-Africa, although these countries are among the top 10 

global maize producers. 

 

PROSPECTS FOR FUTURE MAIZE PRODUCTION 

 

While a number of studies have predicted increases in maize yields in the major corn-producing 

areas of the world such as the USA (Tubiello et al. 2002), China (Guo et al. 2010) and Argentina 

(Travasso et al. 2009), most studies have projected global decreases in maize yields (Lin et al. 

2015, Supit et al. 2012, Byjesh et al. 2010, Schlenker and Roberts 2009; Deryng et al. 2014), 

even in studies that took the beneficial effect of CO2 fertilisation into account. Many studies 

accounted the predicted yield reduction by one or more of the three main reasons: 1) Increasing 

frequency and severity of drought; 2) Increasing risk of heat waves around flowering; 3) 

Shortening of the vegetation period. However, it may also be the case that current models fail 

to account for the water saving mechanisms afforded by C4 metabolism and physiology 

appropriately. Higher water use efficiencies would be expected in maize under high [CO2]. 

Thus, models failing to take this feature into account might underestimate biomass and yield 

gains under high [CO2]. Durand et al. (2017) assessed the accuracy of maize crop models in 

simulating the interactions of changes at high atmospheric [CO2]. Under well-watered 

conditions the models were able to reproduce the absence of yield response to elevated [CO2]. 

However, under water deficit conditions the models failed to capture the extent of the [CO2] 

response that was observed in the field. 

 

Regional gridded modelling studies are particularly important in maize yield projections 

because they are able to distinguish between sub-regions that may be positively or negatively 

affected by climate change. The currently high yielding sub-regions of China may face yield 
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decreases while the current low yielding sub-regions may expect yield increase (Xiong et al. 

2007). Current high yielding sub-regions are near-optimum zones providing very favourable 

conditions for maize production. Almost any environmental change in these areas could only 

be negative as it would distance the system from its near-optimum state. On the other hand, 

marginal areas (far from the optimum) most likely benefit from the environmental changes, by 

getting closer to the optimum state of the system. However, yield losses per unit area do not 

necessarily translate into overall productivity for a given region, because the projected area of 

cultivated land used for multiple-cropping systems may be significantly increased as a result of 

climate change (Yang et al. 2015). Moreover, the indirect effects of climate change can become 

important for example the projected increases in insect pests as a result of increased winter 

survival (Diffenbaugh et al. 2008). Such factors could significantly alter the pest management 

landscape of North American maize production, leading to substantial economic impacts 

through increased seed and insecticide costs, as well as decreased yields.  

 

ROLES FOR ADAPTATION OPTIONS AND CLIMATE CHANGE MITIGATION 

POLICY IN FUTURE MAIZE PRODUCTION 

 

Modelling studies do not depict a clear positive or negative picture for future global maize 

production but they clearly emphasize the need for explicit adaptation actions such as breeding 

of heat/drought tolerant hybrids. The majority of the studies (13 out of 20) that assessed certain 

adaptation options concluded that a shift in planting date, together with the use of longer 

maturing hybrids and alternative soil and nitrogen management practices will be insufficient to 

counter negative impacts of climate change (Tubiello et al. 2000, Ko et al. 2012, Moradi et al. 

2013). Studies also agree that the more extreme the scenario (RCP8.5 or similar scenarios form 

the earlier IPCC reports) the more severe the yield losses that could be expected. This highlights 

the necessity and opportunities for joint mitigation-adaptation efforts. A global study suggest 

that the drastic climate mitigation policy of RCP2.6 could avoid more than 80% of the projected 

global average yield losses (USA: -20%, Brazil: -50%, Argentina: -40%) that are otherwise 

projected by the 2080s under RCP8.5 (Deryng et al. 2014).  

 

PROJECTED LAND USE CHANGES FOR MAIZE AND SOYBEAN PRODUCTION 

BY 2100 
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Coupling land use (Monfreda et al. 2008) and baseline and future land suitability data (Zabel et 

al. 2014) with future diet (Tilman and Clark 2014) and GHG emission (Smith et al. 2008) 

scenarios we projected future of global maize (Fig. 1) and soybean (Fig. 2) production areas. a 

Baseline (1981-2010) and future (2071-2100) land suitability determinations for each grid cell 

were made using the methodology of Zabel et al. (2014) by incorporating data on local climate, 

soil and topography. The ‘No Change’ scenario is the extrapolation of the current trends i.e. 

assuming that no major GHG emission reductions will be achieved by the introduction of 

mitigation policies or enhanced climate-smart agro-technologies. Moreover, the scenario 

predicts that increases in income and urbanization will drive a global dietary transition that 

involves increasingly higher consumption of refined sugars, fats, oils and meats (Tilman and 

Clark 2014). Together, these features will result in increased demands for maize and soybean 

production. In contrast, the ‘Major Change’ scenario envisages successful and effective GHG 

mitigation policies, together with the instigation of new GHG emission reducing agricultural 

practices. Together with significant health-driven changes in diets and adoption of alternative 

diets such as Mediterranean, pescetarian or vegetarian diets that are characterised by higher 

consumption of fruits, vegetables and pulses and a lower meat consumption (Tilman and Clark 

2014), these will  result in an decreasing demand for maize and soybean. Using these scenarios 

global crop production area maps were created in a 10 km (5 arc minute) spatial resolution. 

According to current land use (LU) given by (Monfreda et al. 2008) each grid cell can have two 

states: used (harvested area fraction of the crop is at least 1% of the grid cell area) and not used.  

 

The crop production scenarios reported here predict significantly different demands for land 

use for maize (Fig. 1) and soybean (Fig. 2) production.  Both the used and the not used cells 

may remain in the same land use category or may be changed in the future providing four 

options that can be defined by certain rules for both scenarios (Table 1). If land is ‘used’ today 

according to the definitions used above, we assume that these areas will be unaltered in the 

future (2071-2100) in the ‘Major Change’ scenario, if the suitability increases by at least 10 %. 

If suitability increases less than 10 % or decreases until 2071-2100, we assume that these areas 

will be abandoned and not be used in the future.  

 

Crucially, areas that are currently not used for maize (Fig. 1B) and soybean (Fig. 2B) production 

will probably be added if future land suitability is higher than the 67th percentile of today’s 

global suitability on used areas. Conversely, areas that are currently not used will also not be 

used in the future if suitability is lower than the 67th percentile. Since demands for soybean and 
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maize production are higher in the ‘No Change’ scenarios than in the ‘Major Change’ scenarios, 

more areas will be required for the production of these crops. Accordingly, we assume lower 

thresholds for future land suitability, as well as a lower percentiles of suitability on today’s 

production areas for maize and soybean respectively.  Hence, greater areas of marginal land 

will have to be used for the cultivation maize and soybean in order to fulfil the increasing 

demands. 

 

CONCLUSIONS AND PERSPECTIVES 

 

Future land use maps were created for maize and soybean using the basic rules outlined in Table 

1 (Fig. 1). Major changes in policy, agricultural practice and diet imply that major shifts will 

occur in the area used for maize and soya production. Our assessment of modelling outputs 

predicts that large portions of current areas of significant maize and soya production may be 

abandoned from in the future. On the other hand, large new areas will become available in the 

future (Table 2) in order to meet the increasing demands on maize and soya production, 

particularly if no significant policy, agro-technological and diet-related changes take place in 

the future. According to the projections Europe will face major challenges in both production 

scenarios, especially in case of maize. Aligned to other studies (Ruiz-Ramos and Mínguez 2010, 

Supit et al. 2012, Fodor et al. 2014, Mihailović et al. 2015) a stern warning sign could be given 

to the European Union that effective adaptation actions are required to mitigate the harmful 

impacts of climate change across the continent. At the other end of the spectrum is Africa, 

where climate change may allow a massive increase in soybean production no matter which 

production scenario becomes a reality in the future. This it is not surpassing that soybean is 

called Africa’s Cinderella crop (Kolapo, 2011). The studies that were assessed here predict a 

more promising future for soybean, particularly in terms of production areas, gained and 

abandoned (Table 2). These crop models provide essential underpinning information to farmers, 

agro-industries and policymakers, so that appropriate cropping systems and/or management 

practices can be put in place to counter global climate change.  

 

Crop models also have an important role to play in informing plant scientists and breeders of 

essential traits that must be developed in future crop varieties. However, many current models 

are not based on current knowledge of plant responses to elevated atmospheric [CO2] and they 

do not incorporate the latest findings about how crops respond to a changing climate. There is 

therefore an urgent need for a new interface of information exchange between crop modellers 
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and plant scientists highlighting weaknesses and overlooked processes, and to influence how 

models are built, to include how recent changes in our understanding of [CO2]-mediated effects 

on plants might be formalised and incorporated into models. It is thus timely to renew 

discussions in order to remove the large uncertainties and biases in some current crop models, 

as well as informing plant scientists of the essential underpinning traits that will ensure food 

security over the next 50 years. Current crop varieties are not well suited to future unpredictable 

weather patterns caused by climate change.  Modern breeding programs have selected for dwarf 

shoot systems, minimizing the production of vegetative tissues. Moreover, elite crop varieties 

are developed and bred under ideal growth conditions so the selective pressure for plant 

performance under sub-optimal conditions has largely been removed. This has favoured small 

root systems, a trait that may have inadvertently decreased the resilience of plants to both abiotic 

and biotic stresses, which are likely to increase as a result of climate change.  

Finally, plant physiologists should be aware of areas where collaboration and data generation 

would greatly assist crop modellers: 

1. Grain quality aspects: While FACE experiments clearly indicate that CO2 enrichment 

affects grain quality characteristics that are important for consumer nutrition and health, 

and for industrial processing and marketing (Högy et al. 2009), CO2 enrichment effects 

on grain quality traits remain poorly characterised in terms of metabolite, proteome and 

transcript profiles. Some field-scale crop models already include yield quality related 

outputs, including sugar and acid concentrations (Bindi and Maselli, 2001), grain 

protein (Asseng et al. 2002) and grain protein composition (Martre et al. 2006) protein 

composition. The embedded yield quality calculation methods are not thoroughly tested, 

especially not by using data from elevated CO2 experiments. While manipulation of 

some of the enzymes of primary carbon assimilation was found to protect soybean seed 

yields against the negative effects of elevated temperature on plants grown at high CO2 

(Köhler et al. 2016), there are no comparable studies in the literature on effects on grain 

quality.  

2. More accurate vegetation-related to CO2 fluxes: An important aspect of the crop 

simulation models typically used for climate change impacts assessments is that they 

harness important, widely validated knowledge on crop responses to biotic and abiotic 

factors (Boote et al. 2013). Recent progress in crop, ecosystem, and climate modelling 

has led to integration of these disciplines in support of integrated assessments of agro-

ecosystems at the global or regional level (e.g. Osborne et al. 2007, 2015, Wang et al. 

2005). In these cases, crop models may provide the underlying information, parameters 
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and mathematical formulations that underpin the vegetation models used. Nevertheless, 

much work remains to be done in crop simulation models if these are to be fully 

integrated within vegetation models. Foremost, adequately simulating vegetation within 

complex agro-ecosystems requires detailed consideration of CO2 uptake for gross 

primary productivity and CO2 release through respiration (Cramer et al. 2001). While 

progress has been made in developing and testing leaf-to-canopy assimilation in some 

crop models, only a handful of models for the major crops, including maize and 

soybean, include detailed photosynthesis-respiration routines for both assimilation and 

CO2 fertilisation (Bassu et al. 2014, Li et al. 2015). Moreover, respiration costs for 

production of new or maintenance of existing tissue (growth and maintenance 

respiration) are either highly uncertain or not estimated or reported in crop simulation 

studies. Furthermore, testing of CO2 fluxes or canopy assimilation using eddies of air, 

although feasible, is rarely if at all conducted for crop simulation models (Hollinger et 

al. 2005, Paul et al. 1999). Finally, appropriate consideration and validation of CO2 

fluxes in crop models will also help improving water fluxes and evapotranspiration, 

which is a key source of uncertainty in crop simulation (Liu et al. 2016). 

3. Canopy temperature and evapotranspiration: The importance of models predicting 

global warming effects on crop yield to include canopy temperature instead of using air 

temperature was demonstrated by Julia and Dingkuhn (2013). They found that rice 

panicle temperature varied between 9.5 below and 2 °C above air temperature at 2 m 

depending on the microclimate and therefore heat stress causing sterility was more 

likely to occur in warm-humid than hot-arid environments due to humidity effects on 

transpiration cooling. Even though some crop models calculate canopy from air 

temperature, which is then used on some but not necessarily all temperature-related 

processes in the crop model, Webber et al. (2015) found that this did not necessarily 

improve yield simulations. The study compared nine process based crop models that 

used three different approaches of simulating canopy temperature (empirical, energy 

balance assuming neutral atmospheric stability, and energy balance correcting for the 

atmospheric stability conditions) in their ability to simulate heat stress in irrigated wheat 

in a semi-arid environment. They found that for all models the reduction in RMSE was 

larger if canopy temperature was only used for the processes simulating heat stress but 

that using canopy temperatures for all processes did not necessarily improved yield 

simulations. Models that performed well in simulating yield under heat stress had 

varying skill in simulating canopy temperature (the method energy balance assuming 
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neutral atmospheric stability performed worst). Models differ in parameter values which 

might be able to somewhat alleviate the impact from using air temperature. 

Unfortunately the models could not be tested with observed canopy temperature as it 

was not measured continuously throughout the growing season. Webber et al concluded 

that a more systematically understanding of heat stress events and how to model them 

is needed. 

4. Effects of high ozone concentrations: Ozone is highly phytotoxic and can cause 

significant damage to vegetation and crops even at current concentrations in many parts 

of the world (Mills et al. 2011, Booker et al. 2009, Hollaway et al. 2012, Wang and 

Mauzerall 2004). Both maize and soybean are sensitive to ozone (McGrath et al. 2015), 

with predicted global yield losses ranging from 2.5 - 8% for maize and 9.5 – 15% for 

soybean for the year 2030 (Avnery et al. 2011). However, the negative effects of ozone 

are included only in a few crop models. For example, the WOFOST model accounts for 

ozone damage to crops by using a flux-based approach in which the ozone flux inside 

the plant is regulated by the stomatal conductance (Cappelli et al. 2016). The model 

shows that for wheat there are large yield losses under high ozone exposure (i.e. up to 

30% loss for ozone concentration of 60 ppb; Cappelli et al. 2016). While the effects of 

ozone on plant biology have been extensively studied, the effect of pollution on crop 

productivity and quality is an important area for future work, particularly as global 

ozone concentrations are projected to remain at high levels (Fowler et al. 2008). The 

responses of plants to atmospheric ozone should be assessed in combination with other 

stresses to address current as well as the future responses under climate change. 

5. Acclimation to elevated CO2: current knowledge of how plants sense and signal changes 

in atmospheric [CO2] over and above effects on photosynthesis, is limited. Moreover, 

much remains uncertain concerning the mechanisms that define many of the observed 

plant responses to increased atmospheric [CO2] or how these mechanisms will influence 

biotic and abiotic stress responses under field conditions. In particular, relatively little 

is known about how high [CO2] will influence the soil microbiome or plant interactions 

with beneficial fungi and bacteria.  
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Table 1. Rules of projections of future of crop production areas. LSt: Land Suitability today 

(1981-2010); LSf: Land Suitability in the future (2071-2100); PERC33(LSt) and PERC67(LSt): 

33rd and 67th percentile of the distribution of the LSt values of the grid cells used for 

maize/soya production over the global grid. LU denotes Land Use. 

LU today used used not used not used 

LU change unaltered abandoned added unaltered 

LU in the 

future 

used not used used not used 

Scenario No Change 

Rule if 

LSf>0.9×LSt 

if 

LSf<=0.9×LSt 

if  

LSf>PERC33(LSt) 

if  

LSf<=PERC33(LSt) 

Acronym NoCh_Used NoCh_Aband NoCh_Added NoCh_Notused 

Scenario Major Change 

Rule if 

LSf>1.1×LSt 

if 

LSf<=1.1×LSt 

if  

LSf>PERC67(LSt) 

if  

LSf<=PERC67(LSt) 

Acronym MaCh_Used MaCh_Aband MaCh_Added MaCh_Notused 
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Table 2 Predicted global gains and abandoned areas of maize and soya production. . The ‘no 

change’ scenario  is the extrapolation of the current trends with no major GHG emission 

reductions or no major changes in dietary trends that would result in an increasing need for 

maize or soybean production. The ‘Major Change’ scenario will be attained if successful GHG 

mitigation policies are enforced and significant health-driven changes in diets occur that result 

in a decreasing need for maize or soybean production. 

Scenario Transition Acronym 

(see Fig. 1) 

maize [km²] soya [km²] 

No change Abandoned NoCh_Aband 3 364 115 299 005 

Added NoCh_Added 27 740 977 30 524 853 

Major change Abandoned MaCh_Aband 13 287 592 6 506 380 

Added MaCh_Added 10 137 774 6 547 211 
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Figure. 1.  Current maize growing areas (blue), together with predicted abandoned (red) and 

added (green) maize growing areas by 2100. The ‘no change’ scenario (A) is the extrapolation 

of the current trends with no major GHG emission reductions or no major changes in dietary 

trends that would result in an increasing need for maize production. The ‘Major Change’ 

scenario (B) will be attained if successful GHG mitigation policies are enforced and significant 

health-driven changes in diets occur that result in a decreasing need for maize production. 
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Figure. 2 Current soybean growing areas (blue), together with predicted abandoned (red) and 

added (green) soybean growing areas by 2100.  The ‘no change’ scenario (A) is the 

extrapolation of the current trends with no major GHG emission reductions or no major changes 

in dietary trends that would result in an increasing need for soybean  production. The ‘Major 

Change’ scenario (B) will be attained if successful GHG mitigation policies are enforced and 

significant health-driven changes in diets occur that result in a decreasing need for soybean  

production. 
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