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Abstract—Computer Assisted Surgery (CAS) significantly
changed the course of interventional medicine. The development
of medical imaging opened up the possibility for accurate, patient
specific planning, and advanced imaging techniques provided
the ground for the development of real-time navigation systems.
The advancement of minimally invasive surgical techniques and
tools required increasing manuality from the surgeon, which
facilitated the development of tele-robotic manipulation. These
systems provide a vast amount of objective inta-operative data,
thus many believe that the next step could be big data analysis for
creating and evaluating surgical process models. This emerging
field of medicine, called Surgical Data Science, has the potential to
improve intervetional medicine with objective statistical analysis,
and therefore to provide better patient outcomes and a reduction
in healthcare costs.

Index Terms—Computer Assisted Surgery; Big Data Analysis;
Surgical Process Model; Surgical Data Science

I. INTRODUCTION

Traditionally, medicine is considered as a highly hierarchal
profession, where decision is mainly based on individual ex-
perience, rather than objective measurements. With evidence-
based medicine gaining increasing attention in many domains,
this approach has already changed several fields of medicine
(for example pharmacology and internal medicine) [1].
The same applies to surgery: large scale data from heteroge-
nous sources is becoming available. These include: Electronic
Health Record (EHR) systems, digital medical imaging (e.g.
Computer Tomography, Ultrasound), computer assisted surgi-
cal systems etc. While these data sources are rich in infor-
mation, they are generally unstructured, therefore they rarely
get integrated directly into the surgical workflow. Surgical
Data Science (SDS), promises to extract knowledge from
these inputs, and provide objective measures, linking treatment
decisions to medical evidence. To achieve this goal, SDS aims
at creating a framework where data collection, analysis and
modelling are linked in a common architecture providing real-
time performance feedback to the intervention [2].
Even though many insurance organizations and hospitals re-
quire an increasing amount of documentation on medical in-
terventions, patient related data is rarely stored in a structured,
processable repository [3]. To overcome this obstacle SDS
strongly builds on other data-intensive disciplines, such as
data-mining, information theory and statistics, and in general,

Fig. 1. The development of surgery started with the physician relying on in-
situ knowledge, and simple tools. Computer Integrated Surgery means, today
the available information and instrumentation vastly improved, however the
outcome is still dependent on the surgeon’s domain knowledge and experience.
As next step forward, surgery will become automated in many areas. Patient
specific, objective, optimized care will be delivered using Surgical Data
Science techniques [2].

follows suit to the trends of industry eventually creating a
collaborative, context sensitive environment based on con-
tinuous real-time data enabling Surgery 4.0 [4]. With the
gathered information SDS enables technologies like smart ORs
(employing context aware systems), surgical robotics, decision
support systems, speech recognition for OR manipulation [5].
Eventually, improving the human computer interface during
surgery will streamline the surgical procedure reducing the
cost and improving the outcome of surgeries.
In this article, we give an overview of SDS and its most
promising applications. This review is based on online
databases (Google Scholar, Medline, Scopus) searched with
the keyword: ”Surgical Data Science”. The search yielded 33
results, from which 2 hits were discarded due to duplications
and 6 hits due to irrelevance to the field of SDS.
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II. SURGICAL PROCESS MODELING

Surgical Process (SP) is a term, representing the inter-
ventional course realising a surgical goal, for example a
specific laparoscopic cholecystectomy procedure to remove the
gallbladder. The model of this process is called a Surgical
Process Model (SPM), where the model is often represented
in a formal or semi-formal manner, focusing on predefined
interests [6]. The tool of workflow analysis was originally
developed for business applications, and only later applied to
the surgical field, where it have been shown to increase safety
and efficiency [7].
SPMs can originate either from general concepts being applied
to the individual pathology (top down approach), or by analyz-
ing measurement data from surgeries, leading to a generalized
concept (bottom up approach).

A. Top-down approach

The top down approach, what is considered as the traditional
way of surgical procedure planning, is based on clinical
guidelines and textbooks describing only the very high level
concepts of the procedure. With this method, the surgeon’s
background knowledge will lead to the patient-specific ex-
ecution of the surgical plan [8]. In the work presented by
Munchenberg et al., a system was developed for the preopera-
tive planning and execution of neurosurgical procedures. They
employed a haptic interface to interact directly with the patient
data, and robotically execute the planned trajectories, using a
neurosurgical manipulator [9]. One of the main advantages
to the top-down approach is that it is capable of identi-
fying different granularity levels, and accurately describing
the surgery with the required detail [10]. While this method
is a natural way of representing general knowledge, and is
easily understandable for human readers, as the procedure is
usually captured by human observers, this representation rarely
provide high-level detail about the individual surgeries.

B. Bottom-up approach

The motivation for examining a bottom-up approach comes
from the realization that the above mentioned processes, while
capable of representing a reliable surgical plan, the generalized
levels are not feasible to be used for quantification. As
Neumuth et al. [11] showed, it is possible to create accurate
live recordings of surgeries on a detailed, high granularity
level. These results showed that the acquired SPM is accurate
and reproducible, where the recorded individual SPMs (iSPM)
could be used as a basis for process mining techniques. Such
techniques were already available, mainly developed for event
logs in support of business process model development [12],
[13]. Because of several parallel tracks running simultaniously
during surgeries, these techniques could not be directly ap-
plied to SPMs, and therefore a more generic approach was
developed, where the generalized SPM (gSPM) is created
using statistical means of the acquired iSPMs [14]. This
proved to provide reliable results even when using only 50
iSPMs. In the future, gSPMs could be used as a metric to
compare to recorded iSPMs and investigate where and why the

iSPM deviated from the gSPM, gaining valuable knowledge
on adverse events, surgical skill. It can be used to estimate
operational costs and to compare benefits of different surgical
approaches.

III. ONTOLOGY

While SPMs do organize the acquired data, they do not
necessarily build from a machine readable universal dictio-
nary. For many areas of medicine, international healthcare-
terminology standards for biomedical data science already
exists. These standards are organized into ontologies, such as
the Foundational Model of Anatomy [15], Gene Ontology [16]
and SNOMED-CT [17]. While these dictionaries do describe
the medical background, they do not provide a dictionary
for describing interventional medicine. To achieve this goal
the OntoSPM international group was formed. The ontology
developed by this group (also called OntoSPM) is based on
the Basic Formal Ontology (BFO) upper ontology [18], and
provides a connection to more specified ontologies, such as
LapOntoSPM [19], [20].

IV. SDS IN THE OPERATING THEATER

Modern Computer Integrated Surgery (CIS) systems provide
detailed measurements on the surgical process, however, the
data available from the operating computers—for most cases—
is not captured. By providing a framework for recording,
storing and annotating such information (e.g. in the form of
SPMs built on Ontologies) SDS provides the ground for a
wide variety of clinical applications [21].

A. Context-aware automation and assistance

The development of CIS started with the development of
digital medical imaging, which provided the basis for pre-
operative planning. These plans could then be used as a model
for task execution on robotic platforms, where the robot uses a
variety of sensors to update the model to accurately represent
the affected anatomical structures. Results from the surgery
could be recorded and could directly feed back into a central
database to further improve preoperative planning [22]. This
concept provides the basis for CIS and is summarized on
Fig. 2. One of the major challenges in CIS is the integration
of automated procedures into the surgical workflow. Auto-
mated workflow monitoring, would allow the development of
automated surgical assist systems, and could streamline the
surgical process. Such a system was integrated into to the low-
level control architecture of the ROBODOC [23], but today—
mostly because of legal issues—newly developed robotic plat-
forms rarely incorporate such level of autonomy. The use of
SPMs could provide a platform, where subtask automation—
under the supervision of the surgeon—could be integrated
into the surgical procedure, freeing up human assistance
during the surgery, eventually lowering healthcare costs. Such
application needs to observe the surgical scene, and detect the
surgical phases autonomously. To facilitate the development of
such applications, both robotic challenges and testing datasets
have been presented [24], [25]. On these datasets several
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Fig. 2. The concept of Computer Integrated Surgery (CIS) [38] With digital,
patient specific data ( e.g. X-ray imaging, Ultrasound, MR, CT) available,
surgeons can create detailed pre-operative surgical plans. As these devices are
becoming more portable, it is possible to integrate them into the OR. Intra-
operative imaging then allows for on the fly re-planning of the procedure. After
the procedure, the collected data can be used for statistical analysis, providing
information on surgical performance. CAD: Computer-Aided Design CAM:
Computer-Aided Manufacturing TQM: Total Quality Management

applications have been developed: for organ [26] and tissue
classification [27], [28], as well as for tool recognition [29].
Recently several surgical phase detection algorithms have been
presented using Random Forests (RF), Hidden Markov Models
(HMM) and deep neural networks [30], [31], [32]. Using the
da Vinci Research kit [33], [34], it has been shown in a clinical
environment that subtask automation is feasible [35], and
SPMs were used to integrate automated robotic intraoperative
imaging [36]. Another aspect of workflow monitoring is OR
workflow scheduling [37]. Since OR time is one of the
most expensive resource of the hospital, by monitoring the
workflow, it becomes possible to predict the duration of the
surgery, as well as optimizing future procedure plans [14].

B. Decision Support Systems

One of the main reasons behind the surgical practice being
authority based is that more experienced surgeons have a
broader understanding of the importance of individual vari-
ations in pathology. While experience probably won’t be
substituted soon, machine learning can process a large amount
of pre-recorded data, providing the operating surgeon with
decision support, bridging the experience gap, eventually
improving patient outcomes. Such systems could also raise
attention on areas of patient care, which are generally outside
of the surgeon’s focus. SDSs analyzing these “unconventional”
correlations, could point out important surgical consequences
regarding the full record of the patient-care pathway [39].

C. Surgical Training

Decision support can not only improve in operation results,
but trough simulation, it can play an important role in the
education as well [40]. For example, theorem-based semantic
reasoning have been used to create a simulation system which
is flexible, automated and therefore enables patient-specific

scenarios for surgery assistance [41], [42]. Another simulation
framework used semantic data to implement a cognitive sys-
tem which autonomously interacts with ontological knowledge
bases and creates individual surgical scenarios [43].
During these simulations, monitoring the workflow of training
sessions provides important data on surgical skill and on
the individual surgeon’s technique [44]. On the low-level
(gestures) it has been shown that fine-motor skills correlate
with indecisiveness of the surgeon [45], while task level
assessment can be used for both skill evaluation and for
designing individual training curriculas [46], [47], [48].

V. DISCUSSION

Surgical Data Science uses input data from the whole
duration of the surgical process and medical care, including the
initial symptoms and the long-term outcomes. This approach
to surgical interventions require the acquisition and analysis of
heterogeneous, multimodal data, which can only be managed
if a common framework is developed. This framework can
later be used in a multitude of applications including radiation
protection planning for interventions [49], analysis software
to estimate real-time hypoxemia risk [50], but eventually
leads to systems capable of semantically annotating surgical
data, performing semantic reasoning and eventually creating
context-aware surgical assistance [51]. Ontological knowledge
representation shows promising results in this area, however a
global framework accepted by professionals and the industry
is not available yet. This scale of data collection also raises
privacy and confidentiality issues, which requires careful con-
sideration.
SDS is a rapidly developing interdisciplinary field of
medicine. While it might seam that development done outside
medicine—computer-science and engineering—might solved
some of the difficulties in data science, it is challenging to
apply those solutions into the surgical field. As this area
requires in-depth knowledge of both computer-science and
medicine, it seams unavoidable that a new specialty should
develop in this field for both academic research and hospital
data collection and analysis [52].
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