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of some delamination
scenarios in thick
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plates
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Abstract

The first-, second- and third-order shear deformation plate theories are applied in this

work to model thick rectangular sandwich plates with through-width delamination.

The models are based on the concept of the four equivalent single layers and the

system of exact kinematic conditions. Three different scenarios are considered: the

failure of the core, the delamination between the top facesheet and the core, and finally,

the case when the delamination takes place in the local midplane of the top facesheet.

A general model is derived and applied to sandwich plates with Lévy type boundary

conditions. The governing equations are summarized and the state-space model of the

system is created. The mechanical fields are calculated and compared to finite element

results. The comparison shows that the first-order sandwich plate model is inaccurate,

on the other hand, the second- and third-order theories capture very well the mech-

anical fields compared to finite element results. The J-integral distribution is also calcu-

lated along the delamination front and it is concluded that the third- and second-order

models give very good approximations of the results by finite element analysis and the

virtual crack closure technique.
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Introduction

The delamination in lightweight sandwich structures reduces significantly the
strength and the stiffness and alters the dynamic behaviour, e.g. [1]. Delamination
and debonding – in general – is induced by impact [2–10], blast loading [11], drilling
and perforation [12,13] or indentations [14–16] or other special loads [17,18].
Moreover, delaminations can change significantly the buckling behaviour of lami-
nated structures [19–24]. In accordance with the literature, the interlaminar frac-
ture of sandwich materials – similarly to laminated composites – is investigated
under mode-I [25–30] mode-II [25] and mixed-mode I/II [25,31–33] conditions.
These cases are summarized in detail in [34]. In the near past numerical and experi-
mental studies on the mode-III [35,36] and mixed modes II/III, I/II/III [37–39]
delamination of sandwich beams were conducted. Generally, sandwich panels
and plates are fabricated by using foam [40] – which has significant damping [41]
– or metal honeycomb [28,42–44] as core material, while facesheets are made from
composite or metal plates [34]. Most of the relevant works are related to the
facesheet-core debond characterization, however, there are also other scenarios,
like the failure of the core and the face delamination [34]. In fact only few works
are available internationally which focus on the delamination analysis of sandwich
plates. On the contrary, many plate theories are developed for sandwich panels and
plates. The traditional Kirchhoff theory [45] is applicable only to sandwich struc-
tures subjected to membrane stress state [34]. The simplest theory of sandwich
beams and plates is based on the ‘anti-plane core’ concept and assumes zero
normal stress in the core material, at the same time, the shear stress in the core
is very important to be considered (first-order shear analysis) [34,46,47]. Later it
was recognized that the soft-core sandwich structures require to take the transverse
elasticity of the core into account. Therefore, numerous plate theories have been
developed and applied to sandwich structures. Among others, the elasticity solu-
tion [34,48], higher-order and layerwise theories [49,50–54] and zig–zag theories
[55–58] should be mentioned. These theories are also applied to free vibration and
buckling problems [13,55,59–72], to develop Finite Element (FE) models and types
[73–78] moreover to solve issues related to nonlinear effects [79–81], transient
dynamic analysis [82–86], dynamic stability [87], deformation analysis of test spe-
cimens [88] and functionally graded core materials [89–97].

In most of the papers above, the analysis is carried out on perfect sandwich
structures, or if material defects are considered, then the geometry is restricted to
that of beams. The aim of the present work is to develop a layerwise analytical
model for the analysis of delaminations in thick sandwich plates based on Higher-
Order Shear Deformation Theories (HSDT). Previously, similar models have
already been developed and applied to delaminated composite plates by the
author using the Classical Laminated Plate Theory (CLPT) [98], the First-
(FSDT) [99], the Second- (SSDT) [100,101] and Third-Order Shear Deformation
Theories (TSDT) [102] as well as Reddy third-order theory [103,104]. The first
attempts involved the application of two equivalent single layers (ESL) over the
thickness, later refined models have been created by using four ESLs [105,106]
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leading to more accurate results for plates, wherein the delamination is close to the
free boundary surface. The mechanical model developed previously is applied to
create a model for delaminated sandwich plates. Three different scenarios are con-
sidered: the core failure (Scenario I), the face–core debond (Scenario II) and the
face delamination (Scenario III). The method of four ESLs is applied to these cases
by using assumed displacement field model based on the HSDT and the system
of exact kinematic conditions (SEKC). The governing equations of the model
are derived and solved by using the Lévy plate formulation. Delaminated sandwich
plates with uniformly distributed load were analysed and the state-space model
was created to solve the system of Differential Equations (DEs). The FE models
were created for each scenario and the analytical results were compared to the
numerical ones.

The SEKC

The basic concept is that the sandwich plate is modelled by four ESLs. Figure 1(a)
shows the deformation of the cross sections in the vicinity of the delamination tip in
the X – Z plane for the core failure scenario (Scenario I). In the Y – Z plane, the
deformation is similar [105,106]. The top and bottom facesheets are captured by an
ESL and two ESLs are applied to the core. Interface plane 2–3 is the plane of the
delamination, the delamination front is straight and parallel to the Y direction.
The thicknesses are denoted by ti, i ¼ 1 . . . 4, where i is the actual ESL index.
Figure 1(b) shows the shear strain distribution, which is discontinuous (piecewise
constant) in accordance with the FSDT. Moreover, the SSDT and TSDT solutions
make it possible to match the shear strains in the core; however, these are still
discontinuous at interface planes 1–2 and 3–4. The assumed displacement field of
each ESL is [107–110]:

uðiÞ x, y, z
ðiÞ

� �
¼ u0 x, yð Þ þ u0i x, yð Þ þ �ðxÞi x, yð ÞzðiÞ þ �ðxÞi x, yð Þ zðiÞ

� �2
þ�ðxÞi x, yð Þ zðiÞ

� �3
,

vðiÞ x, y, z
ðiÞ

� �
¼ v0 x, yð Þ þ v0i x, yð Þ þ �ð yÞi x, yð ÞzðiÞ þ �ð yÞi x, yð Þ zðiÞ

� �2
þ�ð yÞi x, yð Þ zðiÞ

� �3
,

wðiÞ x, yð Þ ¼ w x, yð Þ

ð1Þ

where i is the index of the actual ESL, zðiÞ is the local through thickness coordinate
of the ith ESL, u0, v0 are the global, u0i, v0i are the local membrane displacements;
moreover, � means the rotations of the cross sections about the X and Y axes (refer
to Figure 1(a)), � denotes the second-order, � represents the third-order terms in
the displacement functions. Finally, wðiÞ is the transverse deflection function.
Equation (1) will be applied equally to the undelaminated and delaminated por-
tions and the continuity between these parts will be established. In this work, only
shear deformable plate models are developed, in other words, the deflection is
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inextensible in the through-thickness direction and assumes wðiÞðx, yÞ ¼ wðx, yÞ.
It was assumed that there is no crack opening, i.e. a constrained mode model
was applied with mixed-mode II/III conditions [111,112]. The displacement
functions of FSDT and SSDT can be obtained by reducing equation (1) and
taking �ðxÞi ¼ �ð yÞi ¼ 0 and �ðxÞi ¼ �ð yÞi ¼ 0, respectively [113,114]. The displace-
ment field given by equation (1) is associated to each ESL.

The displacement vector field for the ith ESL is uðiÞ ¼ uðiÞ vðiÞ wðiÞ
� �T

. The
kinematic continuity between the displacement fields of adjacent ESLs is estab-
lished by the SEKC, which was originally developed in [99,101,104–106] for dela-
minated composite plates. The first set of conditions formulates the continuity of
the in-plane and transverse displacements between the neighbouring plies as (refer
to Figure 1):

uðiÞ, vðiÞ, wðiÞ
� ���

zðiÞ¼ti=2
¼ uðiþ1Þ, vðiþ1Þ, wðiþ1Þ
� ���

zðiþ1Þ¼�tiþ1=2
ð2Þ

where ti is the thickness of the specified layer. It has to be noted that the result of
equation (2) was applied in [115] and [116]; however, the presented equations
are valid only for the FSDT. On the contrary, equation (2) is more general and
applicable to any plate theory. Moreover, there are large number of works
referred to in the book of Reddy [117] applying displacement continuity between
the layers. Those works apply full layerwise models to perfect plates, in con-
trast with this work, which deals with the semi-layerwise analysis of delaminated
sandwich plates. The second set of conditions defines the global membrane
displacements (u0, v0) at the reference plane of the actual region. If the coordinate

Figure 1. Cross sections and parameters of the delaminated sandwich plate in the X–Z plane

for core–core failure (Scenario I).
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of the global reference plane is z
ðiÞ
R and is located in the ith layer, then the con-

ditions become:

uðiÞ
��
zðiÞ¼z

ðiÞ
R

�u0 ¼ 0, vðiÞ
��
zðiÞ¼z

ðiÞ
R

�v0 ¼ 0 ð3Þ

The two sets of conditions given by equations (2) and (3) are sufficient to
develop semi-layerwise models using the FSDT. If the SSDT or TSDT is applied,
then we can impose the shear strain continuity at the interface (or perturbation)
planes. In accordance with Figure 1(b), these conditions are formulated as:

�xzðiÞ, �yzðiÞ
� ���

zðiÞ¼ti=2
¼ �xzðiþ1Þ, �yzðiþ1Þ
� ���

zðiþ1Þ¼�tiþ1=2
ð4Þ

It has to be mentioned that in general layerwise models assume continuous shear
stresses at the interfaces [117]. However, the stress continuity results in a locking
(over-constraining) problem in delaminated plates [105,106]. For the TSDT theory,
one more set of conditions is reasonable to introduce. The imposition of continuity
of derivatives of the shear strain [106] prevents the unwanted oscillations (and the
too large compliance) in the shear stress distributions (see Figure 1):

@�xzðiÞ
@zðiÞ

,
@�yzðiÞ
@zðiÞ

� �����
zðiÞ¼ti=2

¼
@�xzðiþ1Þ
@zðiþ1Þ

,
@�yzðiþ1Þ
@zðiþ1Þ

� �����
zðiþ1Þ¼�tiþ1=2

ð5Þ

An important addition to equations (2) to (5) is the so-called Shear Strain
Control Condition (SSCC [105]). The set of conditions applied is:

�xzðl Þ, �yzðl Þ
� ���

zðl Þ¼�tl=2
¼ �xzðmÞ, �yzðmÞ
� ���

zðmÞ¼tm=2
ð6Þ

where l and m denote ESLs at the boundaries, where the shear strains are equal to
each other and m> l always. In accordance with Reddy theory [117], the top and
bottom surfaces of the plate are traction-free (zero shear stresses). If the system is
modelled by four ESLs, the traction-free conditions lead to overconstraining
(or stiffening) of the model and wrong results are obtained. Therefore, instead of
imposing zero stresses at the free surfaces, we impose the identical shear strain
values at the boundary planes by equation (6). Essentially, the SSCC is applicable
only if at least four ELSs and the SDDT or TSDT are applied. In the following
section, the displacement fields and applied conditions are discussed for the unde-
laminated and delaminated regions separately.

Undelaminated part

Apparently, the deflections are the same in each ESL. Using the conditions
in equations (2) to (6), it is possible to have the following form of the
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displacement components:

uðiÞ ¼ u0 þ K
ð0Þ
ij þ K

ð1Þ
ij z
ðiÞ þ K

ð2Þ
ij ½z

ðiÞ�
2
þ K

ð3Þ
ij ½z

ðiÞ�
3

	 

 ðxÞ j, i ¼ 1::4,

vðiÞ ¼ v0 þ K
ð0Þ
ij þ K

ð1Þ
ij z
ðiÞ þ K

ð2Þ
ij zðiÞ
� �2

þK
ð3Þ
ij zðiÞ
� �3	 


 ð yÞ j, i ¼ 1::4,

wðiÞ ¼ w x, yð Þ, i ¼ 1::4

ð7Þ

where  is the vector of primary parameters depending on the applied theory.
In the sequel, we discuss the conditions and equations separately for each theory.

First-order plate theory. For the FSDT model, the quadratic and cubic terms in equa-
tion (7) vanish, and so K

ð2Þ
ij ¼ K

ð3Þ
ij ¼ 0. For a four-layer FSDT model shown in

Figure 1(a) and (b), the SEKC conditions are applied in accordance with Table 1
depending on the delamination scenario. For the undelaminated part, the equa-
tions become:

u1, v1,w1ð Þ
��
zð1Þ¼t1=2

¼ u2, v2,w2ð Þ
��
zð2Þ¼�t2=2

,

u2, v2,w2ð Þ
��
zð2Þ¼t2=2

¼ u3, v3,w3ð Þ
��
zð3Þ¼�t3=2

,

u3, v3,w3ð Þ
��
zð3Þ¼t3=2

¼ u4, v4,w4ð Þ
��
zð4Þ¼�t4=2

,

u2, v2ð Þ
��
zð2Þ¼z

ð2Þ
R

¼ u0 x, yð Þ, v0 x, yð Þð Þ

ð8Þ

where z
ð2Þ
R ¼ t1 þ t2 þ t3 þ t4ð Þ=2� t1 � t2=2 is the location of the reference plane

(midplane) of the undelaminated part with respect to the midplane of ESL2
(refer to Figure 1). By using these conditions, we can eliminate the local membrane
displacements denoted by u0i and v0i (i ¼ 1::4) in equation (1). The vector of

Table 1. The set of SEKC equations applied to FSDT, SSDT and TSDT – Undelaminated part.

Equation

(2)

Equation

(3)

Equation

(4)

Equation

(5)

Equation

(6)

Scenario I

FSDT i¼ 1, i¼ 2, i¼ 3 i¼ 2 – – –

SSDT i¼ 1, i¼ 2, i¼ 3 i¼ 2 i¼ 2 – l¼ 1, m¼ 4

TSDT i¼ 1, i¼ 2, i¼ 3 i¼ 2 i¼ 2 i¼ 2 l¼ 1, m¼ 4

Scenarios II and III

FSDT i¼ 1, i¼ 2, i¼ 3 i¼ 2 – – –

SSDT i¼ 1, i¼ 2, i¼ 3 i¼ 2 i¼ 3 – l¼ 1, m¼ 4

TSDT i¼ 1, i¼ 2, i¼ 3 i¼ 2 i¼ 3 i¼ 3 l¼ 1, m¼ 4
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primary parameters contains the rotations only:

 ð pÞ ¼ �ð pÞ1 �ð pÞ2 �ð pÞ3 �ð pÞ4
� �T

, p ¼ x, y ð9Þ

The constants of the multiplicator matrices denoted by Kij are listed in Table 2
(core–core and face–core scenarios) and Table 3 (face–face scenario).

Second-order plate theory. For the second-order model, the cubic terms in equation
(1) vanish and thus K

ð3Þ
ij ¼ 0. The SEKC conditions applied are presented in Table 1

for each scenario. In this case, the vector of primary parameters is given by:

 ð pÞ ¼ �ð pÞ1 �ð pÞ2 �ð pÞ3 �ð pÞ4 �ð pÞ2 �ð pÞ4
� �T

, p ¼ x, y ð10Þ

Table 2. Multiplicator matrix elements for the FSDT theory – Scenarios I and II: Core–core

and face–core delamination.

Undelaminated Delaminated Undelaminated Delaminated

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
0ð Þ

ij K
1ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
0ð Þ

ij K
1ð Þ

ij

[1, 1] � 1
2
t1 1 �z

1ð Þ
R 1 [3, 1] 0 0 0 0

[1, 2] �z
2ð Þ

R �
1
2
t2 0 0 0 [3, 2] �z

2ð Þ
R �

1
2
t2 0 0 0

[1, 3] 0 0 0 0 [3, 3] 1
2
t3 1 � 1

2
t3 1

[1, 4] 0 0 0 0 [3, 4] 0 0 �z
4ð Þ

R �
1
2
t4 0

[2, 1] 0 0 �z
2ð Þ

R þ
1
2
t1 0 [4, 1] 0 0 0 0

[2, 2] �z
2ð Þ

R 1 1
2
t2 1 [4, 2] �z

2ð Þ
R þ

1
2
t2 0 0 0

[2, 3] 0 0 0 0 [4, 3] t3 0 0 0

[2, 4] 0 0 0 0 [4, 4] 1
4
t4 1 �z

4ð Þ
R 1

Table 3. Multiplicator matrix elements for the FSDT theory – Scenario III: Face–face

delamination.

Undelaminated Delaminated Undelaminated Delaminated

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
0ð Þ

ij K
1ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
0ð Þ

ij K
1ð Þ

ij

[1, 1] � 1
2
t1 1 �z

1ð Þ
R 1 [3, 1] 0 0 �z

1ð Þ
R þ

1
2
t1 0

[1, 2] �z
2ð Þ

R �
1
2
t2 0 0 0 [3, 2] �z

2ð Þ
R þ

1
2
t2 0 t2 0

[1, 3] 0 0 0 0 [3, 3] 1
2
t3 1 1

2
t3 1

[1, 4] 0 0 0 0 [3, 4] 0 0 1 0

[2, 1] 0 0 �z
1ð Þ

R þ
1
2
t1 0 [4, 1] 0 0 0 0

[2, 2] �z
2ð Þ

R 1 1
2
t2 1 [4, 2] �z

2ð Þ
R þ

1
2
t2 0 0 0

[2, 3] 0 0 0 0 [4, 3] t3 0 0 0

[2, 4] 0 0 0 0 [4, 4] 1
4
t4 1 �z

4ð Þ
R 1

Szekrényes 7



Consequently, we eliminate u0i and v0i (i ¼ 1 . . . 4) and �ð pÞi, i¼ 1, 3, p¼x or y.
The multiplicator matrix elements are collected in Tables 7 and 8 in Appendix 2.

Third-order plate theory. The third-order plate theory is applied to capture the mech-
anical behaviour of the core (ESLs 2 and 3 in Figure 1) only. Thus, ESLs 1 and 4
are modelled by second-order plate theories. The reason for this choice is the large
model size that would result in case of a full TSDT model. The SEKC conditions
are summarized in Table 1 (TSDT). The vector of primary parameters becomes:

 pð Þ ¼ �ð pÞ1 �ð pÞ2 �ð pÞ3 �ð pÞ4 �ð pÞ2 �ð pÞ4 �ð pÞ2
� �T

, p ¼ x, y ð11Þ

The parameters to be eliminated are u0i and v0i (i ¼ 1 . . . 4) and �ð pÞi, i¼ 1, 3 and
�ð pÞ3 with p¼x or y. The multiplicator matrix elements are given in Appendix 3,
Tables 12 and 13.

Delaminated part

The delaminated region consists of a top and a bottom plate (refer to Figure 1).
Each subplate is modelled by two further ESLs. The most essential difference
between the delaminated and undelaminated plate regions is that in the delami-
nated region the in-plane displacements are not coupled at the delamination plane.
Therefore, the global membrane displacements u0, v0 are replaced by u0b, v0b for
ESLs of the bottom plate, moreover by u0t, v0t for the ESLs of the top plate in
equation (7) in accordance with Figure 1:

uðiÞ ¼ u0b þ K
ð0Þ
ij þ K

ð1Þ
ij z
ðiÞ þ K

ð2Þ
ij zðiÞ
� �2

þK
ð3Þ
ij zðiÞ
� �3	 


 ðxÞ j, i ¼ 1::2,

vðiÞ ¼ v0b þ Kð0Þij þ Kð1Þij z
ðiÞ þ Kð2Þij zðiÞ

� �2
þKð3Þij zðiÞ

� �3	 

 ð yÞ j, i ¼ 1::2

ð12Þ

uðiÞ ¼ u0t þ K
ð0Þ
ij þ K

ð1Þ
ij z
ðiÞ þ K

ð2Þ
ij zðiÞ
� �2

þK
ð3Þ
ij zðiÞ
� �3	 


 ðxÞ j, i ¼ 3::4,

vðiÞ ¼ v0t þ Kð0Þij þ Kð1Þij z
ðiÞ þ Kð2Þij zðiÞ

� �2
þKð3Þij zðiÞ

� �3	 

 ð yÞ j, i ¼ 3::4

ð13Þ

where j is a summation index, furthermore wðiÞðx, yÞ ¼ wðx, yÞ for every ESL.

First-order plate theory. For the FSDT model, the kinematic conditions imposed are:

ðu1, v1,w1Þ
��
zð1Þ¼t1=2

¼ ðu2, v2,w2Þ
��
zð2Þ¼�t2=2

,

ðu3, v3,w3Þ
��
zð2Þ¼t2=2

¼ ðu3, v3,w3Þ
��
zð3Þ¼�t3=2

,

ðu1, v1Þ
��
zð1Þ¼t2=2

¼ ðu0bðx, yÞ, v0bðx, yÞÞ,

ðu3, v3Þ
��
zð3Þ¼t4=2

¼ ðu0tðx, yÞ, v0tðx, yÞÞ

ð14Þ

8 Journal of Sandwich Structures and Materials 0(00)



which are also summarized in Table 4. Furthermore, the Kij constants are given in
Tables 2 and 3, where z

ð1Þ
R and z

ð4Þ
R are the locations of the reference planes of top and

bottom plates in the delaminated part (refer to Figure 1). It is important to note that
a soft-core material is assumed, which has a very low modulus compared to that of
the facesheets. In fact, the distances can be calculated based on the coupling stiffness
matrix (B) [45] of the top (ESL3+ESL4) and bottom (ESL1+ESL2) plates.
However, it is also a reasonable assumption that z

ð1Þ
R ¼ z

ð4Þ
R ¼ 0. The vector of pri-

mary parameters is the same as that given by equation (9).

Second-order plate theory. The SEKC conditions applied for the SSDT model are
collected in Table 4 for three different scenarios. In this case, the vector of primary
parameters is given by equation (10). The multiplicator matrix elements obtained
based on the SEKC conditions are collected in Tables 9 to 11 (Appendix 2).

Third-order plate theory. The third-order plate theory is applied to capture the mech-
anical behaviour of the core (ESLs 2 and 3 in Figure 1) only. Thus, ESLs 1 and 4
are modelled by second-order plate theories. The reason for this choice is the large
model size that would result in case of a full TSDT model. The SEKC conditions

Table 4. The set of SEKC equations applied to FSDT, SSDT and TSDT – Delaminated part.

Equation (2) Equation (3) Equation (4) Equation (5) Equation (6)

Scenario I

FSDT i¼ 1, i¼ 3 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

– – –

SSDT i¼ 1, i¼ 3 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

– – l¼ 1, m¼ 4

and l¼ 2, m¼ 3

TSDT i¼ 1, i¼ 3 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

i¼ 2 – l¼ 1, m¼ 4

and l¼ 2, m¼ 3

Scenario II

FSDT i¼ 1, i¼ 3 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

– – –

SSDT i¼ 1, i¼ 3 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

i¼ 3 – l¼ 1, m¼ 4

TSDT i¼ 1, i¼ 3 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

i¼ 3 i¼ 3 l¼ 1, m¼ 4

Scenario III

FSDT i¼ 1, i¼ 2 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

– – –

SSDT i¼ 1, i¼ 2 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

– – l¼ 1, m¼ 4

and l¼ 3, m¼ 4

TSDT i¼ 1, i¼ 2 i ¼ 1, u0 ¼ u0b

and i ¼ 4, u0 ¼ u0t

– i¼ 3 l¼ 1, m¼ 4

and l¼ 3, m¼ 4

Szekrényes 9



are summarized in Table 4. For the core–core scenario, the vector of primary
parameters becomes:

 pð Þ ¼ �ð pÞ1 �ð pÞ2 �ð pÞ3 �ð pÞ4 �ð pÞ3 �ð pÞ4 �ð pÞ2 ��ð pÞ3
� �T

, p ¼ x, y ð15Þ

where the last element highlighted by the circle is the so-called autocontinuity (AC)
parameter [105,106]. For the other two (face–core and face–face) scenarios, the
vector of primary parameters takes the form of:

 pð Þ ¼ �ð pÞ1 �ð pÞ2 �ð pÞ3 �ð pÞ4 �ð pÞ3 �ð pÞ4 �ð pÞ2
� �T

, p ¼ x, y ð16Þ

The multiplicator matrix elements are given in Appendix 3 in Tables 14 to 16.
On the basis of the displacement field, the governing equations are derived in the
next section for each theory.

Equilibrium equations

Assuming small displacements and deformations in elastic structures, the strain
field is obtained by [118]:

"ij ¼
1

2
ui,j þ uj,i
� �

ð17Þ

The strains and shear strains in the sandwich plate are expressed as [45]:

"x

"y

�xy

0
B@

1
CA
ðiÞ

¼

"ð0Þx
"ð0Þy

�ð0Þxy

0
B@

1
CA
ðiÞ

þzðiÞ �

"ð1Þx
"ð1Þy

�ð1Þxy

0
B@

1
CA
ðiÞ

þ zðiÞ
� �2

�

"ð2Þx
"ð2Þy

�ð2Þxy

0
B@

1
CA
ðiÞ

þ zðiÞ
� �3

�

"ð3Þx
"ð3Þy

�ð3Þxy

0
B@

1
CA
ðiÞ

ð18Þ

or "f gðiÞ¼ "ð0Þ
� �

ðiÞ
þzðiÞ � "ð1Þ

� �
ðiÞ
þ zðiÞ
� �2

� "ð2Þ
� �

ðiÞ
þ zðiÞ
� �3

� "ð3Þ
� �

ðiÞ
, which is third-order in

terms of the through-thickness coordinate, zðiÞ. The vector of transverse shear
strains is:

�xz

�yz

� �
ðiÞ

¼
�ð0Þxz

�ð0Þyz

 !
ðiÞ

þzðiÞ �
�ð1Þxz

�ð1Þyz

 !
ðiÞ

þ zðiÞ
� �2

�
�ð2Þxz

�ð2Þyz

 !
ðiÞ

ð19Þ

or in a compact form: �
� �
ðiÞ
¼ �ð0Þ
� �

ðiÞ
þzðiÞ � �ð1Þ

� �
ðiÞ
þ zðiÞ
� �2

� �ð2Þ
� �

ðiÞ
, which is

second-order in terms of zðiÞ. By using the material law and calculating the stresses,
then by the integration of the stresses over the thickness yields the stress resultants.
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In vector form, we have [45]:

N��

M��

L��
P��

0
BB@

1
CCA
ðiÞ

¼

Z ti=2

�ti=2

���

1
z
z2

z3

0
BB@

1
CCA
ðiÞ

dzðiÞ,
Q�

R�
S�

0
@

1
A
ðiÞ

¼

Z ti=2

�ti=2

	�z

1
z
z2

0
@

1
A
ðiÞ

dzðiÞ ð20Þ

where � and � take x or y. The relationship between the strain field and the stress
resultants can be determined by substituting back equations (18) and (19) into (20)
and by considering the orthotropic material law under plane stress assumption
[117]. This results in the following [104]:

fNg

fMg

fLg

fPg

0
BBB@

1
CCCA
ðiÞ

¼

½A� ½B� ½D� ½E�

½B� ½D� ½E� ½F�

½D� ½E� ½F� ½G�

½E� ½F� ½G� ½H�

2
6664

3
7775
ðiÞ

f"ð0Þg

f"ð1Þg

f"ð2Þg

f"ð3Þg

0
BBB@

1
CCCA
ðiÞ

ð21Þ

Q
� �
Rf g

Sf g

0
B@

1
CA
ðiÞ

¼

½A� ½B� ½D�

½B� ½D� ½E�

½D� ½E� ½F�

2
64

3
75
ðiÞ

f�ð0Þg

f�ð1Þg

f�ð2Þg

0
B@

1
CA
ðiÞ

ð22Þ

where fNgTðiÞ ¼ fNx Ny Nxy gðiÞ is the vector of in-plane plate forces, fMgTðiÞ ¼

fMx My Mxy gðiÞ is the vector of bending and twisting moments,

fQgTðiÞ ¼ fQx Qy gðiÞ is the vector of transverse shear forces, and finally fLgTðiÞ ¼

fLx Ly Lxy gðiÞ, fPg
T
ðiÞ ¼ fPx Py Pxy gðiÞ and fRgTðiÞ ¼ fRx Ry gðiÞ, fSg

T
ðiÞ ¼

fSx Sy gðiÞ are the vectors of higher-order stress resultants. In equations (21)

and (22), Apq is the extensional, Bpq is coupling, Dpq is the bending, Epq, Fpq, Gpq

and Hpq are higher-order stiffnesses defined as [104]:

Apq,Bpq,Dpq,Epq,Fpq,Gpq,Hpq

� �
ðiÞ
¼
XNl ðiÞ

m¼1

Z z
ðiÞ
mþ1

zðiÞm

�CðmÞpq 1, z, z2, z3, z4, z5, z6
� �ðiÞ

dzðiÞ ð23Þ

where Nl ðiÞ is the number of layers in the ith ESL. The stiffnesses above have to be
calculated with respect to the local reference planes (midplanes) for each ESL. To
derive the equilibrium equations of the plate system in a compact and invariant
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form, we define the following vectors:

N
ðx,xyÞ
i ¼ Nx Nxy

� �T
ðiÞ
, N

ðxy,yÞ
i ¼ Nxy Ny

� �T
ðiÞ
,

M
ðx,xyÞ
i ¼ Mx Mxy

� �T
ðiÞ
, M

ðxy,yÞ
i ¼ Mxy My

� �T
ðiÞ

ð24Þ

The vectors of higher-order stress resultants become:

L
ðx,xyÞ
i ¼ Lx Lxy

� �T
ðiÞ
, L

ðxy,yÞ
i ¼ Lxy Ly

� �T
ðiÞ
,

P
ðx,xyÞ
i ¼ Px Pxy

� �T
ðiÞ
, P

ðxy,yÞ
i ¼ Pxy Py

� �T
ðiÞ

ð25Þ

Finally, the vectors of shear and higher-order forces become:

Qi ¼ Qx Qy

� �T
ðiÞ
, Ri ¼ Rx Ry

� �T
ðiÞ
, Si ¼ Sx Sy

� �T
ðiÞ

ð26Þ

In the sequel, the equilibrium equations are derived separately for the undela-
minated and delaminated regions.

Undelaminated region

By formulating the total potential energy of the system [117] and setting the sum of
coefficients for the virtual membrane displacements (
u0, 
v0), primary parameters
(
 ðxÞ j, 
 ð yÞ j) and the deflection (
w) to zero leads to three sets of equations. The
equilibrium of the in-plane forces involves the equations below independently of
the applied theory (FSDT, SSDT or TSDT):


u0 :
X4
i¼1

r �N
ðx,xyÞ
i ¼ 0, 
v0 :

X4
i¼1

r �N
ðxy,xÞ
i ¼ 0 ð27Þ

where r ¼ @
@x iþ

@
@y j is the Hamilton differential operator [118]. In the general sense

(using FSDT, SSDT or TSDT), the number of primary parameters (ignoring the
global membrane displacements) in the displacement field is r, which is equal to the
number of elements in wð pÞ and j ¼ 1 . . . r. By collecting the coefficients of the
virtual primary displacement parameters in the expression of the total potential
energy and equating the result to zero, we have the following equations:


 ðxÞ j :


 ðyÞ j :


X4
i¼1

K
ð0Þ
ij

r �N
ðx,xyÞ
i

r �N
ðxy,yÞ
i

 !
þK

ð1Þ
ij

r �M
ðx,xyÞ
i

r �M
ðxy,yÞ
i

 !
þK

ð2Þ
ij

r �L
ðx,xyÞ
i

r �L
ðxy,yÞ
i

 !

þK
ð3Þ
ij

r �P
ðx,xyÞ
i

r �P
ðxy,yÞ
i

 !
�K

ð1Þ
ij

QxðiÞ

QyðiÞ

� �
� 2K

ð2Þ
ij

RxðiÞ

RyðiÞ

� �
� 3K

ð3Þ
ij

SxðiÞ

SyðiÞ

� �
¼

0

0

� � ð28Þ
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where  ðxÞ j and  ð yÞ j denote the primary parameters. By collecting the coefficients
of the 
wðx, yÞ, plate deflection in the total potential energy and setting their sum to
zero leads to:


w :
X4
i¼1

r �Qi þ q ¼ 0 ð29Þ

where q is the external surface load, moreover Q is the vector of shear forces (refer
to equation (26)). Equations (27) to (29) define the invariant form of the equilib-
rium equations, because independently of the applied theory, these equations have
the same form. It is apparent that the differences among the equilibrium equations
of FSDT, SSDT and TSDT are the Kij displacement multiplicator matrix elements
and the wð pÞ vector of primary parameters.

Delaminated region

Using the principle of virtual work, it is possible to determine the equilibrium
equations of the delaminated part as well. Thus, the equilibrium equations of in-
plane forces take the form below:


u0b :
X2
i¼1

r �N
ðx,xyÞ
i ¼ 0, 
u0t :

X4
i¼3

r �N
ðx,xyÞ
i ¼ 0,


v0b :
X2
i¼1

r �N
ðxy,xÞ
i ¼ 0, 
v0t :

X4
i¼3

r �N
ðxy,xÞ
i ¼ 0

ð30Þ

The form of the other equilibrium equations is the same as those given by
equations (28) and (29).

Finally, it should be noted that the fundamental solutions of Linear Elastic
Fracture Mechanics (LEFM) are singular for problems including cracks
[119,120]. On the contrary, equation (7) and equations (12) and (13) do not contain
any singular terms, thus the solutions in this work are essentially nonsingular for all
of the mechanical fields.

Simply supported sandwich plate

As an example, a simply supported delaminated plate is considered as shown by
Figure 2. The plate is loaded by a uniformly distributed load, denoted by Q0.
The plate contains a through-width delamination with length, a, the length of
the undelaminated part is c. Moreover, tt ¼ t1 þ t2, tb ¼ t3 þ t4, respectively.
In accordance with the Lévy type solution [47,121], the parameters of the
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displacement field of simply supported plates are formulated as:

 ðxÞiðx, yÞ

 ð yÞiðx, yÞ

� 

¼
X1
n¼1

�ðxÞinðxÞ sin �y

�ð yÞinðxÞ cos�y

� 

,

uðx, yÞ

vðx, yÞ

qðx, yÞ

wðx, yÞ

8>>><
>>>:

9>>>=
>>>;
¼
X1
n¼1

UnðxÞ sin�y

VnðxÞ cos�y

QnðxÞ sin�y

WnðxÞ sin �y

8>>><
>>>:

9>>>=
>>>;
ð31Þ

It is important to note that Lévy type solution implies that the u displacement
component vanishes at the y¼ 0 and y¼ b edges of the plate. Considering the
parameters in equation (31), the trial functions for any ESL in the plate including
the undelaminated and delaminated portions are:

�ðxÞðx, yÞ

�ð yÞðx, yÞ

�ðxÞðx, yÞ

�ð yÞðx, yÞ

�ðxÞðx, yÞ

�ð yÞðx, yÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼
X1
n¼1

XnðxÞ sin�y

YnðxÞ cos �y

TxnðxÞ sin �y

TynðxÞ cos �y

ZxnðxÞ sin �y

ZynðxÞ cos �y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
,

u0ðx, yÞ

v0ðx, yÞ

u0
ðx, yÞ

v0
ðx, yÞ

qðx, yÞ

wðx, yÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼
X1
n¼1

U0nðxÞ sin�y

V0nðxÞ cos �y

U0
nðxÞ sin�y

V0
nðxÞ cos �y

QnðxÞ sin �y

WnðxÞ sin�y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð32Þ

Figure 2. Simply supported delaminated sandwich plate with uniformly distributed load.
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where � ¼ n�=b, b is the plate width and 
 ¼ t for the top plate, 
 ¼ b for the
bottom plate, respectively. The function of the external load in this case is
Qn ¼ 4Q0=ðn�Þ [117]. By taking back the solution in equation (32) into the strain
field (equations (18) and (19)), then by expressing the stress resultants in accord-
ance with equations (21) and (22), we can utilize the equilibrium equations given by
equations (27) to (30) to reduce the system of Partial Differential Equations (PDEs)
to a system of Ordinary Differential Equations (ODEs), which can be solved by the
state-space approach [122]:

Z0 ¼ TZþ F ð33Þ

The state vector Z of the undelaminated part contains the elements in
accordance with Tables 5 (FSDT and SSDT) and 6 (TSDT). In the parentheses,
the number of elements is indicated equalling the size of the system matrix, T in
equation (33). Moreover, F is the vector external load. The system matrix T is a
constant matrix, the components are not given here, but similar problems
have been solved and detailed, e.g. in [102,104]. The general solution of equation
(33) is [123]:

Z xð Þ ¼ eTx Kþ

Z x

x0

e�T�Fð�Þd�

� �
¼ G xð ÞKþH xð Þ ð34Þ

where K is the vector of unknown constants of the solution functions [117].
The state-space models of the undelaminated and delaminated regions have to

Table 5. State vector elements for FSDT and SSDT theories.

FSDT SSDT

Scenario

Undelaminated

(22)

Delaminated

(26)

Undelaminated

(30)

Delaminated

(34)

I, II, III U0, U00,V0, V 00, U0b, U
0
0b, V0b, V

0
0b, U0b, U

0
0b, V0b, V

0
0b, U0b, U

0
0b, V0b, V

0
0b,

Xn1, X0n1, Yn1, Y 0n1, Xn1, X0n1, Yn1, Y 0n1, Xn1, X0n1, Yn1, Y 0n1, Xn1, X0n1, Yn1, Y 0n1,

Xn2, X0n2, Yn2, Y 0n2, Xn2, X0n2, Yn2, Y 0n2, Xn2, X0n2, Yn2, Y 0n2, Xn2, X0n2, Yn2, Y 0n2,

Xn3, X0n3, Yn3, Y 0n3, U0t, U
0
0t, V0t, V

0
0t, Xn3, X0n3, Yn3, Y 0n3, U0t, U

0
0t, V0t, V

0
0t,

Xn4, X0n4, Yn4, Y 0n4, Xn3, X0n3, Yn3, Y 0n3, Xn4, X0n4, Yn4, Y 0n4, Xn3, X0n3, Yn3, Y 0n3,

Wn, W
0
n Xn4, X0n4, Yn4, Y 0n4, Txn2, T0xn2, Tyn2, T0yn2, Xn4, X0n4, Yn4, Y 0n4,

Wn, W
0
n Txn4, T0xn4, Tyn4, T0yn4, Txn2, T0xn2, Tyn2, T0yn2,

Wn, W
0
n Txn4, T0xn4, Tyn4, T0yn4,

Wn, W
0
n
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be created separately, then the continuity of displacements and stress resultants
have to be ensured. These are detailed in the next subsection.

Boundary and continuity conditions

The boundary conditions of the problem in Figure 2 with respect to the displace-
ment parameters are detailed below with respect to the applied theory and depend-
ing on the scenario. For the delaminated region, we have:

FSDT : ðw, v0b, v0t, �y1, �y2, �y3, �y4Þ
ð1Þ

SSDT : ðw, v0b, v0t, �y1, �y2, �y3, �y4,�y2,�y4Þ
ð1Þ

TSDTðI:Þ : ðw, v0b, v0t, �y1, �y2, �y3, �y4,�y2,�y4, �y2, �y3Þ
ð1Þ

TSDTðII:, III:Þ : ðw, v0b, v0t, �y1, �y2, �y3, �y4,�y2,�y4, �y2Þ
ð1Þ

9>>>>=
>>>>;

����������
x¼a

¼ 0 ð35Þ

For the undelaminated region, the following conditions are imposed:

FSDT : ðw, v0, �y1, �y2, �y3, �y4Þ
ð2Þ

SSDT : ðw, v0, �y1, �y2, �y3, �y4,�y2,�y4Þ
ð2Þ

TSDT : ðw, v0, �y1, �y2, �y3, �y4,�y2,�y4, �y2Þ
ð2Þ

9>=
>;
�������
x¼�c

¼ 0 ð36Þ

Table 6. State vector elements for TSDT theories.

Scenario I Scenarios II and III

Undelaminated

(34)

Delaminated

(42)

Undelaminated

(34)

Delaminated

(38)

TSDT U0, U00,V0, V 00, U0b, U
0
0b, V0b, V

0
0b, U0b, U

0
0b, V0b, V

0
0b, U0b, U

0
0b, V0b, V

0
0b,

Xn1, X0n1, Yn1, Y 0n1, Xn1, X0n1, Yn1, Y 0n1, Xn1, X0n1, Yn1, Y 0n1, Xn1, X0n1, Yn1, Y 0n1,

Xn2, X0n2, Yn2, Y 0n2, Xn2, X0n2, Yn2, Y 0n2, Xn2, X0n2, Yn2, Y 0n2, Xn2, X0n2, Yn2, Y 0n2,

Xn3, X0n3, Yn3, Y 0n3, U0t, U
0
0t, V0t, V

0
0t, Xn3, X0n3, Yn3, Y 0n3, U0t, U

0
0t, V0t, V

0
0t,

Xn4, X0n4, Yn4, Y 0n4, Xn3, X0n3, Yn3, Y 0n3, Xn4, X0n4, Yn4, Y 0n4, Xn3, X0n3, Yn3, Y 0n3,

Txn2, T0xn2, Tyn2, T0yn2, Xn4, X0n4, Yn4, Y 0n4, Txn2, T0xn2, Tyn2, T0yn2, Xn4, X0n4, Yn4, Y 0n4,

Txn4, T0xn4, Tyn4, T0yn4, Txn2, T0xn2, Tyn2, T0yn2, Txn4, T0xn4, Tyn4, T0yn4, Txn2, T0xn2, Tyn2, T0yn2,

Zxn2, Z 0xn2, Zyn2, Z 0yn2, Txn4, T0xn4, Tyn4, T0yn4, Zxn2, Z 0xn2, Zyn2, Z 0yn2, Txn2, T0xn2, Tyn2, T0yn2,

Wn, W
0
n Zxn2, Z 0xn2, Zyn2, Z 0yn2, Wn, W

0
n Zxn2, Z 0xn2, Zyn2, Z 0yn2,

Zxn3, Z 0xn3, Zyn3, Z 0yn3, Wn, W
0
n

Wn, W
0
n
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For the stress resultants, the imposed conditions are:

FSDTðI:, II:Þ : ðNx1 þNx2,Nx3 þNx4,Mx1,Mx2,Mx3,Mx4Þ
ð1Þ

FSDTðIII:Þ : ðNx1 þNx2 þNx3,Nx4,Mx1,Mx2,Mx3,Mx4Þ
ð1Þ

)�����
x¼a

¼ 0 ð37Þ

for the FSDT solution, moreover:

SSDTðI:, II:Þ : ðNx1 þNx2,Nx3 þNx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4Þ
ð1Þ

SSDTðIII:Þ : ðNx1 þNx2 þNx3,Nx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4Þ
ð1Þ

)�����
x¼a

¼ 0

ð38Þ

in the case of the SSDT solution, and finally:

TSDTðI:Þ : ðNx1 þNx2,Nx3 þNx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4,Px2,Px3Þ
ð1Þ

TSDTðII:Þ : ðNx1 þNx2,Nx3 þNx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4,Px2Þ
ð1Þ

TSDTðIII:Þ : ðNx1 þNx2 þNx3,Nx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4,Px2Þ
ð1Þ

9>=
>;
�������
x¼a

¼ 0

ð39Þ

in the case of the TSDT solution. The undelaminated region involves the following
boundary conditions:

FSDT : ðNx1 þNx2 þNx3 þNx4,Mx1,Mx2,Mx3,Mx4Þ
ð2Þ

SSDT : ðNx1 þNx2 þNx3 þNx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4Þ
ð2Þ

TSDT : ðNx1 þNx2 þNx3 þNx4,Mx1,Mx2,Mx3,Mx4,Lx2,Lx4,Px2Þ
ð2Þ

9>=
>;
�������
x¼�c

¼ 0

ð40Þ

The continuity conditions are formulated against the displacement parameters
and the stress resultants. The continuity conditions of the membrane displacements
should be imposed for ESL1 and ESL4 (or alternatively ESL2 and ESL3):

u0b
v0b

� �
þ
X
j¼1::ql

K
ð0Þ
1j

 ðxÞ j

 ð yÞ j

� ������
ð1Þ

x¼þ0

¼
u0

v0

� �
þ
X
j¼1::ql

K
ð0Þ
1j

 ðxÞ j

 ð yÞ j

� ������
ð2Þ

x¼�0

,

u0t
v0t

� �
þ
X
j¼1::ql

K
ð0Þ
4j

 ðxÞ j

 ð yÞ j

� ������
ð1Þ

x¼þ0

¼
u0
v0

� �
þ
X
j¼1::ql

K
ð0Þ
4j

 �ðxÞ j
 �ð yÞ j

 !�����
ð2Þ

x¼�0

ð41Þ

where ql is the number of primary parameters in equations (9) to (11) and (15) and
(16) depending on the theory and scenario. For the other conditions, we define the
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set of parameters below:

g� ¼

ðw,w0, �x1, �y1, �x2, �y2, �x3, �y3, �x4, �y4Þ : FSDT,

ðw,w0, �x1, �y1, �x2, �y2, �x3, �y3, �x4, �y4, �x2,�y2,�x4,�y4Þ : SSDT,

ðw,w0, �x1, �y1, �x2, �y2, �x3, �y3, �x4, �y4, �x2,�y2,�x4,�y4, �x2, �y2Þ : TSDT:

8><
>: ð42Þ

The following condition should then be satisfied:

gð1Þ�
��
x¼þ0
¼ gð2Þ�

��
x¼�0

ð43Þ

In accordance with equations (27), (28) and (30), the sum of the membrane
forces and the equivalent stress resultants should be continuous between regions
1 and 2. The equivalent bending and twisting moments are defined as:

M̂xi

M̂xyi

 !
¼

Mxi

Mxyi

� �
þ
X
j¼1::4

K
ð0Þ
ji

Nxi

Nxyi

� �
þ
X
j¼1::4

K
ð2Þ
ji

Lxi
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Furthermore, we define the equivalent higher-order stress resultants based on
the vector of primary parameters (equations (9) to (11), (15) and (16)) and the
equilibrium equations (equations (27), (28) and (30)) as:
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Independently of the theory, the continuity against sum of membrane forces and
equivalent moments should be satisfied:
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18 Journal of Sandwich Structures and Materials 0(00)



Apart from the above, for the SSDT, the continuity of the L stress resultants is
required as well:
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Finally, for the TSDT solution apart from equations (47) and (48), the equiva-
lent P stress resultants should be continuous:
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Beside the above conditions, the core–core scenario (Scenario I) of the TSDT
solution in accordance with equation (15), a so-called AC condition [105,106] is
required:

�ð pÞ3
��ð0Þ
x¼þ0
¼
X
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���ð2Þ
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As a matter of fact for the FSDT equations (35), (36), (37), (40), (41), (42) and
(47) mean 7+6+6+5+4+10+10 conditions, i.e. altogether we have 48,
which is the sum of system matrix sizes (22+26, refer to Table 5) and so the
unknowns in the state space model. For the other theories and scenarios, the con-
ditions can be collected and checked similarly.

Energy release rates (ERRs) – The J-integrals

The general 3D J-integral for delaminated composite Lévy plates have been
defined in [105,106] using four ESLs by SSDT and TSDT. The expressions for
JII and JIII are:
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where

�̂ðqÞxypðiÞ ¼
@uðqÞpðiÞ
@y
�
@vðqÞpðiÞ
@x

, p ¼ 1 or 2, q ¼ 0, 1, 2, 3 ð53Þ

are the so-called conjugate shear strains. In equations (51) and (52), k¼ 4 because
of the method of four ESLs. Equations (51) and (52) are valid up to third-order
plates; however, it is easy to generalize for nth order plates. It is important to note
that equations (51) and (52) agree with the concept given in [124].

As it can be seen, the mode-II J-integral is contributed by Nx, Ny, Mx, My, Lx,
Ly, Px and Py, on the other hand, the mode-III J-integral contains Nxy, Mxy, Lxy

and Pxy. In the sequel, the results of the method of four ESLs (FSDT, SSDT and
TSDT) are presented and compared to the results of FE analysis obtained by using
the VCCT method. It is important to note that although the code ANSYS is
capable of determining the J-integral numerically, it is not available for orthotropic
materials. Therefore, the only alternative to calculate the ERRs in ANSYS is the
VCCT. It is well-known that under static conditions and for a linear elastic mater-
ial the J-integral is equivalent to the ERR, i.e. GII¼ JII and GIII¼ JIII.

Results and discussions

Three different configurations are considered to check the performance of the
model, the first scenario was the core failure (core–core delamination, scenario I)
in a sandwich plate with 1-mm thick Al facesheets and a 25-mm thick foam mater-
ial. The delamination divided the core into 10mm (top) and 15mm (bottom) thick
parts. The Al properties were E¼ 70GPa, 
 ¼ 0:3 (isotropic), the foam properties
were E¼ 23.1MPa, G¼ 6.4MPa, 
 ¼ 0:4 (isotropic) [125]. The second scenario is
the delamination between the top facesheet and the core (scenario II). In this case,
the 3-mm thick facesheets were made from crossply laminated composite
(E11 ¼ E22 ¼ E33 ¼ 82:4 GPa, G12 ¼ G23 ¼ G13 ¼ 6:6 GPa, 
12 ¼ 
23 ¼ 
13 ¼ 0:4)
[126], the core material was again a general foam with thickness of 25mm. It has to
be noted that only the moduli are documented in [126], the shear moduli and the
Poisson’s ratio were chosen to obtain a positive definite material stiffness matrix.
In the case of the third scenario, the delamination of the top facesheet was simu-
lated (scenario III). The materials were the same as those of scenario II, but the
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thickness of the facesheets was increased to 4mm and the delamination divided
the top facesheet into two equal halves. The core thickness was 25mm. In each
scenario, the uniformly distributed load was 0.005N/m2. The delamination length
was a¼ 550mm, the uncracked length was c¼ 250mm, the width of the plate was
b¼ 600mm. The calculation was carried out in the code MAPLE [127] based on
the model presented in ‘The SEKC’, ‘Equilibrium equations’, ‘Simply supported
sandwich plate’ and ‘Energy release rates (ERRs) – The J-integrals’ sections.
The number of terms (n) considered in the Lévy type solution was 7, the additional
terms provided very negligible improvement in the results.

Finite element models

To verify and assess the analytical model, the 3D FE models of the plates were
created in ANSYS environment using linear eight-noded brick-type SOLID elem-
ents. The model is shown in Figure 3 together with the delamination front details
and boundary conditions. The virtual crack closure technique (VCCT) [128] was
utilized to calculate the distribution of the ERRs along the delamination front.
The size of the crack tip elements was �x, �y, �zð Þ ¼ 0:5 mm, 0:5mm, 10 mmð Þ.
The constraints of the FE model were imposed in order to have a statically deter-
mined problem in accordance with Figure 3. However, it is very important to note
that equation (32) implies that the u displacement component is zero along the

Figure 3. 3D FE model of a delaminated sandwich plate: Delamination tip details and bound-

ary conditions.
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edges parallel to the x axis in Figure 2. This condition is also shown in Figure 3 and
needs to be imposed because of the soft core material and the relatively large
thickness of the plate. The total number of elements was between 70,000 and
90,000 for each model in order not to overcome the capabilities of a notebook
with average performance. A macro was written in the ANSYS Design and
Parametric Language (ADPL) by using the nodal forces and displacements to
calculate the distribution of GII and GIII along the delamination front.

Figure 4. Deflections in the middle (Y ¼ b=2) of the plates: (a) core–core failure (Scenario I),

(b) face–core delamination (Scenario II) and (c) face–face delamination (Scenario III).
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Displacement and stress fields

Figure 3 shows the deflections of the midlines (Y ¼ b=2) of the plates for each
scenario. It can be seen that the FSDT predicts a little bit smaller deflection
compared to the FE solution. In contrast, the TSDT model overpredicts the
numerical result. The SSDT solution seems to be the best for scenario I. In accord-
ance with Figure 3(b), each model overpredicts the numerically determined deflec-
tion and the SSDT and TSDT solutions agree quite well. Finally, the SSDT
was shown to perform the best in scenario III (Figure 4(c)). It has to be highlighted
that the transverse elasticity of the plates was not taken into account in the
analytical models.

Figure 5 presents the displacement and normal stress distributions for the core–
core failure scenario in the sections located at the delamination front.
The numerical model predicts high displacement perturbations in the vicinity of
the delamination tip that the analytical models are not able to follow. In spite of
that the �x normal stress is approximated well by the analytical models. For �y, the
agreement seems to be worst compared to the numerical model. The results of the
face–core delamination scenario are documented in Figure 6. There is a strong

Figure 5. Distribution of the in-plane displacements (u and v) and the normal stresses (�x

and �y) at the section of the delamination front, scenario I: core–core failure.
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change in the displacement distribution in the plane of the delamination. Among
the analytical models, the SSDT and TSDT captures better the displacement dis-
tribution than the FSDT. Considering the normal stresses, again the y component
is approximated roughly by the analytical models.

The results of the face–face delamination scenario are plotted in Figure 7.
Overall, based on Figure 7, it is the TSDT model that provides reasonable accuracy
for the displacement and stress distributions.

The shear stresses were also calculated at certain sections located along the
delamination front of the plate. Figure 8 depicts the distributions of shear stresses
for the first scenario (core–core failure). The FE model computes a peak in the
delamination plane, which increases with the mesh refinement. The analytical
model does not predict any peaks; however, the shear stresses in the facesheets
are determined in a different way. In the core material, the shear stresses are
approximated well by the analytical model. In Figure 9, the transverse shear stres-
ses are plotted relatively far from the delamination tip (from approximately equal
distances) ahead and behind. Considering the differences in the deflection of the
analytical models compared to that of the FE solution, the overall agreement is
acceptable for all results plotted in Figure 9. For the face–core and the face–face

Figure 6. Distribution of the in-plane displacements (u and v) and the normal stresses (�x

and �y) at the section of the delamination front, scenario II: face–core delamination.
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Figure 8. Distribution of the transverse shear stresses (	xz and 	yz) at the section of the

delamination front, scenario I: core–core delamination.

Figure 7. Distribution of the in-plane displacements (u and v) and the normal stresses (�x

and �y) at the section of the delamination front, scenario III: face–face delamination.
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Figure 10. Distribution of the transverse shear stresses (	xz and 	yz) at the section of the

delamination front, scenario II: face–core delamination.

Figure 9. Distribution of the transverse shear stresses (	xz and 	yz) ahead and behind the

delamination front, scenario I: core–core delamination.
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scenarios, the shear stresses in sections located at the delamination front are shown
in Figures 10 and 11. In the former case, a significant change is observed in the
shear stresses of the top face sheet, which is not predicted by the numerical model.
In the latter case, the agreement is much better, the change in the shear stresses by
FEM is captured well by the analytical model. Finally, it has to be mentioned that
the analytical models give an estimation of the area under the shear stress distri-
butions and not the shape of the curves compared to the FE solution. That is the
reason for the high peaks in Figures 10 and 11.

Figure 12. Distribution of the energy release rates and mode mixity along the delamination

front, scenario I: core–core delamination.

Figure 11. Distribution of the transverse shear stresses (	xz and 	yz) at the section of the

delamination front, scenario III: face–face delamination.
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ERRs and mode mixity

Figure 12 depicts the distribution of the ERRs and mode mixities along the delam-
ination front for the core–core failure scenario. The mode-II ERR is very well
predicted, while the mode-III ERR is overpredicted by the analytical models
along the whole delamination front. Apparently, the FSDT model provides the

Figure 14. Distribution of the energy release rates and mode mixity along the delamination

front, scenario III: face–face delamination.

Figure 13. Distribution of the energy release rates and mode mixity along the delamination

front, scenario II: face–core delamination.
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best agreement with the FE results. The mode mixities show a very good agree-
ment compared to the numerical model. The face–core and face–face delamin-
ation cases are documented in Figures 13 and 14. In Figure 13, each model
behaves in a similar way, again, the FSDT seems to be the best. The results
obtained for the face–face scenario in Figure 14 shows the failure of the FSDT
solution in this case. On the contrary, the SSDT and TSDT solutions perform
excellently in this critical case. At the edges, in each case, there is a little dis-
agreement between the numerical and analytical results. The reason for that is
the plate theory does not consider edge effects, on the contrary, in the FE
model, the edges are stress concentrators.

Based on the obtained results, model size and agreement with the numerical
results, the SSDT solution can be recommended to be the candidate of a possible
shell finite element that can replace the computationally expensive 3D SOLID
models.

Conclusions

The FSDT, SSDT and TSDT were applied to investigate three delamination scen-
arios in thick sandwich plates. The method of four ESLs was applied together with
the SEKC. By formulating the governing equations for the delaminated and unde-
laminated parts of the plate and by using the Lévy type boundary conditions, the
system of ODEs was derived. The solution was obtained by a state-space model.
The boundary and continuity conditions were then provided and the role of the
effective stress resultants were emphasised. A simply supported delaminated sand-
wich plate with uniformly distributed load was solved by the analytical model and
the mechanical fields were determined. The finite element model of the plate was
also created for three scenarios and a comparison was carried out with the analyt-
ical results. The three scenarios were core failure, face–core delamination and face–
face delamination.

A first observation was that the deflection functions were quite accurate by
the SSDT for scenarios I and III, and for scenario II, the FSDT should be
ranked as the best. Considering the displacement and stress distributions at
cross sections located along the delamination front, it was shown that the
first-order plate theory is only a rough approximation of the FE results,
while the SSDT and TSDT provided a better agreement. The numerical
model predicted significant perturbations in the delamination tip that the ana-
lytical models were not able to follow. In spite of that, it was shown that the
SSDT and TSDT solutions provide very good results for the ERR and mode
ratio distributions. On the other hand, the FSDT failed to capture the distri-
butions for the third scenario. The obtained results are promising, however to
capture the mechanical fields better, it is also required to consider the transverse
elasticity of the sandwich plate. The literature offers several possibilities to
incorporate normal deformations into the model [55,66,76,96,129], which
should be the next step in order to continue the research work.
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59. Marjanović M and Vuksanović D. Layerwise solution of free vibrations and buckling of
laminated composite and sandwich plates with embedded delaminations. Compos Struct
2014; 108: 9–20.

60. Akbarov SD, Yahnioglu N and Tekin A. Buckling delamination of a rectangular
viscoelastic sandwich plate containing interface inner cracks. J Eng Mech 2014; 140:
134–148.

61. Grover N, Singh BN and Maiti DK. Free vibration and buckling characteristics

of laminated composite and sandwich plates implementing a secant function based
shear deformation theory. Proc Inst Mech Eng Part C: J Mech Eng Sci 2015; 229:
391–406.

62. Sahoo R and Singh BN. Assessment of zigzag theories for free vibration analysis of
laminated-composite and sandwich plates. Proc Inst Mech Eng Part G: J Aerosp Eng
2015; 229: 1931–1949.

63. Iurlaro L, Gherlone M, Di Sciuva M, et al. Assessment of the Refined Zigzag Theory for
bending, vibration, and buckling of sandwich plates: A comparative study of different
theories. Compos Struct 2013; 106: 777–792.

64. Ren X and Chen W. Free vibration analysis of laminated and sandwich plates using
quadrilateral element based on an improved zig-zag theory. J Compos Mater 2011; 45:
2173–2187.

65. Jensen AE and Irgens F. Thickness vibrations of sandwich plates and beams and delam-

ination detection. J Intell Mater Syst Struct 1999; 10: 46–55.
66. Pandit MK, Sheikh AH and Singh BN. Vibration characteristic of laminated sandwich

plates with soft core based on an improved higher-order zigzag theory. Proc Inst Mech

Eng Part C: J Mech Eng Sci 2008; 222: 1443–1451.
67. Nayak AK and Shenoi RA. Assumed strain finite elements for buckling and vibration

analysis of initially stressed damped composite sandwich plates. J Sandw Struct Mater

2005; 7: 307–334.
68. Garg AK, Khare RK and Kant T. Higher-order closed-form solutions for free

vibration of laminated composite and sandwich shells. J Sandw Struct Mater 2006;

8: 205–235.
69. Meunier M and Shenoi R. Free vibration analysis of composite sandwich plates. Proc

Inst Mech Eng Part C: J Mech Eng Sci 1999; 213: 715–727.
70. Lopatin AV and Morozov EV. Symmetrical vibration modes of composite sandwich

plates. J Sandw Struct Mater 2011; 13: 189–211.
71. Morozov EV and Lopatin AV. Fundamental frequency of fully clamped composite

sandwich plate. J Sandw Struct Mater 2010; 12: 591–619.
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99. Szekrényes A. The system of exact kinematic conditions and application to delami-

nated first-order shear deformable composite plates. Int J Mech Sci 2013; 77: 17–29.
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Appendix 1

Notation

Latin symbols.

a Delamination length
b Plate width
c Undelaminated length
ga Set of displacement parameters
tb Thickness of bottom plate
ti Thickness of the ith ESL
tt Thickness of top plate

u, v, w Displacement field components
u0, v0 Global membrane displacements

u0i, v0i Local membrane displacements
zðiÞ Local through the thickness coordinate
z
ðiÞ
R Coordinate of the global reference plane in the ith

ESL
zðiÞm , z

ðiÞ
mþ1 Local coordinates of the mth layer in the ith ESL
Apq Extensional stiffness matrix
Bpq Coupling stiffness matrix
Dpq Bending stiffness matrix

E11, E22, E33 Moduli of elasticity in the x, y and z directions
Epq, Fpq, Gpq, Hpq Higher-order stiffness matrices

F Vector of external load
G Matrix exponential

G12, G13, G23 Shear moduli in the x – y, x – z and y – z planes
GIII Mode-III energy release rate
GII Mode-II energy release rate
H Vector of particular solution

JIII Mode-III J-integral
JII Mode-II J-integral
Kij Displacement multiplicator matrix

Lx, Ly, Lxy Higher-order stress resultants
L̂x, L̂xy, P̂x, P̂xy Equivalent higher-order stress resultants

M̂x, M̂xy Equivalent bending and twisting moments
Mx, My, Mxy Bending and twisting moments
Nx, Ny, Nxy In-plane forces
Px, Py, Pxy Higher-order stress resultants

Q0 Surface load
Qn Coefficient in trial function of external load

Qx, Qy Transverse shear forces
Rx, Ry Higher-order shear forces
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Sx, Sy Higher-order shear forces
T System matrix

Un,Vn,Wn Function coefficients in trial function of displacement
parameters

U0
n,V0
n Function coefficients in trial function of displacement
parameters

Xn,Yn,Txn,Tyn,Zxn,Zyn Function coefficients in trial function of displacement
components

Z State vector

Greek symbols.

�xz, �yz Transverse shear strains
�̂xy Conjugate shear strain


u, 
v, 
w Virtual displacement field components

 xjð Þ, 
 yð Þ j Vectors of virtual primary parameters in the x, y, z

coordinate system
"ij Strain tensor
� Angle of rotation
� Third-order displacement term

sij Stress tensor
n12, n13, n23 Poisson’s ratios in the x – y, x – z and y – z planes

� Second-order displacement term
�x,�y,�z Size of crack tip elements

�ðxÞ,�ð yÞ Function coefficients in trial function of displacement
components

 ðxÞ j,  ð yÞ j Vectors of primary parameters in the x, y, z coordi-
nate system

wð pÞ Vector of primary parameters
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Appendix 2

Multiplicator matrix elements for SSDT

Table 7. Multiplicator matrix elements for the SSDT theory – Undelaminated region,

scenario I: Core–core delamination.

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij

[1, 1] � 3
4
t1 1 1

t1
[3, 1] 0 0 0

[1, 2] �z
2ð Þ

R �
1
2
t2 0 0 [3, 2] �z

2ð Þ
R þ

1
2
t2 þ

1
4
t3 0 � 1

t3

[1, 3] 0 0 0 [3, 3] 1
4
t3 1 1

t3

[1, 4] 1
4
t1 0 � 1

t1
[3, 4] 0 0 0

[1, 5] 1
4

t2 � 2z
ð2Þ
R

	 

t2 þ 2z

ð2Þ
R

	 

0 0 [3, 5] � z

2ð Þ
R

	 
2

þ 1
2
t22 þ

1
4
t3t2 0 � t2

t3

[1, 6] 1
4
t1t4 0 � t4

t1
[3, 6] 0 0 0

[2, 1] 0 0 0 [4, 1] 0 0 0

[2, 2] �z
2ð Þ

R 1 0 [4, 2] �z
2ð Þ

R þ
1
2
t2 0 0

[2, 3] 0 0 0 [4, 3] t3 0 0

[2, 4] 0 0 0 [4, 4] 1
2
t4 1 0

[2, 5] � z
2ð Þ

R

	 
2

0 1 [4, 5] 1
4

t2 � 2z
2ð Þ

R

	 

t2 þ 2z

2ð Þ
R

	 

0 0

[2, 6] 0 0 0 [4, 6] � 1
4
t24 0 1

Table 8. Multiplicator matrix elements for the SSDT theory – Undelaminated region,

scenarios II and III: Face–core and face–face delamination.

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij

[1, 1] � 3
4
t1 1 1

t1
[3, 1] 0 0 0

[1, 2] �z
ð2Þ
R �

1
2
t2 0 0 [3, 2] �z

ð2Þ
R þ

1
2
t2 0 0

[1, 3] 0 0 0 [3, 3] 3
4
t3 1 � 1

t3

[1, 4] 1
4
t1 0 � 1

t1
[3, 4] � 1

4
t3 0 1

t3

[1, 5] 1
4

t2 � 2z
ð2Þ
R

	 

t2 þ 2z

ð2Þ
R

	 

0 0 [3, 5] 1

4
t2 � 2z

ð2Þ
R

	 

t2 þ 2z

ð2Þ
R

	 

0 0

[1, 6] 1
4
t1t4 0 � t4

t1
[3, 6] 1

4
t3t4 0 � t4

t3

[2, 1] 0 0 0 [4, 1] 0 0 0

[2, 2] �z
ð2Þ
R 1 0 [4, 2] �z

ð2Þ
R þ

1
2
t2 0 0

[2, 3] 0 0 0 [4, 3] t3 0 0

[2, 4] 0 0 0 [4, 4] 1
4
t4 1 0
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R

	 
2

0 1 [4, 5] 1
4

t2 � 2z
ð2Þ
R
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R

	 

0 0
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4
t24 0 1

Szekrényes 39



Table 9. Multiplicator matrix elements for the SSDT theory – Delaminated region, scenario I:

Core–core delamination.

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij
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z
ð1Þ
R t1 þ z

ð1Þ
R

	 

t1

1 1
t1
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4
t3 0 � 1

t3
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4
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t3

[1, 4]
ðz
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R
Þ
2

t1
0 � 1
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ð4Þ
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4t1
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4t1
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Table 10. Multiplicator matrix elements for the SSDT theory – Delaminated region, scenario

II: Face–core delamination.

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij

[1, 1] �
z
ð1Þ
R t1 þ z

ð1Þ
R

	 

t1

1 1
t1

[3, 1] 0 0 0

[1, 2] 0 0 0 [3, 2] 0 0 0
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4
t3 1 � 1

t3

[1, 4]
z
ð1Þ
R

	 
2
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0 � 1

t1
[3, 4] �z

ð4Þ
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1
4
t3 �

1
2
t4 0 1

t3

[1, 5] 0 0 0 [3, 5] 0 0 0

(continued)
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Appendix 3

Multiplicator matrix elements for TSDT

Table 10. Continued

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij
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2
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t1 � 2z
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ð4Þ
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2

0 1

Table 11. Multiplicator matrix elements for the SSDT theory – Delaminated region, scenario

III: Face–face delamination.

[i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij [i, j] K
0ð Þ

ij K
1ð Þ

ij K
2ð Þ

ij

[1, 1] � 3
4
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t1
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1
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t3
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t3
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4
t3t4 0 t4

t3

[2, 1] 0 0 0 [4, 1] 0 0 0

[2, 2] �z
ð1Þ
R 1 0 [4, 2] 0 0 0

[2, 3] 0 0 0 [4, 3] 0 0 0

[2, 4] 0 0 0 [4, 4] �z
ð4Þ
R 1 0

[2, 5] � z
ð1Þ
R

	 
2

0 1 [4, 5] 0 0 0

[2, 6] 0 0 0 [4, 6] � z
ð4Þ
R

	 
2

0 1
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Table 12. Multiplicator matrix elements for the TSDT theory – Undelaminated region,

scenario I: Core–core delamination.

½i, j � K
ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij ½i, j � K

ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij

½1, 1� � 3
4
t1 1 1

t1
0 ½3, 1� 0 0 0 0

½1, 2� �z
ð2Þ
R �

1
2
t2 0 0 0 ½3, 2� �z

ð2Þ
R þ

1
2
t2 þ

1
3
t3 0 � 2

t3
� 4

3t2
3

½1, 3� 0 0 0 0 ½3, 3� 1
6
t3 1 2

t3
4

3t2
3

½1, 4� 1
4
t1 0 � 1

t1
0 ½3, 4� 0 0 0 0

½1, 5� 1
4

t2 � 2z
ð2Þ
R

	 

t2 þ 2z

ð2Þ
R

	 

0 0 0 ½3, 5�

� ðz
ð2Þ
R Þ

2
þ

t22
4

þ
t3t2

3
þ

t23
12

0 � t3þ2t2
t3

�
4ðt2þt3Þ

3t2
3

½1, 6� 1
4
t1t4 0 � t4

t1
0 ½3, 6� 0 0 0 0

½1, 7�
�
ðt2 þ 2z

ð2Þ
R Þ

8

� 4ðz
ð2Þ
R Þ

2
� 2t2z

ð2Þ
R þ t22

	 
 0 0 0 ½3, 7�
� z

ð2Þ
R

	 
3

þ
t3t22
4

þ
t23t2

8
þ

t32
8

0 � 3
2
ðt3þt2Þt2

t3
�

t2ðt2þt3Þ

t2
3

½2, 1� 0 0 0 0 ½4, 1� 0 0 0 0

½2, 2� �z
ð2Þ
R 1 0 0 ½4, 2� �z

ð2Þ
R þ

1
2
t2 �

1
3
t3 0 0 0

½2, 3� 0 0 0 0 ½4, 3� 4
3
t3 0 0 0

½2, 4� 0 0 0 0 ½4, 4� 1
2
t4 1 0 0

½2, 5� � z
ð2Þ
R

	 
2

0 1 0 ½4, 5�
�

t3ðt2 þ t3Þ

3

þ
t22
4
� z

ð2Þ
R

	 
2
0 0 0

½2, 6� 0 0 0 0 ½4, 6� � 1
4
t24 0 1 0

½2, 7� � z
ð2Þ
R

	 
3

0 0 1 ½4, 7�
�

t3t2

2

t2

2
þ t3

	 

þ

t32
8
� z

ð2Þ
R

	 
3
0 1 0
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Table 13. Multiplicator matrix elements for the TSDT theory – Undelaminated region,

scenarios II and III: Face–core and face–face delamination.

½i, j � K
ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij ½i, j � K

ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij

½1, 1� � 3
4
t1 1 1

t1
0 ½3, 1� 0 0 0 0

½1, 2� �z
ð2Þ
R �

1
2
t2 0 0 0 ½3, 2� �z

ð2Þ
R þ

1
2
t2 0 0 0

½1, 3� 0 0 0 0 ½3, 3� 7
6
t3 1 � 2

t3
4

3t2
3

½1, 4� 1
4
t1 0 � 1

t1
0 ½3, 4� � 2

3
t3 0 2

t3
� 4

3t2
3

½1, 5� 1
4
ðt2 � 2z

ð2Þ
R Þðt2 þ 2z

ð2Þ
R Þ 0 0 0 ½3, 5� 1

4
ðt2 � 2z

ð2Þ
R Þðt2 þ 2z

ð2Þ
R Þ 0 0 0

½1, 6� 1
4
t1t4 0 � t4

t1
0 ½3, 6� 1

12
t3ð5t3 þ 8t4Þ 0 � t3þ2t4

t3

4ðt3þt4Þ

3t2
3

½1, 7�
�
ðt2 þ 2z

ð2Þ
R Þ

8
ð4ðz

ð2Þ
R Þ

2

� 2t2z
ð2Þ
R þ t22Þ

0 0 0 ½3, 7�

1

8
ðt2 � 2z

ð2Þ
R Þ

ðt22 þ 2z
ð2Þ
R t2 þ 4z

ð2Þ
R Þ

0 0 0

½2, 1� 0 0 0 0 ½4, 1� 0 0 0 0

½2, 2� �z
ð2Þ
R 1 0 0 ½4, 2� �z

ð2Þ
R þ

1
2
t2 0 0 0

½2, 3� 0 0 0 0 ½4, 3� 4
3
t3 0 0 0

½2, 4� 0 0 0 0 ½4, 4� � 1
2
t3 þ

1
2
t4 1 0 0

½2, 5� �ðz
ð2Þ
R Þ

2 0 1 0 ½4, 5� 1
4
ðt2 � 2z

ð2Þ
R Þðt2 þ 2z

ð2Þ
R Þ 0 0 0

½2, 6� 0 0 0 0 ½4, 6� 1
12
ð2t3 þ 3t4Þð2t3 � t4Þ 0 1 0

½2, 7� �ðz
ð2Þ
R Þ

3 0 0 1 ½4, 7�

1

8
ðt2 � 2z

ð2Þ
R Þ

ðt22 þ 2z
ð2Þ
R t2 þ 4z

ð2Þ
R Þ

0 0 0

Table 14. Multiplicator matrix elements for the TSDT theory – Delaminated region, scenario

I: Core–core delamination.

½i, j � K
ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij ½i, j � K

ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij

½1, 1� �
z
ð1Þ

R
ðt1þz

ð1Þ

R
Þ

t1
1 1

t1
0 ½3, 1� 0 0 0 0

½1, 2� 0 0 0 0 ½3, 2� 1
4
t3 0 � 1

t3
0

½1, 3� 0 0 0 0 ½3, 3� � 3
4
t3 1 1

t3
0

½1, 4�
ðz
ð1Þ

R
Þ
2

t1
0 � 1

t1
0 ½3, 4� �z

ð4Þ
R �

1
2
t4 0 0 0

(continued)
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Table 14. Continued

½i, j � K
ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij ½i, j � K

ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij

½1, 5� 0 0 0 0 ½3, 5� 1
4
t3t2 0 � t2

t3
0

½1, 6�
ðz
ð1Þ

R
Þ
2t4

t1
0 � t4

t1
0 ½3, 6�

ðt4�2z
ð4Þ

R
Þðt4þ2z

ð4Þ

R
Þ

4
0 0 0

½1, 7� 0 0 0 0 ½3, 7� 3
16

t3t22 0 � 3
4

t2
2

t3
0

½1, 8� 0 0 0 0 ½3, 8� � 5
16

t33 0 3
4
t3 1

½2, 1�
ð3t1þ2z

ð1Þ

R
Þðt1�2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 1� 0 0 0 0

½2, 2� 1
2
t2 1 0 0 ½4, 2� 0 0 0 0

½2, 3� 0 0 0 0 ½4, 3� 0 0 0 0

½2, 4� �
ðt1�2z

ð1Þ

R
Þðt1þ2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 4� �z

ð4Þ
R 1 0 0

½2, 5� � 1
4
t22 0 1 0 ½4, 5� 0 0 0 0

½2, 6� �
t4ðt1�2z

ð1Þ

R
Þðt1þ2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 6� �ðz

ð4Þ
R Þ

2 0 1 0

½2, 7� 1
8
t32 0 0 1 ½4, 7� 0 0 0 0

½2, 8� 0 0 0 0 ½4, 8� 0 0 0 0

Table 15. Multiplicator matrix elements for the TSDT theory – Delaminated region, scenario

II: Face–core delamination.

½i, j � K
ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij ½i, j � K

ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij

½1, 1� �
z
ð1Þ

R
ðt1þz

ð1Þ

R
Þ

t1
1 1

t1
0 ½3, 1� 0 0 0 0

½1, 2� 0 0 0 0 ½3, 2� 0 0 0 0

½1, 3� 0 0 0 0 ½3, 3� � 1
6
t3 1 � 2

t3
4

3t2
3

½1, 4�
ðz
ð1Þ

R
Þ
2

t1
0 � 1

t1
0 ½3, 4� �z

ð4Þ
R �

1
3
t3 �

1
2
t4 0 2

t3
� 4

3t2
3

½1, 5� 0 0 0 0 ½3, 5� 0 0 0 0

½1, 6�
ðz
ð1Þ

R
Þ
2 t4

t1
0 � t4

t1
0 ½3, 6�

1

3
t3t4 þ

1

12
t23

þ�ðz
ð4Þ
R Þ

2
þ

1

4
t24

0 � t3þ2t4
t3

4
3

t4þt3
t2
3

½1, 7� 0 0 0 0 ½3, 7� 0 0 0 0

½2, 1�
ð3t1þ2z

ð1Þ

R
Þðt1�2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 1� 0 0 0 0

½2, 2� 1
2
t2 1 0 0 ½4, 2� 0 0 0 0

½2, 3� 0 0 0 0 ½4, 3� 0 0 0 0

½2, 4� �
ðt1�2z

ð1Þ

R
Þðt1þ2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 4� �z

ð4Þ
R 1 0 0

½2, 5� � 1
4
t22 0 1 0 ½4, 5� 0 0 0 0

½2, 6� �
t4ðt1�2z

ð1Þ

R
Þðt1þ2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 6� �ðz

ð4Þ
R Þ

2 0 1 0

½2, 7� 1
8
t32 0 0 1 ½4, 7� 0 0 0 0
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Table 16. Multiplicator matrix elements for the TSDT theory – Delaminated region, scenario

III: Face–face delamination.

½i, j � K
ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij ½i, j � K

ð0Þ
ij K

ð1Þ
ij K

ð2Þ
ij K

ð3Þ
ij

½1, 1� �
z
ð1Þ

R
ðt1þz

ð1Þ

R
Þ

t1
1 1

t1
0 ½3, 1� �

ðt1�2z
ð1Þ

R
Þð3t1þ2z

ð1Þ

R
Þ

4t1
0 0 0

½1, 2� 0 0 0 0 ½3, 2� t2 0 0 0

½1, 3� 0 0 0 0 ½3, 3� 7
6
t3 1 � 2

t3
4

3t2
3

½1, 4�
ðz
ð1Þ

R
Þ
2

t1
0 � 1

t1
0 ½3, 4� �

8t3t1�12ðz
ð1Þ

R
Þ
2
þ3t2

1

12t1
0 2

t3
� 4

3t2
3

½1, 5� 0 0 0 0 ½3, 5� 0 0 0 0

½1, 6�
ðz
ð1Þ

R
Þ
2t4

t1
0 � t4

t1
0 ½3, 6�

8t3 t1t4þ5t2
3
t1þ12ðz

ð1Þ

R
Þ
2t4�3t2

1
t4

12t1
0 � t3þ2t4

t3
4
3

t4þt3
t2
3

½1, 7� 0 0 0 0 ½3, 7� 1
4
t32 0 0 0

½2, 1�
ð3t1þ2z

ð1Þ

R
Þðt1�2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 1� 0 0 0 0

½2, 2� 1
2
t2 1 0 0 ½4, 2� 0 0 0 0

½2, 3� 0 0 0 0 ½4, 3� 0 0 0 0

½2, 4� �
ðt1�2z

ð1Þ

R
Þðt1þ2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 4� �z

ð4Þ
R 1 0 0

½2, 5� � 1
4
t22 0 1 0 ½4, 5� 0 0 0 0

½2, 6� �
t4ðt1�2z

ð1Þ

R
Þðt1þ2z

ð1Þ

R
Þ

4t1
0 0 0 ½4, 6� �ðz

ð4Þ
R Þ

2 0 1 0

½2, 7� 1
8
t32 0 0 1 ½4, 7� 0 0 0 0
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