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Abstract
Introduction Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, 
used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semi-
quantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent 
increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, 
demonstrates great potential in the field of metabolomic profiling and fingerprint analysis.
Objectives The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns 
among samples of different botanical origin and various metabolomic profiles.
Methods Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were 
applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures 
were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates.
Results Baroni-Urbani–Buser (BUB) and Hawkins–Dotson (HD) similarity coefficients were selected as the best measures 
by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the 
worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for 
metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and 
HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis.
Conclusion Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be 
a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

Keywords Plant metabolomics · Qualitative metabolomic data · Binary similarity measures · Fingerprint analysis

1 Introduction

Contemporary metabolomic fingerprinting is relatively fast, 
providing extensive information about relationships among 
samples, chemical and functional diversity of living organ-
isms (Ivanišević et al. 2011), and has important roles in: 
(a) discovery of novel bioactive compounds, (b) chemot-
axonomic evaluation of organisms (Christensen et al. 1999; 
dos Santos et al. 2017; Farag et al. 2012a, 2013b; Ivanišević 
et al. 2011; Jing et al. 2015), (c) quality control of herbal 
preparations and natural products (Farag et al. 2013a; Farag 
and Wessjohann 2012), (d) elucidating causative relations 
between exogenous factors and metabolic changes in organ-
isms (Allwood et al. 2008; Krstic et al. 2016; Shulaev et al. 
2008; Xie et al. 2014), and (e) tracking metabolome differ-
ences influenced by geographic origin (Farag et al. 2012b; 
Krstic et al. 2016).
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In the simplest form metabolomic fingerprinting is based 
on pure analytical signals excluding any direct chemical 
information (Anđelković et al. 2017). Nevertheless, mul-
tivariate methods, such as principal component analysis 
(PCA), or hierarchical cluster analysis (HCA) can further 
identify the signals originating from a single metabolite or 
a group of metabolites responsible for sample separations 
(Farag et al. 2013a, 2012, 2012a; Ivanišević et al. 2011; 
Porzel et al. 2014). Another, completely different approach 
starts from the identification of signal sections such as well 
separated chromatographic peaks, careful analysis and 
assignments of metabolites to each of them (after spec-
tral library and literature search, and/or confirmation with 
standard compounds) (Farag et al. 2013a; Jing et al. 2015; 
Kicel et al. 2016), and then subjecting absolute peak areas 
or their ratios to PCA or HCA (Jing et al. 2015; Kicel et al. 
2016). The main drawback of signal-based comparison is the 
lack of comprehensive chemical information, which can be 
obtained only by quantitative analysis. However, quantifica-
tion of all present compounds in plant extracts is almost an 
impossible task. At best, only few prominent markers are 
determined (Farag and Wessjohann 2012).

On the other hand, qualitative metabolomic data encoded 
only by the presence or absence of particular metabolites is 
on the rise (Arsenijević et al. 2016; Cardarelli et al. 2017; 
Dimkić et al. 2016; Kicel et al. 2016; Liu et al. 2017; Mišić 
et al. 2015; Mkrtchyan 2014; Xu et al. 2011). Although such 
approaches inevitably suffer from some information loss, 
their usage has several advantages. First, the use of complex 
instrumentation necessary to accurately resolve convoluted 
signals can be avoided. Second, the tedious quantification 
step is avoided. Finally, the analysis time and costs are sig-
nificantly reduced.

Such types of data where the presence of a particular 
metabolite is denoted by 1 and the absence by 0 are called 
binary metabolomic data. Dealing with binary metabolomic 
profiles is not a novelty, and several statistical approaches 
have been already meticulously studied by Frisvad and 
coworkers few decades ago, mostly related to HCA, corre-
spondence analysis (CA), and principal coordinate analysis 
(PCO) applied to fungi taxonomy (Banke et al. 1997; Chris-
tensen et al. 1999; Frisvad 1992, 1994; Larsen and Fris-
vad 1995). The authors confirmed an improved clustering 
and separation of taxa by the combination of quantitative 
and qualitative binary data (Frisvad 1994), or even just by 
binary metabolomic data (Larsen and Frisvad 1995). How-
ever, dealing with binary metabolomic data requires the use 
of various similarity metrics, which will be explained in the 
following section.

1.1  Similarity measures for binary data

Similarity metrics are used to compare binary and continu-
ous data vectors across the whole spectrum of scientific fields, 
although it is worth to note that the fields of taxonomy and 
ecology have been particularly active with regard to propos-
ing novel similarity metrics to classify various sorts of species 
and their associations (Dice 1945; Faith et al. 1987; Rogers 
and Tanimoto 1960; Russell and Rao 1940). Similarly, many 
metrics have been contributed by statisticians (Peirce 1884; 
Sokal and Michener 1958; Yule 1900). To our knowledge, the 
most comprehensive collection and comparison of similarity 
metrics was published by Todeschini et al. (2012). They have 
compiled a list of 51 similarity metrics, out of which seven 
have been shown to perfectly correlate with others.

For binary data, similarity metrics are calculated from a 
contingency table that summarizes the occurrences of the 
possible permutations of a feature (here, metabolite) between 
two samples: 1–1 (metabolite present in both samples), 1–0 
(metabolite present in the first sample and absent in the sec-
ond), 0–1 (metabolite absent in the first sample but present in 
the second), and 0–0 (metabolite absent from both samples). 
Frequencies of these events for all metabolites between two 
samples are here denoted as a, b, c and d respectively, and the 
total number of metabolites is p, which by definition equals 
a + b + c + d (see Online Resource 1, Table OR1). With these 
parameters, various similarity metrics can be calculated, as 
exemplified here:

Here, SM is the simplest similarity coefficient (called sim-
ple matching, or Sokal–Michener), JT corresponds to the Jac-
card–Tanimoto coefficient, which is the most popular choice 
of cheminformaticians for molecular similarity calculations 
(Bajusz et al. 2015), and CT5 is a novel similarity measure 
introduced in (Consonni and Todeschini 2012).

The values of similarity usually range from 0 to 1 (as for 
SM and JT from the above examples), but that is not always 
the case, for example the CT5 metric (along with a number of 
correlation-based similarity metrics) ranges from − 1 to + 1. 
Such metrics are rescaled to the range [0,1], based on the sim-
ple transformation below:

(1)SM =
a + d

p

(2)JT =
a

a + b + c

(3)CT5 =
ln(1 + ad) − ln(1 + bc)

ln
(

1 + p2∕4
)

(4)s� =
s + �

�
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where α and β are the scaling parameters compiled by Todes-
chini et al. (2012). The same paper also covers in great detail 
categorizations of similarity metrics according to concord-
ance symmetry and metricity. The former differentiates the 
metrics whether they consider the frequencies of d equally 
to the frequencies of a (symmetric, S), underweighted with 
respect to a (intermediate, I), or not consider it at all (asym-
metric, A). Correlation-based metrics that are transformed 
to the [0,1] range are labeled with Q. Metricity differentiates 
whether a similarity measure can be transformed into a met-
ric distance (i.e. one that complies with the non-negativity, 
identity of indiscernibles, symmetry and triangle inequality, 
denoted with M) or not (N).

1.2  Aims

Taking into account a great number of binary similarity met-
rics that can be used to group, cluster or classify samples and 
metabolites, and their various sensitivities to binary metabo-
lome structure, the inevitable question is which ones are the 
best, and which ones should be avoided?

Using a consensus-based non-parametric comparison, 
our aims were to: (i) identify the most appropriate and the 
least suitable binary similarity coefficients, (ii) establish 
whether qualitative (binary) metabolomic information can 
reveal the same or highly similar patterns among samples 
and metabolites as contemporarily used metabolomic finger-
printing based on quantitative information. As we will see 
later, the approach based on binary qualitative metabolomic 
data resulted in very similar patterns as the ones obtained 
by quantitate metabolomic approach when using unsuper-
vised pattern recognition techniques, i.e. hierarchical cluster 
analysis.

2  Methodology

2.1  Metabolomic data collection

Nine different metabolomic datasets were selected for the 
comparison of similarity metrics. Special care was taken 
regarding the dataset size (number of samples and metabo-
lites), types of metabolites, analytical methods, and appli-
cation field. Every dataset is represented by a binary table 
with samples arranged in rows and metabolites arranged in 
columns. The presence and absence of metabolites were 
indicated by 1 and 0, respectively. Short descriptions of 
the datasets are summarized in Table 1. The Dimkić et al. 
dataset was split into three parts based on the type of the 
measured compounds (phenolic acids and esters, flavonoids, 
glycerides and glycosides). Complete data sets can be found 
in Online Resource 2.

2.2  Selection of similarity measures for qualitative 
metabolomic data

In total, 44 similarity measures have been selected, with 
13 concordantly symmetric, 17 asymmetric, 2 of intermedi-
ate symmetry and 12 correlation-based ones. Half of them 
(n = 22) were metric and the second half non-metric. The 
same notation as in the work of Todeschini et al. (2012) was 
used. Definitions, labels, and names of similarity metrics are 
given in the Online Resource 1, Table OR2.

2.3  Sum of ranking differences

Sum of ranking differences (SRD) is a novel, general 
method for the ranking and comparison of models, metrics, 

Table 1  Case studies (summary)

Dataset Reference Analysed material Metabolites No. of 
metabo-
lites

No. of 
sam-
ples

Analytical method

1 Arsenijević et al. Hungarian thyme Polyphenolic compounds 12 8 HPLC-DAD
2 Cardarelli et al. Aloe species 16 18 UHPLC-QTOF
3 Dimkić et al. Plant resins and propolis Carboxylic acids, phenolic 

acids and esters
26 17 UHPLC–MS/MS Orbitrap

4 Dimkić et al. Plant resins and propolis Flavonoids 26 17 UHPLC–MS/MS Orbitrap
5 Dimkić et al. Plant resins and propolis Glycerides and glycosides 11 17 UHPLC–MS/MS Orbitrap
6 Kicel et al. Cotoneaster Medik. species Polyphenols 34 12 UHPLC-PDA-ESI-QTOF-MS
7 Mišić et al. Nepeta species Phenolic acids and their 

derivatives
37 12 UHPLC-LTQ/orbitrap-MS

8 Mrktchyan et al. Coprinoid mushrooms 
(Coprinellus)

Fatty acids 5 17 GC (FID)

9 Xu et al. Grapes, grape-derived prod-
ucts

Polyphenols 53 29 HPLC-MS (DAD, MSD trap, 
ESI)
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techniques (Héberger 2010; Kollár-Hunek and Héberger 
2013). It is based on the following steps: (1) start with an 
input matrix, with the variables (similarity metrics) in the 
columns and the samples in the rows, (2) add a reference 
column, that can be either a gold standard, or a consensus 
of the variables (row-wise average, maximum or minimum, 
depending on the dataset), (3) rank transform each column 
(including the reference) by increasing magnitude, (4) cal-
culate the differences between the ranks of each variable and 
the reference for each sample, (5) sum up the absolute dif-
ferences for each variable. The latter are called SRD (sum of 
ranking differences) values and they represent the closeness 
to (or consistency with) the ranking pattern of the reference 
method (the smaller the better). For better comparability, 
the normalized (scaled) versions of SRD values are given 
and plotted, along with the distribution of SRD values for 
randomized rank numbers. The procedure is explained in 
animated plots in the recent work of Bajusz et al. (2015). 
SRD is further validated with bootstrap (repeated and ran-
domized) cross-validation.

SRD is developed as an MS Excel macro, and is available 
for download at: http://aki.ttk.mta.hu/srd.

2.4  Other statistical methods

Analysis of variance (ANOVA) was used for the compari-
son of the similarity metrics based on the SRD values. This 
method is based on the pairwise comparison of the average 
values of the different groups of samples. STATISTICA 13 
(Dell Inc., Tulsa, OK, USA) was used for the analysis. Dif-
ferent factors such as classes and metricity were compared 
separately.

3  Results and discussion

3.1  Consensus‑based comparison of similarity 
measures

Starting from binary fingerprints, the workflow of the calcu-
lation and comparison procedure is depicted in Fig. 1.

For each similarity metric (44), a full similarity matrix 
was calculated and “unfolded” to a single vector (Haws et al. 
2012). These vectors were compiled in a final X matrix 
(with the similarity metrics in the columns and the unfolded 

Fig. 1  Workflow of the comparison procedure. Binary fingerprints 
encode the presence or absence of a compound in a sample  (N1 to 
 Nm). For each similarity metric  (M1 to  Mz) a full similarity matrix is 

calculated and then “unfolded” (or “flattened”) to a single vector. The 
average and normalized SRD values of more than 50 bootstrap analy-
ses per datasets were used for ANOVA. (Color figure online)

http://aki.ttk.mta.hu/srd
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similarity matrix elements in the rows) for the SRD analy-
sis with the row-wise average as the reference column, and 
bootstrap cross-validation (more than 50 rounds of SRD for 
each dataset). One example of the SRD evaluations can be 
seen in Fig. 2.

Mean SRD values were calculated and normalized for 
the appropriate comparison between the nine datasets with 
ANOVA. First, the similarity metrics were used as the fac-
tor for the analysis: in this case the similarity metrics were 
significantly different (α = 0.05, see the averages and the 
95% confidence intervals in Fig. 3). The similarity metrics 
can be split to three groups based on this plot: those hav-
ing smaller SRD values than 15 can be considered the most 
consistent based on the 9 datasets. These are BUB (Baroni-
Urban–Buser) and HD (Hawkins–Dotson), followed by Coh 
(Cohen), MP (Maxwell–Pilliner), RG (Rogot–Goldberg) and 
SS3 (Sokal–Sneath). Metrics between SRD values of 15 and 
25 are in the medium group, while the weakest ones have 
SRD values greater than 25.

Similarity metrics can be grouped into four different 
classes: symmetric, asymmetric, intermediate and correla-
tion-based. ANOVA was also carried out with these classes 
as the factor for the analysis, and the differences were, again, 
statistically significant. As seen in Fig. 4a, the best ones 
were the symmetric (and intermediate) metrics, while the 
weakest one was the asymmetric group. Based on the Tukey 
and Bonferroni post-hoc tests, the asymmetric class clearly 
differs from the others and the other three classes overlap.

Fig. 2  One example of the SRD results (Dataset 3). Normalized SRD 
values (percentages) are plotted on the X and left Y axes. The cumu-
lative relative frequencies of SRD values in the randomization test 
(%) are plotted on the right Y axis. (The original plot was magnified 
for better visualization). (Color figure online)

Fig. 3  ANOVA decomposi-
tion of similarity metrics as 
factor. Dashed lines symbolize 
the limit of the best/consist-
ent (lower part), worst (upper 
part) and medium groups of 
similarity metrics based on 
SRD values. 95% confidence 
limits are plotted with vertical 
bars. (Color figure online)
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The superiority of symmetric (and intermediate) coef-
ficients contrasts with cheminformatics, where usually 
asymmetric measures are preferred, although this is mostly 
explained by the usually greater sparsity of molecular fin-
gerprints (Todeschini et al. 2012).

Metric and non-metric groups were used as the factor in 
ANOVA, as well. The two groups were significantly differ-
ent (with the metric group being much better than the non-
metric) and the results can be seen in Fig. 4b.

3.2  Comparison of qualitative and quantitative 
metabolomic profiling

The findings were tested on the Dimkić et  al. dataset, 
because here the quantitative concentration data can be used 
as a reference set. The best and worst cases of binary simi-
larity metrics were chosen and compared with the reference 
one. Cluster analysis was applied to the BUB (best) and Di1 
(worst) distance matrices with Ward’s method as the linkage 
rule. In the same way we performed cluster analysis to the 
standardized and transformed (1 – |Pearson coeff.|) quanti-
tative data as well. The comparison to the reference clus-
tering (Fig. 5a) can be seen in Fig. 5. The use of the BUB 
distance metric for the distance matrix gave a 94.5% correct 
classification rate (CCR%) compared to the clusters of the 
reference. In this sense, the Di1 metric gave only CCR% = 
45.5%, which is completely random. Thus with the use of 
the BUB metric the results are almost the same as in the case 
of continuous, quantitative data.

3.3  Comparison with earlier literature findings

A recent work that shows some similarity to our approach 
was published in 2017 and deals with the classification of 
plants based on metabolite content (Liu et al. 2017). The 
basic assumption of the authors was that the similarity in 
metabolite content is applicable to assess the phylogenic 
similarity of higher plants. A particular difficulty of the 
applied taxonomic approach is the incompleteness of the 
metabolomics data. Nonetheless, the authors could success-
fully classify 216 plants based on their known (incomplete) 
metabolite content. While they have not used binary similar-
ity coefficients, the plants have been represented as binary 
vectors, implying relations with structurally similar metabo-
lite groups, and classified using hierarchical clustering with 
Ward’s method.

Metabolite identification is routinely done using spectral 
similarity measures; a spectral alignment algorithm estab-
lishes a “similarity score” between individual spectra. How-
ever, these are non-binary similarity metrics, even if some 
structural fragment is binarily encoded (presence/absence) 
(Allard et al. 2017).

In the work of O’Hagan and Kell, two binary similarity 
metrics (Tanimoto and Tversky) were applied for a maxi-
mum common substructure-based analysis of drugs and 
human metabolites. The molecular fingerprint (that was used 
to encode the molecular structures) had a dramatic effect on 
the apparent similarities observed. By contrast, the maximal 
common substructure (MCS) approach provided a means of 
determining similarities that is largely independent of the 
fingerprint type (O’Hagan and Kell 2017).

Recently, an efficient method was suggested to find both 
frequent closed itemsets and biclusters in high-dimensional 

Fig. 4  ANOVA decomposition of factors: classes (a) and metricity (b). Vertical lines denote the 95% confidence intervals around the average 
values. (For b, notice the lack of overlap between the confidence intervals). (Color figure online)
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binary data (Király et al. 2014). While the original pub-
lication appeared outside of the metabolomics field, the 
described method should be readily available for binary 
metabolomics data as well.

In a 2003 article by Heymans and Singh, binary relations 
between enzymes were established by comparing metabolic 
pathways in different genomes (Heymans and Singh 2003). 
The authors have applied a graph-based approach with sev-
eral non-binary similarity measures calculated from the 
structural relationship between the enzymes (represented 
as graph nodes). The obtained phylogenetic trees closely 
matched existing phylogenies and revealed interesting rela-
tionships among organisms.

4  Conclusion

Based on qualitative binary fingerprints, 44 similarity meas-
ures were compared on metabolomics datasets. SRD and 
ANOVA showed that the most consistent similarity measures 
are the Baroni-Urbani–Buser (BUB) and Hawkins–Dotson 

(HD) metrics, being fit for the replacement of quantitative 
data in cluster analysis tasks as well. Concordantly, interme-
diate and symmetric similarity coefficients are good candi-
dates for metabolomic fingerprinting in general. The metric 
group of similarity measures was significantly better than 
the non-metric.

Similarity/distance metrics usually lead to different 
results and conclusions in cluster analysis, thus finding and 
using the most consistent metrics is an important part of 
this type of evaluations. The qualitative metabolomic pro-
files and binary similarity measures proved to be a reliable 
way in finding patterns in metabolomic data. Comparison 
with the cluster analysis based on quantitative profiles has 
corroborated our earlier conclusions.
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