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MUTUAL INFORMATION DECAY FOR FACTORS OF IID

BALÁZS GERENCSÉR AND VIKTOR HARANGI

Abstract. This paper is concerned with factor of i.i.d. processes on the d-regular tree for
d ≥ 3. We study the mutual information of the values on two given vertices. If the vertices
are neighbors (i.e., their distance is 1), then a known inequality between the entropy of a
vertex and the entropy of an edge provides an upper bound for the (normalized) mutual
information. In this paper we obtain upper bounds for vertices at an arbitrary distance k,
of order (d− 1)−k/2. Although these bounds are sharp, we also show that an interesting
phenomenon occurs here: for any fixed process the rate of decay of the mutual information
is much faster, essentially of order (d− 1)−k.

1. Introduction

For an integer d ≥ 3 let Td denote the d-regular tree: the (infinite) connected graph with
no cycles and with each vertex having exactly d neighbors.
This paper deals with factor of i.i.d. processes on Td. First we give an informal definition:

independent and identically distributed (say [0, 1] uniform) random labels are assigned to
the vertices of Td, then each vertex gets a new label that depends on the labeled rooted
graph as seen from that vertex, all vertices “using the same rule”.
For a formal definition, let V (Td) denote the vertex set and Aut(Td) the automorphism

group of Td. Suppose that M is a measurable space. (In most cases M will be either
a discrete set or R.) A measurable function F : [0, 1]V (Td) → MV (Td) is said to be an
Aut(Td)-factor (or factor in short) if it is Aut(Td)-equivariant, that is, it commutes with
the natural Aut(Td)-actions. Given an i.i.d. process Z = (Zv)v∈V (Td)

on [0, 1]V (Td), applying

F yields a factor of i.i.d. process X = F (Z), which can be viewed as a collection X =
(Xv)v∈V (Td)

of M-valued random variables. It follows immediately from the definition that

the distribution of X is invariant under the action of Aut(Td); in particular, each Xv has
the same distribution. Factors of i.i.d. are also studied by ergodic theory (under the name
of factors of Bernoulli shifts), see Section 2 for details.
One of the reasons why factor of i.i.d. processes have attracted a growing attention in

recent years is that they give rise to certain randomized local algorithms. Suppose that we
have a finite d-regular graph that locally looks like Td, that is, around most vertices the
neighborhoods are trees (up to some large radius). Then i.i.d. labels can be put on the
vertices and a given factor mapping can be applied (approximately) at each vertex, yielding
a randomized algorithm on the finite graph. The distribution of the random output of this
algorithm is described locally by the factor of i.i.d. process. See [10, 11, 12, 13] for how
such local algorithms can be used to obtain large independent sets. (Whether a graph is
locally tree-like is related to the number of cycles. The girth of a graph is the length of its
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2 GERENCSÉR AND HARANGI

shortest cycle. When we say that a finite graph has large essential girth, we mean that the
number of short cycles is small compared to the number of vertices. Around most vertices
of such a graph the neighborhoods are trees up to a large radius. Note that random regular
graphs have large essential girth with high probability.)
The starting point of our investigations is the following entropy inequality which holds

for any factor of i.i.d. process X with a finite state space M :

(1) H(Xu, Xv) ≥
2(d− 1)

d
H(Xv), where uv is an edge.

Here H(Xv) is the (Shannon) entropy of the discrete random variable Xv, and H(Xu, Xv)
stands for the joint entropy of Xu and Xv, see Section 2.1 for the definitions. (Because of
the Aut(Td)-invariance the distribution of Xv is the same for each vertex v. Similarly, the
joint distribution of (Xu, Xv) is the same for any edge uv.) Rahman and Virág proved (1)
in a special setting [16]. A full and concise proof was given by Backhausz and Szegedy in
[2]; see also [15]. The counting argument behind this inequality actually goes back to a
result of Bollobás on the independence ratio of random regular graphs [6]. As we will see
in Section 2.4, a more general version of (1) can also be found implicitly (for even d) in
Lewis Bowen’s work on free group actions [8].
Entropy inequalities played a central role in a couple of remarkable results recently: the

Rahman-Virág result [16] about the maximal size of a factor of i.i.d. independent set on
Td and the Backhausz-Szegedy result [3] on eigenvectors of random regular graphs.
The inequality (1) can also be expressed as an upper bound for the mutual information

of two neighboring vertices u and v:

(2)
I(Xu;Xv)

H(Xv)
≤ 2

d
.

Recall that the mutual information I(Xu;Xv) is defined as H(Xu) +H(Xv)−H(Xu, Xv)
and can be viewed as (the expected value of) the information gained about one of the
random variables knowing the other one. In our case the random variables are identically
distributed, therefore they have the same entropy H(Xu) = H(Xv). Dividing the mutual
information by this entropy results in a normalized mutual information which measures
the amount of shared information proportional to the total amount of information. This
ratio is always between 0 and 1, and being close to 0 intuitively means that the random
variables are “almost independent”. (It is reasonable to normalize the mutual information
this way, see Example 2.2.)
A natural question arises: what can be said about the mutual information of two vertices

u and v at distance k? One expects that the mutual information tends to 0 as the distance
grows. But what is the rate of decay? We get very different answers depending on how
the question is posed exactly.
First let us consider the problem for a fixed k ≥ 1, that is, we look for a universal upper

bound for the normalized mutual information I(Xu;Xv)/H(Xv) that holds for any factor
of i.i.d. process with a finite state space M . The following bounds are obtained.

Theorem 1. Let M be a finite state space and d ≥ 3. For any u, v ∈ V (Td) at distance k
and for any factor of i.i.d. process X on MV (Td) we have

(3)
I(Xu;Xv)

H(Xv)
≤

{
2

d(d−1)l
if k = 2l + 1 is odd,

1
(d−1)l

if k = 2l is even.
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These bounds are the best possible in the sense that for any fixed k there exist factor of
i.i.d. processes for which the normalized mutual information tends to the bound above.

According to (3), the normalized mutual information for distance k is (at most) of order
(1/

√
d− 1)k, and this is sharp. However, it turns out that there does not exist a single

factor of i.i.d. process that would show the sharpness of the bound for all k at once. In
fact, for any fixed process the mutual information decays at a much faster rate, basically
of order 1/(d− 1)k.

Theorem 2. Let M be a finite state space and d ≥ 3. If X = (Xv)v∈V (Td)
is a factor of

i.i.d. process on MV (Td), then

(4) I(Xu;Xv) ≤
|M |(k + 1)2

(d− 1)k
,

where |M | denotes the cardinality of M (number of states).

This bound is essentially sharp, see Example 5.4.

Motivation. Our motivation to study this problem is multi-fold. On the one hand, many
aspects of independence in factors of i.i.d. have been studied earlier (e.g. correlation for
real-valued processes or triviality of various tail σ-algebras). Our goal was to get a quan-
titative result about how much independence these processes exhibit when M is finite.
Mutual information has the advantage over correlation that the latter only detects lin-
ear dependence. On the other hand, we aimed to obtain new entropy inequalities. The
edge-vertex inequality (1) and its blow-ups (where both the vertex v and the edge uv are
replaced with all the vertices in their respective R-radius neighborhoods) have a number
of applications already. Theorem 1 is a generalization of (1), and as such one expects it
will provide further applications.

Proof methods. To prove Theorem 1 we will consider the d-regular tree Td as the Cayley
graph of different groups G depending on the parity of d and k. When k is even, we will
use the free product G = Z2 ∗ · · · ∗ Z2. When k is odd, either G = Z ∗ · · · ∗ Z (for even d)
or G = Z ∗ · · · ∗ Z ∗ Z2 (for odd d) will be used. In each case we will try to find as many
elements in G as possible such that they freely generate a subgroup and each element has
length k (w.r.t. the corresponding word metric in G). In other words, we will look for
a maximum-rank free subgroup H ≤ G that has a generating set consisting of elements
with length k. Once we have such a free subgroup H , Theorem 1 will follow from a more
general version of the edge-vertex entropy inequality (Theorem 2.3). This inequality is
known from Lewis Bowen’s work on free group actions, namely it is equivalent to the fact
that the f -invariant is non-negative for factors of the Bernoulli shift [8].
Theorem 2 will be deduced from the correlation decay result of Backhausz, Szegedy, and

Virág [4], which says that for a real-valued factor of i.i.d. process (M = R) the correlation
of two vertices u and v at distance k is (at most) of order 1/(

√
d− 1)k. In the case of a finite

state spaceM , by assigning a real number to each state we can replace our original process
with a real-valued one. Consequently, for any assignment M → R the correlation bound
tells us something about the joint distribution of Xu and Xv (for the original process).
The idea is to try to find suitable assignments that yield a good bound on the mutual
information of Xu and Xv.
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Outline of the paper. The rest of the paper is structured as follows. In Section 2 we go
through basic definitions and explain the more general entropy inequality we will need to
prove the universal bound. The proofs of Theorem 1 and 2 are given in Section 3 and 4,
respectively. Finally, in Section 5 we present examples showing that the above theorems
are (essentially) sharp.

Acknowledgments. We are grateful to Ágnes Backhausz, Balázs Szegedy, Bálint Virág,
and Máté Vizer for fruitful discussions on the topic. We would also like to thank the
anonymous referee for many valuable comments and suggestions.

2. Preliminaries

2.1. Entropy and mutual information. Let X be a discrete random variable taking m
distinct values with probabilities p1, . . . , pm. Then the Shannon entropy of X is defined as

H(X) ..=

m∑

i=1

−pi log(pi).

Given two discrete random variables X and Y , (X, Y ) can be considered as a discrete
random variable itself, and its entropy is denoted by H(X, Y ). (This is often called the
joint entropy of X and Y .) One can define the mutual information of X and Y by

I(X ; Y ) ..= H(X) +H(Y )−H(X, Y ).

Another way to define mutual information is via conditional entropies :

I(X ; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),

where the conditional entropy H(X|Y ) = H(X, Y )−H(Y ) can be expressed as the expec-
tation (in Y ) of the entropy of the (conditional) distribution of X conditioned on Y , that
is,

H(X|Y ) =
n∑

j=1

P(Y = yj)
m∑

i=1

−P(X = xi | Y = yj) logP(X = xi | Y = yj),

where x1, . . . , xm and y1, . . . , yn denote the values taken by X and Y , respectively. In other
words, if fi denotes the mapping y 7→ P(X = xi|Y = y), then

(5) H(X|Y ) = E

m∑

i=1

−fi(Y ) log fi(Y ).

2.2. Factors of i.i.d. Although the results of this paper concern Aut(Td)-factors, we will
need to use the notion of factors in a more general setting. Suppose that a group Γ acts
on a countable set S. Then Γ also acts on the space MS for a set M : for any function
f : S → M and for any γ ∈ Γ let

(6) (γ · f)(s) ..= f(γ−1 · s) ∀s ∈ S.

First we define the notion of factor maps.

Definition 2.1. Let M1,M2 be measurable spaces and S1, S2 countable sets with a group
Γ acting on both. A measurable mapping F : MS1

1 → MS2
2 is said to be a Γ-factor if it is

Γ-equivariant, that is, it commutes with the Γ-actions.
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By an invariant (random) process on MS we mean an MS-valued random variable (or a
collection of M-valued random variables) whose (joint) distribution is invariant under the
Γ-action. An important class of invariant processes is factor of i.i.d. processes defined as
follows. Suppose that Zs, s ∈ S1, are independent and identically distributed M1-valued
random variables. We say that Z = (Zs)s∈S1

is an i.i.d. process on MS1
1 . Given a Γ-factor

F : MS1
1 → MS2

2 , X ..= F (Z) is a factor of the i.i.d. process Z. It can be regarded as a
collection of M2-valued random variables: X = (Xs)s∈S2

.
In fact, all this can be viewed in the context of ergodic theory. An invariant process in

the above sense gives rise to a dynamical system over Γ: the group Γ acts by measure-
preserving transformations on the measurable space MS equipped with a probability mea-
sure (the distribution of the invariant process). An i.i.d. process simply corresponds to a
(generalized) Bernoulli shift. Therefore factor of i.i.d. processes are essentially factors of
Bernoulli shifts. Classical ergodic theory (Z-factors) have the largest literature and the
most complete theory but Γ-factors have also been thoroughly investigated for general Γ.
For amenable group actions (the Kolmogorov-Sinai) entropy serves as a complete in-

variant (for isomorphism of Bernoulli shifts). As for the nonamenable case, Ornstein and
Weiss asked whether all Bernoulli shifts are isomorphic over a nonamenable group [14].
This remained open until the breakthrough results of Lewis Bowen: he answered the ques-
tion negatively by introducing the f -invariant for free group actions [7] and the Σ-entropy
for actions of sofic groups [9]. In another paper he showed that the f -invariant is essen-
tially a special case of the Σ-entropy which has the consequence that the f -invariant is
non-negative for factors of the Bernoulli shift [8, Corollary 1.8]. We will need this fact in
the form of an entropy inequality, see (7) below.

2.3. Factors on Td. The main results of this paper (Theorem 1 and 2) are concerned with
factor of i.i.d. processes on Td. This corresponds to the case when Γ is the automorphism
group Aut(Td) of the d-regular infinite tree Td and S is the vertex set V (Td).
When we say factor of i.i.d. process, we should also specify which i.i.d. process we have

in mind (that is, specify M1 and a probability distribution on it). By default we will work
with the uniform [0, 1] measure (i.e., the Lebesgue measure on [0, 1]). In fact, as far as
the class of factor processes is concerned, it does not really matter which i.i.d. process we
consider. For example, for {0, 1} with the uniform distribution we get the same class of
factors as for the uniform [0, 1] measure. This follows from the fact that these two i.i.d.
processes are Aut(Td)-factors of each other [5].
Note that a factor of i.i.d. process X on Td is Aut(Td)-invariant. Therefore each Xv has

the same distribution. Moreover, the joint distribution of Xu and Xv (and hence their
correlation or mutual information) depends only on the distance between u and v.
One of our goals in this paper is to find a universal upper bound for the mutual infor-

mation I(Xu;Xv) that holds for any factor of i.i.d. process X . The next example, where a
tuple of independent copies of the same factor of i.i.d. process is considered, shows that this
goal is plausible only if we normalize I(Xu;Xv) in some way. That is why we introduced
the normalized mutual information I(Xu;Xv)/H(Xv).

Example 2.2. Given a factor of i.i.d. process X = F (Z) with a finite state space M there
exists a factor of i.i.d. process Y = (Y 1, . . . , Y n) with state space Mn =M × · · ·×M such
that each Y i = (Y i

v )v∈V (Td)
is an independent copy of X . (The point is that one can take

n independent copies Z1, . . . , Zn of the i.i.d. process Z and apply F to each Z i to get Y i.
It is easy to see that (Z1, . . . , Zn) can be obtained as a factor of Z. Therefore the process
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Y is also a factor of Z.) If we take n copies of X as described above, then each entropy
and mutual information gets multiplied by n. On the other hand, the normalized mutual
information (corresponding to two given vertices u and v) is the same for X and Y .

2.4. Fr-factors. The other case that will be of particular interest for us is when Γ is the
free group Fr of some rank r. We can set S = Γ = Fr and consider the natural action
of Fr on itself. Similarly as for Aut(Td)-factors, we use the uniform [0, 1] measure for the
i.i.d. process. Using other measures would result in the same class of factor processes.
This is actually a broader class than the class of Aut(Td)-factors (for d = 2r). If d = 2r,

we can think of Td as the Cayley graph of Fr with respect to a symmetric generating set
{a±1

1 , . . . , a±1
r }. That is, V (Td) = Fr and a vertex g is incident to vertices of the form ga±1

i .
Then Fr acts on V (Td) = Fr (from the left) via automorphisms of this Cayley graph. So
if we identify the elements of Fr with these automorphisms, then Fr becomes a subgroup
of Aut(Td), and consequently being Aut(Td)-equivariant is a stronger condition than being
Fr-equivariant. In other words, every Aut(Td)-factor is an Fr-factor as well.
For a general Fr-factor of i.i.d. we only have Fr-invariance (but not necessarily Aut(Td)-

invariance). It is still true that each Xg has the same distribution. As for the distribution
of edges, however, (Xg, Xga±1

i
) might have different distributions for different a±1

i .

The following entropy inequality, which plays a central role in our proof of Theorem
1, easily follows from the fact that the f -invariant of a factor of a Bernoulli shift is non-
negative [8].

Theorem 2.3. Let Γ = 〈a1, . . . , ar〉 be a free group of rank r ≥ 2. If X = (Xg)g∈Γ is a

Γ-factor of the i.i.d. process on [0, 1]Γ, then for a fixed g ∈ Γ we have

(7)
1

r

r∑

i=1

H(Xg, Xgai) ≥
2r − 1

r
H(Xg),

or equivalently:

(8)
1

r

r∑

i=1

I(Xg;Xgai)

H(Xg)
≤ 1

r
.

Remark 2.4. This is more general than the edge-vertex entropy inequality (1) for Aut(Td)-
factors for d = 2r. Indeed, given an Aut(Td)-factor, it is also an Fr-factor, but with the
extra property that the distributions of edges are the same.

3. The universal bound

In this section G will denote the free product of r copies of Z and t copies of Z2 for
different values of r and t:

G = Z ∗ · · · ∗ Z
︸ ︷︷ ︸

r

∗Z2 ∗ · · · ∗ Z2
︸ ︷︷ ︸

t

=
〈
a1, . . . , ar, ar+1, . . . , ar+t | a2r+1 = · · · = a2r+t = e

〉
.

Let A denote the set {a±1
1 , . . . , a±1

r , ar+1, . . . , ar+t}. First we define the word metric on
G with respect to A. We will refer to the elements of A as letters and to products of
these elements as words. An element g ∈ G can be represented by many words but for
each g there exists a unique shortest representing word. Actually, starting with any word
representing g, by performing all possible cancellations in that product one always gets the
shortest representing word that we will call the reduced form. We define the length of g as
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the length of this reduced form. (As for the unit element e of G, it is represented by the
empty product, and hence the length of e is 0.)
Note that the Cayley graph of G with respect to A is Td for d = 2r + t. (That is,

V (Td) = G and a vertex g is incident to vertices of the form gh, h ∈ A.) The word metric
on G (w.r.t. A) actually coincides with the graph distance on this Cayley graph.
Our goal is to apply the inequality (7–8) for free subgroups of G. To obtain a result

about vertices at distance k in Td we will need a free subgroup H that is generated by
elements of length k. The higher the rank of our subgroup, the better inequality we get.
Therefore we need to find as many elements of length k as possible such that they freely
generate a subgroup. (Although we will not need this fact, we mention that when we have
the maximal possible number of elements, the generated subgroup has finite index.)

Lemma 3.1. Let d = 2r and let

G = Fr = Z ∗ · · · ∗ Z
︸ ︷︷ ︸

r

= 〈a1, . . . , ar〉 .

Then for any odd integer k = 2l+1 there exists a free subgroup H ≤ G of rank d(d− 1)l/2
that is generated freely by elements of length k (in the corresponding word metric).

Lemma 3.2. Let d = 2r + 1 and let

G = Fr ∗ Z2 = Z ∗ · · · ∗ Z
︸ ︷︷ ︸

r

∗Z2 =
〈
a1, . . . , ar, ar+1 | a2r+1 = e

〉
.

Then for any odd integer k = 2l + 1 with l ≥ 1 there exists a free subgroup H ≤ G of
rank d(d− 1)l/2 that is generated freely by elements of length k (in the corresponding word
metric).

Lemma 3.3. Let d ≥ 3 be arbitrary and let

G = Z2 ∗ · · · ∗ Z2
︸ ︷︷ ︸

d

=
〈
a1, . . . , ad | a21 = · · · = a2d = e

〉
.

Then for any even integer k = 2l there exists a free subgroup H ≤ G of rank (d− 1)l that
is generated freely by elements of length k (in the corresponding word metric).

Before we prove the above lemmas, let us show how Theorem 1 follows. We start with
a technical lemma.

Lemma 3.4. Suppose that H is a subgroup of a countable group G. Let us equip the
spaces [0, 1]H and [0, 1]G with the product of uniform [0, 1] measures. Then there exists a
[0, 1]H → [0, 1]G mapping that is measure-preserving and H-equivariant.

Proof. Let us fix measure-preserving mappings ϕ : [0, 1] → {0, 1}N and ψ : {0, 1}N → [0, 1],
where {0, 1} is equipped with the (discrete) uniform distribution.
Let us also fix a set T that contains exactly one element of each right H-coset, meaning

that (h, t) 7→ ht defines a bijection H × T → G. Using the trivial H-action on T and
the natural (left) H-actions on H and G the above bijection will clearly be H-equivariant.
This induces an H-equivariant mapping α : {0, 1}H×T → {0, 1}G.
Since T is either finite or countably infinite, T ×N has the same cardinality as N, so we

can fix a bijection between these sets as well. This bijection yields a measure-preserving
mapping β : {0, 1}N → {0, 1}T×N.
Combining the above mappings we get the following:

[0, 1]H
ϕ×ϕ×···−−−−→ {0, 1}H×N β×β×···−−−−→ {0, 1}H×T×N α×α×···−−−−→ {0, 1}G×N ψ×ψ×···−−−−→ [0, 1]G.
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Each of the above mappings clearly preserves measure and commutes with the H-actions.
�

Proof of Theorem 1. For k = 1 the statement of the theorem is equivalent to (2) so we
may assume that k ≥ 2. Depending on d and k we choose the group G and the positive
integer r′ as follows:

if k = 2l + 1 ≥ 3 is odd and d = 2r is even: G = Z ∗ · · · ∗ Z
︸ ︷︷ ︸

r

, r′ = d(d− 1)l/2;

if k = 2l + 1 ≥ 3 is odd and d = 2r + 1 is odd: G = Z ∗ · · · ∗ Z
︸ ︷︷ ︸

r

∗Z2, r′ = d(d− 1)l/2;

if k = 2l is even and d is arbitrary: G = Z2 ∗ · · · ∗ Z2
︸ ︷︷ ︸

d

, r′ = (d− 1)l.

Let A ⊂ G still denote the generating set described at the beginning of this section. Recall
that the Cayley graph of G with respect to A is Td so from this point on V (Td) is identified
with G. According to Lemma 3.1–3.3 in each of the above cases G has a free subgroup H
of rank r′ such that H has a free generating set S0 consisting of elements of length k (in
the word metric of G with respect to A).
Now let X = (Xv)v∈G be a factor of i.i.d. process over V (Td) = G with a finite state

space M . This means that there exists an Aut(Td)-factor mapping F : [0, 1]G → MG such
that X = F (Z) where Z is the i.i.d. process on [0, 1]G. According to Lemma 3.4 there

exist an H-equivariant mapping ̺ : [0, 1]H → [0, 1]G such that Z = ̺(Z̃) where Z̃ is an
i.i.d. process on [0, 1]H .
By πH we denote the projection MG → MH . We have the following situation:

[0, 1]H
̺−→ [0, 1]G

F−→ MG πH−→MH ,

where all three mappings are H-equivariant, and hence their composition is an H-factor
mapping. This means that if we consider X over H , then we get an H-factor of i.i.d.
process: (Xh)h∈H = πH ◦F ◦̺(Z̃). Therefore we can apply (8) to H and its free generating
set S0 of size r′. For any h ∈ H and any s ∈ S0, the vertices h and hs have distance k
(in the graph metric of Td). Then, because of the Aut(Td)-invariance of X , the normalized
mutual information I(Xh;Xhs)/H(Xh) is the same for all h and s. Therefore in our case the
average on the left-hand side of (8) is simply equal to I(Xu;Xv)/H(Xv) for any u, v ∈ V (Td)
with dist(u, v) = k, while the right hand side is 1/r′, and hence Theorem 1 follows. (The
sharpness will be shown in Section 5.) �

It remains to prove Lemma 3.1–3.3.

Proof of Lemma 3.1. The set of letters in this case is A = {a±1
1 , . . . , a±1

r }. A word is called
a palindrome if it reads the same backward as forward. Let us consider the following set
of words:

S ..= {s ∈ G : the reduced form of s is a palindrome and has length 2l + 1} .
That is, elements of S are in the form b1 · · · blbl+1bl · · · b1, where bi ∈ A and bi+1 6= b−1

i .
The number of such elements is clearly 2r(2r − 1)l = d(d− 1)l.
The inverse of a palindrome is also a palindrome (and not the same palindrome because

G has no elements of order 2). Therefore there exists S0 ⊂ S with |S0| = |S|/2 = d(d−1)l/2
such that S = S0∪S−1

0 where S−1
0 = {s−1 : s ∈ S0}. We will see that S0 is a free generating

set of a subgroup H ≤ G that has all the required properties.
The key observation is the following.
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Claim. Let s1, . . . , sn be palindromes in S such that si+1 6= s−1
i for each i. Then the

reduced form of the product s1 · · · sn has length at least 2l + n and its last l + 1 letters are
the same as those of sn.

We prove the claim by induction. It is obvious for n = 1. For n ≥ 1 let us assume
that the reduced form of the product s1 · · · sn ends with the same l + 1 letters as sn and
let sn+1 6= s−1

n . This means that when we multiply the reduced form of s1 · · · sn by sn+1

at most l letters will be cancelled out and the remaining (at least l + 1) letters of sn+1

will appear unchanged at the end of the product. It follows that the last l + 1 letters
of the reduced form of s1 · · · snsn+1 will be the same as those of sn+1. We also get that
s1 · · · snsn+1 is at least (l+1)− l = 1 longer than s1 · · · sn, which completes the induction.
In particular, the product s1 · · · sn cannot be the unit element of G. Therefore S0 freely

generates some subgroup H ≤ G, the rank of which is, obviously, |S0| = d(d − 1)l/2, and
this is what we wanted to prove.
In fact, H has finite index. (We do not need this property in this paper.) This follows

from the following observation. Let T ⊂ G denote the set of elements of length at most
l. Then it is easy to see that every element of G can be (uniquely) written in the form
s1 · · · snt, where t ∈ T , si ∈ S and si+1 6= s−1

i . �

Proof of Lemma 3.2. Essentially the same proof works. Here the set of letters is A =
{a±1

1 , . . . , a±1
r , ar+1}, and one of the letters (ar+1) has order 2 meaning a−1

r+1 = ar+1. How-
ever, we can still define the set S of palindromes of length k = 2l + 1 for which we have
|S| = (2r+1)(2r)l = d(d−1)l. The same claim as in the previous proof remains true. The
only difference is that in this case G has elements of order 2. So we need to check that S
contains no element of order 2, which is clearly true unless l = 0. The rest of the proof is
the same. �

Proof of Lemma 3.3. In this lemma the set of letters A = {a1, . . . , ad} consists of elements
of order 2. It is an easy exercise that for l = 1 the set

B0
..= {aia1 : 2 ≤ i ≤ d}

is a free generating set (of size d − 1) of the subgroup of G consisting of all elements of
even length. Note that

B−1
0 = {a1ai : 2 ≤ i ≤ d} .

For l ≥ 2 we will need to nest the d − 1 elements of B0 in palindrome-like words of
length 2l. First we define the mappings ϕj : A→ A: for j ∈ {1, . . . , d− 1} let ϕj shift the
indices by j, that is, ϕj(ai) ..= ai+j . (The addition in the index is meant modulo d.) We
will consider words of the following form: for any given j ∈ {1, . . . , d − 1} and any given
sequence of letters b1, . . . , bl from A such that b1 = a1 and bi+1 6= bi take the word

ϕj(bl) · · ·ϕj(b2)ϕj(b1)
︸ ︷︷ ︸

aj+1

b1
︸︷︷︸

a1

b2 · · · bl.

Note that these words have length 2l and for the two letters in the middle we have
ϕj(b1)b1 = aj+1a1 ∈ B0. We claim that the set S0 of these (d − 1)l words freely gen-
erates a subgroup.
The following is straightforward by induction.

Claim. Let s1, . . . , sn be words in S .

.= S0 ∪S−1
0 such that si+1 6= s−1

i for each i. Then the
product s1 · · · sn has the following property:
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• if sn ∈ S−1
0 , then the last l letters in the reduced form of s1 · · · sn are the same as

in sn;
• if sn ∈ S0, then the last l + 1 letters in the reduced form of s1 · · · sn are the same
as in sn.

It immediately follows that the length of the reduced form of the product s1 · · · sn cannot
decrease when multiplied by a new element sn+1 6= s−1

n . In particular, for n ≥ 1 the product
s1 · · · sn cannot be equal to the unit element e. Therefore S0 freely generates a subgroup
of rank |S0| = (d− 1)l. �

4. The rate of decay for a fixed process

We will need three ingredients to prove Theorem 2. The first one is a bound for the
correlation of a pair of vertices for factor of i.i.d. processes on R

V (Td), which was proved by
Backhausz, Szegedy, and Virág in [4]:

(9) |corr(Xu, Xv)| ≤
(

k + 1− 2k

d

)(
1√
d− 1

)k

, where k = dist(u, v),

that is, the rate of the correlation decay is essentially 1/(
√
d− 1)k. (Here it is assumed

that varXv <∞.)
Now suppose we have a finite state space M and a factor of i.i.d. process on MV (Td).

How can we make use of the above result in this case? Taking any function f : M → R

we can replace each Xv with f(Xv) to get a factor of i.i.d. on R
V (Td) so that (9) can be

applied. The second ingredient is the next lemma from [1] which tells us that the same
bound holds if we take different real-valued functions of Xu and Xv.

Lemma 4.1. Let (A,F) be an arbitrary measurable space. Suppose that the (A,F)-valued
random variables X1, X2 are exchangeable (that is, (X1, X2) and (X2, X1) have the same
joint distribution), and that there exists a constant α ≥ 0 with the property that for any
measurable f : A→ R we have

(10)
∣
∣corr

(
f(X1), f(X2)

)∣
∣ ≤ α provided that f(X1) has finite variance.

Then for any measurable functions f1, f2 : A→ R

(11)
∣
∣corr

(
f1(X1), f2(X2)

)∣
∣ ≤ α provided that f1(X1) and f2(X2) have finite variances.

Proof. The detailed proof can be found in [1, Lemma 3.2]. We include a sketch here for the
sake of completeness. After rescaling we might assume that var(f1(X1)) = var(f2(X2)) = 1.
If we apply (10) to the function f = f1 + f2 and also to f = f1 − f2, we reach (11)
after a short and simple calculation. Note that the exchangeability of X1 and X2 implies
cov(f1(X1), f2(X2)) = cov(f1(X2), f2(X1)). �

The final ingredient is the following lemma linking correlation to mutual information.

Lemma 4.2. Let X, Y be discrete random variables. Suppose that there exists a real
number α ≥ 0 such that for any (real-valued) functions f(X) and g(Y ) of X and Y it
holds that

∣
∣corr

(
f(X), g(Y )

)∣
∣ ≤ α. Then we have

I(X ; Y ) = H(X)−H(X|Y ) ≤ (m− 1)α2,

where m denotes the number of values X can take.
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Proof. Let A be an event that depends on X , that is, 1A = f(X) for some function f . We
denote the probability P(A) by p and we set

gA(y) ..= P(A|Y = y)− P(A) = P(A|Y = y)− p.

Clearly, EgA(Y ) = 0, and it is also easy to see that

corr
(
f(X), gA(Y )

)
=

√

EgA(Y )2
√

p(1− p)
.

It follows that

(12) EgA(Y )
2 ≤ α2p(1− p).

Now let us assume that X takes the value xi with probability pi for 1 ≤ i ≤ m. We will
need to use the above inequality for each event Ai = 1{X=xi}, 1 ≤ i ≤ m. We write gi for
the corresponding function gAi

.
According to (5) the conditional entropy H(X|Y ) can be expressed as

−H(X|Y ) = E

m∑

i=1

(pi + gi(Y )) log(pi + gi(Y ))
︸ ︷︷ ︸

log(pi)+log
(

1+
gi(Y )

pi

)

.

Now by using the inequality log(1 + x) ≤ x we get that

−H(X|Y ) ≤
m∑

i=1

pi log(pi)

︸ ︷︷ ︸

−H(X)

+

m∑

i=1

Egi(Y ) log(pi) +

m∑

i=1

E

((

pi + gi(Y )
)gi(Y )

pi

)

.

Using that Egi(Y ) = 0 we conclude that

I(X ; Y ) = H(X)−H(X|Y ) ≤
m∑

i=1

E
gi(Y )2

pi
≤ α2

m∑

i=1

(1− pi) = (m− 1)α2,

where the last inequality follows from (12). �

Remark 4.3. Although we will not need it in this generality, we mention that the lemma
is true even when only one of the two random variables is assumed to be discrete. Let X
be discrete and Y arbitrary, and suppose that

∣
∣corr

(
f(X), g(Y )

)∣
∣ ≤ α for any f and any

measurable g. Then it still follows that H(X)−H(X|Y ) ≤ (m− 1)α2.
The point is that one can use (5) to define the conditional entropy H(X|Y ) even when

Y is not discrete: for an event A the mapping y 7→ P(A|Y = y) needs to be replaced
by the conditional expectation E(1A|Y ), which is a measurable function of Y . The same
modification needs to be made in the above proof.

Now we have all the ingredients to prove Theorem 2.

Proof of Theorem 2. Let M be finite and let Xv, v ∈ V (Td), be a factor of i.i.d. process on
MV (Td). Suppose that the distance of the vertices u and v is k and set

α =
k + 1

(√
d− 1

)k
.

Then by (9) we know that |corr(f(Xu), f(Xv))| ≤ α for any function f : M → R. There is
an automorphism of Td taking u to v and v to u, which means that the random variables
Xu, Xv are exchangeable. Therefore we can apply Lemma 4.1 to Xu and Xv and we obtain
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that |corr(f(Xu), g(Xv))| ≤ α for any functions f, g : M → R. By Lemma 4.2 it follows
that

I(Xu;Xv) < |M |α2 =
|M |(k + 1)2

(d− 1)k
,

and this is exactly what we wanted to prove. �

5. Examples

In this section we construct factor of i.i.d. processes showing that our bounds are (es-
sentially) sharp.

5.1. Sharpness of Theorem 1. Let k be a fixed positive integer and u, v ∈ V (Td) vertices
at distance k. We claim that there exist factor of i.i.d. processes X on Td such that the
normalized mutual information I(Xu;Xv)/H(Xv) can be arbitrarily close to the upper
bound

(13) βk ..=

{
2

d(d−1)l
if k = 2l + 1 is odd,

1
(d−1)l

if k = 2l is even.

The idea is the following: given i.i.d. labels at each vertex, let the factor process list all
the labels within some large distance R at any given vertex. When we look at the joint
distribution of Xu and Xv we get a collection of i.i.d. labels with some labels listed twice.
Hence the normalized mutual information is |BR(u)∩BR(v)|/|BR(v)|, where BR(v) denotes
the ball of radius R around v. It is easy to see that this converges to βk as R → ∞.
For a rigorous argument we need to be more careful since listing the labels should be done

in an Aut(Td)-invariant way. We first introduce two auxiliary lemmas and then precisely
define our example.

Lemma 5.1. For any positive integer L there exists a factor of i.i.d. 0-1 labeling of the
vertices of Td such that any ball of radius L contains a vertex with label 1 but any two
vertices of label 1 have distance greater than L.

Lemma 5.2. For any positive integer L there exists a factor of i.i.d. coloring of the vertices
of Td such that finitely many colors are used and vertices of the same color have distance
greater than L.

Example 5.3. Given k and R, let C = (Cw)w∈V (Td)
be a factor of i.i.d. coloring provided

by Lemma 5.2 for L = 2R+k. For a positive integer N let Zw, w ∈ V (Td), be i.i.d. uniform
labels on {1, 2, . . . , N}. We set

Xv = {(Cw, Zw) | w ∈ BR(v)}.
Then for vertices u, v at distance k we have

(14)
I(Xu;Xv)

H(Xv)
=

|BR(u) ∩BR(v)|
|BR(v)|

+ oN(1).

Indeed, Xv can be viewed as the list of variables (Cw, Zw), w ∈ BR(v), ordered by
Cw (which are all different). This clearly defines an Aut(Td)-factor of i.i.d. process Xv,
v ∈ V (Td). Conditioned on the coloring process C, the entropies are easy to compute:

H(Xv|C) = |BR(v)| logN and H(Xu, Xv|C) = |BR(u) ∪BR(v)| logN.
Since the contribution of the coloring to the entropies does not depend on N , it gets
negligible when N is large enough, and (14) follows.
Finally, we prove the two lemmas.
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Proof of Lemma 5.1. We describe the labeling as the output of a randomized local algo-
rithm, which is easy to interpret as a factor of i.i.d. process.
In the beginning all labels are undefined. The algorithm consists of countably many

steps. At every odd step every vertex with undefined label proposes to get a label 1 with
probability 1/2. Suppose that a vertex v proposes to get label 1. If there is no other
vertex within distance L of v that also proposes to get label 1, then the label of v is fixed,
otherwise the proposed label is withdrawn. At even steps, undefined vertices check if a
label 1 has appeared within distance L and set their own label 0 if this is the case.
Note that at an odd step any undefined label gets fixed with probability greater than

some positive constant ε depending on L. It follows that after countably many steps all
labels will be defined with probability 1. It is easy to verify that the obtained labeling has
all the required properties. �

Proof of Lemma 5.2. Lemma 5.1 is used to find vertices with color 1. A similar algorithm
is applied for color 2, but now some vertices already have defined labels when launching
the algorithm. We continue by adding more colors the same way.
After having added n colors this way, every ball of radius L around an uncolored vertex

must contain vertices of each color 1, 2, . . . , n. When n becomes equal to the number of
vertices in a ball of radius L, this is not possible any longer, therefore we cannot have any
more uncolored vertices at that point, meaning that we have colored all vertices in the
required manner using at most n colors. �

5.2. Sharpness of Theorem 2. The next example shows that the bound obtained in
Theorem 2 is essentially sharp. First we briefly describe the construction. We start with
an i.i.d. process where each label has standard normal distribution. Then we take a linear
factor : each new label is some linear combination of the i.i.d. labels. We will choose the
coefficients in a way that the correlation decay for the obtained factor process is close to
the bound (9). Then we take the sign of the label of this factor process at every vertex.
We will see that for this {±1}-valued process the correlation decays at roughly the same
rate. However, for symmetric binary variables the mutual information is essentially the
square of the correlation.
More precisely, for any ε > 0 we construct a factor of i.i.d. process (with two states)

such that the mutual information for distance k is Ω
(
k2−ε(d− 1)−k

)
.

Example 5.4. Fix a parameter ε > 0. Let Zw, w ∈ V (Td), be i.i.d. standard normal
random variables. We first define a factor Y of the i.i.d. process Z by taking linear com-
binations of Zw with the following coefficients:

Yv ..=
∑

w∈V (Td)

αdist(v,w)Zw, where α0 = 0 and αk =
k−

1
2
−ε

√
d− 1

k
for k ≥ 1.

Then apply the sign function at each vertex:

Xv
..= sign(Yv).

Note that Yv is well defined since the sum of the squares of the coefficients is finite.
Therefore Yv is a normal random variable with mean 0 and some positive and finite variance
γ = γ(ε). From this point on γ will denote a positive constant that depends only on ε
(possibly a different constant at each occurrence).
Suppose that u and v have distance k. We denote the unique path connecting them

by u0 = u, u1, . . . , uk−1, uk = v. If we are at vertex uj, 1 ≤ j ≤ k − 1, and move



14 GERENCSÉR AND HARANGI

distance n away from the path, then we get to a vertex w for which dist(u, w) = j+n and
dist(v, w) = k − j + n. The number of such vertices is clearly (d− 2)(d− 1)n−1. Thus

cov(Yu, Yv) =
∑

w∈V (Td)

αdist(u,w)αdist(v,w) ≥
γ

√
d− 1

k

k−1∑

j=1

∞∑

n=1

(j + n)−
1
2
−ε(k − j + n)−

1
2
−ε.

We ignore the terms for which j + n < k and rearrange the rest of the sum grouping the
terms based on the value m ..= j + n. For a given m ≥ k and j ∈ {1, . . . , k − 1} we have
n = m− j and hence k− j+n = k+m−2j. Therefore the average of k− j+n for a given
m as j runs through 1, . . . , k − 1 is exactly m, and consequently the convexity of x−

1
2
−ε

implies that
k−1∑

j=1

(k +m− 2j)−
1
2
−ε ≥ (k − 1)m− 1

2
−ε.

It follows that

cov(Yu, Yv) ≥
γ(k − 1)
√
d− 1

k

∞∑

m=k

m−1−2ε ≥ γ(k − 1)
√
d− 1

k

∫ ∞

k

x−1−2ε dx

︸ ︷︷ ︸

k−2ε/(2ε)

≥ γk1−2ε

√
d− 1

k
,

and the same is true for corr(Yu, Yv) (again with a different γ). Note that there exist
constants 0 < γ1 < γ2 such that for any W,W ′ jointly normal random variables we have

γ1
∣
∣ corr(W,W ′)

∣
∣ ≤

∣
∣ corr(sign(W ), sign(W ′))

∣
∣ ≤ γ2

∣
∣ corr(W,W ′)

∣
∣.

This means that we get the same correlation (up to a constant factor) after taking the sign
of Y :

corr(Xu, Xv) ≥
γk1−2ε

√
d− 1

k
.

Now working with symmetric binary variables, elementary computations show that when
P (Xu = Xv) is close to 1/2, we have

γ1

∣
∣
∣
∣
P (Xu = Xv)−

1

2

∣
∣
∣
∣
≤

∣
∣ corr(Xu, Xv)

∣
∣ ≤ γ2

∣
∣
∣
∣
P (Xu = Xv)−

1

2

∣
∣
∣
∣
,

and

γ1

∣
∣
∣
∣
P (Xu = Xv)−

1

2

∣
∣
∣
∣

2

≤
∣
∣I(Xu;Xv)

∣
∣ ≤ γ2

∣
∣
∣
∣
P (Xu = Xv)−

1

2

∣
∣
∣
∣

2

for some constants 0 < γ1 < γ2. It follows that

I(Xu;Xv) ≥
γk2−4ε

(d− 1)k
,

which indeed confirms that the bound in Theorem 2 is essentially sharp.
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[1] Ágnes Backhausz, Balázs Gerencsér, Viktor Harangi, and Máté Vizer. Correlation bound for distant
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