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LINKS OF RATIONAL SINGULARITIES, L-SPACES AND LO FUNDAMENT AL GROUPS

ANDRÁS NÉMETHI

ABSTRACT. We prove that the link of a complex normal surface singularity is an L–space if and only if
the singularity is rational. This via a result of Hanselman,J. Rasmussen, S. D. Rasmussen and Watson
[12], proving the conjecture of Boyer, Gordon and Watson [5], shows that a singularity link is not rational
if and only if its fundamental group is left–orderable if andonly if it admits a coorientable taut foliation.

1. INTRODUCTION

In the present note we wish to connect three areas of mathematics, algebraic geometry (especially,
the theory of local complex normal surface singularities),low dimensional topology (Heegaard Floer
homology and foliations), and group theory (left–orderable property). There are well–defined inter-
plays between them: links of such singularities are oriented 3–manifolds, whose fundamental groups
(with minor exceptions) characterize the corresponding 3–manifolds and the topology of the singular-
ity. We show that certain basic objects (fundamental in classification procedures in these three rather
independent theories) can be identified in a surprising way.In singularity theory we target the ratio-
nal singularities; by definition they are those germs with vanishing geometric genus. This vanishing
(although it is analytic in nature) was characterized combinatorially by the plumbing graph of the
link by Artin and Laufer (graphs satisfying the property arecalled ‘rational graphs’) [1, 2, 15]. In
3–dimensional topology we consider the family of L–spaces,introduced by Ozsváth and Szabó, they
are characterized by the vanishing of the reduced Heegaard Floer homology, and are key fundamental
objects in recent developments in topology [26, 27]. Being arational singularity link, or an L–space,
will be compared with the left–orderability of the corresponding fundamental groups.

In fact, the linkM of a complex normal surface singularity(X,o) is a special plumbed 3–manifold,
plumbed along a connected, negative definite graph. In this note we will be interested only in rational
homology sphere 3–manifolds, hence the corresponding plumbing graphs are trees ofS2’s. The connec-
tion between singularity theory and topology imposed by thelink had deep influences in both directions
and created several bridges. One of them is the introductionof the lattice cohomology{Hq}q≥0(M) of
such 3–manifolds by the author [21] (see also [20]). Although H∗(M) is defined combinatorially from
the graph, it can be compared with several analytic invariants, e.g with the geometric genus as well. In
particular, in [20, 21] is proved:

Theorem 1.1. (X,o) is a rational singularity if and only if the reduced lattice cohomology of its link
M satisfiesH0

red(M) = 0; or, equivalently,H∗
red(M) = 0.

On the other hand, in [21] the author formulated the following conjecture

Conjecture 1.2. The Heegaard Floer homology and the lattice cohomology of M are isomorphic (up
to a shift in degrees):

HF+
red,even/odd(−M,σ) =⊕q even/odd H

q
red(M,σ)[−d(M,σ)],

whereσ ∈ Spinc(M), and d(M,σ) are the d–invariants of HF+(M,σ).

In particular, the above conjecture predicts thatHF+
red(M) = 0 (that is,M is an L–space) if and only

if H∗
red(M) = 0, which is equivalent with the rationality of the graph by Theorem 1.1.
The goal of the present note is to prove the above prediction:
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Theorem 1.3. A singularity link is an L–space if and only if the singularity is rational.

In fact, one direction of the statement is already known. Theauthor introduced the notion of ‘bad
vertices’ of a graph [20, 22] (for the definition see 2.1; it isa generalization of a similar definition of
Ozsváth and Szabó from [25]). In this way, a graph without badvertices is rational; a graph with one
bad vertex is a graph, which becomes rational after a ‘(negative) surgery at that vertex’. In particular,
the number of bad vertices measures how far the graph is from being rational. Related to Conjecture
1.2 in [21] is proved:

Theorem 1.4. If the number of bad vertices of the plumbing graph is≤ 1 then Conjecture 1.2 is true.

This was generalized in [28] for≤ 2 bad vertices.
Since the above theorem applies for rational links, Theorems 1.1 and 1.4 imply that the link of a

rational singularity is an L–space.
The opposite direction was obstructed by the lack of characterizations of the L–spaces (at least

in some language, which can be reformulated inside of singularity theory). This obstruction was bro-
ken recently by several results in this direction, whose final form is the main result of Hanselman, J.
Rasmussen, S. D. Rasmussen and Watson [12]:

Theorem 1.5. If M is a closed, connected orientable graph manifold then the following are equivalent:
(i) M is not an L–space;
(ii) M has left–orderable (LO) fundamental group;
(iii) M admits a C0 coorientable taut foliation.

Recall that a groupG is left-orderable if there exists a strict total ordering< of G such thatg< h
implies f g< f h for all f ,g,h∈ G. (By convention, the trivial group is not LO.)

The equivalence (ii)⇔(iii) was established by Boyer and Clay [6], (iii)⇒ (i) by Boyer and Clay in
[7]. The equivalence (i)⇔(ii) was conjectured by Boyer, Gordon and Watson [5]. The above Theorem
1.5 was the final answer to this conjecture. For the history and partial contributions see the introduction
and references from [12] (and the references therein). The needed material will be reviewed in 2.2.

This allows us to reformulate the remaining implication of Theorem 1.3 as follows: ifM is the link
of a non–rational singularity thenπ1(M) is LO, hence not an L–space.

In the proof of this statement the following facts will be crucial:
(A) The characterization of the rational graphs via Laufer’s algorithm (Laufer’s computation se-

quence), and also the graph–combinatorics of bad vertices;
(B) A theorem of Boyer, Rolfsen and Wiest [3], which states that for compact, irreducible,P2–

irreducible 3–manifoldM, π1(M) is LO if and only if there exists a non–trivial homomorphismπ1(M)→
L, whereL is any LO group. In particular, sinceZr is LO for anyr ∈ Z>0, if H1(M,Q) 6= 0 then using
the abelianization map we obtain thatπ1(M) is LO.

(C) A theorem of Clay, Lidman and Watson [8] regarding the behaviour of LO property with respect
to free product with amalgamation (more precisely, with respect to the decomposition ofM along a
torus and closing the pieces along ‘LO–slopes’), cf. 2.2.

(D) The equivalences (i)⇔ (ii) from Theorem 1.4 above (at the ‘initial step’ combined with Theo-
rem 1.3).

Hence Theorems 1.3 and 1.5 combined provide:

Theorem 1.6. If M is the link of a normal surface singularity (that is, if M is the plumbed manifold
associated with a connected, negative definite graph), thenthe following are equivalent:

(i) M is the link of a non–rational singularity (i.e., the graph is not a ‘rational graph’);
(ii) M is not an L–space;
(iii) M has left–orderable (LO) fundamental group;
(iv) M admits a C0 coorientable taut foliation.
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Note that an integral homology sphereM is a rational link if and only ifM = S3 or M = Σ(2,3,5),
the link of the BrieskornE8–singularity{x2+y3+z5 = 0}, see e.g. [19]. In particular, ifM is an integral
homology sphere singularity link, not of typeS3 or Σ(2,3,5), then (ii)-(iii)-(iv) above are automatically
satisfied. (For left-orderability ofπ1(M), wheneverM is a integral homology 3-sphere, irreducible and
toroidal graph manifold, see [8].)

Remark 1.7. (An alternative proof. The existence of taut foliations) Although the equivalence of
(i) with (iv) follows from Theorem 1.5, we note that an alternative proof of the main theorem can be
done by inductive construction of the taut foliation on the corresponding links (instead of proving the
LO property of their fundamental group). More precisely, instead to use the equivalence (i)⇔(ii) of
Theorem 1.5 and the results (B) and (C) listed above regarding LO–properties, one can run a very
similar proof, based on the very same inductive steps. It starts with the equivalence (i)⇔(iv), part (C)
will be replaced by the gluing procedure of the foliations, while part (C) (theorem of Boyer, Rolfsen
and Wiest [3]) will be replaced by an extension of a result of Eisenbud, Hirsch and Neumann [9],
which guarantees the existence of a transversal coorientedfoliation whenever the plumbing graph is
negative semidefinite. (The Eisenbud, Hirsch and Neumann case is valid for Seifert fibered manifolds).
The details are given in 3.2–3.4. Particular cases already appeared in [17].

1.8. Applications. Several results valid from singularity theory can be reinterpreted via the above
correspondence in terms of L–spaces. E.g., since rational graphs are stable with respect to taking sub-
graphs, or decreasing the decorations of the vertices, we obtain:

Corollary 1.9. Negative definite plumbing graphs of plumbed L–spaces are stable with respect to
taking subgraphs, or decreasing the decorations of the vertices.

Using stability with respect to finite coverings we obtain the following (for the proof see 3.5).

Corollary 1.10. Assume that we have a finite covering M1 → M2 of graph 3–manifolds associated
with connected negative definite plumbing graphs. The covering is either unbranched, or it is branched
with branch locus B2 ⊂ M2. In the second case we assume that M2 admits a negative definite plumbing
representation, such that all the connected components of B2 are represented by (generic) S1–fibers of
certain JSJ Seifert components of the plumbing. Then M2 is an L–space whenever M1 is an L–space.

One can find easily (even non–branched) coverings whenM2 is an L–space butM1 is not.

Example 1.11. (Coverings)Let K ⊂ S3 be an embedded algebraic link (the link of an isolated plane
curve singularity). The cyclicZn covering ofS3 branched alongK is an L–space if and only if

• n= 2 andK is the link of an A-D-E (simple) plane curve singularity, or
• n> 3 andK is the torus linkT2,m with 1

m+ 1
n > 1

2.

For the proof of the statement see 3.6. The short proofs of 1.9-1.10-1.11 can be compared with
sometimes long computations involving Heegaard Floer homology or the arithmetics of foliations.

Example 1.12. (The Seifert fibered case)The link of a weighted homogeneous normal surface sin-
gularity is a Seifert 3–manifold. In [29] Pinkham computed the geometric genus for such singularity in
terms of the Seifert invariants in the case when the link is a rational homology sphere. The vanishing
of the corresponding expression provides a numerical rationality criterion in terms of Seifert invari-
ant. Hence, the main result provides a new criterion for the topological properties (ii)-(iii)-(iv) from
Theorem 1.6. Here is this new numerical criterion.

Assume that the star–shaped graph hasν ≥ 3 legs, the central vertexv0 is decorated bye0, and
the i-th leg by−bi1, . . . ,−bisi , where[bi1, . . . ,bisi ] = bi1−

1
bi2−··· = αi/ωi is the (Hirzebruch) continued

fraction with bi j ≥ 2. The positive integers{(αi ,ωi)}
ν
i=1 are the Seifert invariants with 0< ωi < αi ,

gcd(αi ,ωi) = 1. (v0 is connected to the vertices decorated by−bi1.) We assume that the graph is
negative definite, that is,e := e0+∑i ωi/αi < 0. Then, by [29],M is non–rational if and only if

(1.13) ∑
i

⌊−lωi/αi⌋ ≤ le0−2 for at least onel ∈ Z≥0.
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This looks very different than the previous criterions usedin topology, e.g. for the existence of folia-
tions (results of Eisenbud, Hirsch, Jankins, Neumann, Naimi [9, 13, 18], here we follow [16]). Let us
recall it for ν = 3.

Following [16] we say that(x,y,z) ∈ (Q∩ (0,1))3 is realizableif there exist coprime integersm>
a> 0 such that up to a permutation ofx,y,z one hasx< a/m, y< (m−a)/m, z< 1/m.

ThenM(Γ) admits a coorientable transversal foliation if and only if one of the following holds:

(1.14)
e0 =−1 and {βi/αi}i=1,2,3 is realizable;
e0 =−2 and {(αi −βi)/αi}i=1,2,3 is realizable.

A direct arithmetical proof of the equivalence of these two criterions will be proved in another note.

2. PRELIMINARIES

2.1. The combinatorics of a graph. For more details regarding this subsection see [19].
Let Γ be a connected negative definite plumbing graph. Since both L–spaces and rational singularity

links are rational homology spheres, without loss of generality we can assume that our plumbing graphs
are trees and all genus decorations are zero. LetV denote the set of vertices,ev the ‘Euler’ decoration
of v∈ V , andδv the valency ofv in Γ. The vertexv is called a node ifδv ≥ 3.

We associate withΓ its plumbed 4–manifoldP(Γ) too, and its latticeL := H2(P(Γ),Z) generated
freely by{Ev}v∈V together with the negative definite intersection formI := (Ev,Ew)v,w. Let K ∈ L⊗
Q be the canonical cycle defined by the adjunction relations(K +Ev,Ev)+ 2 = 0 for all v, and set
(the ‘Riemann-Roch expression’)χ(l) =−(K+ l , l)/2. Furthermore, letZmin be the non–zero, unique
minimal cycleZ ∈ L with (Z,Ev)≤ 0 for all v∈ V [1, 2].

If (X,o) is a complex normal surface singularity, embedded in some(Cn,o), then its link isM :=
X∩{|z|= ε} for 0< ε ≪ 1. If X̃ → X is one of the resolutions ofX, then the geometric genuspg(X,o)
is defined via the sheaf cohomology of the structure sheafpg := h1(OX̃). Note that any dual graphΓ of
a good resolution of̃X → X might serve as a plumbing graph for the link, andX̃ is diffeomorphic with
P(Γ). Furthermore, any connected negative definite graph is the resolution graph of certain singularity
[10], and plumbed 3–manifolds of such graphs are irreducible [23].

(X,o) is called rational ifpg = 0. E.g., all quotient singularities are rational. Artin characterized
rationality in terms of (any) resolution (or, plumbing) graph of (X,o): (X,o) is rational if and only if
χ(Zmin)≥ 1 (in any resolution) [1, 2]. Graphs with this property will be called rational.

Laufer in [15] provided a simple way to detect the rationality of a graph. A computation sequence in
L, ending inZmin is a sequencel0 = ∑vEv, l1, . . . , lt = Zmin, l i ∈ L, such that for anyi there existsv(i) ∈
V such thatl i+1 = l i +Ev(i). Laufer proposed the following construction of a computation sequence:
start with l0 = ∑vEv, and construct eachl i inductively. If l i is already constructed, and(l i ,Ev) ≤ 0
for all v then stop, and takel = t. If there existsv with (l i ,Ev) > 0 then take such av asv(i) and set
l i+1 = l i +Ev(i). Then the procedure stops after finite steps, and the end cycle lt is alwaysZmin. By [15],
Γ is rational if and only if at each step along the sequence(l i ,Ev(i)) = 1. (The choice ofv(i), hence of
the sequence, usually is not unique. Nevertheless,lt = Zmin in all cases, and the rationality criterion is
also independent of all choices.)

Using this algorithm, one verifies the following facts:
(a) Subgraphs of rational graphs are rational.
(b) Decreasing the Euler decoration of a rational graph provides a rational graph.
(c) If ev ≤−δv for all v thenΓ is rational (in fact,l0 = Zmin = ∑vEv).
A set of verticesB ⊂ V is called ‘set of bad vertices’ if replacing the decorationsev, v∈ B, by

sufficiently negative integerse′v ≪ ev we get a rational graph [20, 22]. The setB (even with minimality
property) is not unique. IfB = /0 works then obviouslyΓ is rational.

Setm(Γ) := minB bad|B|. From the above (a) we obtain the following.

Lemma 2.1. If B ⊂ V (Γ) is a set of bad vertices ofΓ, and Γ′ is a subgraph of Γ, thenB′ :=
B∩V (Γ′) might serve as a set of bad vertices forΓ′. In particular, m(Γ′)≤ m(Γ).
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2.2. Cutting M along an incompressible JSJ torus.

2.2. First we recall the notion of Dehn surgery and a result of Clay, Lidman and Watson [8].
Assume thatN is a 3–manifold with incompressible torus boundary. Aslopeis a primitive element

of H1(∂M,Z)/{±1}. To any slopeα one associates the Dehn filling ofN alongα , N(α), obtained by
identifying the boundary of a solid torusD2×S1 with ∂N in such a way that∂D2×{∗} is glued toα .
According to [8], a slopeα is called left–orderable ifπ1(M(α))≃ π1(M)/〈α〉 is LO.

Theorem 2.3. [8] Suppose that M1 and M2 are 3–manifolds with incompressible torus boundaries,
and φ : ∂M1 → ∂M2 is a homeomorphism such that M= M1 ∪φ M2 is irreducible. If there exists a
left–orderable slopeα of M1 such thatφ∗(α) is also a left–orderable slope, thenπ1(M) is LO.

2.4. Let Γ be as in 2.1. We assume thatΓ is minimal, that is, it has no vertexv with ev = −1 and
δv ≤ 2. In that case, any edgee= (v,w) on a (minimal) path connecting two nodes determines an
incompressible JSJ torusT ⊂ M. Cutting M alongT provides two manifoldsMv andMw, both with
incompressible torus boundaries. We also writeΓ \ {e} = Γv⊔Γw (with v ∈ V (Γv)); Mv is obtained
from M(Γv) by removing a solid torus.

We wish to apply Theorem 2.3 for the decompositionM = Mv∪φ Mw (whereφ : ∂Mw →−∂Mv),
as an inductive step, in order to prove the left-orderability of π1(M). In this case,Γ will be a graph with
m(Γ)≥ 2, and we search for a slopeα ∈ H1(∂Mw,Z)/{±1} with the next properties:

(i) Mv(φ∗(α)) is still non-rational connected negative definite graph manifold (together withM it
satisfies certain inductive step, being ‘less complicated’thanM);

(ii) Mw(α) has first Betti number one, hence its fundamental group is LO.
Condition (i) will be guaranteed by the convenient choice ofthe edgee. Next, we describeα in

terms ofΓw in order to have condition (ii) satisfied.

2.5. Assume thatΓ is a not–necessarily negative definite, or not–necessarilyconnected graph, without
loops, when we allow even rational decorations as well. LetI be its intersection form, and set det(Γ) :=
det(−I). Obviously, ifΓ (that is,I ) is negative definite, then det(Γ)> 0. Linear algebra and Sylvester’s
criterion show the following:

Lemma 2.6. (a) Fix an edge e= (v,w), and let[v,w] be the subgraph with vertices v,w and edge e.
Thendet(Γ) = det(Γ\e)−det(Γ\ [v,w]).

(b) Γ is negative definite if and only ifΓ\e is negative definite anddet(Γ)> 0.

2.7. (Continuation of 2.4.) In a suitable basis ofH1(∂Mw,Z), given by the plumbing construction,
the slopeα can be represented by a rational numberr = r(α). Furthermore, since the gluing in the
plumbing construction (in these bases) is the matrix

(

0 1
1 0

)

, φ∗(α) corresponds to the rational number

1/r. Hence,Mv(φ∗(α)) andMw(α) can be represented by the graphsΓv(1/r) andΓw(r) below

s ss sΓv Γwv w
ev ew1/r r

Here the new vertices decorated by rational numbers can be replaced by strings whose decorations
are given by the entries of the corresponding continued fraction (write r as [e1, . . . ,es] = e1 −

1
e2−··· ,

with e1 ≤−1, ei ≤−2 for i ≥ 2, then the{ei}’s are the decorations of the string).

Lemma 2.8. Take r:=−det(Γw\w)/det(Γw). Thendet(Γw(r)) = 0, henceΓw(r) is negative semidef-
inite. Furthermore,Γv(1/r) is negative definite withdet(Γv(1/r)) = det(Γ)/det(Γw\w).

Proof. Apply Lemma 2.6 for the new edges (and fore in Γ). �

3. PROOFS

3.1. Proof of Theorem 1.3.We show that ifΓ is not a rational graph thenM(Γ) is not an L–space.
We consider the family of graphsΓ with m(Γ)≥ 1, and run induction over the number of nodesN of
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graphs. For anyΓ the inductive construction provides another graph with less nodes, however, we have
to be careful not to obtain one withm(Γ) = 0. On the other hand, havingm(Γ)≤ |N (Γ)| (since the set
of nodes might serve as a set of bad vertices), by increasing the number of nodes we necessarily arrive
to the situation whenm(Γ) = 1; these are exactly the starting cases of the induction.

Starting case. Hence, to start the induction, consider any connected, negative definite graph with
m(Γ) = 1 (and with arbitrarily many nodes). ThenM(Γ) is not an L–space by Theorem 1.4, and
π1(M(Γ)) is left-orderable by Theorem 1.5.

Next, assume that the statement is proved for anyΓ with N− 1 nodes (whereN ≥ 2), and take a
graphΓ with N nodes andm(Γ)≥ 2. We wish to show thatπ1(M(Γ)) is LO. We can also assume that
Γ is minimal.

Case 1. Assume thatΓ has a vertexv such that at least two of the connected components ofΓ \ v
contain nodes ofΓ. Let {Γi}i∈I be the connected components ofΓ\v, Γ↓ be the graph obtained from
Γ after replacingev with e′v ≪ ev (in such a way that the multiplicity ofEv in Zmin(Γ↓) is 1), Γi(v)↓

is the minimal connected subgraph ofΓ↓ supported onΓi ∪ v (hencev is glued by an edge toΓi and
decorated bye′v). Sincem(Γ)≥ 2 we get thatΓ↓ is not rational.

When we run the Laufer algorithm forZmin(Γ↓), the different partsΓi(v)↓ do not interfere, and
Zmin(Γ↓)|Γi(v)↓ = Zmin(Γi(v)↓). Since in the computation sequence ofZmin(Γ↓) there is at least one
‘jump’ with (l i ,Ev(i)) ≥ 2, such a jump will apear for somei ∈ I in the computations sequence of
Zmin(Γi(v)↓) too. In particular, this graphΓi(v)↓ is not rational. Choose an indexj ∈I , j 6= i, such that
Γ j contains at least one node ofΓ (the assumption of case 1 is used here).

Then choose the edgee= (v,w) in such a way thatΓw (as in 2.4) equalsΓ j . Then we apply Theorem
2.3 forΓv(1/r) andΓw(r), wherer is as in Lemma 2.8. Since det(Γw(r)) = 0, π1(Mw(α)) is LO by the
theorem of Boyer, Rolfsen and Wiest [3] reviewed in the introduction. Next,Γv(1/r) is a connected,
negative definite graph, and we claim that it is not rational.Indeed, the non-rational graphΓi(v)↓ is
obtained from it by decreasing the support and decreasing the decorations. SinceΓv(1/r) contains less
nodes thanΓ, by the inductive stepπ1(Mv(φ∗(α))) is LO. Henceπ1(M(Γ))) is LO by Theorem 2.3.

Case 2.Assume that such a vertexv (as in Case 1) does not exist. This can happen only ifΓ has exactly
two nodes(n1,n2) and they are adjacent (|N | ≤ 1 would implym(Γ) ≤ 1). Let us blow up the edge
(n1,n2) and denote the new graph byΓ′, and the newly created(−1)–vertex byv. If v is the only bad
vertex ofΓ̃ (that is, with similar notation as above,Γ̃↓ is rational) then we conclude as in the starting
case by Theorems 1.4 and 1.5.

If Γ̃↓ is not rational then we repeat the arguments of Case 1 for thisgraph and vertexv.
This ends the proof of Theorem 1.3.

3.2. An alternative proof of Theorem 1.3 showing the existence of the foliation.
In this subsection we indicate how the above proof from 3.1 should be changed if we wish to replace

the LO property of the fundamental groups with the existenceof the foliations.
We will run the same induction guided by the same geometric construction (‘decomposition’ ofM

into Mv(φ∗(α)) andMw(α) with graphsΓv(1/r) andΓw(r)).
As a part of the preparation, we have to find the analogue of part (B) from the introduction (that is,

of Theorem of Boyer, Rolfsen and Wiest [3], which guaranteesthatπ1(Mw(α)) is LO). The next fact
was already considered in [17].

Proposition 3.3. Let Mw(α) be the manifold constructed in 2.7. Then it admits a transversal coori-
entable foliation.

Here, by transversality of the foliation we mean that it is transverse to the Seifert fibration of each
JSJ component. In particular, they are taut. (In [4] is also shown that they areR–covered with a non–
trivial action onHomeo+(R).)
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The statement of proposition 3.3 follows by induction over the number of JSJ Seifert components
of Mw(α). If Γw(r) contains only one node, that is,Mw(α) is Seifert, then the statement is covered
exactly by a theorem of Eisenbud, Hirsch and Neumann [9].

If Γw(r) has more nodes then let us consider a ‘separating edge’ (on a path connecting two nodes)
e′ = (v′,w′) in Γw(r). Then we repeat the cutting construction from 2.4, applied now toΓw(r), and along
e′. The graphΓw(r)\e′ has two components,Γw(r)v′ andΓw(r)w′ . SinceΓw(r) is negative semidefinite,
the determinants of the proper subgraphsΓw(r)w′ \w′ andΓw(r)w′ are positive. Setr ′ :=−det(Γw(r)w′ \
w′)/det(Γw(r)w′), and construct the new graphsΓw(r)v′(1/r ′) andΓw(r)w′(r ′):

ss sss s Γw(r)w′
v′w w′
ev′ ew′ew 1/r ′ r ′r

Similarly as in Lemma 2.8, det(Γw(r)w′(r ′)) = 0. SinceΓw(r)w′ is negative definite,Γw(r)w′(r ′) is
negative semidefinite. Furthermore, det(Γw(r)v′(1/r ′)) = det(Γw(r))/det(Γw(r)w′ \w′) = 0 too. Since
Γw(r)v′ is negative definite, we obtain thatΓw(r)v′(1/r ′) is negative semidefinite too.

By induction, both manifoldsMw(α)v′(φ ′
∗(α ′)) andMw(α)w′(α ′) admit transversal foliations. Let

us restrict them to the manifoldsMw(α)v′ andMw(α)w′ , both with torus boundary. The foliation of
Mw(α)w′(α ′) induces a foliation of the boundary torus. Since each leaf ofthe foliation of the torus
extends to a foliation of the solid torus used in the Dehn filling, the leaf is homological trivial in the
solid torus, hence it consists of (certain parallel) copiesof the slope. Hence the induced foliation on the
torus consists of parallel simple/primitive loops parallel to the slope. The same is valid for the manifold
Mw(α)v′(φ ′

∗(α ′)) and for the newly created torus boundary. Since, by construction, they are represented
by r ′ and 1/r ′ respectively, by plumbing they can be glued together into a foliation ofMw(α).

Since the gluing respects the JSJ decompostion, and the two pieces (by induction) are transversal,
the newly created foliation is transversal too. Moreover, in [3, Lemma 5.5] is proved that transversal
foliations on Seifert pieces (with base spaceS2) are cooriantable. This property will be preserved under
the above gluing as well.

3.4. Now we are ready to prove the following statement: ifM is the manifold associated with a non–
rational (connected, negative definite) graph then it admits a transversal coorintable foliation, hence it
is not an L–space (via Theorem 1.5). In the proof we use Theorem 1.4, the above Proposition 3.3, and
the equivalence (i)⇔ (iii ) from Theorem 1.5.

We will run the very same induction. In thestarting case, whenm(Γ) = 1, M(Γ) is not an L–space
by Theorem 1.4, hence it admits the foliation by Theorem 1.5.

In Case 1, by inductive step bothMw(α) andMv(φ∗(α)) admit foliations, whose restrictions toMw

andMv can be glued similarly as in the proof of Proposition 3.3 in order to get a foliation ofM(Γ).
Next,Case 2is a combination of these two parts, similarly as in 3.1.

3.5. Proof of Corollary 1.10.The assumption quarantees that(M2,B2) has an analytic realization as
link of (X,D,o), where(X,o) is a normal surface singularity and(D,o) a (Weil) divisor on it. Fix such
an analytic realization. Then, by a theorem of Stein [30, 11], the monodromy representation of the
(regular, topological) covering overM2\B2, and the analytic structure of(X,o) determines a (unique)
normal surface singularity(Y,o), and a finite map(Y,o) → (X,o) branched along(D,o), which at the
level of links inducesM1 → M2. Then use the fact that(X,o) is rational whenever(Y,o) is rational, see
e.g. [14, Proposition 5.13].

3.6. Proof of Example 1.11.Let f (x,y) be the equation of the plane curve singularity with linkK.
Then theZn cyclic coverM is the link of the hypersurface singularity{ f (x,y) = zn} ⊂ (C3,o). Hence
M is an L–space if and only if{ f (x,y) = zn} is rational. A hypersurface singularity is rational if and
only if it is of type A-D-E [19]. If n= 2 then{ f (x,y) = z2} is simple if and only if f itself is simple.
Assume nextn > 2. Since the multiplicity of a simple surface singularity is2, the multiplicity of f
should be 2. In particular, by splitting lemma,f in some local coordinates has the formx2 + ym. But
the Brieskorn singularityx2+ym = zn is rational if and only if 1/2+1/m+1/n> 1.



8 András Némethi

REFERENCES

[1] Artin, M.: Some numerical criteria for contractibilityof curves on algebraic surfaces. Amer. J. of Math., 84, 485-496,
1962.

[2] Artin, M.: On isolated rational singularities of surfaces. Amer. J. of Math., 88, 129-136, 1966.
[3] Boyer, S., Rolfsen, D., Wiest, D.: Orderable 3–manifoldgroups, Ann Inst, Fourier (Grenoble) 55 (2005), no. 1, 243–288.
[4] Brittenham, M.: Tautly foliated 3–manifolds with noR–covered foliations, in: Foliations: geometry and dynamics

(Waesaw 2000), 213-224, World Sci. Publ., River edge, NJ, 2002.
[5] Boyer, S., Gordon, C. McA., Watson, L.: On L–spaces and left–ordareble fundamental groups, Math. Ann. 356 (2013),

no. 4, 1213–1245.
[6] Boyer, S., Clay, A.: Foliations, orders, representations, L–spaces and graph manifolds, arXiv:1401.7726.
[7] Boyer, S., Clay, A.: Slope detections, foliations in graph manifolds, and L–spaces, in preparation.
[8] Clay, A., Lidman, T., Watson, L.: Graph manifolds, left-orderability and amalgamation, arXiv:1106.0486.
[9] Eisenbud, D., Hirsch, U., Neumann, W.: Transverse foliations of Seifert bundles and self homeomorphisms of the circle,

Comm. Math. Helvetici 56 (1981), 638–660.
[10] Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331-368.
[11] Grauert, H. and Remmert, R.: Komplexe Räume, Math. Annalen 136 (1958), 245-318.
[12] Hanselman, J., Rasmussen, J., Rasmussen, S. D., Watson, L.: Taut foliations on graph manifolds, arXiv:1508.0591.
[13] Jankins, M., Neumann, W.D.: Rotations Numbers of Products of Circle Momeomorphisms, Math. Ann. 271 (1985),

381–400.
[14] Kollár, J., Mori, S.: Birational geometry og algebraicvarieties, Cambridge Univ. Press 134 (1998).
[15] Laufer, H.B.: On rational singularities, Amer. J. of Math., 94 (1972), 597–608.
[16] Lisca, P., Matíc, G.: Transverse contact structures on Seifert 3–manifolds, Algebraic & Geometric Topology 4 (2004),

1125–1144.
[17] Mauro, M.: On lattice cohomology and left–orderability, arXiv:1308.1890.
[18] Naimi, R.: Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv. 69 (1994), no.1, 155–162.
[19] Némethi, A.: Five lectures on normal surface singularities; lectures delivered at the Summer School in Low dimensional

topology, Budapest, Hungary 1998; Bolyai Society Mathematical Studies 8 (1999), 269-351.
[20] Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds. Geometry and Topology 9,

(2005), 991–1042.
[21] Némethi, A.: Lattice Cohomology of Normal Surface Singularities. Publ. of RIMS, Kyoto University 4 (2) (2008),

507–543.
[22] Némethi, A.: Two exact sequences for lattice cohomology, Proc. of the conference to honor H. Moscovici’s 65th birth-

day, Contemporary Math. 546 (2011), 249–269.
[23] Neumann, W.D.: A calculus for plumbing applied to the topology of complex surface singularities and degenerating

complex curves, Trans. of Amer. Math. Soc.268(2) (1981), 299-344.
[24] Ozsváth, P.S., Szabó, Z.: Absolutely graded Floer homologies and intersection forms for four-manifolds with bound-

aries. Adv. Math. 173, no. 2, (2003) 179–261.
[25] Ozsváth, P.S., Szabó, Z.: On the Floer homology of plumbed three-manifolds. Geometry and Topology, 7 (2003), 185–

224.
[26] Ozsváth, P.S. and Szabó, Z.: Holomorphic discs and topological invariants for closed three-manifold. Ann. of Math.

159 (2004), 1027–1158.
[27] Ozsváth, P.S. and Szabó, Z.: Holomorphic discs and three-manifold invariants:properties and applications. Ann.of

Math. 159 (2004), 1159–1245.
[28] Ozsváth, P.S., Stipsicz, A.I., Szabó, Z.: A spectral sequence on lattice cohomology, arXiv:1206.1654.
[29] Pinkham, H.: Normal Surface Singularities withC∗ Action, Math. Ann. (1977), 183–193.
[30] Stein, K.: Analytische Zerlegungen komplexer Räume, Math. Annalen 132 (1956), 63-93.

RÉNYI INSTITUTE OFMATHEMATICS, 1053 BUDAPEST, REÁLTANODA U . 13–15, HUNGARY.
E-mail address: nemethi.andras@renyi.mta.hu

http://arxiv.org/abs/1401.7726
http://arxiv.org/abs/1106.0486
http://arxiv.org/abs/1508.0591
http://arxiv.org/abs/1308.1890
http://arxiv.org/abs/1206.1654

	1. Introduction
	2. Preliminaries
	2.1. The combinatorics of a graph.
	2.2. Cutting M along an incompressible JSJ torus

	3. Proofs
	References

