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LINKS OF RATIONAL SINGULARITIES, L-SPACES AND LO FUNDAMENT AL GROUPS

ANDRAS NEMETHI

ABSTRACT. We prove that the link of a complex normal surface singtyasian L—space if and only if
the singularity is rational. This via a result of Hanselm&nRasmussen, S. D. Rasmussen and Watson
[12], proving the conjecture of Boyer, Gordon and WatsongBpws that a singularity link is not rational

if and only if its fundamental group is left—orderable if amadly if it admits a coorientable taut foliation.

1. INTRODUCTION

In the present note we wish to connect three areas of mathenalgebraic geometry (especially,
the theory of local complex normal surface singularitié@)y dimensional topology (Heegaard Floer
homology and foliations), and group theory (left—ordeeaptoperty). There are well-defined inter-
plays between them: links of such singularities are ord@temanifolds, whose fundamental groups
(with minor exceptions) characterize the corresponding&rifolds and the topology of the singular-
ity. We show that certain basic objects (fundamental insifasition procedures in these three rather
independent theories) can be identified in a surprising Wwagingularity theory we target the ratio-
nal singularities; by definition they are those germs withisaing geometric genus. This vanishing
(although it is analytic in nature) was characterized comatarially by the plumbing graph of the
link by Artin and Laufer (graphs satisfying the property awdled ‘rational graphs’) 1,12, 15]. In
3—dimensional topology we consider the family of L—spagaspduced by Ozsvath and Szabd, they
are characterized by the vanishing of the reduced Heegdaed lfomology, and are key fundamental
objects in recent developments in topology![26, 27]. Beimgteonal singularity link, or an L—space,
will be compared with the left—orderability of the correspong fundamental groups.

In fact, the linkM of a complex normal surface singularif){, o) is a special plumbed 3—manifold,
plumbed along a connected, negative definite graph. In tits we will be interested only in rational
homology sphere 3—manifolds, hence the correspondingtphagraphs are trees 6f’s. The connec-
tion between singularity theory and topology imposed bylitiiehad deep influences in both directions
and created several bridges. One of them is the introduofitime lattice cohomology{H%}q~0(M) of
such 3—manifolds by the author [21] (see alsd [20]). AltHolitf (M) is defined combinatorially from
the graph, it can be compared with several analytic invésjang with the geometric genus as well. In
particular, in[20] 211] is proved:

Theorem 1.1. (X,0) is a rational singularity if and only if the reduced latticelromology of its link
M satisfiesH?, (M) = 0; or, equivalently,H, (M) = 0.
On the other hand, in [21] the author formulated the follayvimnjecture

Conjecture 1.2. The Heegaard Floer homology and the lattice cohomology ofé&lisomorphic (up
to a shift in degrees):

H FrJerd.evedodd(_M7 0) = @q everjodd H?ed(M7 0) [_d(M7 O-)],
whereg € Spirf(M), and dM, ) are the d—invariants of HF(M, 0).
In particular, the above conjecture predicts tH& (M) = 0 (that is,M is an L—space) if and only
if H*,4(M) = 0, which is equivalent with the rationality of the graph byebneni 1.1L.

red
The goal of the present note is to prove the above prediction:
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Theorem 1.3. A singularity link is an L—space if and only if the singulgrit rational.

In fact, one direction of the statement is already known. atmdor introduced the notion of ‘bad
vertices’ of a graph[20, 22] (for the definition deel2.1; inigeneralization of a similar definition of
Ozsvath and Szabé from [25]). In this way, a graph without Wextices is rational; a graph with one
bad vertex is a graph, which becomes rational after a ‘(hegasurgery at that vertex'. In particular,
the number of bad vertices measures how far the graph is feinglvational. Related to Conjecture
1.2 in [21] is proved:

Theorem 1.4. If the number of bad vertices of the plumbing grapkci4 then Conjecturé 112 is true.

This was generalized in [28] fot 2 bad vertices.

Since the above theorem applies for rational links, Thest&m and_1}4 imply that the link of a
rational singularity is an L—space.

The opposite direction was obstructed by the lack of charaettions of the L—spaces (at least
in some language, which can be reformulated inside of samigyltheory). This obstruction was bro-
ken recently by several results in this direction, whosé fiolen is the main result of Hanselman, J.
Rasmussen, S. D. Rasmussen and Waisdn [12]:

Theorem 1.5.1f M is a closed, connected orientable graph manifold thenftllowing are equivalent:
() M is not an L—space;
(i) M has left—orderable (LO) fundamental group;
(i) M admits a C° coorientable taut foliation.

Recall that a groufs is left-orderable if there exists a strict total orderiagof G such thaig < h
implies fg < fhfor all f,g,h € G. (By convention, the trivial group is not LO.)

The equivalence (i3> (iii) was established by Boyer and Clay [6], (#) (i) by Boyer and Clay in
[7]. The equivalence (&:(ii) was conjectured by Boyer, Gordon and Watsion [5]. Thevabitheorem
[1.5 was the final answer to this conjecture. For the histodypantial contributions see the introduction
and references from [12] (and the references therein). €aded material will be reviewed[in 2.2.

This allows us to reformulate the remaining implication diebren_1.B as follows: i is the link
of a non-rational singularity therg (M) is LO, hence not an L—space.

In the proof of this statement the following facts will be cial:

(A) The characterization of the rational graphs via Lagfelgorithm (Laufer’s computation se-
guence), and also the graph—combinatorics of bad vertices;

(B) A theorem of Boyer, Rolfsen and Wiest [3], which statesttfor compact, irreducibleP?—
irreducible 3—manifoldvl, 75 (M) is LO if and only if there exists a non—trivial homomorphiga{M) —
L, whereL is any LO group. In particular, sinc& is LO for anyr € Z-, if H1(M,Q) # 0 then using
the abelianization map we obtain thatM) is LO.

(C) Atheorem of Clay, Lidman and Watson [8] regarding thegwadur of LO property with respect
to free product with amalgamation (more precisely, withpees$ to the decomposition &ff along a
torus and closing the pieces along ‘LO-slopes’)[ cfl 2.2.

(D) The equivalences @ (ii) from Theoren 1.4 above (at the ‘initial step’ combine@wrheo-
rem[1.3).

Hence Theorenis 1.3 ahd 1.5 combined provide:

Theorem 1.6. If M is the link of a normal surface singularity (that is, if M the plumbed manifold
associated with a connected, negative definite graph), tiheefollowing are equivalent:
() M is the link of a non—rational singularity (i.e., the goh is not a ‘rational graph’);
(i) M is not an L—space;
(iii) M has left—orderable (LO) fundamental group;
(iv) M admits a & coorientable taut foliation.
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Note that an integral homology sphevkis a rational link if and only itM = S* or M = 3(2,3,5),
the link of the BrieskorrEg—singularity{x? +y3+2° = 0}, see e.g[[19]. In particular, M is an integral
homology sphere singularity link, not of ty or (2, 3,5), then (ii)-(iii)-(iv) above are automatically
satisfied. (For left-orderability ofg, (M), wheneveM is a integral homology 3-sphere, irreducible and
toroidal graph manifold, segl[8].)

Remark 1.7. (An alternative proof. The existence of taut fdhtions) Although the equivalence of
(i) with (iv) follows from Theoreni{1Lb, we note that an altetive proof of the main theorem can be
done by inductive construction of the taut foliation on tleeresponding links (instead of proving the
LO property of their fundamental group). More preciselsté¢ad to use the equivalenceifii) of
Theorem_1b and the results (B) and (C) listed above regaidd®-properties, one can run a very
similar proof, based on the very same inductive steps. fitssteith the equivalence @-(iv), part (C)
will be replaced by the gluing procedure of the foliationdile part (C) (theorem of Boyer, Rolfsen
and Wiest [[3]) will be replaced by an extension of a result &feBbud, Hirsch and Neumann [9],
which guarantees the existence of a transversal cooridoliation whenever the plumbing graph is
negative semidefinite. (The Eisenbud, Hirsch and Neumasmisavalid for Seifert fibered manifolds).
The details are given (n 3.2=3.4. Particular cases alreppgaaed in[[17].

1.8. Applications. Several results valid from singularity theory can be repreted via the above
correspondence in terms of L—spaces. E.g., since ratisaphg are stable with respect to taking sub-
graphs, or decreasing the decorations of the vertices, vednob

Corollary 1.9. Negative definite plumbing graphs of plumbed L—spaces aldestvith respect to
taking subgraphs, or decreasing the decorations of thaéoet

Using stability with respect to finite coverings we obtaie tbllowing (for the proof see_3.5).

Corollary 1.10. Assume that we have a finite covering M M, of graph 3—manifolds associated
with connected negative definite plumbing graphs. The awyés either unbranched, or it is branched
with branch locus BC M. In the second case we assume thatadmits a negative definite plumbing
representation, such that all the connected components aféBrepresented by (generic}-Sibers of
certain JSJ Seifert components of the plumbing. Theisln L—space wheneveri;Ns an L—space.

One can find easily (even non—branched) coverings Wiheis an L—space bu¥l; is not.

Example 1.11. (Coverings)Let K c S* be an embedded algebraic link (the link of an isolated plane
curve singularity). The cycli&, covering ofS® branched along( is an L—space if and only if

e n=2 andK is the link of an A-D-E (simple) plane curve singularity, or

e n>3andK is the torus linkTym with 2 + £ > 2.

For the proof of the statement seel3.6. The short proofs ¢l IOT. 11 can be compared with
sometimes long computations involving Heegaard Floer Hogyoor the arithmetics of foliations.

Example 1.12. (The Seifert fibered casefhe link of a weighted homogeneous normal surface sin-
gularity is a Seifert 3—manifold. In [29] Pinkham computld jeometric genus for such singularity in
terms of the Seifert invariants in the case when the link igt@mal homology sphere. The vanishing
of the corresponding expression provides a numericalnality criterion in terms of Seifert invari-
ant. Hence, the main result provides a new criterion for tp®logical properties (ii)-(iii)-(iv) from
Theoreni 1B. Here is this new numerical criterion.

Assume that the star—shaped graph has 3 legs, the central vertew, is decorated by, and
thei-th leg by —bis, ..., —bis, wherefbir,. .., bis] = big — ﬁ = a;/w is the (Hirzebruch) continued
fraction withby; > 2. The positive integer$(ai, w )}, are the Seifert invariants with Q w < aj,
ged(ai, ) = 1. (v is connected to the vertices decorated -blyi;.) We assume that the graph is
negative definite, that i®:= e+ 3w /a; < 0. Then, by[[29]M is non-rational if and only if
(1.13) z |—law/ai] <leg—2 for atleastoné € Zo.
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This looks very different than the previous criterions usetbpology, e.g. for the existence of folia-
tions (results of Eisenbud, Hirsch, Jankins, Neumann, N@hL3,[18], here we follow/[[16]). Let us
recall it forv = 3.

Following [16] we say thatx,y,z) € (QN(0,1))3 is realizableif there exist coprime integers >
a> 0 such that up to a permutationxfy,zone hax < a/m, y < (m—a)/m, z< 1/m.

ThenM(I") admits a coorientable transversal foliation if and onlyriemf the following holds:

e =—1 and {fi/ai}i=123 is realizable;
e =—2 and {(a; — B)/ai }i=123 is realizable.

A direct arithmetical proof of the equivalence of these twitecions will be proved in another note.

(1.14)

2. PRELIMINARIES

2.1. The combinatorics of a graph. For more details regarding this subsection see [19].

Letl" be a connected negative definite plumbing graph. Since betphdces and rational singularity
links are rational homology spheres, without loss of gditgrae can assume that our plumbing graphs
are trees and all genus decorations are zero?Ldenote the set of vertices, the ‘Euler’ decoration
of ve ¥/, andd, the valency ofvin I'. The vertexv is called a node i, > 3.

We associate witli its plumbed 4—-manifoldP(I") too, and its latticd := H(P(I"),Z) generated
freely by {E, }vey together with the negative definite intersection fdrm= (Ey, Ey)yw. LetK € L®
Q be the canonical cycle defined by the adjunction relatighs- E,,E,) + 2 = 0 for all v, and set
(the ‘Riemann-Roch expressiorg)l) = —(K +1,1)/2. Furthermore, le¥mi, be the non-zero, unique
minimal cycleZ € L with (Z,E,) <O forallve ¥ [1,12].

If (X,0) is a complex normal surface singularity, embedded in s@@eo), then its link isM :=
XN{|zl =€} for 0< £ < 1. If X — X is one of the resolutions ¢, then the geometric genys(X,0)
is defined via the sheaf cohomology of the structure sphgaf hl(&y). Note that any dual gragh of
a good resolution ok — X might serve as a plumbing graph for the link, aais diffeomorphic with
P(I"). Furthermore, any connected negative definite graph isst@lution graph of certain singularity
[10], and plumbed 3—manifolds of such graphs are irredad®g].

(X,0) is called rational ifpy = 0. E.g., all quotient singularities are rational. Artin cheterized
rationality in terms of (any) resolution (or, plumbing) ghaof (X, 0): (X,0) is rational if and only if
X (Zmin) > 1 (in any resolution) [1,12]. Graphs with this property wi# balled rational.

Laufer in [15] provided a simple way to detect the ratioyadit a graph. A computation sequence in
L, ending inZmin is a sequencky = 5, Ey, l1,...,lt = Zmin, li € L, such that for anythere exists/(i) €
7 such thatj 1 = |; + E;. Laufer proposed the following construction of a compuatatsequence:
start withlg = S Ey, and construct each inductively. If |; is already constructed, ardi,E,) <0
for all v then stop, and take=t. If there existsv with (l;,E,) > 0 then take such wasv(i) and set
li+a =i +Eyi). Then the procedure stops after finite steps, and the endlgyeblwaysZmin. By [15],

[ is rational if and only if at each step along the sequefic&, ;) = 1. (The choice of(i), hence of
the sequence, usually is not unique. NeverthelessZnin in all cases, and the rationality criterion is
also independent of all choices.)

Using this algorithm, one verifies the following facts:

(a) Subgraphs of rational graphs are rational.

(b) Decreasing the Euler decoration of a rational graphigesva rational graph.

(c) If &y < =9 for all vthenl is rational (in factlg = Zmin = S Ev).

A set of vertices#Z C ¥ is called ‘set of bad vertices’ if replacing the decoratiepsv € 4, by
sufficiently negative integel, < e, we get a rational graph [20, 22]. The s#t(even with minimality
property) is not unique. l#Z = 0 works then obviously is rational.

Setm(I") := ming pad|#|. From the above (a) we obtain the following.

Lemma 2.1. If Z C ¥ (I') is a set of bad vertices of, and I’ is a subgraph of ', then %’ :=
AN (I') might serve as a set of bad vertices fior. In particular, m('") < m(I").
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2.2. Cutting M along an incompressible JSJ torus.

2.2. First we recall the notion of Dehn surgery and a result of Qlagman and Watsori [8].

Assume thal is a 3—manifold with incompressible torus boundanslépeis a primitive element
of H1(dM,Z)/{+£1}. To any slopex one associates the Dehn filling Mfalonga, N(a), obtained by
identifying the boundary of a solid torl® x St with N in such a way tha#D? x {x} is glued toq.
According to [8], a slopex is called left—orderable ifa(M(a)) ~ m(M)/(a) is LO.

Theorem 2.3. [8] Suppose that Mand M, are 3—manifolds with incompressible torus boundaries,
and @ : M1 — dM; is a homeomorphism such that #M; U, M is irreducible. If there exists a
left—orderable slope& of M; such thatg,(a) is also a left-orderable slope, them(M) is LO.

2.4. LetT be as il 211. We assume tHatis minimal, that is, it has no vertex with 8, = —1 and
oy < 2. In that case, any edge= (v,w) on a (minimal) path connecting two nodes determines an
incompressible JSJ tords C M. CuttingM alongT provides two manifold#, and M,,, both with
incompressible torus boundaries. We also wiite{e} = ', LTy, (with v e #/(I'y)); My is obtained
from M(I"y) by removing a solid torus.

We wish to apply Theoreiin 2.3 for the decompositdr= M, Uy My, (Whereg : My, — —dM,),
as an inductive step, in order to prove the left-orderabdftrs (M). In this casel” will be a graph with
m(l") > 2, and we search for a slopec H1(dMy,Z)/{£1} with the next properties:

(i) My(@.(a)) is still non-rational connected negative definite graph ifioéth (together withM it
satisfies certain inductive step, being ‘less complicatieahM);

(i) My(a) has first Betti number one, hence its fundamental group is LO.

Condition (i) will be guaranteed by the convenient choicehaf edgee. Next, we describex in
terms ofl",, in order to have condition (ii) satisfied.

2.5. Assume thaf is a not—necessarily negative definite, or not—necessasiipected graph, without
loops, when we allow even rational decorations as welll lbetits intersection form, and set de} :=
det(—I). Obviously, ifl" (that is,l) is negative definite, then dét) > 0. Linear algebra and Sylvester’s
criterion show the following:

Lemma 2.6. (a) Fix an edge e= (v,w), and let|v,w] be the subgraph with verticesw and edge e.
Thendet(I") = det(I" \ e) —det(I" \ [v,w]).

(b) I is negative definite if and only if\ e is negative definite ardket") > 0.
2.7. (Continuation of 2.4.) In a suitable basis idi(dMy,Z), given by the plumbing construction,

the slopea can be represented by a rational number r(a). Furthermore, since the gluing in the
plumbing construction (in these bases) is the me(@ixé), @.(a) corresponds to the rational number

1/r. Hence M\ (@.(a)) andMy(a) can be represented by the graphél/r) andly(r) below
r, % 1{r r ﬁa/N Mo

Here the new vertices decorated by rational numbers carplscesl by strings whose decorations
are given by the entries of the corresponding continuedifragwrite r asfey,...,e] = e — 82%
withe; < -1, < —2fori > 2, then the{g }'s are the decorations of the string).

Lemma 2.8. Take r:= —det(l"'y, \ w)/det(l'y). Thendet "\, (r)) = O, hence (r) is negative semidef-
inite. Furthermore[ (1/r) is negative definite witdetI'y(1/r)) = det(I") / det(I"y, \ w).

Proof. Apply Lemmd2.6 for the new edges (and &in I"). O
3. PROOFS

3.1. Proof of Theorem 1.BWe show that ifl” is not a rational graph thel(I") is not an L—space.
We consider the family of grapHswith m(I") > 1, and run induction over the number of nodés of
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graphs. For any the inductive construction provides another graph with lesdes, however, we have
to be careful not to obtain one with(I") = 0. On the other hand, havimg(I") < |.4#(I")| (since the set
of nodes might serve as a set of bad vertices), by increalsengumber of nodes we necessarily arrive
to the situation whem(I") = 1; these are exactly the starting cases of the induction.

Starting case. Hence, to start the induction, consider any connected,tivegdefinite graph with
m(I') = 1 (and with arbitrarily many nodes). Thevi(I") is not an L—space by Theorem11.4, and
m(M(T)) is left-orderable by Theorem1.5.

Next, assume that the statement is proved for lamyith N — 1 nodes (wherd > 2), and take a
graphl” with N nodes andan(I") > 2. We wish to show thats (M(I)) is LO. We can also assume that
I is minimal.

Case 1. Assume thal” has a vertew such that at least two of the connected components \of
contain nodes of . Let {T';}ic~ be the connected componentsTofv, ' be the graph obtained from
[ after replacings, with €, < e, (in such a way that the multiplicity d, in Zmin(T) is 1), [ (v)*
is the minimal connected subgraphlof supported orf'; Uv (hencev is glued by an edge tb; and
decorated b¥,). Sincem(I") > 2 we get thaf * is not rational.

When we run the Laufer algorithm f&m,(I'¥), the different parts;(v)* do not interfere, and
Zm.n(ri)lr yo = Zmin(Fi (v ). Since in the computation sequenceZafi,(T*) there is at least one
‘jlump’ W|th (I.,E (iy) = 2, such a jump will apear for soniec .# in the computations sequence of
Zmin(Ti(V)¥) too. In particular, this grapFi;(v)* is not rational. Choose an indgx .#, j # i, such that
I"j contains at least one nodefofthe assumption of case 1 is used here).

Then choose the edge= (v,w) in such a way thaft,, (as in2.4) equals ;. Then we apply Theorem
[2.3forl(1/r) andl(r), wherer is as in Lemma2]8. Since déty(r)) =0, o (My(a)) is LO by the
theorem of Boyer, Rolfsen and Wiest [3] reviewed in the idtrction. Next,l'y(1/r) is a connected,
negative definite graph, and we claim that it is not ratiotradeed, the non-rational gragh(v)* is
obtained from it by decreasing the support and decreasendeborations. Sindg,(1/r) contains less
nodes thar, by the inductive steps (My(@.(a))) is LO. Hencers (M(M))) is LO by Theorenmh Z]3.

Case 2 Assume that such a vertexas in Case 1) does not exist. This can happen orilyhis exactly
two nodes(n;,nz) and they are adjacent 4’| < 1 would implym(I") < 1). Let us blow up the edge
(n1,ny) and denote the new graph by, and the newly create@-1)—vertex byv. If vis the only bad
vertex of [ (that is, with similar notation as abové! is rational) then we conclude as in the starting
case by Theorenis 1.4 and]1.5.

If I+ is not rational then we repeat the arguments of Case 1 fogthjsh and vertex.

This ends the proof of Theordm 1..3.

3.2. An alternative proof of Theorem[1.3 showing the existeze of the foliation.

In this subsection we indicate how the above proof fronth 3alikhbe changed if we wish to replace
the LO property of the fundamental groups with the existesfde foliations.

We will run the same induction guided by the same geometmstroction (‘decomposition’ o
into My(@.(ar)) andMy,(a) with graphsi™y(1/r) andl y(r)).

As a part of the preparation, we have to find the analogue of{Bafrom the introduction (that is,
of Theorem of Boyer, Rolfsen and Wiest [3], which guarant®es i (M (a)) is LO). The next fact
was already considered in [17].

Proposition 3.3. Let My(a) be the manifold constructed [n"2.7. Then it admits a trarsalecoori-
entable foliation.

Here, by transversality of the foliation we mean that it angverse to the Seifert fibration of each
JSJ component. In particular, they are taut. [(In [4] is alsoa that they ar@®—covered with a non—
trivial action onHomed (R).)



Links of rational singularities, L-spaces and LO fundaraégtoups 7

The statement of propositién_8.3 follows by induction over humber of JSJ Seifert components
of Mw(a). If F'w(r) contains only one node, that il (a) is Seifert, then the statement is covered
exactly by a theorem of Eisenbud, Hirsch and Neumann [9].

If Mw(r) has more nodes then let us consider a ‘separating edge’ (athapnnecting two nodes)
€ = (V,w)inT(r). Then we repeat the cutting construction fiom 2.4, appl@ad to,(r), and along
€. The grapt (r) \ € has two components,,(r), andly(r), . Sincel (r) is negative semidefinite,
the determinants of the proper subgraphiér ), \ W andr (r). are positive. Sat := —det(ly(r)w \
w)/detTy(r)w ), and construct the new graphg(r)y (1/r’) andly(r)w (r'):

— ‘\3/’__1@ f./__‘aw/’ M

Similarly as in Lemm&218, déf,(r)w (r')) = 0. Sincel (r)w is negative definitel (r)w (r') is
negative semidefinite. Furthermore, @&f§(r)y (1/r')) = detT'y(r))/detTy(r)w \ W) = 0 too. Since
Mw(r)v is negative definite, we obtain th,(r), (1/r’) is negative semidefinite too.

By induction, both manifold$/,(a)y(¢@.(a’)) andMy(a)w (a’) admit transversal foliations. Let
us restrict them to the manifoldd,,(a ), and My, (o )y, both with torus boundary. The foliation of
Mw(a)w(a’) induces a foliation of the boundary torus. Since each leaheffoliation of the torus
extends to a foliation of the solid torus used in the Dehmfillithe leaf is homological trivial in the
solid torus, hence it consists of (certain parallel) copiethe slope. Hence the induced foliation on the
torus consists of parallel simple/primitive loops pataitethe slope. The same is valid for the manifold
My (a)v (¢, (a’)) and for the newly created torus boundary. Since, by cortstrychey are represented
by r" and 1/r’ respectively, by plumbing they can be glued together inwliatfon of M,,(a).

Since the gluing respects the JSJ decompostion, and thei¢wesp(by induction) are transversal,
the newly created foliation is transversal too. Moreove(3, Lemma 5.5] is proved that transversal
foliations on Seifert pieces (with base sp&pare cooriantable. This property will be preserved under
the above gluing as well.

3.4. Now we are ready to prove the following statementliis the manifold associated with a non—
rational (connected, negative definite) graph then it aglentransversal coorintable foliation, hence it
is not an L—space (via Theordm 11.5). In the proof we use Thedrd, the above Proposition 8.3, and
the equivalence &> (iii ) from Theoreni 15.

We will run the very same induction. In ttstarting case whenm(I") = 1, M(I") is not an L—space
by Theoreni .4, hence it admits the foliation by Theokem 1.5.

In Case 1 by inductive step botM,,(a) andMy(@.(a)) admit foliations, whose restrictions M,
and M, can be glued similarly as in the proof of Proposition| 3.3 idesrto get a foliation oM(I").
Next, Case 2is a combination of these two parts, similarly agin 3.1.

3.5. Proof of Corollary [1.10.The assumption quarantees tlisk, B,) has an analytic realization as
link of (X,D,0), where(X,0) is a normal surface singularity atiB®, o) a (Weil) divisor on it. Fix such
an analytic realization. Then, by a theorem of Stein [30, 14§ monodromy representation of the
(regular, topological) covering ovéMs \ By, and the analytic structure ¢X,0) determines a (unique)
normal surface singularity¥,0), and a finite magY,o0) — (X, 0) branched alongD, 0), which at the
level of links inducedvl; — M. Then use the fact th@k, o) is rational whenevefY, 0) is rational, see
e.g. [14, Proposition 5.13].

3.6. Proof of Example[1.1lLLet f(x,y) be the equation of the plane curve singularity with likk
Then theZ, cyclic coverM is the link of the hypersurface singularifyf (x,y) = 2"} c (C3,0). Hence

M is an L—space if and only i f(x,y) = Z"} is rational. A hypersurface singularity is rational if and
only if it is of type A-D-E [19]. If n = 2 then{ f(x,y) = Z°} is simple if and only iff itself is simple.
Assume nexnh > 2. Since the multiplicity of a simple surface singularity2isthe multiplicity of f
should be 2. In particular, by splitting lemm&,n some local coordinates has the fordH-y™. But
the Brieskorn singularitx? + y™ = 2 is rational if and only if ¥24+1/m+1/n> 1.
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