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Abstract

We prove a central limit theorem under diffusive scaling for the displacement of a
random walk on Zd in stationary and ergodic doubly stochastic random environment,
under the H−1-condition imposed on the drift field. The condition is equivalent to
assuming that the stream tensor of the drift field be stationary and square integrable.
This improves the best existing result [10], where it is assumed that the stream tensor
is in L max{2+δ,d}, with δ > 0. Our proof relies on an extension of the relaxed sector

condition of [8], and is technically rather simpler than existing earlier proofs of similar
results by Oelschläger [19] and Komorowski, Landim and Olla [10].
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1 Introduction: setup and main result

Since its appearance in the probability and physics literature in the mid-seventies the general

topics of random walks/diffusions in random environment became the most complex and

robust area of research. For a general overview of the subject and its historical development

we refer the reader to the surveys Kozlov [14], Zeitouni [30], Biskup [4] or Kumagai [16],

written at various stages of this rich story. The main problem considered in our paper is

that of diffusive limit in the doubly stochastic (and hence, a priori stationary) case.

1.1 The random walk and the H−1-condition

Let (Ω,F , π, τz : z ∈ Z
d) be a probability space with an ergodic Z

d-action. Denote by

E+ := {e1, . . . , ed : ei ∈ Z
d, ei · ej = δi,j} the standard generating basis in Z

d and let

E := {±ej : ej ∈ E+} = {k ∈ Z
d : |k| = 1} be the set of possible steps of a nearest-

neighbour walk on Z
d. Assume that bounded measurable functions pk : Ω → [0, s∗], k ∈ E
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are given (s∗ denotes the common bound), and assume the pk satisfy bistochasticity, by

which we mean the following property

∑

k∈E

pk(ω) =
∑

k∈E

p−k(τkω). (1)

Lift these functions to the lattice Z
d by defining

Pk(x) = Pk(ω, x) := pk(τxω). (2)

Given these, define the continuous time nearest neighbour random walk X(t) as a continuous

time Markov chain on Z
d, with X(0) = 0 and conditional jump rates

Pω

(
X(t+ dt) = x+ k

∣∣ X(t) = x
)
= Pk(ω, x)dt+ o(dt), (3)

where the subscript ω denotes that the random walk X(t) is a continuous time Markov chain

on Z
d conditionally, with ω ∈ Ω sampled according to π. Note that (1) is equivalent to

∑

k∈E

Pk(ω, x) =
∑

k∈E

P−k(ω, x+ k),

which is exactly bistochasticity of the random walk defined in (3) above. Since the pk are

bounded, so will be the total jump rate of the walk

p(ω) :=
∑

k∈E

pk(ω) ≤ 2ds∗.

Thus, there is no difference between the long time asymptotics of this walk and the discrete

time (possibly lazy) walk n 7→ Xn ∈ Z
d with jump probabilities

Pω

(
Xn+1 = y

∣∣ Xn = x
)
=





(2ds∗)−1Pk(ω, x) if y − x = k ∈ E ,

1− (2ds∗)−1
∑

l∈E
Pl(ω, x) if y − x = 0,

0 if y − x 6∈ E ∪ {0}.

We speak about continuous time walk only for reasons of convenience, in order to easily

quote facts and results form Kipnis-Varadhan theory of CLT for additive functionals of

Markov processes, without tedious reformulations.

We formulate our problem and prove our main result in the context of nearest neighbour

walks. This is only for convenience reason. The main result of this paper holds true for

finite range bistochastic RWREs under the appropriate conditions. For more details on this

see the remark after Theorem 1, further down in the paper.

We will use the notation Pω (·), Eω (·) and Varω (·) for quenched probability, expectation

and variance. That is: probability, expectation, and variance with respect to the distribu-

tion of the random walk X(t), conditionally, with given fixed environment ω. The nota-

tion P (·) :=
∫
ΩPω (·) dπ(ω), E (·) :=

∫
ΩEω (·) dπ(ω) and Var (·) :=

∫
ΩVarω (·) dπ(ω) +
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∫
ΩEω (·)2 dπ(ω)−E (·)2 will be reserved for annealed probability, expectation and variance.

That is: probability, expectation and variance with respect to the random walk trajectory

X(t) and the environment ω, sampled according to the distribution π.

It is well known (and easy to check, see e.g. [14]) that due to double stochasticity (1)

the annealed set-up is stationary and ergodic in time: the process of the environment as

seen from the position of the random walker (to be formally defined soon) is stationary

and ergodic in time under the probability measure π and consequently the random walk

t 7→ X(t) will have stationary and ergodic annealed increments.

Next we define, for k ∈ E , vk : Ω → [−s∗, s∗], sk : Ω → [0, s∗], and ψ,ϕ : Ω → R
d,

vk(ω) :=
pk(ω)− p−k(τkω)

2
, ϕ(ω) :=

∑

k∈E

kvk(ω), (4)

sk(ω) :=
pk(ω) + p−k(τkω)

2
, ψ(ω) :=

∑

k∈E

ksk(ω). (5)

Their corresponding lifting to Z
d are

Vk(x) = Vk(ω, x) := vk(τxω), Φ(x) = Φ(ω, x) := ϕ(τxω), (6)

Sk(x) = Sk(ω, x) := sk(τxω), Ψ(x) = Ψ(ω, x) := ψ(τxω).

Note that

−s∗ ≤ vk(ω) ≤ s∗, 0 ≤ sk(ω) ≤ s∗, |ϕ(ω)| ≤ 2
√
ds∗, |ψ(ω)| ≤

√
ds∗, a.s.

The local quenched drift of the random walk is

Eω

(
dX(t)

∣∣ X(s) : 0 ≤ s ≤ t
)
= (Ψ(ω,X(t)) + Φ(ω,X(t))) dt+ o(dt).

Note that from (1) and the definitions (4), (5) it follows that for π-almost all ω ∈ Ω

vk(ω) = −v−k(τkω),
∑

k∈E

vk(ω) = 0, (7)

sk(ω) = s−k(τkω),
∑

k∈E

sk(ω) =: s(ω). (8)

Equation (7) means that Vk : Zd → [−s∗, s∗] is π-almost surely a bounded and sourceless

flow on Z
d, or, equivalently, Φ : Zd → R

d is a bounded divergence-free vector field on Z
d.

On the other hand, (8) implies that

ψi(ω) = sei(ω)− sei(τ−eiω), Ψi(ω, x) = Sei(ω, x)− Sei(ω, x− ei). (9)

That is, the vector field Ψ : Zd → R
d is component-wise a directional derivative. It follows

in particular that

E (Ψ) = 0. (10)
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We assume that a similar condition holds for the drift field Φ, too:

E (Φ) =
∑

k∈E

k

∫

Ω
vk(ω) dπ(ω) = 0, (11)

which due to (7), in the nearest neighbour set-up, is obviously the same as assuming that

for k ∈ E

∫

Ω
vk(ω) dπ(ω) = 0. (12)

From (10) and (11) it follows that in the annealed mean drift of the walk is nil:

E (X(t)) =

∫

Ω
Eω (X(t)) dπ(ω) = 0.

Under these conditions the law of large numbers

lim
t→∞

t−1X(t) = 0, a.s. (13)

follows directly from the ergodic theorem.

Our next assumption is an ellipticity condition for the symmetric part of the jump rates:

there exists another constant s∗ ∈ (0, s∗] such that for π-almost all ω ∈ Ω and all k ∈ E

sk(ω) ≥ s∗, π-a.s. (14)

Note, that no ellipticity condition is imposed on the jump probabilities (pk)k∈E
: it may

happen that pk = 0 with positive π-probability. Using a time change we may assume

s∗ = 1, and we will occasionally make this assumption for simplicity.

Regarding fluctuations around the law of large numbers (13), we will soon prove that

under the ellipticity condition (14) a diffusive lower bound holds: for any fixed vector v ∈ R
d

lim
t→∞

t−1
E
(
(v ·X(t))2

)
> 0. (15)

Explicit lower bound will be provided in Proposition 1 below.

A diffusive upper bound also holds under a subtle condition on the covariances of the

drift field Φ : Zd → R
d. Denote

Cij(x) := Cov (Φi(0),Φj(x)) =

∫

Ω
ϕi(ω)ϕj(τxω)dπ(ω), x ∈ Z

d, (16)

Dij(x) := Cov (Ψi(0),Ψj(x)) =

∫

Ω
ψi(ω)ψj(τxω)dπ(ω), x ∈ Z

d,

Ĉij(p) :=
∑

x∈Zd

e
√
−1x·pCij(x), p ∈ [−π, π)d, (17)

D̂ij(p) :=
∑

x∈Zd

e
√
−1x·pDij(x), p ∈ [−π, π)d.
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The Fourier transform is meant as a distribution on [−π, π)d. More precisely, by Herglotz’s

theorem, Ĉ and D̂ are positive definite d × d matrix-valued measures on [−π, π)d. Hence

(12) is equivalent to Ĉij({0}) = 0, for all i, j = 1, . . . , d.

The fact that Ψ is a spatial derivative of an L2 function (9) implies that

∫

[−π,π)d




d∑

j=1

(1− cos pj)




−1
d∑

i=1

D̂ii(p) dp <∞. (18)

A similar infrared bound imposed on the covariances of the field x 7→ Φ(x) is the notorious

H−1-condition referred to in the title of this paper.

H−1-condition (first formulation): We assume

∫

[−π,π)d




d∑

j=1

(1− cos pj)




−1
d∑

i=1

Ĉii(p) dp <∞. (19)

For later use we define the positive definite and bounded d× d matrices

C̃ij :=

∫

[−π,π)d




d∑

j=1

(1− cos pj)




−1

Ĉij(p) dp <∞, (20)

D̃ij :=

∫

[−π,π)d




d∑

j=1

(1− cos pj)




−1

D̂ij(p) dp <∞. (21)

The probabilistic content of the infrared bounds (18) and (19) is the following. Let

t 7→ S(t) be a continuous time simple symmetric random walk on Z
d with jump rate 1,

fully independent of the random fields x 7→ (Φ(x),Ψ(x)). Then (18) and (19) are in turn

equivalent to

lim
T→∞

T−1
E

(∣∣∣∣
∫ T

0
Ψ(S(t))dt

∣∣∣∣
2
)
<∞,

and

H−1-condition (second formulation):

lim
T→∞

T−1
E

(∣∣∣∣
∫ T

0
Φ(S(t))dt

∣∣∣∣
2
)
<∞. (22)

The expectations in the last two expressions are taken over the random walk t 7→ S(t)

and the random scenery x 7→ (Φ(x),Ψ(x)). We omit the straightforward proof of these
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equivalences. Two more equivalent formulations of the H−1-condition (19)/(22) will appear

later in the paper.

The infrared bounds (18) and (19) imply a diffusive upper bound: for any fixed vector

v ∈ R
d

lim
t→∞

t−1
E
(
(v ·X(t))2

)
<∞. (23)

An explicit upper bound will be provided in Proposition 1 below.

Now, (15) and (23) jointly suggest that the central limit theorem

t−1/2X(t) ⇒ N (0, σ2) (24)

should hold with some non-degenerate d × d covariance matrix σ2. Attempts to prove the

CLT (24) under the minimal conditions of bistochasticity (1), ellipticity (14), no drift (12)

and H−1 (19) have a notorious history. In Kozlov [14] a similar CLT is announced under the

somewhat restrictive condition that the random field x 7→ P (x) in (2) be finitely dependent.

However, as pointed out in Komorowski and Olla [12] the proof in [14] is incomplete. In

the same paper [12] the CLT (24) is stated, but as pointed out in [10] this proof is yet

again defective. Finally, in [10] a complete proof is given, however, with more restrictive

conditions: instead of the H−1-condition (19) a rather stronger integrability condition on

the field x 7→ Φ(x) is assumed. See the comments in section 6. More detailed historical

comments on this story can be found in the notes after chapter 3 of [10]. Our main result

in the present paper is a complete proof of the CLT (24), under the conditions listed above.

1.2 Central limit theorem for the random walk

We define the environment process, as seen from the random walker:

η(t) := τX(t)ω

This is a pure jump process on Ω with bounded total jump rates. So, its construction does

not pose any technical difficulty. As already mentioned, it is well known (and easy to check,

see e.g. Kozlov [14]) that due to condition (1) the probability measure π is stationary and

ergodic for the Markov process t 7→ η(t). We will denote by (Ft)t≥0 the filtration generated

by this process:

Ft := σ(η(s) : 0 ≤ s ≤ t).

It is most natural to decompose X(t) as

X(t) =

{
X(t)−

∫ t

0
(ψ(η(s)) + ϕ(η(s))) ds

}
+

∫ t

0
(ψ(η(s)) + ϕ(η(s))) ds.

=:M(t) + I(t). (25)
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In this decomposition the first term is clearly a square integrable (Ft)-martingale with

stationary and ergodic increments and conditional covariances (or, quadratic variation)

E
(
dMi(t)dMj(t)

∣∣ Ft

)
= δi,j (pei(η(t)) + p−ei(η(t))) dt. (26)

Thus, due to the martingale CLT (see e.g. [7])

t−1/2M(t) ⇒ N (0, σ2M ),

where

(
σ2M
)
ij
= 2δi,j

∫

Ω
sei(ω)dπ(ω). (27)

The difficulty is caused by the compensator integral term I(t).

The following proposition quantifies assertions (15) and (23).

Proposition 1. Let t 7→ X(t) be a random walk in doubly stochastic (1) random envi-

ronment with no drift (12). Then the ellipticity (14) and H−1 (19) conditions imply the

following diffusive lower and upper bounds: For any vector v ∈ R
d

2s∗ |v|2 ≤ lim
t→∞

t−1
E
(
(v ·X(t))2

)
≤ 6s∗ |v|2 + 24

s∗

d∑

i,j=1

(
C̃ij + D̃ij

)
vivj , (28)

where C̃ij and D̃ij are the matrices defined in (20) and (21).

The proof of Proposition 1 is postponed to the next section. Note that the ellipticity

condition (14) is relevant in both (lower and upper) bounds, while the H−1-condition (19)

is relevant for the upper bound only.

Let us formally state the main result of the present paper.

Theorem 1. Let t 7→ X(t) be a nearest neighbour random walk (3) in random environment,

which is bistochastic (1), has no drift (12) and is elliptic (14). If in addition the H−1-

condition (19) holds then

(ı) The asymptotic covariance matrix

(σ2)ij := lim
t→∞

t−1
E (Xi(t)Xj(t))

exists, and it is finite and non-degenerate

2s∗I ≤ σ2 ≤ 6s∗Id + 24s−1
∗
(
C̃ + D̃

)
, (29)

where I is the d× d unit matrix and C̃, D̃ are the matrices defined in (20), (21).
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(ıı) Moreover, for any m ∈ N, t1, . . . , tm ∈ R+ and any continuous and bounded test function

F : Rmd → R

lim
T→∞

∫

Ω

∣∣∣∣Eω

(
F

(
X(T t1)√

T
, . . . ,

X(T tm)√
T

))
−E (F (W (t1), . . . ,W (tm)))

∣∣∣∣dπ(ω) = 0,

where t 7→W (t) ∈ R
d is a Brownian motion with

E (Wi(t)) = 0, E (Wi(s)Wj(t)) = min{s, t}(σ2)ij

Remark on the jump range of the walk. Throughout the paper we speak about nearest

neighbour random walk with jump range E . However, we could consider a more general

setup, with jump range U ⊂ Z
d, with the assumptions that (i) |U | < ∞; (ii) the jump

rates are bounded: pk(ω) ≤ s∗ almost surely for k ∈ U ; (iii) the ellipticity condition (14)

holds for a subset U ′ ⊂ U which generates Z
d. Under these more general assumptions

Theorem 1 remains still valid. The proof remains essentially the same apart of notational

changes.

It is worth noting here that (unlike in the self-adjoint/reversible cases) the H−1-condition

is certainly stronger than assuming just finiteness of the asymptotic variance of the walk,

(23). So H−1 seems to be a sufficient but by no means necessary condition for the CLT to

hold. The following question arises very naturally.

Question. Let X be a stationary, ergodic random walk in a bistochastic random environ-

ment, and assume E
(
|X(t)|2

)
≤ Ct. Does it follow that X satisfies a central limit theorem?

Structure of the paper. The proof of this theorem is the content of sections 2-4. Section

2 contains Hilbert space generalities and most of the notation. Section 3 describes and

slightly extends the relaxed sector condition of [8] on which we rely. Proofs of the extensions

are given in an Appendix (the proofs are similar to those of [8], but the statements are

stronger). In section 4 we check the conditions of the relaxed sector condition for the concrete

case. Remarks, comments (historical and other) and concrete examples are postponed to

sections 5-7.

Let us remark that assuming that sk is constant for all k ∈ E , in other words that the

walk is divergence-free, removes a number of technical difficulties in the proof. Readers who

prefer to see the easier version can see it in the first arxiv version of this paper [15]

2 In the Hilbert space L 2(Ω, π)

2.1 Spaces and operators

It is most natural to put ourselves into the Hilbert space over C

H :=
{
f ∈ L

2(Ω, π) :

∫

Ω
fdπ = 0

}
.
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We denote by Tx, x ∈ Z
d, the spatial shift operators

Txf(ω) := f(τxω),

and note that they are unitary:

T ∗
x = T−x = T−1

x . (30)

The L 2-gradients ∇k, k ∈ E , respectively, L 2-Laplacian ∆, are:

∇k := Tk − I, ∇∗
k = ∇−k, ‖∇k‖ ≤ 2,

∆ :=
∑

l∈E

∇l = −1

2

∑

l∈E

∇l∇−l, ∆∗ = ∆ ≤ 0, ‖∆‖ ≤ 4d. (31)

We remark that the norm inequalities above are in fact equalities in any non-degenerate

case, but we will not need this fact.

Due to ergodicity of the Z
d-action (Ω,F , π, τz : z ∈ Z

d),

Ker(∆) = {0}. (32)

Indeed, ∆f = 0 implies that 0 = 〈f,∆f〉 = −1
2

∑
k∈E

〈∇kf,∇kf〉 and since all terms are

non-negative, they must all be 0 and f must be invariant to translations. Ergodicity to Z
d

actions means that f is constant, and since our Hilbert space is that of functions averaging

to zero, f must be zero.

We define the bounded positive operator |∆|1/2 in terms of the spectral theorem (applied

to the bounded positive operator |∆| := −∆). Note that due to (32) Ran |∆| is dense in

H , and hence so is Ran |∆|1/2 which is a superset of it. Hence it follows that |∆|−1/2 :=(
|∆|1/2

)−1
is an (unbounded) positive self-adjoint operator with Dom |∆|−1/2 = Ran |∆|1/2

and Ran |∆|−1/2 = Dom |∆|1/2 = H . Note that the dense subspace Dom |∆|−1/2 =

Ran |∆|1/2 is invariant under, and the operators |∆|1/2 and |∆|−1/2 commute with the trans-

lations Tx, x ∈ Z
d.

We define the Riesz operators: for all k ∈ E

Γk : Dom |∆|−1/2 → H , Γk = |∆|−1/2∇k = ∇k|∆|−1/2, (33)

and note that for any f ∈ Dom |∆|−1/2

‖Γkf‖2 =
〈
|∆|−1/2 f,∇−k∇k |∆|−1/2 f

〉
≤
〈
|∆|−1/2 f, |∆| |∆|−1/2 f

〉
= ‖f‖2 .

Thus, the operators Γk, k ∈ E , extend as bounded operators to the whole space H . The

following properties are easy to check:

Γ∗
k = Γ−k, ‖Γk‖ ≤ 1,

1

2

∑

l∈E

ΓlΓ
∗
l = I. (34)

As before, in fact ‖Γk‖ = 1 in any non-degenerate case, but we will not need this fact.

A third equivalent formulation of the H−1-condition (19)/(22) is the following:
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H−1-condition (third formulation):

ϕi ∈ Dom |∆|−1/2 = Ran |∆|1/2 , i = 1, . . . , d. (35)

In the case of nearest neighbour walks this is further equivalent to

vk ∈ Dom |∆|−1/2 = Ran |∆|1/2 , k ∈ E . (36)

Lemma 1. (i) Conditions (35) and (22) are equivalent.

(ii) Furthermore, in the case of nearest neighbour walks conditions (35) and (36) are also

equivalent.

Proof. (i) Recall that (22) is formulated in terms of continuous time simple random walk S.

In operator theory language

Eω (Φi(S(t))) = et∆ϕi(ω). (37)

Hence

1

t
E

(∣∣∣∣
∫ t

0
Φ(S(s)) ds

∣∣∣∣
2
)

(∗)
=

d∑

i=1

∫ t

0

t− s

t
E (2Φi(0)Φi(S(s))) ds

(37)
=

d∑

i=1

2

∫ t

0

t− s

t
〈ϕi, e

s∆ϕi〉ds

where (∗) follows from space stationarity of Φ (recall that S is independent of Φ, so Φi(S) is

just some average of some fixed translations of Φi). An application of the spectral theorem

for |∆| shows that this is bounded in t if and only if all ϕi ∈ Dom|∆|−1/2, i = 1, . . . , d.

(ii) To conclude from ϕ ∈ Dom|∆|−1/2 that v ∈ Dom|∆|−1/2 we recall that ϕi = (I +

T−ei)vei = (2I + ∇−ei)vei . Since Γ−ei = |∆|−1/2∇−ei is bounded, we get that ∇−eivei ∈
Dom(|∆|−1/2). Rearranging gives

ϕi − 2vei ∈ Dom(|∆|−1/2)

which shows that ϕi ∈ Dom(|∆|−1/2) if and only if so is vei .

Remark. Note that equivalence of (35) and (36) holds only in the case of nearest neighbour

jumps. If a larger jump range U is allowed (see the remark after the formulation of Theorem

1) then (36) is stronger than (35). However, the formulation (36) will not be used in the

proof of our main result. It will have a role only in the complementary section 5, which is

not part of the proof. That part could also be reformulated in the context of finite jump

rate, relying only on (35) but as the main result does not rely on it we will not bother to do

that.
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Finally, we also define the multiplication operators Mk, Nk, k ∈ E ,

Mkf(ω) := vk(ω)f(ω), M∗
k =Mk, ‖Mk‖ ≤ s∗, (38)

Nkf(ω) := (sk(ω)− s∗)f(ω), N∗
k = Nk ≥ 0, ‖Nk‖ ≤ s∗ (39)

(recall that s∗ is the overall upper bound on p and s∗ is the lower bound on the symmetric

parts s in the ellipticity condition (14)). It is easy to check that the following commutation

relations hold due to (7) and (8)

∑

l∈E

Ml∇l = −
∑

l∈E

∇−lMl, (40)

∑

l∈E

Nl∇l =
∑

l∈E

∇−lNl = −1

2

∑

l∈E

∇−lNl∇l.

The infinitesimal generator of the stationary environment process t 7→ η(t), acting on

the Hilbert space L 2(Ω, π) is:

Lf(ω) = pk(ω)(f(τkω)− f(ω)),

which in terms of the operators introduced above is written as

L = −D − T +A, (41)

with

D := −s∗∆, (42)

T := −
∑

l∈E

Nl∇l =
1

2

∑

l∈E

∇−lNl∇l,

A :=
∑

l∈E

Ml∇l = −
∑

l∈E

∇−lMl. (43)

Note that D = D∗, T = T ∗, A = −A∗ and

0 ≤ T ≤ ds∗s−1
∗ D. (44)

The inequalities are meant in operator sense. The last one follows from

D−1/2TD−1/2 =
1

2s∗

∑

l∈E

Γ−lNlΓl,

and hence, due to (34) and (39)

∥∥∥D−1/2TD−1/2
∥∥∥ ≤ ds∗

s∗

follows, which implies the upper bound in (44).
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2.2 Proof of Proposition 1

Proof of the lower bound in (28). We decompose the displacement process t→ X(t) in such

a way that the forward-and-backward martingale part will be uncorrelated with the rest.

The variance of this forward-and-backward martingale will serve as lower bound for the

variance of the displacement. Let

uk(ω) := sgn(vk(ω))min{|vk(ω)| , s∗}, wk(ω) := sgn(vk(ω))(|vk(ω)| − s∗)+,

qk(ω) := s∗ + uk(ω), rk(ω) := (sk(ω)− s∗) + wk(ω).

Note that the skew symmetry (7) of vk(ω) is inherited by uk(ω) and wk(ω):

uk(ω) + u−k(τkω) = 0, wk(ω) + w−k(τkω) = 0. (45)

Further on,

uk(ω) + wk(ω) = vk(ω), qk(ω) + rk(ω) = pk(ω), qk(ω) ≥ 0, rk(ω) ≥ 0.

We further define

q(ω) :=
∑

l∈E

ql(ω) ≥ 0, ϕ̃(ω) :=
∑

l∈E

lql(ω) ∈ R
d,

r(ω) :=
∑

l∈E

rl(ω) ≥ 0, ψ̃(ω) :=
∑

l∈E

lrl(ω) ∈ R
d,

and note that

q(ω) + r(ω) = p(ω), ϕ̃(ω) + ψ̃(ω) = ϕ(ω) + ψ(ω).

Now let 0 = θ0 < θ1 < θ2 < . . . be the successive jump times of the environment process

t 7→ η(t) (or, what is the same, of the random walk t 7→ X(t)):

θ0 := 0, θn+1 := inf{t > θn : η(t) 6= η(θn)},

and define extra random variables αn ∈ {0, 1}, n = 0, 1, 2, . . . with the following conditional

law, given the trajectory t 7→ η(t): for N ∈ N and an ∈ {0, 1}, n = 0, 1, . . . , N ,

P
(
αn = an, n = 0, 1, . . . , N

∣∣ η(t)t≥0

)
=

N∏

n=0

(
q(η(θn))

p(η(θn))

)an (r(η(θn))
p(η(θn))

)1−an

.

In plain words, conditionally on the trajectory t 7→ η(t), the random variables αn, n =

0, 1, 2, . . . , are independent biased coin tosses, with probability of head or tail (1 or 0 re-

spectively) equal to the value of q(η(t))
p(η(t)) , respectively, r(η(t))

p(η(t)) , in the interval t ∈ [θn, θn+1).

Now, extend piecewise continuously

α(t) :=

∞∑

n=0

αn1{t∈(θn,θn+1]}.

12



Mind, that t 7→ α(t) is defined as a caglad, not a cadlag process. We decompose the

displacement t 7→ X(t) as follows:

X(t) = K(t) + L(t) + J(t),

where

K(t) :=

∫ t

0
α(s)dX(s) −

∫ t

0
ϕ̃(s)ds,

L(t) :=

∫ t

0
(1− α(s))dX(s) −

∫ t

0
ψ̃(s)ds,

J(t) :=

∫ t

0

(
ϕ̃(s) + ψ̃(s)

)
ds.

Note the following three facts.

(1) t 7→ K(t) and t 7→ L(t), being driven by conditionally independent Poisson flows, are

uncorrelated martingales, with respect to their own joint filtration.

(2) t 7→ K(t) is forward-and-backward martingale with respect to its own past, respectively,

future filtration. This is due to (45) and to the fact that the symmetric part of its jump

rates is constant, s∗. Indeed,

E
(
K(t+ dt)−K(t)

∣∣ ηt = ω
)
=
∑

l∈E

lql(ω)− ϕ̃(ω)dt =
∑

l∈E

lul(ω)− ϕ̃(ω)dt = 0dt.

E
(
K(t)−K(t− dt)

∣∣ ηt = ω
)
= −

∑

l∈E

lq−l(τlω)− ϕ̃(ω)dt = −
∑

l∈E

lu−l(τlω)− ϕ̃(ω)dt

=
∑

l∈E

lul(ω)− ϕ̃(ω)dt = 0dt,

and hence the claim.

(3) t 7→ J(t), being an integral, is forward-and-backward predictable with respect to the

same filtrations.

From these three facts it follows that the process t 7→ K(t) is uncorrelated with t 7→ L(t) +

J(t). Hence, for any vector v ∈ R

E
(
(v ·X(t))2

)
= E

(
(v ·K(t))2

)
+E

(
(v · (L(t) + J(t)))2

)
≥ E

(
(v ·K(t))2

)
= 2s∗ |v|2 .

Proof of the upper bound in (28). We provide upper bounds on the variance of the various

terms on the right hand side of the decomposition X =M + I (25).

As shown in (26)-(27) the variance of the martingale term M(t) on the right hand side

of (25) is computed explicitly: for v ∈ R
d,

1

t
E
(
(v ·M(t))2

)
=

d∑

i=1

v2i

∫

Ω
(pei(ω) + p−ei(ω))dπ(ω) ≤ 2s∗ |v|2 . (46)
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In order to bound the variance of the integral term I(t) on the right hand side of (25)

we quote Proposition 2.1.1 in Olla [20] (alternatively, Lemma 2.4 in [10] contains the same

result with a different constant).

Lemma 2. Let t 7→ η(t) be a stationary and ergodic Markov process on the probability space

(Ω, π), whose infinitesimal generator acting on L 2(Ω, π) is L. Let g ∈ L 2(Ω, π) such that∫
Ω gdπ = 0. Then

lim
t→∞

1

t
E

(
max
0≤s≤t

∣∣∣∣
∫ s

0
g(η(u))du

∣∣∣∣
2
)

≤ 16 lim
λ→0

(g, (λI − L− L∗)−1g).

(Olla denotes the right-hand side by ||g||−1 — his definition of ||g||−1, (2.1.2) ibid., is different

but it is easy to see that it is equivalent to the above, up to a factor of 2).

The decomposition (41) of the infinitesimal generator gives that −L−L∗ ≥ 2s∗|∆|, and

hence by Löwner’s theorem (see [5, Theorem 2.6] or [17]) (−L − L∗)−1 ≤ 1/(2s∗)|∆|−1. It

then follows that for any vector v ∈ R
d

lim
t→∞

t−1
E

((∫ t

0
v · ϕ(η(s))ds

)2
)

≤ 8

s∗
((v · ϕ), |∆|−1(v · ϕ)) = 8

s∗

d∑

i,j=1

viC̃ijvj , (47)

lim
t→∞

t−1
E

((∫ t

0
v · ψ(η(s))ds

)2
)

≤ 8

s∗
((v · ψ), |∆|−1(v · ψ)) = 8

s∗

d∑

i,j=1

viD̃ijvj. (48)

From (25), by applying the Cauchy-Schwarz inequality we readily obtain

E

(
(v ·X(t))2

)
≤ 3E

(
(v ·M(t))2

)
+3E

((∫ t

0
v · ϕ(η(s)ds

)2)
+3E

((∫ t

0
v · ψ(η(s)ds

)2)
.

Finally, the upper bound in (28) follows from here, due to (46), (47) and (48).

3 Relaxed sector condition

In this section we recall and slightly extend the relaxed sector condition from [8]. This is

a functional analytic condition on the operators D, T and A from (41) which ensures that

the efficient martingale approximation à la Kipnis-Varadhan of integrals of the type of I(t)

in (25) exists.

A clarification is due here. The relaxed sector condition (Theorem RSC1 below), is

essentially equivalent to the condition that the range LH−1 of the infinitesimal generator L

be dense in the H−1-topology of L 2(Ω, π). (defined by the symmetric part S := (L+L∗)/2 of

the infinitesimal generator). This latter one appears in earlier work (see e.g. Olla [20]). But,

to the best of our knowledge it has never been exploited directly, without stronger sufficient

assumptions. The strong and graded sector conditions of Varadhan [29], respectively of
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Sethuraman, Varadhan and Yau [25], are stronger sufficient conditions for this to hold, and

applicable in various circumstances. Nevertheless, the equivalent formulation in [8] proved

to be a very useful one, applicable in conditions where the graded sector condition does not

work. In particular, in the context of the present paper. Let us also stress that the graded

sector condition itself gets a very transparent and handy proof through the relaxed sector

condition. For more details see [8].

Since in the present case the infinitesimal generator L = −D − T +A and all operators

in the decomposition (41) are bounded we recall the result of [8] in a slightly restricted form:

we do not have to worry now about domains and cores of the various operators D, T or A.

This section will be fairly abstract.

3.1 Kipnis-Varadhan theory

Let (Ω,F , π) be a probability space: the state space of a stationary and ergodic pure jump

Markov process t 7→ η(t) with bounded jump rates. We put ourselves in the complex Hilbert

space L 2(Ω, π). Denote the infinitesimal generator of the semigroup of the process by L.

Since the process η(t) has bounded jump rates the infinitesimal generator L is a bounded

operator. We denote the self-adjoint and skew-self-adjoint parts of the generator L by

S := −1

2
(L+ L∗) ≥ 0 A :=

1

2
(L− L∗).

We assume that S is itself ergodic i.e.

Ker(S) = {c1 : c ∈ C},

and restrict ourselves to the subspace of codimension 1, orthogonal to the constant functions:

H := {f ∈ L
2(Ω, π) : 〈1, f〉 = 0}.

In the sequel the operators (λI + S)±1/2, λ ≥ 0, will play an important rôle. These are

defined in terms of the spectral theorem applied to the self-adjoint and positive operator S.

The unbounded operator S−1/2 is self-adjoint on its domain

Dom(S−1/2) = Ran(S1/2) = {f ∈ H :
∥∥∥S−1/2f

∥∥∥
2
:= lim

λ→0

∥∥∥(λI + S)−1/2f
∥∥∥
2
<∞}.

Let f ∈ H . We ask about CLT/invariance principle for the rescaled process

YN (t) :=
1√
N

∫ Nt

0
f(η(s))ds (49)

as N → ∞.

We denote by Rλ the resolvent of the semigroup s 7→ esL:

Rλ :=

∫ ∞

0
e−λsesLds =

(
λI − L

)−1
, λ > 0, (50)
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and given f ∈ H , we will use the notation

uλ := Rλf.

The following theorem is a direct extension to general non-reversible setup of the Kipnis-

Varadhan Theorem [9]. It yields the efficient martingale approximation of the additive

functional (49). See Tóth [27], or the surveys [20] and [10].

Theorem KV. With the notation and assumptions as before, if the following two limits

hold in (the norm topology of) H :

lim
λ→0

λ1/2uλ = 0, lim
λ→0

S1/2uλ = v ∈ H , (51)

then

σ2 := 2 lim
λ→0

〈uλ, f〉 = 2 ‖v‖2 ∈ [0,∞),

exists, and there also exists a zero mean, L 2-martingale M(t), adapted to the filtration of

the Markov process η(t), with stationary and ergodic increments and variance

E
(
M(t)2

)
= σ2t,

such that for t ∈ (0,∞)

lim
N→∞

E

(∣∣∣∣YN (t)− M(Nt)√
N

∣∣∣∣
2
)

= 0.

Corollary KV. With the same setup and notation, for any m ∈ N, t1, . . . , tm ∈ R+ and

F : Rm → R continuous and bounded

lim
N→∞

∫

Ω
|Eω (F (YN (t1), . . . , YN (tm)))−E (F (W (t1), . . . ,W (tm)))| dπ(ω) = 0,

where t 7→W (t) ∈ R is a 1-dimensional Brownian motion with variance E
(
W (t)2

)
= σ2t.

3.2 Relaxed sector condition

Let, for λ > 0,

Cλ := (λI + S)−1/2A(λI + S)−1/2. (52)

These are bounded and skew-self-adjoint.

Theorem RSC1. Assume that there exist a dense subspace C ⊆ H and an operator

C : C → H which is essentially skew-self-adjoint on the core C and such that for any

vector ψ ∈ C there exists a sequence ψλ ∈ H such that

lim
λ→0

‖ψλ − ψ‖ = 0. and lim
λ→0

‖Cλψλ − Cψ‖ = 0. (53)

Then for any f ∈ Dom(S−1/2) the limits (51) hold and thus the martingale approximation

and CLT of Theorem KV follow.
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Remarks 1. The conditions of Theorem RSC1 can be shown to be equivalent to that

the sequence of bounded skew-self-adjoint operators Cλ converges in the strong graph limit

sense to the unbounded skew-self-adjoint operator C, see Lemma 7 (ii) below. For various

notions of graph limits of operators over Hilbert or Banach spaces see chapter VIII of [24],

especially Theorem VIII.26 ibid.

2. Theorem RSC1 is a slightly stronger reformulation of Theorem 1 from [8] where the condi-

tion (53) was slightly stronger. There it was assumed that for any ϕ ∈ C , limλ→0 ‖Cλϕ− Cϕ‖ =

0. It turns out that the weaker and more natural condition (53) suffices and this has some

importance in our next extension, Theorem RSC2. For sake of completeness we give the

proof of this theorem in the Appendix.

2. The operator C is heuristically some version of S−1/2AS−1/2. However, it is not sufficient

that a naturally densely defined version of S−1/2AS−1/2 is skew-Hermitian. One must show

that its closure is actually skew-self-adjoint. The conditions of Theorem RSC1 require to be

careful with domains and with point-wise convergence as λ→ 0, as above.

RSC refers to relaxed sector condition : indeed, as shown in [8] this theorem contains the

strong sector condition of [29] and the graded sector condition of [25] as special cases. See

the comments at the beginning of Section 3 for the precise relation of RSC to other sector

conditions. For comments on history, content and variants of Theorem KV we refer the

reader to the monograph [10]. For some direct consequences of Theorem RSC1 see [8].

Now, we slightly extend the validity of Theorem RSC1. Assume that the symmetric part

of the infinitesimal generator decomposes as

S = D + T,

where D = D∗, T = T ∗ and the “diagonal” part D dominates T in the following sense: there

exists c <∞ so that

0 ≤ T ≤ cD. (54)

Further, denote

Bλ := (λI +D)−1/2A(λI +D)−1/2. (55)

The following statement is actually a straightforward consequence of Theorem RSC1.

Theorem RSC2. Assume that there exist a dense subspace B ⊆ H and an operator

B : B → H which is essentially skew-self-adjoint on the core B and such that for any

vector ϕ ∈ B there exists a sequence ϕλ ∈ H such that

lim
λ→0

‖ϕλ − ϕ‖ = 0. and lim
λ→0

‖Bλϕλ −Bϕ‖ = 0. (56)

Then for any f ∈ Dom(D−1/2) the limits (51) hold and thus the martingale approximation

and CLT of Theorem KV follow.
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The proof of Theorem RSC2 is also postponed to the Appendix.

4 The operator B = D−1/2AD−1/2 and proof of Theorem 1

We apply Theorem RSC2 to our concrete setup, with the operators D and A defined using

(42) and (43) respectively. Recall that without loss of generality we have fixed s∗ = 1 (see

the remark after the ellipticity condition (14)). Let

B := Dom |∆|−1/2 = Ran |∆|1/2 ,

and recall from (33) and (38) the definition of the operators Γl and Ml, l ∈ E . Define the

unbounded operator B : B → H

B := −
∑

l∈E

Γ−lMl |∆|−1/2 .

(The definition of B uses our assumption that s∗ = 1, otherwise with our definitions of

D and A we would have needed a factor of 1/s∗ before it). First we verify (56), i.e. that

Bλ → B pointwise on the core B, where the bounded operator Bλ is expressed by inserting

the explicit form of D and A, (42), respectively, (43), into the definition (55) of Bλ:

Bλ = −
∑

l∈E

(λI −∆)−1/2∇−lMl(λI −∆)−1/2.

From the spectral theorem for the commutative C∗-algebra generated by the shift operators

Tei , i = 1, . . . , d, (see e.g. Theorem 1.1.1 on page 2 of [1]) we obtain that ‖(λI−∆)−1/2∇l‖ ≤
1, ‖(λI −∆)−1/2 |∆|1/2 ‖ ≤ 1, and, moreover, for any ϕ ∈ H

(λI −∆)−1/2∇lϕ→ Γlϕ (λI −∆)−1/2 |∆|1/2 ϕ→ ϕ, as λց 0.

When ϕ ∈ B we get (λI −∆)−1/2ϕ→ |∆|−1/2ϕ which allows to write

Bλϕ = −
∑

l∈E d

(λI −∆)−1/2∇−lMl(λI −∆)−1/2ϕ

= −
∑

l∈E d

(λI −∆)−1/2∇−lMl|∆|−1/2ϕ+O(‖(λI −∆)−1/2ϕ− |∆|−1/2ϕ‖).

Hence (56) follows readily for any ϕ ∈ B.

With (56) established, we need to show that B is essentially skew-self-adjoint on B. We

start with a light lemma.

Lemma 3. (i) B : B → H is skew-Hermitian, i.e. 〈ϕ,Bψ〉 = −〈Bϕ,ψ〉 for all ϕ,ψ ∈ B.

(ii) The full domain of B∗ is

B
∗ = {f ∈ H :

∑

l∈E

MlΓlf ∈ B} (57)
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and B∗ acts on B∗ by

B∗ := − |∆|−1/2
∑

l∈E

MlΓl. (58)

Remark: It is of crucial importance here that B∗ in (57) is the full domain of the adjoint

operator B∗, i.e. the subspace of all f such that the linear functional g 7→ 〈f,Bg〉 is bounded

on B. It will not be enough for our purposes just to show that B∗ is some core of definition.

Proof. (i) Let f, g ∈ B. Then, due to (40)

〈f,Bg〉 = −
∑

l∈E

〈
|∆|−1/2 f,∇−lMl |∆|−1/2 g

〉

(40)
=

∑

l∈E

〈
∇−lMl |∆|−1/2 f, |∆|−1/2 g

〉
= −〈Bf, g〉 ,

(ii) Next,

Dom(B∗) =
{
f ∈ H : (∃c(f) <∞)(∀g ∈ B) :

∣∣∣
〈
f,
∑

l∈E

Γ−lMl |∆|−1/2 g
〉∣∣∣ ≤ c(f) ‖g‖

}

=
{
f ∈ H : (∃c(f) <∞)(∀g ∈ B) :

∣∣∣
〈∑

l∈E

MlΓlf, |∆|−1/2 g
〉∣∣∣ ≤ c(f) ‖g‖

}

=
{
f ∈ H :

∑

l∈E

MlΓlf ∈ B

}
,

as claimed. In the last step we used the fact that B is the full domain of the self-adjoint

operator |∆|−1/2. The action (58) of B∗ follows from straightforward manipulations.

Note that Lemma 3 in particular implies that B ⊆ B∗, that B∗ : B∗ → H is in principle

an extension of −B and hence the operator B : B → H is closable as the adjoint of any

operator is automatically closed. We actually ought to prove that

B∗ = −B.

We apply von Neumann’s criterion (see e.g. Theorem VIII.3 of Reed and Simon [24]): If for

some α > 0,

Ker(B∗ ± αI) = {0} (59)

then B∗ = −B. For reasons which will become clear very soon we will choose α = s∗.

(Actually any α ≥ s∗ would work equally well.) Thus (59) is equivalent to showing that the

equations
∑

l∈E

MlΓlµ+ s∗ |∆|1/2 µ = 0 (60)

∑

l∈E

MlΓlµ− s∗ |∆|1/2 µ = 0 (61)
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admit only the trivial solution µ = 0. We will prove this for (60). The other case is done

very similarly.

Note that assuming µ ∈ B the problem becomes fully trivial. Indeed, inserting µ =

|∆|1/2 χ in (60) and taking inner product with χ we get
∑

l∈E

〈Ml∇lχ, χ〉 − s∗〈∆χ, χ〉 = 0.

The first term is pure imaginary (40) while the second term is real (31), giving that 〈∆χ, χ〉 =
0 which, due to (32), admits only the trivial solution χ = 0. The point is that µ is not

necessarily in B so |∆|−1/2µ is not necessarily well defined as an element of H . Nevertheless,

we are able to define a scalar random field Ψ : Ω×Z
d → R of stationary increments (rather

than stationary) which can be thought of as the lifting of |∆|−1/2µ to the lattice Z
d.

Let, therefore µ be a putative solution for (60) and define, for each k ∈ E ,

uk := Γkµ. (62)

These are vector components and they also satisfy the gradient condition: ∀ k, l ∈ E

uk + Tku−k = 0, uk + Tkul = ul + Tluk. (63)

Note also that
∑

l∈E

ul = |∆|1/2 µ.

The eigenvalue equation (60) becomes
∑

l∈E

vlul + s∗
∑

l∈E

ul = 0. (64)

We lift this equation to Z
d. By defining the lattice vector fields V,U : Ω× Z

d → R
d as

Vk(ω, x) := vk(τxω), Uk(ω, x) := uk(τxω),

we obtain the following lifted version of equation (64)
∑

l∈E

Vl(ω, x)Ul(ω, x) + s∗
∑

l∈E

Ul(ω, x) = 0. (65)

Note that U is the Z
d-gradient of a scalar field Ψ : Ω× Z

d → R, determined uniquely by

Ψ(ω, 0) = 0, Ψ(ω, x+ k)−Ψ(ω, x) = Uk(ω, x). (66)

As promised, the scalar field Ψ has stationary increments (or, in the language of ergodic

theory: it is a cocycle), i.e.

Ψ(ω, y)−Ψ(ω, x) = Ψ(τxω, y − x)−Ψ(τxω, 0). (67)
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The equation (65) gets the form

s∗
∑

l∈E

(Ψ(ω, x+ l)−Ψ(ω, x)) +
∑

l∈E

Vl(ω, x)(Ψ(ω, x + l)−Ψ(ω, x)) = 0, (68)

Denote the first term by lapΨ and the second by gradΨ (these are the usual Zd Laplacian

and gradient, respectively), so the equation becomes

s∗ lapΨ + V · gradΨ = 0. (69)

We prove that equation (68)/(69) admits Ψ ≡ 0 as the only solution satisfying E (Ψ(x)) = 0

for all x ∈ Z
d. This will be done using an auxiliary random walk in random environment

which will be denoted by Y . We remark that in the specific case where X is divergence free

i.e. s ≡ 1, or in general when s is constant, we get that Y is the same as X, but in general

they differ.

We define the environment for Y on the same probability space Ω as X. The transfer

rates pYk , k ∈ E are given by

pYk (ω) = s∗ + vk(ω).

In other words, we take from X the anti-symmetric part vk = (pk − p−k)/2 but replace the

symmetric part with the constant s∗. The walk Y is also bistochastic, so all results proved

so far (in particular, stationarity and ergodicity of Y ’s environment process t 7→ ηY (t) :=

τY (t)ω, and the diffusive lower and upper bounds for t 7→ Y (t)) are in force.

Note that equation (68)/(69) means exactly that for a given ω ∈ Ω fixed (that is: in the

quenched setup) the field Ψ(ω, ·) : Zd → R is harmonic for the random walk Y (t). Thus the

process

t 7→ R(t) := Ψ(Y (t)) (70)

is a martingale (with R(0) = 0) in the quenched filtration σ (ω, Y (s)0≤s≤t)t≥0. Hence,

t 7→ R(t) is a martingale in its own filtration σ (R(s)0≤s≤t)t≥0, too. We will soon show

that E
(
R(t)2

)
< ∞. From stationarity and ergodicity of the environment process t 7→

ηYt and (67) it follows that the process t 7→ R(t) has stationary and ergodic increments

with respect to the annealed measure P (·) :=
∫
ΩPω (·) dπ(ω). Indeed, let F (R(·)) be an

arbitrary bounded and measurable functional of the process t 7→ R(t), t ≥ 0. Using (67), a

straightforward computation shows that

Eω (F (R(t0 + ·)−R(t0))) = Eω

(
Eη(t0) (F (R(·))

)
,

Hence, by stationarity and ergodicity of the environment process t 7→ η(t), the claim follows.

Thus, the process t 7→ R(t) is a martingale (with R(0) = 0) with stationary and ergodic

increments, in its own filtration σ (R(s)0≤s≤t)t≥0, with respect to the annealed measure

P (·).
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Lemma 4. Let µ be a solution of equation (60), Ψ the harmonic field constructed in (66)

and R(t) the martingale defined in (70). Then

E
(
R(t)2

)
= 2s∗ ‖µ‖2 t. (71)

Proof. Since t 7→ R(t) is a martingale with stationary increments (with respect to the

annealed measure P (·)), we automatically have E
(
R(t)2

)
= ̺2t with some ̺ ≥ 0. We now

compute ̺.

̺2 := lim
t→0

E
(
R(t)2

)

t

1
= lim

t→0

∫

Ω

Eω

(
Ψ(ω, Y (t))2

)

t
dπ(ω)

2
=

∫

Ω
lim
t→0

Eω

(
Ψ(ω, Y (t))2

)

t
dπ(ω)

3
=
∑

l∈E

∫

Ω
(s∗ + vl(ω)) |ul(ω)|2 dπ(ω)

4
= s∗

∑

l∈E

∫

Ω
|ul(ω)|2 dπ(ω) 5

= s∗
∑

l∈E

‖Γlµ‖2 6
= 2s∗ ‖µ‖2 .

Step 1 is annealed averaging. Step 2 is easily justified by dominated convergence. Step

3 drops out from explicit computation of the conditional variance of one jump. In step 4

we used that due to (7) and (63) v−l(ω) |u−l(ω)|2 = −vl(τ−lω) |ul(τ−lω)|2 and translation

invariance of the measure π on Ω. In step 5 we use the definition (62) of ul. Finally, in the

last step 6 we used the third identity of (34).

Proposition 2. The unique solution of (60)/ (61) is µ = 0, and consequently the operator

B is essentially skew-self-adjoint on the core B.

Proof. Let µ be a solution of the equation (60), Ψ the harmonic field constructed in (66)

and R(t) the martingale defined in (70). From the martingale central limit theorem (see e.g.

[7]) and (71) it follows that

R(t)√
t

⇒ N (0, 2s∗ ‖µ‖2), as t → ∞. (72)

On the other hand we are going to prove that

R(t)√
t

P−→ 0, as t→ ∞. (73)

Jointly, (72) and (73) clearly imply µ = 0, as claimed in the proposition.

The proof of (73) will combine

(A) the (sub)diffusive behaviour of the displacement

lim
T→∞

T−1
E
(
Y (T )2

)
<∞,

which follows from the H−1-condition, see (28); and

(B) the fact that the scalar field x 7→ Ψ(x) having zero mean and stationary increments, cf.
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(67), increases sublinearly with |x|. The sublinearity is the issue here. Since Ψ has stationary,

mean zero increments, due to the individual (pointwise) ergodic theorem, it follows that in

any fixed direction Ψ increases sublinearly almost surely. However, this does not warrant

that Ψ increases sublinearly uniformly in Z
d, d ≥ 2, which is the difficulty we will now

tackle.

Let δ > 0 and K <∞. Then

P

(
|R(t)| > δ

√
t
)
≤ P

(
{|R(t)| > δ

√
t} ∩ {|Y (t)| ≤ K

√
t}
)
+P

(
|Y (t)| > K

√
t
)
. (74)

From (sub)diffusivity (28) and Chebyshev’s inequality it follows directly that

lim
K→∞

lim
t→∞

P

(
|Y (t)| > K

√
t
)
= 0. (75)

We present two proofs of

lim
t→∞

P

(
{|R(t)| > δ

√
t} ∩ {|Y (t)| ≤ K

√
t}
)
= 0, (76)

with δ > 0 and K < ∞ fixed. One with bare hands, valid in d = 2 only, and another one

valid in any dimension which relies on a heat kernel (upper) bound from Morris and Peres

[18].

Proof of (76) in d = 2, with bare hands. We follow here the approach of [3] where the argu-

ment was applied in a different context. In order to keep it short (as another full proof valid

in all dimensions follows) we assume separate ergodicity i.e. that (Ω,F , π, τei) is ergodic for

both i = 1, 2.

First note that

P

(
{|R(t)| > δ

√
t} ∩ {|Y (t)| ≤ K

√
t}
)
≤ P

(
max

|x|<K
√
t
|Ψ(x)| > δ

√
t

)
. (77)

Next, since Ψ is harmonic with respect to the random walk Y (t), it obeys the maximum

principle (this is true for any random walk, no special property of Y is used here). Thus

max
|x|

∞
≤L

|Ψ(x)| = max
|x|

∞
=L

|Ψ(x)| , (78)

where |x|∞ := max{|x1| , |x2|}. By spatial stationarity

max
|x1|≤L

|Ψ(x1,−L)−Ψ(0,−L)| ∼ max
|x1|≤L

|Ψ(x1, 0)| ∼ max
|x1|≤L

|Ψ(x1,+L)−Ψ(0,+L)| ,

max
|x2|≤L

|Ψ(−L, x2)−Ψ(−L, 0)| ∼ max
|x2|≤L

|Ψ(0, x2)| ∼ max
|x2|≤L

|Ψ(+L, x2)−Ψ(+L, 0)| ,
(79)

where ∼ stands for equality in distribution. Now, note that Ψ(x1, 0) and Ψ(0, x2) are

Birkhoff sums:

Ψ(x1, 0) =

x1−1∑

j=0

ue1(τje1ω), Ψ(0, x2) =

x2−1∑

j=0

ue2(τje2ω),
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where ue1(ω) and ue2(ω) are zero mean and square integrable (recall the definition of u,

(62)). Hence, by the ergodic theorem

L−1max
{

max
|x1|≤L

|Ψ(x1, 0)| , max
|x2|≤L

|Ψ(0, x2)|
}
→ 0, a.s., as L→ ∞. (80)

Putting together (78), (79) and (80) we readily obtain, for any ε > 0,

lim
L→∞

P

(
max

|x|
∞
≤L

|Ψ(x)| ≥ εL

)
= 0. (81)

Finally, (76) follows by applying (81) to the right hand side of (77).

Proof of (76) in all d ≥ 2. We start with the following uniform upper bound on the (quen-

ched) heat kernel of the walk Y (t).

Proposition 3. There exists a constant C = C(d, s∗) (depending only on the dimension d

and the upper bound s∗ on the jump rates) such that for π-almost all ω ∈ Ω and all t > 0

sup
x∈Zd

Pω (Y (t) = x) ≤ Ct−d/2, π-a.s. (82)

Proof. This bound (82) follows from Theorem 2 of Morris and Peres [18] through Lemma 5,

below, which states essentially the same bound for discrete-time lazy random walks on Z
d

(recall that a random walk is called lazy if there is a lower bound on the probability of the

walker staying put at any given point).

Lemma 5. Let V : Zd → [−1, 1]E be a (deterministically given) field such that for all k ∈ E

and x ∈ Z
d

Vk(x) + V−k(x+ k) = 0,
∑

l∈E

Vl(x) = 0. (83)

Define the discrete-time nearest-neighbour, lazy random walk n 7→ Yn on Z
d with transition

probabilities

P
(
Yn+1 = y

∣∣ Yn = x
)
= px,y :=





1
2 if y = x,
1
4d (1 + Vk(x)) if y = x+ k, k ∈ E ,

0 if |y − x| > 1.

(84)

Then there exists a constant C = C(d) depending only on dimension such that for any

x, y ∈ Z
d

P
(
Yn = y

∣∣ Y0 = x
)
≤ Cn−d/2. (85)
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Proof. For A,B ⊂ Z
d, such that A ∩B = ∅ let

Q(A,B) :=
∑

x∈A,y∈B
px,y.

For notational reasons we extend the definition of Vk(x), k ∈ E , x ∈ Z
d, as follows

Vz(x) :=

{
Vk(x) if z = k ∈ E ,

0 if z 6∈ E .

For S ⊂ Z
d, |S| < ∞ let ∂S := {(x, y) : x ∈ S, y ∈ Z

d \ S, ‖x − y‖ = 1} and note that by

the isoperimetric inequality for Z
d

|∂S| ≥ C |S|(d−1)/d , (86)

with some dimension-dependent constant C. (This discrete isoperimteric inequality is a

simple corollary of the classic isoperimetric inequality in R
d. See also Theorem V3.1 in [6]

for a general discretisation result for isoperimteric inequalities.)

We have

Q(S, Sc) =
∑

x∈S,y∈Sc

1

4d
(1 + Vy−x(x))

=
1

4d
|∂S|+ 1

4d


 ∑

x∈S,y∈Zd

Vy−x(x)−
∑

x∈S,y∈S
Vy−x(x)




=
1

4d
|∂S| , (87)

where the last equality follows from

∑

x∈S,y∈Zd

Vy−x(x) =
∑

x∈S

∑

l∈E

Vl(x) = 0,

∑

x∈S,y∈S
Vy−x(x) =

1

2

∑

x∈S,y∈S
(Vy−x(x) + Vx−y(y)) = 0,

both of which are consequences of (83). Yet another consequence of (83) is that the uniform

counting measure on Z
d is stationary to our walk. Hence the isoperimetric profile Φ(r) (in

the sense of Morris and Peres [18]) is given by

Φ(r) := inf
0<|S|≤r

Q(S, Sc)

|S| .

Theorem 2 of [18] (specified to our setup) states that for any 0 < ε ≤ 1, if

n > 1 + 4

∫ 4/ε

4

du

uΦ2(u)
(88)
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then, for any x, y ∈ Zd

P
(
Xn = y

∣∣ X0 = x
)
≤ ε.

From (87) and the isoperimetric inequality (86) we have

C1r
−1/d ≤ Φ(r) ≤ C2r

−1/d, (89)

with the constants 0 < C1 < C2 < ∞ depending only on the dimension. Finally, from (88)

and (89) we readily get (85).

In order to obtain (82) from (85), note that Y (t) = Yν(t) where Yn is a discrete time lazy

random walk defined in (83) and (84), with Vk(x) = vk(τxω)/s
∗ and t 7→ ν(t) is a Poisson

birth process with intensity s∗t independent of the discrete time walk Yn. Thus

Pω (Y (t) = x) = e−s∗t/2
∞∑

n=0

(s∗t/2)n

n!
Pω (Yn = x)

≤ e−s∗t/2

(
1 +

∞∑

n=1

(s∗t/2)n

n!
Cn−d/2

)

≤ C(d, s∗)t−d/2

This completes the proof of Proposition 3.

Remarks.

(1) The point in Proposition 3 is that it provides uniform upper bound in any (deterministic)

environment which satisfies conditions (83), and thus allows decoupling of the expectation

with respect to the walk and with respect to the environment.

(2) In Lemma 5 the “amount of laziness” could be any δ ∈ (0, 1), with appropriate minor

changes in the formulation and proof.

(3) Alternative proofs of Proposition 3 are also valid, using either Nash-Sobolev or Faber-

Krahn inequalities, see e.g. Kumagai [16]. These alternative proofs – which we do not

present here – are more analytic in flavour. Their advantage is robustness: these proofs are

also valid in continuous-space setting (see section 6 below).

We now return to the proof of (76). By Chebyshev’s inequality

P

(
{|R(t)| > δ

√
t} ∩ {|Y (t)| ≤ K

√
t}
)
≤ δ−2t−1

E

(
|R(t)|2 1{|Y (t)|≤K

√
t}

)
(90)

Since the scalar field Ψ has stationary increments, cf. (67), and zero mean, we get from the

L 2 ergodic theorem that for k ∈ E

lim
n→∞

n−2
E

(
|Ψ(nk)|2

)
= 0,
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and, consequently,

lim
|x|→∞

|x|−2
E

(
|Ψ(x)|2

)
= 0. (91)

Applying in turn the heat kernel bound (82) of Proposition 3 and the limit (91) on the right

hand side of (90) we obtain

t−1
E

(
|R(t)|2 1{|Y (t)|≤K

√
t}

)
≤ Ct−d/2−1

∑

|x|≤K
√
t

E
(
|Ψ(x)|2

)
→ 0, as t→ ∞.

Here the first expectation is both on the random walk Y (t) and on the field ω, while the

second is just on the field ω. The point is that with the help of the uniform heat kernel

bound of Proposition 3 we can decouple the two expectations.

This concludes the proof of (76) in arbitrary dimension.

We conclude the proof of the Proposition 2 by noting that from (74), (75) and (76) we

readily get (73) which, together with (72) implies indeed that µ = 0. So (59) holds with

α = s∗. We showed that Ker(B∗ + s∗I) = {0}, the proof that Ker(B∗ − s∗I) = {0} is done

in the same way with Y defined using −V instead of V . Thus the operator B : B → H is

indeed essentially skew-self-adjoint.

Proof of Theorem 1. Proposition 2 verifies that the operator B is essentially skew-self-ad-

joint. The other conditions of Theorem RSC2 are verified on pages 18–19. Thus Theorem

RSC2 may be applied and we get that for any f ∈ Dom(|∆|−1/2), the time average
∫ N
0 f(η(t))

may be approximated by a Kipnis-Varadhan martingale. The third formulation of the H−1

condition (35) gives that vk ∈ Dom(|∆|−1/2) while it is always true that sk ∈ Dom(|∆|−1/2),

(18). Applying Theorem RSC2 with f = vk + sk for each k ∈ {1, . . . , d} gives that the

compensator I from the decomposition X =M+I (25) can be approximated with a Kipnis-

Varadhan martingale which, we recall, is a stationary martingale M ′ which is adapted to

the filtration of the environment process η. Hence M +M ′ is also a stationary martingale

and has a CLT. Proposition 1 gives the bounds (29).

5 The stream tensor field

The content of this section is not a part of the proof of our main result, but it is an important

part of the story and sheds light on the role and limitations of the H−1-condition in this

context. We formulate this section in the context of nearest neighbour jumps and part (ii)

of Proposition 4 (below) as presented here relies on the equivalence of (35) and (36) which is

valid only in the nearest neighbour case. However, we remark that this statement, too, can

be easily reformulated for general finite jump rates, but in this case some modifications in the

definition of the lattice stream tensor are due and the formulation becomes less transparent.
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We omit these not particularly instructive details, noting that it is doable with minimum

effort.

The following proposition establishes the existence of the stream tensor field and is

essentially Helmholtz’s theorem. It is the Z
d lattice counterpart of Proposition 11.1 from

[10]. Recall the definition of the field V : Ω× Z
d → [−s∗, s∗]E from (6).

Proposition 4. (i) There exists an antisymmetric tensor field H : Ω × Z
d → R

E×E such

that for all x ∈ Z
d we have Hk,l(·, x) ∈ H and

Hl,k(ω, x) = H−k,l(ω, x+ k) = Hk,−l(ω, x+ l) = −Hk,l(ω, x), (92)

with stationary increments

H(ω, y)−H(ω, x) = H(τxω, y − x)−H(τxω, 0),

such that

Vk(ω, x) =
∑

l∈E

Hk,l(ω, x). (93)

The realization of the tensor field H is uniquely determined by the “pinning down” condition

(101) below.

(ii) The H−1-condition (19) holds if and only if there exist hk,l ∈ H , k, l ∈ E , such that

hl,k = Tkh−k,l = Tlhk,−l = −hk,l (94)

and

vk(ω) =
∑

l∈E

hk,l(ω). (95)

In this case the tensor field H can be realized as the stationary lifting of h:

Hk,l(ω, x) = hk,l(τxω). (96)

Proof. (i) For k, l,m ∈ E define

gm;k,l := Γm

(
Γlvk − Γkvl

)
,

where Γl = |∆|−1/2∇l are the Riesz operators defined in (33), and note that for all k, l,m, n ∈
E

gm;l,k = Tkgm;−k,l = Tlgm;k,−l = −gm;k,l, (97)

gm;l,k + Tmgn;l,k = gn;l,k + Tngm;l,k, (98)

∑

l∈E

gm;k,l = ∇mvk. (99)
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(97) means that that keeping the subscript m ∈ E fixed, gm;k,l has exactly the symmetries

of a L 2-tensor variable indexed by k, l ∈ E . (98) means that, on the other hand, keeping

k, l ∈ E fixed, gm;k,l is a L 2-gradient in the subscript m ∈ E . Finally, (99) means that the

L 2-divergence of tensor gm;·,· is actually the L 2-gradient of the vector v·.

Let Gm;k,l : Ω × Z
d → R be the lifting Gm;k,l(ω, x) := gm;k,l(τxω). By (98), for any

k, l ∈ E fixed (Gm;k,l(ω, x)))m∈E is a lattice gradient. The increments of Hk,l are defined by

Hk,l(ω, x+m)−Hk,l(ω, x) = Gm;k,l(ω, x), m ∈ E . (100)

This is consistent, due to (98).

Next, in order to uniquely determine the tensor field H, we “pin down” its values at

x = 0. For ei, ej ∈ E+ choose

Hei,ej (ω, 0) = 0, H−ei,ej(ω, 0) = −g−ei;ei,ej(ω),

Hei,−ej(ω, 0) = g−ej ;ei,ej(ω), H−ei,−ej(ω, 0) = −g−ei;ei,ej(ω) + g−ej ;ei,ej(τ−eiω).

(101)

The tensor field H is fully determined by (100) and (101). Due to (97) and (99), (92),

respectively, (93) will hold, indeed.

(ii) We show equivalence with vk ∈ Dom(|∆|−1/2) (35). First we prove the only if part.

Assume (35) and let

hk,l = Γl |∆|−1/2 vk − Γk |∆|−1/2 vl = |∆|−1/2 (Γlvk − Γkvl
)
.

Hence (94) and (95) are readily obtained. Next we prove the if part. Assume that there

exist hk,l ∈ H with the symmetries (94) and vk is realized as in (95). Then we have

vk =
∑

l∈E

hk,l =
1

2

∑

l∈E

(hk,l + hk,−l) = −1

2

∑

l∈E

∇lhk,−l = −1

2
|∆|1/2

∑

l∈E

Γlhk,−l,

which shows indeed (35).

H−1-condition (fourth formulation): The drift vector field V is realized as the curl of a

stationary and square integrable, zero mean tensor field H, as shown in (93).

Remark. If the H−1-condition (19) does not hold it may still be possible that there exists

a non-square integrable tensor variable h : Ω → R
E×E which has the symmetries (94) and

with v : Ω → R
E realized as in (95). Then let H : Ω× Z

d → R
E×E be the stationary lifting

(96) and we still get (93) with a stationary but not square integrable tensor field. Note that

this is not decidable in terms of the covariance matrix (16) or its Fourier transform (17).

The question of diffusive (or super-diffusive) asymptotic behaviour of the walk t 7→ X(t) in

these cases is fully open.

In the next proposition – which essentially follows an argument from Kozlov [14] – we

give a sufficient condition for the H−1-condition (19) to hold.

29



Proposition 5. If p 7→ Ĉ(p) is twice continuously differentiable function in a neighbourhood

of p = 0 then the H−1-condition (19) holds.

Proof. For the duration of this proof we introduce the notation

Bk,l(x) := E (Vk(0)Vl(x)) , B̂k,l(p) :=
∑

x∈Zd

e
√
−1x·pBk,l(x),

with k, l ∈ E , x ∈ Z
d, p ∈ [−π, π]d. Hence for i, j ∈ {1, . . . , d}

Ĉij(p) = B̂ei,ej(p)− B̂−ei,ej(p)− B̂ei,−ej(p) + B̂−ei,−ej(p).

(The identity is meant in the sense of distributions.)

Note that due to the first clause in (83)

B̂k,l(p) = −e
√
−1p·kB̂−k,l(p) = −e−

√
−1p·lB̂k,−l(p) = e

√
−1p·(k−l)B̂−k,−l(p). (102)

Using (102) in the above expression of C(p) in terms of B(p), direct computations yield

Ĉij =
(
1 + e−

√
−1p·ei

)(
1 + e

√
−1p·ej

)
B̂ei,ej(p).

Thus, the regularity condition imposed on p 7→ C(p) is equivalent to assuming the same

regularity about p 7→ B̂(p).

Next, due to the second clause of (83)

∑

k∈E

B̂k,l(p) =
∑

l∈E

B̂k,l(p) = 0, (103)

and, from (102) and (103) again by direct computations we obtain

∑

k,l∈E

(1− e−
√
−1p·k)(1− e

√
−1p·l)B̂k,l(p) ≡ 0. (104)

At p = 0 we apply ∂2/∂pi∂pj to (104) and get

Ĉij(0) =
∑

k,l∈E

kiljB̂k,l(0) = 0, i, j = 1, . . . , d. (105)

Since Ĉj,i(p) = Ĉij(−p) = Ĉij(p) and p 7→ Ĉ(p) is assumed to be twice continuously

differentiable at p = 0, from (105) it follows that

Ĉ(p) = O(|p|2), as |p| → 0,

which implies (19).

In particular it follows that sufficiently fast decay of correlations of the divergence-free drift

field V (x) implies the H−1-condition (19). Note that the divergence-free condition (7) is

crucial in this argument.
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6 Historical remarks

There exist a fair number of important earlier results to which we should compare Theorem

1.

(1) In Kozlov [14], Theorem II.3.3 claims the same result under the supplementary re-

strictive condition that the random field of jump probabilities x 7→ P (x) in (2) be finitely

dependent. However, as pointed out by Komorowski and Olla [11], the proof is incomplete

there. Also, the condition of finite dependence of the field of jump probabilities is a very

serious restriction.

(2) In Komorowski and Olla [12], Theorem 2.2, essentially the same result is announced as

above. However, as noted in section 3.6 of [10] this proof is yet again incomplete.

(3) To our knowledge the best fully proved result is Theorem 3.6 of [10] where the same

result is proved under the condition that the stream tensor field x 7→ H(x) of Proposition

4 be stationary and in L max{2+δ,d}, δ > 0, rather than L 2. Note that the conditions of

our theorem only request that the tensor field x 7→ H be square integrable. The proof of

Theorem 3.6 in [10] is very technical, see sections 3.4 and 3.5 of the monograph.

(4) The special case when the tensor field H is actually in L ∞ is fundamentally simpler.

In this case the so-called strong sector condition of Varadhan [29] applies directly. This was

noticed in [12]. See also section 3.3 of [10] and section 7 below.

(5) Examine the following diffusion problem is as follows. Let t 7→ X(t) ∈ R
d be the strong

solution of the SDE

dX(t) = dB(t) + Φ(X(t))dt, (106)

where B(t) is standard d-dimensional Brownian motion and Φ : Rd → R
d is a stationary

and ergodic (under space-shifts) vector field on R
d which has zero mean

E (Φ(x)) = 0,

and is almost surely divergence-free:

div Φ ≡ 0, a.s. (107)

It is analogous to the discrete-space problem studied in this paper in the case that sk is

constant for all k ∈ E . In this case the H−1-condition is

d∑

i=1

∫

Rd

|p|−2 Ĉii(p)dp <∞, (108)
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where

Ĉij(p) :=

∫

Rd

E (Φi(0)Φj(x)) e
√
−1p·xdx, p ∈ R

d.

It is a fact that, similarly to the Z
d lattice case, under minimally restrictive regularity

conditions, a stationary and square integrable divergence-free drift field x 7→ Φ(x) on R
d

can be written as the curl of an antisymmetric stream tensor field with stationary increments

H : Rd → R
d×d:

Φi(x) =
d∑

j=1

∂Hji

∂xj
(x).

This is essentially Helmholtz’s theorem. See Proposition 11.1 of [10], which is the continuous-

space analogue of Proposition 4 of section 5 above. As shown in [10], the H−1-condition

(108) is equivalent with the fact that the stream tensor H is stationary (not just of sta-

tionary increments) and square integrable. The case of bounded H was first considered in

Papanicolaou and Varadhan [22]. This paper is historically the first instant where the prob-

lem of diffusion in stationary divergence-free drift field was considered with mathematical

rigour. Homogenization and central limit theorem for the diffusion (106), (107) in bounded

stream field, H ∈ L ∞, was first proven in Osada [21]. Today the strongest result in the

continuous space-time setup is due to Oelschläger [19] where homogenization and CLT for

the displacement is proved for square-integrable stationary stream tensor field, H ∈ L 2.

Oelschläger’s proof consists in truncating the stream tensor and bounding the error. If the

stream tensor field is stationary Gaussian then – as noted by Komorowski and Olla [13] –

the graded sector condition of [25] can be applied. See also chapters 10 and 11 of [10] for all

existing results on the diffusion model (106), (107).

(6) Attempts to apply Oelschläger’s method in the discrete (Zd rather than R
d) setting run

into enormous technical difficulties, see chapter 3 of [10] and seemingly this approach can’t be

fully accomplished beyond the overly restrictive condition H ∈ L max{2+δ,d}. The main result

of this paper, Theorem 1 fills this gap between the restrictive condition H ∈ L max{2+δ,d} of

Theorem 3.6 in [10] and the minimal restriction H ∈ L 2. The content of our Theorem 1 is

the discrete Z
d-counterpart of Theorem 1 in Oelschläger [19]. We also stress that our proof

is conceptually and technically much simpler that of Theorem 3.6 in [10] or Theorem 1 in

[19]. The continuous space-time diffusion model — under the same regularity conditions as

those of Oelschläger [19] can be treated in a very similar way reproducing this way Theorem

1 of [19] in a conceptually and technically simpler way. In order to keep this paper relatively

short and transparent, those details will be presented elsewhere.

(7) There exist results on super-diffusive behaviour of the random walk in doubly stochastic

random environment (3), (1) or diffusion in divergence-free random drift field (106), (107),
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when the H−1-condition (19) fails to hold. In Komorowski and Olla [11] and Tóth and Valkó

[28] the diffusion model (106), (107) is considered when the drift field Φ is Gaussian and the

stream tensor field H is genuinely delocalized: of stationary increment but not stationary.

Super-diffusive bounds are proved.

7 Examples

Before formulating concrete examples let us spend a few words about the physical motiva-

tion and phenomenology of the problem considered. The continuous case discussed in the

previous section, diffusion in divergence-free drift field, cf. (106)-(107) may model the drift-

ing of a suspended particle in stationary turbulent incompressible flow. Very similarly, the

lattice counterpart (3) with jump rates satisfying (1) describe a random walk whose local

drift is driven by a stationary source- and sink-free flow. The interest in the asymptotic

description of this kind of displacement dates back to the discovery of turbulence. How-

ever, divergence-free environments appear in many other natural contexts, too. See e.g. [10,

chapter 11] or a surprising recent application to group theory by Bartholdi and Erschler [2].

A phenomenological picture of these walks can be formulated in terms of randomly

oriented cycles. Imagine that a translation invariant random “soup of cycles” — that is,

a Poisson point process of oriented cycles — is placed on the lattice, and the walker is

drifted along by these whirls. Now, local small cycles contribute to the diffusive behaviour.

But occasionally very large cycles may cause on the long time scale faster-than-diffusive

transport. Actually, this happens: in Komorowski and Olla [11] and Tóth and Valkó [28]

anomalous superdiffusive behaviour is proved in particular cases when the H−1-bound (108)

doesn’t hold. Our result establishes that on the other hand, the H−1-bound (19) ensures

not only boundedness of the diffusivity but also normal behaviour under diffusive scaling.

And now, to some examples:

(1) Stationary and bounded stream field: When there exists a bounded tensor valued variable

h : Ω → R
E×E with the symmetries (94) and such that (95) holds we define the multiplication

operators Mk,l, k, l ∈ E , acting on f ∈ H :

Mk,lf(ω) := hk,l(ω)f(ω). (109)

These are bounded selfadjoint operators and they inherit the symmetries of h (recall the

shift operators Tk, k ∈ E from (30)):

Ml,k = TkM−k,lT−k = TlMk,−lT−l = −Mk,l,

∑

l∈E

Mk,l =Mk.
(110)
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As an alternative to (43), using (110), the skew-self-adjoint part of the infinitesimal generator

is expressed as

A =
∑

k,l∈E

∇−kMk,l∇l. (111)

In [12] and [10] this form of the operator A is used. The operators Mk,l are bounded and so

is the operator

B := |∆|−1/2A |∆|−1/2 =
∑

k,l∈E

Γ−kMk,lΓl (112)

which plays a key rôle in our proof. Due to boundedness of B the strong sector condition is

valid in these cases and the central limit theorem for the displacement readily follows. See

[12] and section 3.3 of [10].

Finitely dependent constructions of this type appear in Kozlov [14]. The so-called cyclic

walks analysed in [12] and in section 3.3 of [10] are also of this nature.

When the tensor variables h : Ω → R
E×E in (94) are in L 2 \ L ∞, the multiplication

operators Mk,l defined in (109) are unbounded, the representation (111) of the skew-self-

adjoint part of the infinitesimal generator and the operator B defined in (112) become just

formal. Nevertheless, Theorem 1 in Oelschläger [19] and theorem 3.6 in [10] are proved by

controlling approximations of hk,l and the unbounded operators Mk,l by truncations at high

levels.

(2) Stationary, square integrable but unbounded stream field: We let, in arbitrary dimension

d, Ψ : Zd+(1/2, . . . , 1/2) → Z be a stationary, scalar, Lipschitz field with Lipschitz constant

1. As shown in Peled [23], such fields exist in sufficiently high dimension. Define H : Zd →
R

E2×E2 by

Hei,ej(x) :=
1

d
Ψ(x+ (ei + ej)/2), x ∈ Z

d, 1 ≤ i < j ≤ d,

and extend to (Hk,l(x))k,l∈E
by the symmetries (92). The tensor field H : Zd → R

E2×E2

defined this way will be stationary and L 2, but not necessary in L ∞ — the uniform graph

homomorphism of Peled [23], for example, is not bounded. Nevertheless, V is bounded by

1, as it should, since |Hk,l(x) +H−k,l(x)| = |Hk,l(x)−Hk,l(x− k)| ≤ 1
d and V is a sum of d

such terms.

(3) Randomly oriented Manhattan lattice: Let ui : Z
d−1 → {−1,+1}, i = 1, . . . , d, be

translation invariant and ergodic, zero mean random fields, which are independent between

them. Denote their covariances

ci(y) := E (ui(0), ui(y)) , y ∈ Z
d−1,

ĉi(p) :=
∑

y∈Zd−1

e
√
−1p·yci(y), p ∈ [−π, π)d−1.
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Define now the lattice vector field

V±ei(x) := ±ui(x1, . . . , xi−1,✚✚xi, xi+1, . . . , xd).

Then the random vector field V will satisfy all conditions in (83) and t 7→ X(t) will actually

be a random walk on the lattice Z
d whose line-paths parallel to the coordinate axes are

randomly oriented in a shift-invariant and ergodic way. This oriented graph is called the

randomly oriented Manhattan lattice. The covariances C and Ĉ defined in (16), respectively,

(17) will be

Cij(x) = δi,jci(x1, . . . , xi−1,✚✚xi, xi+1, . . . , xd),

Ĉij(p) = δi,jδ(pi)ĉi(p1, . . . , pi−1,✚✚pi, pi+1, . . . , pd).

The H−1-condition (19) is in this case

d∑

i=1

∫

[−π,π]d−1

D̂(q)−1ĉi(q)dq <∞. (113)

In the particular case when the random variables ui(y), i ∈ {1, . . . , d}, y ∈ Z
d−1, are

independent fair coin-tosses, ĉi(q) ≡ 1. In this case, for d = 2, 3 the H−1-condition (113)

fails to hold, the tensor field H is genuinely of stationary increments. In these cases super-

diffusivity of the walk t 7→ X(t) can be proved with the method of Tarrès, Tóth and Valkó

[26] (in the 2d case), respectively, of Tóth and Valkó [28] (in the 3d case). In dimensions

d ≥ 4 the H−1-condition (113) (and thus (19)) holds and the central limit theorem for the

displacement follows from our Theorem 1.

8 Appendix: Proof of Theorem RSC1 and Theorem RSC2

Proof of Theorem RSC1. Since the operators Cλ, λ > 0, defined in (52) are a priori and

the operator C is by assumption skew-self-adjoint, we can define the following bounded

operators (actually contractions):

Kλ := (I − Cλ)
−1, ‖Kλ‖ ≤ 1, λ > 0, (114)

K := (I −C)−1, ‖K‖ ≤ 1.

Hence, we can write the resolvent Rλ = (λI − L)−1 (50) as

Rλ = (λ+ S)−1/2Kλ(λ+ S)−1/2. (115)

Lemma 6. Assume that the sequence of bounded operators Kλ converges to K in the strong

operator topology:

Kλ
st.op.top.−→ K, as λ→ 0. (116)

Then for any f ∈ Dom(S−1/2) = Ran(S1/2), the limits in (51) hold.
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Proof of Lemma 6. From the spectral theorem applied to the positive operator S, it is ob-

vious that, as λ→ 0+,
∥∥∥λ1/2(λ+ S)−1/2

∥∥∥ ≤ 1, λ1/2(λ+ S)−1/2 st.op.top.−→ 0,

∥∥∥S1/2(λ+ S)−1/2
∥∥∥ ≤ 1, S1/2(λ+ S)−1/2 st.op.top.−→ I. (117)

We can write f = S1/2g with g ∈ H . Now, using (115), we get

λ1/2uλ = λ1/2(λ+ S)−1/2Kλ(λ+ S)−1/2S1/2g,

S1/2uλ = S1/2(λ+ S)−1/2Kλ(λ+ S)−1/2S1/2g.

We get

S1/2uλ = S1/2(λ+ S)1/2Kλ(λ+ S)−1/2S1/2g
(117)
= S1/2(λ+ S)−1/2Kλ(g + o(1))

By (116,114) = S1/2(λ+ S)−1/2(Kg + o(1))
(117)
= Kg + o(1)

where the notation o(1) is for convergence in norm as λ→ 0. Verifying the other condition

of (51) is similar.

In the next lemma, we formulate a sufficient condition for (116) to hold.

Lemma 7. Let Cn, n ∈ N, and C = C∞ be densely defined closed (possibly unbounded)

operators over the Hilbert space H . Let also Cn and C be a cores of definition of the

operators Cn and C, respectively. Assume that some (fixed) µ ∈ C is in the intersection of

the resolvent set of all operators Cn, n ≤ ∞, and

sup
1≤n≤∞

∥∥(µI −Cn)
−1
∥∥ <∞, (118)

and for any h ∈ C there exists a sequence hn ∈ Cn such that the following limits hold

lim
n→∞

‖hn − h‖ = 0. and lim
n→∞

‖Cnhn − Ch‖ = 0. (119)

Then (i) and (ii) below hold.

(i)

(µI −Cn)
−1 st.op.top.−→ (µI −C)−1. (120)

(ii) The sequence of operators Cn converges in the strong graph limit sense to C.

Proof of Lemma 7. (i) Since C is a core for the densely defined closed operator C and µ is

in the resolvent set of C, the subspace Ĉ := {ĥ = (µI − C)h : h ∈ C } is dense in H . For
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ĥ ∈ Ĉ let h := (µI − C)−1ĥ ∈ C and choose a sequence hn ∈ Cn for which (119) holds.

Then

(µI − Cn)
−1ĥ− (µI − C)−1ĥ =

(
µ(µI − Cn)

−1 − I
)
(h− hn) + (µI − Cn)

−1(Cnhn − Ch),

and hence
∥∥∥(µI − Cn)

−1ĥ− (µI − C)−1ĥ
∥∥∥

≤
(
|µ|
∥∥(µI − Cn)

−1
∥∥+ 1

)
‖h− hn‖+

∥∥µI − Cn)
−1
∥∥ ‖Cnhn − Ch‖ → 0.

due to (118) and (119). Since this is valid on the dense subspace Ĉ ⊂ H , using again (118),

we conclude (120).

(ii) The proof of the “if” part of Theorem VIII. 26 in [24] can be transposed without any

essential alteration.

To finish the proof of Theorem RSC1 first apply Lemma 7(i) to Cλ, λ→ 0+, defined in (52),

C assumed (essentially) skew self-adjoint, and µ = 1. Note that µ = 1 is indeed in the resol-

vent set of all these operators and, indeed supλ>0

∥∥(I − Cλ)
−1
∥∥ <∞ and

∥∥(I − C)−1
∥∥ <∞,

as required in (118), since the operators Cλ are bounded and skew-self-adjoint and the oper-

ator C is assumed to be essentially skew-self-adjoint. From Lemma 7(i) it follows that that

(116) holds. Finally, quoting Lemma 6 we conclude the proof of Theorem RSC1.

Proof of Theorem RSC2. From 0 ≤ T ≤ cD (54) it follows that

0 ≤ D ≤ S ≤ (1 + c)D (121)

Let

Vλ := (λI +D)1/2(λI + S)−1/2, V = V0 := D1/2S−1/2.

The operator V is a priori defined on Dom(S−1/2) = Ran(S1/2), but as we see next, it

extends by continuity to a bounded and invertible linear operator defined on the whole

space H . Due to (121) the following bounds hold uniformly for λ ≥ 0:

‖Vλ‖ = ‖V ∗
λ ‖ ≤ 1,

∥∥V −1
λ

∥∥ =
∥∥(V −1

λ )∗
∥∥ ≤

√
1 + c.

Let us show that bound on ‖Vλ‖, the bound on
∥∥V −1

λ

∥∥ is similar. We write

‖Vλϕ‖2 = 〈(λI +D)1/2(λI + S)−1/2ϕ, (λI +D)1/2(λI + S)−1/2ϕ〉
= 〈(λI + S)−1/2ϕ, (λI +D)(λI + S)−1/2ϕ〉
≤ 〈(λI + S)−1/2ϕ, (λI + S)(λI + S)−1/2ϕ〉 = ‖ϕ‖2 .
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From here, first of all, it follows that

Dom(S−1/2) = Dom(D−1/2),

and thus the H−1-conditions f ∈ Dom(S−1/2), respectively, f ∈ Dom(D−1/2) in Theorem

RSC1, respectively, Theorem RSC2, are actually the same. It is also easy to see that for

any ϕ ∈ H

lim
λ→0

Vλϕ = V ϕ and lim
λ→0

V −1
λ ϕ = V −1ϕ.

That is, Vλ
st.op.top.−→ V and V −1

λ

st.op.top.−→ V −1, as λ→ 0, where
st.op.top.−→ stands for convergence

in the strong operator topology.

Next write the operators Cλ and C from Theorem RSC1, as

Cλ = V ∗
λBλVλ, C = V ∗BV.

Now, from the fact that Vλ and V −1
λ are all bounded, uniformly in λ ≥ 0, it readily follows

that: (a) one can use C = V −1B as a core for the operator C; (b) C is essentially skew-self-

adjoint on C if so was B on B; and (c) the limit (53) follows from (56) by straightforward

manipulations. Indeed, for ψ ∈ C define ϕ := V ψ ∈ B and let ϕλ ∈ H be such that the

limits in (56) hold. Define ψλ := V −1
λ ϕλ. Then the limits in (53) clearly hold:

‖ψλ − ψ‖ =
∥∥V −1

λ ϕλ − V −1ϕ
∥∥ ≤

∥∥V −1
λ

∥∥ ‖ϕλ − ϕ‖+
∥∥V −1

λ ϕ− V −1ϕ
∥∥→ 0,

‖Cλψλ − Cψ‖ = ‖V ∗
λBλϕλ − V ∗Bϕ‖ ≤ ‖V ∗

λ ‖ ‖Bλϕλ −Bϕ‖+ ‖V ∗
λBϕ− V ∗Bϕ‖ → 0.
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