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ABSTRACT  26 

 27 

Distinctive individual vocalizations are advantageous in several social contexts. Both genetic 28 

and environmental effects are responsible for this phenomenon resulting in different 29 

frequencies and time domains of sounds in birds. This individuality can be utilized in 30 

breeding bird censuses and abundance estimates. In this study we explored the individuality 31 

of the advertisement calls of male Common Cuckoos (Cuculus canorus) with the aims of 32 

describing the acoustic ways in which individuals differ from each other, and characterizing 33 

the practical requirements for using statistical learning methods for individual recognition. 34 

We collected calls from a Hungarian cuckoo population and conducted discriminant function 35 

analysis on acoustic parameters to distinguish individuals. We show that individuals differ in 36 

both the frequency and time of their calls, most importantly in maximum frequency of the 37 

first syllable. Our discrimination of the male calls of 26 individuals was almost 100% 38 

accurate, and even when the number of samples was reduced to five calls per individual, and 39 

the number of acoustic parameters was decreased to five variables, accuracy still exceeds 40 

90%. Thus, because our acoustic individual discriminaton technique is easy to perform and 41 

can be readily automated, it will be applicable to a wide range of ecological and behavioural 42 

studies. 43 

 44 

 45 



3 

 

 

INTRODUCTION 46 

 47 

Individuality in call characteristics can be adaptive in several communication contexts 48 

(Lambrechts and Dhondt 1995; Tibbetts and Dale 2007), including parent-offspring 49 

recognition in species with dense colonies (e.g., King Penguin Aptenodytes patagonicus; 50 

Lengagne et al. 2001), or re-establishing pair-bonds in species with large colonies (e.g., 51 

Kittiwake Rissa tridactyla; Aubin et al. 2007; Blue-footed Booby Sula nebouxii; 52 

Dentressangle et al. 2012). Unique calls are also advantageous for territorial species to enable 53 

the recognition of neighbours (the ‘dear enemy theory’; Fisher 1954); this has been shown to 54 

occur, for example, in Black Redstarts Phoenicurus ochruros (Draganoiu et al. 2014) and 55 

Willow Warblers Phylloscopus trochilus (Jaska et al. 2015). Indeed, vocal individuality may 56 

be especially advantageous in contexts where visual signals are unuseable, like in rainforests 57 

(e.g., White-browed Warbler Basileuterus leucoblepharus; Aubin et al. 2004; Screaming Piha 58 

Lipaugus vociferans; Fitzsimmons et al. 2008), in meadows where there is tall grass (e.g., 59 

Corncrake Crex crex; Rek and Osiejuk 2011), or birds that are active at night (e.g., Great 60 

Horned Owl Bubo virginianus; Odom et al. 2013). Individually distinctive vocalization is 61 

likely essential for long distance communication, as in the boom call of the Grey Crowned 62 

Crane Balearica regulorum gibbericeps (Budde 2001) or the European Bittern Botaurus 63 

stellaris (McGregor and Byle 1992).  64 

Individual recognition in birds, however, depends on two conditions: (i) inter-individual 65 

variation of the signaller’s vocalization has to be larger than the intra-individual variation, and 66 

(ii) receivers must possess the ability to discriminate individuals (Tibbetts and Dale 2007). 67 

The factors responsible for individually distinct vocalization include differences in anatomical 68 

structures of the vocal organs and control of sound production (Ballintijn et al. 1995; Goller 69 

and Riede 2013). Additionally, in some bird taxa (passerines, hummingbirds and parrots) 70 

vocal individuality can also be developed, or modified, via learning, that has two main 71 

sources: (i) social modification, and; (ii) learned acquisition (Boughman and Moss 2003). 72 

Therefore individuals may differ both in time and frequency parameters (e.g., Aubin et al. 73 

2004; Volodin et al. 2005), and in the composition of their signals (e.g., Kiefer et al. 2014). 74 

From the viewpoint of the receiver, birds in general can perceive a change of less than 1% 75 

pure tone frequency, and 10-20% difference in signal duration (Dooling 1982), while species 76 

of oscine passerines possess elaborate cognitive capabilities even to discriminate syllable 77 

sequences (Knudsen and Gentner 2010). 78 
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In this paper, we focus on the individual acoustic signals of the Common Cuckoo (Cuculus 79 

canorus; hereafter "cuckoo"), a brood parasitic species distributed across the Palearctic region 80 

and subdivided into several subspecies (Payne 2005). Cuckoos specialize on different host 81 

species, so they are classified into ‘host-specific races’, or ‘gentes’. These gentes show 82 

differences in egg phenotypes, as these are adapted to resemble those of their hosts (i.e., egg 83 

mimicry; Dawkins and Krebs 1979; Davies 2000). The advertising call of male cuckoos also 84 

shows a highly stereotypical acoustic structure with two notes (“cu-coo”) across their whole 85 

distribution area (Lei et al. 2005; Wei et al. 2015), although quantitative features may vary by 86 

health condition of individuals (Mller et al. 2016), between subspecies (Wei et al. 2015), 87 

gentes, and populations (Fuisz and de Kort 2007), with increasing variation with geographic 88 

distance (Wei et al. 2015). Regarding the taxonomic status of cuckoos we expect that cuckoos 89 

do not learn their advertising calls (c.f. Catchpole and Slater 2008), but genetic and 90 

environmental effects might generate individually distinctive call characteristics. Our interest 91 

in studying cuckoo calls is two-fold: (i) to explore the biological aspect of acoustic 92 

individuality, and; (ii) to apply this phenomenon to research and nature conservation. 93 

The breeding behaviour of the Common Cuckoo suggests that individual discrimination 94 

plays important role in intra-specific sexual selection. It is believed that male cuckoos are 95 

territorial (Payne 2005), therefore it seems advantageous for them to discriminate between 96 

their neighbours and intruders (the ‘dear-enemy’ theory, see above). Indeed, Lei et al. (2005) 97 

worked with a much smaller sample (ten individuals) and suggested that male cuckoo 98 

advertising calls show consistent inter-individual differences. Jung et al. (2014) later 99 

examined nine individuals and also found that inter-individual variance in call parameters is 100 

higher than within individuals and might thus be important for discrimination. However, these 101 

previous hypotheses were not tested quantitatively using learning algorithms to see if 102 

individual cuckoos really can be discriminated on the basis of their calls and how to do it in 103 

practice. 104 

 More generally, there is emerging interest in the use of acoustic methods in 105 

conservation (Laiolo 2010). Discrimination (distinguish individuals at a time) and 106 

identification (recognize individuals on a longer time scale) based on acoustic features can 107 

provide a non-invasive approach useful to different investigations (Terry et al. 2005). There 108 

are examples of the use of such approaches for abundance estimates in Ortolan Buntings 109 

Emberiza hortulana  (Adi et al. 2010), censuses of European Bitterns and Black-throated 110 

Divers Gavia arctica (Gilbert et al. 1994), Corncrakes (Peake and McGregor 2001; Budka 111 
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and Kokocinski 2015), and Woodcock Scolopax rusticola (Hoodless et al. 2008). These 112 

methods are especially important in species where visual inspection is impaired like in dense 113 

habitat or in animals active at night. Cuckoos are quite drab and timid birds, so the use of 114 

color-tagged individuals for individual identification is challenging. Other techniques such as 115 

ringing, individual tagging, and radio telemetry may cause disturbances (Sutherland et al. 116 

2004). If a male advertising call can be heard from a distance, as for instance in cuckoos, it 117 

offers a potential solution for acoustic identification of individuals that might help in studies 118 

where we want to follow the individuals without any disturbance in observing their natural 119 

behaviour. 120 

 In this study, we investigated acoustic individuality in the advertising calls of male 121 

Common Cuckoos. Our main objectives were: (1) to describe the individually distinctive 122 

parameters of these calls; (2) to test whether individuals can be discriminated by these 123 

parameters; (3) to determine how sample size and number of measured acoustic parameters 124 

affects the feasibility of using this method for a range of applications. To achieve these aims, 125 

we recorded and analysed calls from a cuckoo population, applied Discriminant Function 126 

Analysis (DFA) in a cross-validation framework, and interpreted the results from theoretical 127 

and practical viewpoints. 128 

 129 

METHODS 130 

 131 

Study area and sound recording 132 

 133 

This study was conducted in the surroundings of Apaj (47°07N; 19°060E), ca. 50 km south of 134 

Budapest, Hungary, where the density of breeding Common Cuckoos is high and there is a ca. 135 

50% parasitism rate (i.e. 50% of host nests contain at least one cuckoo egg; Zölei et al. 2015). 136 

In this area, cuckoos are mainly distributed along linearly-structured irrigation channels where 137 

trees are available for perching, and where these birds parasitize Great Reed Warbler 138 

Acrocephalus arundinaceus clutches (Moskát and Honza 2000) (Fig. 1). 139 

We recorded cuckoo sounds for five days between May 15th and 22nd, 2013, in the 140 

mornings (6-11 h CET), and late afternoons (16-20 h CET), using a Telinga parabola dish 141 

with a Sennheiser ME62 microphone and K6 preamplifier on a Tascam DR1 handheld digital 142 

recorder (48 kHz sampling rate, 16 bit quality). We then later transferred recorded calls to a 143 

PC for sound analysis (see below). Each cuckoo call was recorded from about a 20-30 m 144 
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distance, reasonable for this species and as done by Fuisz and de Kort (2007), and Wei et al. 145 

(2015). 146 

 During the recording process we tried to record individual cuckoos just once by 147 

sampling the whole area along channels, walking the banks in one direction only over a short 148 

time (2-3 hours), while visually following the movement of birds. This meant that we met and 149 

recorded just new cuckoos, but to avoid doubt we did not record when uncertain to avoid 150 

duplicating data points. As we sampled each channel section just once within the study 151 

period, and radio telemetry revealed that cuckoos stayed in relatively short sections along the 152 

channels (typically < 1 km; our unpublished results; our unpublished results), we have a high 153 

probability of confidence that we recorded each individual just once. The spatial distribution 154 

of recorded individuals used for analyses is shown on the survey map of the area (Fig. 1). 155 

 156 

Sound analysis 157 

 158 

Although a total of 29 individuals (3-11 individuals per day) were recorded, we present 159 

recordings of just 26 birds with a minimum of 10 good quality calls (i.e., with low 160 

background noise). 161 

 We then manually segmented the two syllables of each cuckoo calls (as done by Lei et 162 

al. 2005; Fuisz and de Kort 2007; Jung et al. 2014; Wei et al. 2015), and measured each 163 

syllable automatically in the following way: first, we searched for maximum syllable intensity 164 

in the spectrogram, and then the start and end points each syllable were determined at a 20 dB 165 

level lower than the maximum. Accordingly, we got comparable syllable parameters 166 

independently of the absolute intensity of the calls and the background noise level (Zollinger 167 

et al. 2012). The 20 dB limit was chosen, because at this level the characteristics of all 168 

syllable shapes were explicit and at the same time they were above the actual background 169 

level on all recordings. 170 

In the next step, we measured several parameters of calls that characterize frequency 171 

structure and time domain in a similar manner to previous studies (Lei et al. 2005; Fuisz and 172 

de Kort 2007; Jung et al. 2014; Wei et al. 2015). Syllable frequencies were measured at the 173 

starting point (i.e., F1start in the first syllable, and F2start in the second syllable), at the end (i.e., 174 

F1end and F2end) of each syllable, and at maximum frequency (F1max and F2max). The length of 175 

both syllables (T1 and T2), and the pause (Tpause) between the two syllables in the call, were 176 

also measured. We found four highly correlating (r > 0.7) such pairs of parameters.  177 
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Based on these nine basic measurements, we derived a series of new variables based 178 

on their differences (Fig. 2); because we expect lower correlations between these new 179 

variables than when absolute frequencies are used, our approach is more effective in 180 

characterizing the shape of syllables. Although a similar approach was used by Fuisz and de 181 

Kort (2007), we derived five new parameters in this study, retaining four basic variables from 182 

the earlier study (Fuisz and de Kort 2007). Relative starting frequency of syllables was 183 

calculated as the difference between maximum frequency and starting frequency (i.e., ΔF1start 184 

= F1start - F1max for the first syllable, and ΔF2start = F2start - F2max for the second syllable). The 185 

relative ending frequency (ΔF1end and ΔF2end) was taken as the difference between the ending 186 

frequency and starting frequency (ΔF1end = F1end - F1start and ΔF2end = F2end - F2start). We used 187 

the absolute frequency measurement for the first syllable (F1max) and a relative measurement 188 

for the second syllable (ΔF2max = F2max - F1max) to characterize the maximum frequency in 189 

each syllable. Beside of these six frequency parameters we used the T1, T2 and Tpause time 190 

parameters to describe the characteristics of cuckoo calls, altogether resulting in nine 191 

parameters used in subsequent analyses (Fig. 2), where we found no highly correlating pairs 192 

of parameters. 193 

 All measurements were taken using 2048 point-length FFT and Hann window with 194 

98% overlap while syllable segmenting and all acoustic analyses were conducted with the 195 

help of self-written scripts in the Matlab 2013 (The MathWorks Inc.) environment using the 196 

Signal Processing Toolbox (Version 6.19). 197 

 198 

Statistical analyses 199 

 200 

In order to choose the most appropriate variables for sound classification, we calculated the 201 

intra-individual and between-individual coefficients of variations in each parameter using the 202 

formula CV = 100 * (1 + 1 / (4 * n)) * SD / mean, where n is sample size and SD is standard 203 

deviation (Sherrer 1984; Sokal and Rohlf 1995). For the intra-individual coefficient of 204 

variation (CVi), we computed CV for each individual based on all calls belonging to an 205 

individual and then calculated the mean of all CVs; for the between-individual coefficient of 206 

variation (CVb), we used the mean parameter value from all individuals. The ratio of CVb/CVi 207 

is the measure of Potential Individual Coding ("PIC", Charrier et al. 2001; Mathevon et al. 208 

2003; Favaro et al. 2015), which shows the importance of a given parameter. We decided to 209 

involve a parameter in the classification procedure if its PIC value was greater than 1. This 210 
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means that the inter-individual variation is higher than the intra-individual variation expressed 211 

by this parameter, suggesting that the actual parameter can be used for detecting individuality 212 

(Charrier et al. 2001). Based on this criterion, just ΔF1end and ΔF2start were excluded, so 213 

therefore we used seven out of the nine variables for classification. To evaluate these seven 214 

variables, we conducted a linear Discriminant Function Analysis (DFA) for 10 randomly 215 

chosen calls for each individual, and then calculated the Bartlett's approximate chi-squared 216 

statistic to test the canonical correlation coefficients. 217 

For classification of calls in the first step, 10 calls were randomly chosen for each 218 

individual, and then two different classification procedures were used: a one-call 219 

classification, and a multi-call classification. 220 

 For the one-call classification, following a 10-fold cross-validation procedure (Stone 221 

1974), we divided data into a training dataset with nine calls and test dataset with one call 222 

from each individual in each round. We used DFA on the training dataset to classify calls, and 223 

then the DFA model was applied to the test dataset. After 10 cycles of the 10-fold cross-224 

validation, we repeated the whole process using a randomly sampled set of 10 calls from the 225 

pool of calls for each individual. After 100 repetitions of cross-validation, we summarized the 226 

results in a contingency table (called a confusion matrix) representing the class predictions 227 

with respect to the actual outcome, and calculated the mean percent of true positive cases.  228 

 In the multi-call classification we divided the 10 calls of an individual into five 229 

training and five test calls. Then, similarly to the one-call classification, we taught and then 230 

tested the DFA model, repeating these steps 10 times. In each cycle, we assigned calls to the 231 

individual bird that had more classified calls, and repeated the whole cross-validation process 232 

100 times, using randomly sampled 10 calls from the pool of calls of each individual. We 233 

calculated the results in the same way to the one-call classification. 234 

 In the next step we studied how the sizes of the training and testing datasets influence 235 

our classification results both in the one-call and multi-call cases. In each round we chose 236 

randomly two to five calls from the training dataset from each individual to train the DFA 237 

model, and one to five calls from the testing dataset to validate the model. We repeated the 238 

whole process 100 times, and calculated the accuracy for all possible pairwise combinations 239 

of the training and testing samples. 240 

 We also computed the accuracy of one-call and multi-call classifications, based on the 241 

different number of variables. These were ordered increasingly, based on their PIC value, and 242 

in each step we increased the number of variables by one in the DFA model. This means that 243 
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in the one-variable model only the variable with the highest PIC value was included, but in 244 

the seven-variable model all seven original variables were used. We plotted the classification 245 

accuracy against the increasing number of variables. 246 

 All statistical analyses were carried out in MATLAB 2013, using the Statistical 247 

Toolbox (Version 8.2) and the RAFISHER2CDA Canonical Discriminant Analysis Toolbox 248 

(Trujillo-Ortiz et al 2004). 249 

 250 

 251 

RESULTS 252 

 253 

We analysed 1489 calls related to 26 individuals (57.3 ± 39.9 in mean ± SD calls per 254 

individual) for subsequent analyses. In general, the first syllable of the call has a reversed U-255 

shape frequency contour between 600 and 750 Hz, while the second syllable has a quasi-256 

constant frequency in the range 500-600 Hz. These two syllables, including a short pause 257 

between them, covers an about 0.17 second period (Table 1). The calls were repeated 258 

regularly (1.34 ± 0.17 calls/min in mean ± SD). 259 

By visual inspection of spectrograms, the intra-individual variability of call structure 260 

appears to be less than inter-individual variability, but both the shape and peak frequencies 261 

show considerable differences (Fig. 3). For seven variables (F1max, ΔF2max, ΔF2end, Tpause, T2, 262 

T1, ΔF1start) the PIC was higher than 1 (Table 1). The parameter with the highest PIC value 263 

was F1max, suggesting that this parameter contributes most to individually distinctive 264 

vocalization, and thus may play a key role in the classification of individuals. In the DFA, all 265 

seven canonical variables proved to be significant, therefore we retained them in the model 266 

(χ
2
-test, p<0.001 for all canonical roots). 267 

 Our cross-validation procedure of one-call classification had a 92% accuracy using the 268 

seven chosen variables (Fig. 4A), while our multi-call classification was 98% accurate (Fig. 269 

4B). We also reveal the role of sample size in the training and testing procedure: In the one-270 

call classification, we found that by using two calls as a minimum to train, and one call to test 271 

the model was adequate to 82% accuracy; and with at least four calls to train and two calls to 272 

test the model we achieved over 90% accuracy (Fig. 4C). The multi-call classification gave 273 

better results than one-call classification with minimum accuracy of 96% when using a 274 

minimum of three calls both to train and test the model (Fig. 4D). 275 
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 We also investigated the importance of the number of variables used in the 276 

classification procedure: Accuracy of classification increased with increasing number of 277 

variables, higher in the multi-call classification than in the one-call classification (Fig. 5) 278 

across all variables. We found the largest jump in saturation curves between the cases when 279 

one and two variables were used in the models; using just five variables, the one-call 280 

classification yields more than 80% accuracy on average (CI: 76.9-87.3 %), while the multi-281 

call classification model reaches 95% accuracy on average (CI: 80.8-100%). When we 282 

randomly allocate calls to individuals, accuracy is just 3.85% and demonstrates the 283 

effectiveness of the use of DFA for classification. 284 

 285 

 286 

DISCUSSION 287 

 288 

In general, we found that male cuckoos use individually distinct advertisement calls that can 289 

be unambiguously discriminated by DFA classification. Overall frequency and time 290 

parameters show a large degree of agreement with previous studies, supporting the idea that 291 

the male’s advertisement call in this species is highly consistent throughout its distribution 292 

area (Lei et al. 2005; Jung et al. 2014; Wei et al. 2015).  293 

 We found that individuality is encoded in both frequency and time domain. In this 294 

cuckoo species, in accordance with our study, both Lei et al. (2005) and Jung et al. (2014) 295 

found that the frequency and time parameters of advertisement calls are individually 296 

distinctive. This multi-parametric individual coding is generally found in acoustic bird studies 297 

resulting in diverse solutions for conveying safe signal transfer in the acoustic space. 298 

Individuality might be coded by frequency modulation and signal duration as in the King 299 

Penguin (Lengagne et al. 2001), or by frequency gaps between the signal components and 300 

their positions as in the White-browed Warbler (Aubin et al. 2004). However, in the 301 

Corncrake (Budka and Osiejuk 2013) individuality seems to be encoded by pulse-to-pulse 302 

duration, while in the Blue-footed Booby, males are mainly time-coded, but females are 303 

frequency coded individually, two different solutions for acoustic individual recognition in 304 

large and noisy breeding colonies (Dentressangle et al. 2012). 305 

 The highest frequency (F1max) of the first syllable is the most important parameter we 306 

found in the individual discrimination (i.e. with the highest PIC value). Interestingly, this 307 

parameter seems to have less importance in causing habitat and population differences: Fuisz 308 
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and de Kort (2007) suggested that cuckoos from different habitats and/or different gentes 309 

mostly differ in the absolute frequency parameters of the second syllable. Wei et al (2015) 310 

found differences in the bandwidth of the second syllable that can be attributed to habitat, 311 

while population differences are best explained by the lowest frequency of the first syllable, 312 

the frequency band of the second syllable, and time parameters (Fuisz and de Kort 2007). Our 313 

results suggest that individual differences are mainly coded in the highest frequency parts of 314 

the first syllable, and so generate high inter-individual variation in a population. 315 

Consequently, inter-population and inter-gens differences are not expressed in the highest 316 

frequency of the first syllable of the "cu-coo" calls. 317 

 We found that the seven acoustic parameters allowed nearly perfect individual 318 

discrimination of cuckoos, especially when several calls from a calling sequence were used. 319 

Indeed, even using less variables this method might be feasible, as with five variables the 320 

classification accuracy still reached 90%. From a practical point of view, five out of seven 321 

variables (F1max, ΔF2max, Tpause, T2, T1) are reasonably easy to extract using automatic 322 

segmenting and measuring (e.g. with the programs Avisoft SASLab Pro or Raven Pro). 323 

Consequently, the whole discrimination process can readily be automated which may help the 324 

use of this simple method for the discrimination of cuckoo individuals in a population. We 325 

show that three calls from a male could be adequate both to teach the statistical model and test 326 

it later to reach a 90% level of accuracy; this seems an attainable amount of sound samples 327 

from individual cuckoos in the field. 328 

 Theoretically, we cannot exclude the case when a high number of cuckoos are 329 

presented in a small area, making individual discrimination more difficult. However, the 330 

density of cuckoos in the breeding season cannot reach extremely high values because of their 331 

need for host nests for reproduction, and the availability of suitable nests limits brood 332 

parasites' density. This statement is also valid for our site where parasitism rate of Common 333 

Cuckoos seems to be permanently the highest in the world. About 50-64% of Great Reed 334 

Warbler clutches are parasitized here (Zölei et al. 2015), where the Great Reed Warbler was 335 

found to be the only host species currently parasitized. We believe that if our method of 336 

cuckoos' discrimination by sound works here, this method should also work at lower cuckoo 337 

densities. 338 

 Cuckoo males frequently use their advertising calls in the breeding season (Payne 339 

2005), therefore in this period it seems feasible to apply the acoustic method for census and 340 

abundance estimation similarly to studies used in other species (Gilbert et al. 1994; Peake and 341 
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McGregor 2001; Hoodless et al. 2008; Adi et al. 2010; Budka and Kokocinski 2015). To use 342 

an acoustic method for individual tracking over a longer period, however, additional 343 

examination is needed to reveal how a given signal changes with time (Mennill 2011). In this 344 

case, the task is not only to discriminate the individuals, but also to identify them. Several 345 

studies have already focused on this question, for example in Corncrakes (Budka et al. 2015), 346 

European Eagle Owls Bubo bubo (Grava et al. 2008), European Bitterns, Black-throated 347 

Divers (Gilbert et al. 1994), and Mexican Ant-thrushes Formicarius moniliger (Kirschel et al. 348 

2011). Individually distinct vocalization can also be used for the estimation of survival and 349 

population responses (Pollard et al. 2010). The fundamental frequency of acoustic signals 350 

depends not only on the anatomical structures of the syrinx, but also on the operation of the 351 

syringeal muscles and air sac pressure (Goller and Riede 2013) under neural control. For this 352 

reason, the general physiological state of the individual, hormonal status, and social context 353 

may influence advertisement call characteristics, as in the song of the Zebra Finch 354 

Taeniopygia guttata, where fundamental frequency is influenced by the food availability 355 

(Ritschard and Brumm 2012). We argue that further studies could clarify how intra-individual 356 

acoustic signals change over time, as well as how the social structure of cuckoos may affect 357 

the acoustic parameters of individuals. Also, further experimental studies are needed to test if 358 

cuckoos are able to discriminate each other by sound and use this information in their decision 359 

making regarding territoriality and in their social behaviour. 360 

 361 
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Table 1. Statistical summary of acoustic variables of Common Cuckoo calls. The parameters 499 

are ordered in decreasing importance, according to their decreasing PIC value. “Mean” is the 500 

average of individuals’ mean values; “SD” is the standard deviation of individuals’ mean 501 

values, “min ; max” are the minimum and maximum of individuals’ mean values, “CVi” is 502 

the intra-individual coefficient of variation, “CVb” is the between-individual coefficient of 503 

variation. 504 

  505 

 mean SD min ; max CVi CVb PIC 

F1max (Hz) 676 28 617 ; 748 1.4 4.2 2.97 

ΔF2max  (Hz) -136 16 -164 ; -114 6.3 12.2 1.94 

ΔF2end  (Hz) 4 10 -20 ; 19 150.6 277.3 1.84 

Tpause (s) 0.179 0.015 0.152 ; 0.204 5 8.5 1.69 

T1 (s) 0.097 0.009 0.078 ; 0.129 5.8 9.6 1.67 

T2 (s) 0.160 0.016 0.128 ; 0.197 6.2 10 1.62 

ΔF1start  (Hz) -112 24 -183 ; -61 20.1 21.4 1.07 

ΔF2start  (Hz) -23 8 -38 ; -4 48.3 34.3 0.71 

ΔF1end  (Hz) -9 18 -49 ; 29 562.7 208.2 0.37 

 506 
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Legend to figures 507 

 508 

 509 

FIGURE 1. Map of the sampling area. The localities of the 29 recordings are marked with 510 

dots on the map. 511 

  512 

FIGURE 2. Measured and derived call parameters used in the analyses 513 

 514 

FIGURE 3. Sample sonograms of the "cu-coo" calls from 5 individuals with 5 samples each.  515 

 516 

FIGURE 4. The results of DFA classification. (A) Confusion matrix of one-call classification, 517 

(B) confusion matrix of multi-call classification. The hitmaps of the confusion matrices show 518 

the percentages of the correct classification in the main diagonal. (C) and (D) DFA 519 

classification using different number of train and test calls in the model. The hitmaps show 520 

sample size dependency of the classification accuracy in one-call classification (C) and multi-521 

call classification (D). 522 

 523 

FIGURE 5. The result of the DFA classification using different number of variables. The plot 524 

shows the effect of the number of variables used in DFA. The variables were put into the 525 

models with their decreasing PIC values.  526 
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