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Abstract—Robot-assisted Minimally Invasive Surgical tech-
niques are becoming standard-of-care in the surgical practice.
With the rapid advancement of surgical robotics, many believe
that the next step is subtask automation, since it has the potential
to safely improve one element of a surgery, which might be
most suitable for design and execution supported by artificial
intelligence. The outcome of surgery may significantly improve
from partial automation already, patient given better accuracy
and targeting. This technology can also help surgeons efficiently
with time-consuming operations. In this paper, we demonstrate
the automation of blunt dissection, which is a common element
in almost all abdominal procedures. Blunt dissection is regularly
performed during Laparoscopic Cholecystectomy, e.g., when the
surgeon exposes the Calot triangle. Automating this episode
would streamline the procedure, and multiple similar automated
sub tasks can be integrated into the surgical workflow. The
presented method only relies on the images of a stereo camera
system, and therefore does not put any additional overhead on
the Operating Theater. The method was successfully tested in
vitro and ex vivo in simplified simulated environment.

I. INTRODUCTION

Technology is rapidly forming the field of surgery, and
Minimally Invasive Surgical (MIS) techniques are becoming
standard of care [1]. Furthermore surgical robotics can provide
a platform to extend the human operator’s dexterity and
accuracy through teleoperation and navigation. Since robotic
platforms—such as the da Vinci Surgical System (Intuitive
Surgical Inc., Sunnyvale, CA)—have already been widely
used for over 20 years, many believe that the next step in
technology development is surgical automation [2], [3], [4],
[5]. To achieve this goal it is important that the algorithms take
into considerating the actual surgical workflow, where Surgical
Process Models (SPM) provide detailed information on several
granularity levels on how surgery is built up [6], [7], [8].
In this work, blunt dissection, a common element of subtask
level SPMs is targeted for automation. The subtask level SPM
granularity was chosen because the processes on this ontology
level are non procedure specific surgical techniques, but they
are detailed enough, to be accurately defined for automation.
Later, these procedure elements can be applied onto different
procedures, eventually creating a dictionary to build up more
complex procedures for a wide variety of operations.

Blunt dissection is a surgical subtask, where the surgeon
carefully separates two tissue layers without using the in-

struments cutting edges in an effort to avoid any damage to
sensitive tissue structures (e.g., vessels, nerves). During blunt
dissection, the retractor keep the tissues and the dissector is in-
serted between the two layers, then by opening of the dissector
it forces the two layers apart. This surgical subtask is recurring
element in multiple procedures, where automation could ease
the cognitive load on the surgeon by relieving him/her from
concentrating onto the manuality of the instruments,so the
surgeon may pay full attention to the patient specific details
of the surgery. Furthermore, robotically executed procedures
can provide an increased accuracy compared to the human
operator, therefore it can effect the success of the operation.
In this work, we demonstrate a method for the automation
of blunt dissection surgical subtask implemened through the
example of Laparoscopic Cholecystectomy (LC).

II. MATERIALS AND METHODS
A. Surgical phantom

During LC procedures, blunt dissection is a commonly
employed subtask to open up the Calot triangle (Fig. 1). To val-
idate our automated method, a surgical phantom was created.
The phantom consists of two layers of solid silicone connected
by a softer, dissectible layer. This soft layer simulates the
connective tissue, which can be penetrated and dissected
with a blunt surgical tool. Naturally, the human abdominal
space consists of much more complex tissue structures, with
varying properties. These will also be incorporated in our later
experiments via sophisticated soft tissue parametrization [9].

B. Image Processing

When designing algorithms for the Operating Room (OR)
environment, it is an important requirement that the new
method should fit into the existing workflow, and should not
introduce obstructive new equipment into the OR. With this
principle in mind, we choose to base our algorithm on stereo
video feed, as it is a common—and for the majority of cases
the only—sensory input, such as the da Vinci.

In our test environment, two web cameras (Logitech C525—
Logitech, Romanel-sur-Morges, Switzerland) were used to
provide the stereo image feed. The cameras were placed in
a stable frame within 50 mm distance from each other, and
the custom created blunt dissection phantom was fixed on a



Operation Laparoscopic Cholecystectomy (LC)
Task Exposing Calot’s triangle
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Fig. 1. Decomposition and mapping of the Laparoscopic Cholecystectomy

procedure onto different granularity levels.

silicon soft tissue phantom

Fig. 2. Automated blunt dissection test setup at IROB. The DVRK
(http://research.intusurg.com/dvrkwiki)-enabled da Vinci Surgical System, a
dissection phantom and a camera were involved.

stiff surface in approximately 350 mm from the viewpoint
of the cameras. The cameras were used with 640x480 pixel
resolution in MATLAB 2016b, and the focal length was fixed.

To estimate the depth in the field of view with a stereo
system, it is crucial to calibrate the cameras. We performed
the stereo camera calibration with 19 image pairs of a checker-
board pattern (with the checkerboard size being 25 x 25 mm).
For every case, we fixed the pattern to a flat surface, as
distortions in the pattern can greatly affect the calibration. To
achieve better calibration accuracy, it is important for the the
checkerboard pattern to be kept of an equal distance from
the camera, within the expected field of interest. During the
calibration, the pattern was placed at different orientations
relative to the camera, and besides, the center points of the
pattern were moved close to the frame edges as well to account
for lens distortion. After the calibration the reprojection errors
are calculated, which consist of the error between the repro-
jected point in the camera and the detected point. MATLAB
Stereo Camera Calibrator App calculated reprojection errors
by projecting the checkerboard points from world coordinates
(determined by the checkerboard) into image coordinates. The
Camera Calibrator App then compared the reprojected points
to the corresponding detected points. Reprojection errors are
acceptable if they are closer than one pixel [10].

The targeting system relies on the disparity map of the
scene. Disparity map is the distance between two correspond-
ing points (pixels) in the images of cameral and camera2
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Fig. 3. Method for blunt dissection automation via computer vision. a) Image
of blunt dissection phantom; b) disparity map of the field of view (greyscale
represents the points’ distances from the camera); c) plot of disparity changes
in vertical direction; d) blunt dissection profile from the local minime of the
disparity map.

stereo pair. Prior to the operation, the mentioned stereo camera
calibration was performed for accurate image rectification
and disparity map reconstruction during the procedure. For
the depth calculation, a pixel-wise matching algorithm called
Semi-Global Block Matching (SGBM) method (implemented
in MATLAB 2016b) was used [11]. SGBM employs pixelwise
matching based on Mutual Information and the approximation
of a global smoothness constraint. SGBM was chosen because
it is highly robust, and has a good computational time perfor-
mance.

The process presented in Fig. 3 is initiated by manually
selecting a starting and an end point of the blunt dissec-
tion line. Between these boundary points, the precise target
points—where the dissection profile is optimal—are automat-
ically selected. This is achieved by searching for the local
minima (on a smoothed surface: moving average) in the depth
dimension of the 3D surface (Fig. 3). If the dissection points
have homogeneous local disparity environment, and the search
algorithm cannot find peaks, the algorithm determines the
disparity values from the initialized start and stop points. The
accuracy is furtherly increased by removing the outliers using
Hampel filter after the detection of the dissection line. To
allow the dissection to progress evenly on the dissection line,
the algorithm always chooses the smallest depth area on the
detected dissection profile as the next target.



The success of this computer vision method is dependent
on environment factors such as light, noises, etc. To avoid
complications caused by these factors, built-in functions are
necessary. It may be important to know the earlier positions
of the target objection and the dissection line. For this reason,
we developed a segmentation method to detect the Region
Of Interest (ROI) on the image. This segmentation method
is based on the depth of the start and end points of the
dissection line; this way, if the surgeon chooses the right
points, the ROI can be easily detectable. The state machine
(see later) knows the last position of the dissection line, and it
searches for the last local environment of the last line. We filter
invalid disparity values as well to avoid inaccurate position
coordinates.

C. Robot control

For the demonstration of the automated blunt dissection
procedure, the da Vinci Surgical System was used, accessing
the robot control trough the da Vinci Research Kit (dVRK)
[12], [13], [14]. In this setup, the da Vinci provides a test
environment similar to clinical setups available at many insti-
tutions. The da Vinci system is widely used in the everyday
clinical practice worldwide (yearly, more than 500 000 proce-
dure are performed only in the USA) and the dVRK provides
a convenient programming platform by interfacing the Robot
Operating System (ROS). We established the transformation
between the robot’s base frame and the 3D image coordinate
system by performing a standard hand-eye calibration, using
a small checkerboard pattern attached onto the tooltip [15].
This checkerboard can be robustly detected in the camera
images, and then, can be used to determine the transformation
matrix. Images were captured by both cameras simultaneously
in different tool positions, and the coordinates of the tool were
calculated from the detected checkerboard positions on the
images. Cartesian positions are received from the DVRK in
the robot coordinate system, after which the transformation
between the two coordinate frames are determined by rigid
frame registration. At the beginning of the blunt dissection
procedure, we place the top tissue layer under a constant
retraction force, which is achieved by using the 2nd arm of
the da Vinci robot. The dissection process is built of simple
motion primitives as shown in Fig. 5. The program starts by
finding the target on the object. The dissector arm approaches
the target, and the tool penetrates the tissue layers. Then, the
grippers are opened, and the tool is pulled out, separating the
two layers in the tools small local environment. After this,
the grippers are closed again, and the tool is moved out of
the scene, allowing a new stereo image to be captured. One
iteration of the dissection process separates the tissue layers in
a small local region, and the Computer Vision Node captures a
new stereo image, and checks if the task is done by examining
if the target is exposed; if the target structure is exposed, the
agent stops, otherwise the loop resets on a new dissection
target point (Fig. 4).
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Fig. 4. Flow diagram of the automated blunt dissection method. The
Computer Vision Node operates as the master, by selecting the the target points
of the blunt dissection, and the Robot Control Node dissects the phantom on
the targeted area.
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Fig. 5. Motion primitives of the surgical subtask automation. a) The surgical
instrument (large needle driver) moves to the dissection target; b) the robot
pushes the instrument into the phantom; c) instrument is opened; d) the robot
pulls out the instrument, and moves to the next target.

III. RESULTS

We validated our camera calibration accuracy with the mean
pixel error from 10 calibration. The average of the mean pixel
errors was 0.104 px, with standard deviation of 0.0165 px.
In each of the 10 calibration sessions 19 image pairs were
used of whom averagely 2.2 pairs were rejected (checkerboard
detection or outlier).

The accuracy of the depth estimation of the system was
tested on a planar white and a checkerboard pattern paper.
The depth of these objects was measured on different distances
from the camera pair (Fig. 6). The mean error and the average
of the standard deviation was 4.1 and 0.7 mm respectively.
The robot control accuracy was derived from 10 test cases,
an average of 2.2 mm accuracy was achieved with a standard
deviation of 0.5 mm in the camera views plane. In the depth
axis the algorithm achieved 1 mm accuracy with standard
deviation of 0.6 mm. The overall performance of the algorithm
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Fig. 6. Depth error of the objects with known surface on different distances
from the stereo camera.

was evaluated on the silicone-based custom designed phantom.
Single dissections were made on 25 different locations on the
dissection profile, of whom 21 succeeded; in 4 of the locations,
the tool missed the dissection profile by a maximum of 3 mm.

We tested the dissection line detection methods sensi-
tiveness to rotation. For this, we used the blunt dissection
phantom. We rotated the phantom from 0 to 60 degrees relative
to the camera. We found that our method is not significantly
sensitive to rotation; our method worked acceptable in every
cases as it is shown in Fig. 7.

We also tested our dissection line detection methods sensi-
tivity to texture. For this, we used four types of paper (plain
white, checkerboard pattern, rough surfaced and kraft paper)
and the dissection phantom. We kept the phantom and the
papers in opened state to simulate retraction. In all of the
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Fig. 7. Absolute error of the dissection line extraction method sensitiveness
to rotation. Rotation was not significantly influence the algorithm.

cases, the algorithm had to find a linear dissection profile. We
chose the start and end point on the objects with 100 mm
distance of each other; these points were the ground truth of
the dissection line points. The objects placed from the stereo
system approximately 500 mm distance. We found that our
method is highly sensitive to the texture and the pattern of
the objects. The method worked well on feature-rich objects
(with the checkerboard pattern, kraft paper and the dissection
phantom), but it failed on feature poor objects (plain white
paper and rough surface paper). For the results see Fig. 8.

The computer vision method was tested in ex vivo envi-

Dissection line extracion method sensitiveness to texture
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Fig. 8.
detection of the dissection line.

Absolute error of the dissection line extraction method sensitivity to texture. The number of features and the shining of the objects are crucial in the



Fig. 9. Dissection line detection tests in vitro and ex vivo environment. a)
Blunt dissection surgical phantom; b) duck liver; ¢) chicken breast; d) pork
shoulder. The method is very sensitive to shining (see liver), and feature-
richness (see chicken breast).

ronment as well. We used a chicken breast, a pork shoulder
and a duck liver to test the accuracy of the detection of the
dissection line. We performed the sensitivity test on the ex
vivo objects: we selected 6 points as the basis of comparison
between the ground truth points and the detected points. We
found that the method is sensitive to the texture of the object
and to the lighting conditions. The method worked well on the
pork shoulder, and it worked acceptable on the chicken breast
and the duck liver. The reason is that pork is feature-rich, but
the liver and the chicken breast are feature-poor and creates
reflections (Fig. 9).

IV. CONCLUSION AND DISCUSSION

In this paper, we presented a surgical subtask automation
method. The demonstrated algorithm for blunt dissection is
based on depth perception, which was developed and tested
as a proof of concept, and provided satisfactory initial results
in a simplified phantom environment, as well as in ex vivo
experiments. The method relies only on the video feed of a
stereo-system, which is available in most da Vinci type surgical
robots, and thus the method is easily integrable into clinical
applications.

Further development is needed to examine better imple-
mentations for ex vivo experiments, where inhomogeneity of
the tissue, the environment and the tool-tissue interaction
are better accounted. Trials are necessary to confirm the
reliability of the method under real surgical conditions. Further
improvements could be implemented on the robot’s motion
by implementing learning-by-observation approaches, these
methods are yet to be tested.
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