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Abstract 

Zirconia nanomaterials were prepared by hydrothermal synthesis with or without template and were 

modified by post synthesis method with sulfate groups. The materials were thoroughly 

characterized by X-ray powder diffraction (XRD), N2 physisorption, UV-Vis spectroscopy, TG 

analysis and XPS spectroscopy. The catalytic performance of nanosized mesoporous ZrO2 catalysts 

and their sulfated modifications was studied in levulinic acid (LA) esterification with ethanol. The 

sulfate group’s dispersion was predetermined by the use of template during the mesoporous zirconia 

synthesis. A relation between sulfate groups leaching and the applied synthesis conditions (with or 

without template) of the zirconia nanoparticles was found.  Sulfated materials showed significantly 

higher activity compared to non-sulfated ones. Furthermore, it has been found that the presence of 
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template during the mesoporous ZrO2 nanoparticles preparation influences significantly the zirconia 

state and catalytic performance in levulinic acid esterification. 
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1. Introduction 

Valorization of lignocellulosic biomass by its transformation into valuable chemicals or liquid fuels 

has attracted great attention in recent years [1-5]. Levulinic acid (LA) is one of the promising 

platform molecules obtained from lignocellulosic biomass and used for the production of fuel 

additives, polymers and fine chemicals [6-15]. LA can be further converted into levulinate esters, γ-

valerolactone, 1,4-pentanediol and 5-nonanone (via pentanoic acid) as well as diphenolic acid as an 

intermediate for the synthesis of epoxy resins and poly-carbonates [16-19]. Levulinate esters are 

also useful compounds that can be used as fuel additives, solvents and plasticizers [19-22]. 

Therefore, they have the potential to reduce the consumption of petroleum-derived fossil fuels. 

Levulinate esters are produced by esterification of LA with alcohols utilizing mineral acids such as 

HCl, H2SO4 and H3PO4.  

However, these mineral acids possess several drawbacks, e.g., high toxicity, corrosiveness and a 

difficult recovery. Therefore, substitution of homogeneous catalysts by heterogeneous analogues 

that are easily separable and reusable is an important task. Various solid acids have been used for 

esterification reactions, e.g., zeolites, Wells-Dawson heteropolyacids and sulfated oxides 

(SO4
2−/ZrO2, SO4

2−/Nb2O5, SO4
2−/TiO2, SO4

2−/SnO2) [4, 6, 13, 15,19,20]. The activity of sulfated 

oxides can be improved by optimizing preparation conditions, which can influence the number of 

acid sites and the dispersion state of the sulfate species. One possible approach to enhance acid sites 

dispersion is the introduction of mesopores in the metal oxides via micelle templating [23, 24, 26, 

27].  The improvement of acid catalyst stability was achieved by incorporation of a moderate 

amount of Si (up to 30 mol% Si per Zr) into sulfated ZrO2.
15 The method of the preparation of 

sulphated zirconia plays a crucial role. The physico-chemical properties of the obtained sulfated 

zirconia depend on the ZrO2 synthesis conditions and method for sulfation. Parvulescu et al. [13] 
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applied two ways for sulfated zirconia catalyst preparation: (i) colloidal sol-gel technique in the 

presence of H2SO4 or CH3COOH as peptizing agent and (ii) impregnation of Zr(OH)4. Arata et al. 

[28] used zirconium sulfate as a Zr precursor in one-step procedure but the sulfate content cannot be 

controlled. Tichit et al. also reported one-step sol-gel synthesis of sulfated zirconia catalysts by the 

method in which sulfuric acid was added to the solution of zirconium alkoxide in n-propanol and 

then was hydrolyzed [29]. Ward and Ko reported a different way to prepare zirconia sulfate 

aerogels in a one-step procedure using the sol-gel technique and the zirconium alkoxide precursors 

[30]. 

In the present study nanosized ZrO2 functionalized by sulfate groups were prepared with or 

without template hydrothermal method and were studied in levulinic acid esterification with 

ethanol. The influence of the method of the nanosized ZrO2 preparation on the catalytic activity 

towards levulinate esters was discussed. 

2. Experimental 

2.1. Synthesis of nanosized ZrO2 materials 

Nanosized ZrO2 samples were synthesized using template-assisted or template-free precipitation 

technique followed by hydrothermal treatment step according to a procedure reported by Hudson at 

al. with some modifications [23]. Cetyltrimethylammonium bromide (CTMABr) was used as a 

template.  The surfactant/zirconia molar ratio was 10 and pH value of the gel was adjusted to 11.5 

by adding the 25 % NH4OH. The mixture was then stirred in a thermostatically controlled water-

bath at 40°C for 90 min. Materials were hydrothermally treated at 100 and 140°C for 24 h.  The 

final material was filtered, dried at room temperature and later calcined up to 300°C (15 hours at 

300°C). The obtained samples are designated as follows: ZrO2(x)T where x=100 or 140°C is the 

temperature of hydrothermal synthesis and T is for samples synthesized in the presence of template.   

2.2. Functionalization of nanosized ZrO2 by SO4
2- groups 

Nanosized ZrO2 samples were mixed with 10% H2SO4 solution (40 ml/1 g ZrO2) at room 

temperature for 2 h. The suspension was dried at ambient conditions and calcined at 500°C for 3 h. 
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The samples after sulfation are denoted as SO4
2-/ZrO2(x)T (x-hydrothermal temperature) with 

template, and SO4
2-/ZrO2(x) without template. Bulk ZrO2 (purchased by Sigma Aldrich) was 

sulfated and calcined at 500°C for comparison to the sulfated ZrO2 nanoparticles. The sample was 

denoted as SO4
2-/bulkZrO2. 

2.3. Characterization 

The X-ray powder diffraction (XRD) patterns were recorded on a PANalytical X´Pert PRO (HTK) 

high-resolution diffractometer using Cu Kα1 radiation (1.5406 Å) in the 2 θ range from 5° to 60° 

(100 s per step 0.016°) for the samples and for the sample holder using a fully opened X´Celerator 

detector.  

The UV–Vis spectra were recorded on a Jasco V-650 UV-Vis spectrophotometer equipped with a 

diffuse reflectance unit. 

Nitrogen physisorption measurements were carried out at -196°C using Tristar 3000 Micromeritics 

volumetric adsorption analyzer. Before the adsorption analysis samples were outgassed under 

vacuum for 2 h at 200°C in the port of the adsorption analyzer. The BET specific surface area was 

calculated from adsorption data in the relative pressure range from 0.05 to 0.21. The total pore 

volume was estimated on the basis of the amount adsorbed at a relative pressure of 0.96. The pore 

size distributions (PSDs) were calculated from nitrogen adsorption data using an algorithm based on 

ideas of Barrett, Joyner, and Halenda (BJH). The mesopore diameters were determined as the 

maxima on the PSD for given samples.  

The composition and the chemical properties of the selected samples were analyzed by X-ray 

photoelectron spectroscopy (XPS). The measurements were carried out on AXIS Supra electron- 

spectrometer (Kratos Analitycal Ltd.) using monochromatic AlKα radiation with photon energy of 

1486.6 eV. The energy calibration was performed by normalizing the C1s line of adsorbed 

adventitious hydrocarbons to 284.6 eV. The binding energies (BE) were determined with an 

accuracy of ±0.1 eV. The chemical composition of the samples was determined monitoring the 

areas and binding energies of O1s, Zr3d and S2p photoelectron peaks. Using the commercial data-
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processing software of Kratos Analytical Ltd. the concentrations of the different chemical elements 

(in atomic %) were calculated by normalizing the areas of the photoelectron peaks to their relative 

sensitivity factors. 

The thermogravimetric measurements were performed with DTA-TG analyzer SETSYS2400, 

SETARAM under the following conditions: temperature range 25-1000°C, static air atmosphere, 

heating rate of 5 °C/min. 

FT-IR experiments were performed with Nicolet Compact 640 spectrometer by the self-supported 

wafer technique with pyridine (Py) (7 mbar) as probe molecule. Self-supported pellets (10x20 mm) 

were pressed from the samples, placed into the IR cell, heated up to 300°C in high vacuum (10-6 

mbar) with a rate of 10°C/min and dehydrated for 1h. Following 30 min contact with Py at 100°C 

the sample was evacuated subsequently at 100, 200, 300°C for 30 min. After each evacuation step a 

spectrum was recorded at IR beam temperature with a resolution of 2 cm-1. The spectra were 

normalized to 20 mg/cm2 weight of the wafers for comparison. 

 
2.3. Catalytic activity measurements 

Prior to the catalytic experiments samples were pretreated ex-situ for 1 hour at 140°C. A two- 

necked round-bottom flask (V = 100 ml) equipped with a septum for sampling and a reflux 

condenser was used to perform the esterification reaction batchwise with magnetic stirring (300 

rpm). In a typical experiment, the reactor was charged with 2 g LA and 0.050 g catalyst (2.5 wt. % 

catalyst/LA) while the LA/ethanol weight ratio was maintained 1:5. The reactor was placed in an oil 

bath and heated to the desired reaction temperature (70°C) for 8 h. Samples were taken every hour 

from the reaction mixture and analyzed using HP-GC with a WCOT FUSED SILICA 25m x 

0.25mm COATING CP-SIL 43CB column.  
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Fig. 1 XRD patterns of zirconia samples - (1) ZrO2(140)T, (2) ZrO2(100)T, (3) ZrO2(140), (4) 

ZrO2(100) (A) and their sulfated analogs thermally treated at 500°C (B). 

 

 

3. Results and Discussion 

 

3.1. Physico-chemical properties 

XRD patterns of the studied catalysts are shown in Fig. 1. ZrO2 supports (Fig. 1A) represent 

reflections typical mainly of tetragonal ZrO2 phase (space group P42/nmc). Less intensive 

reflections of monoclinic phase (P21/c) are also present.  The average crystallite size of the samples 

(calculated by Scherrer equation) is about 5-7 nm, except for ZrO2(100)T with very small 

crystallites of 1-2 nm particles. The presence of template and 100°C of hydrothermal synthesis lead 

to the formation of smaller ZrO2 nanoparticles. It seems, that the higher temperature (140°C) favors 

the crystallization process regardless of the presence/absence of template and ZrO2 particles with 5-

7 nm size are formed. By sulfation procedure and thermal treatment at 500°C, formation of highly 

crystalline zirconium sulfate and its hydrated form, ZrSO4∙4H2O can be observed (Fig. 1B).  
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Fig. 2 N2 physisorption isotherms and pore size distribution curves of zirconia samples and their 

sulfated analogs. 

 

The textural parameters from nitrogen adsorption/desorption isotherms of the parent and sulfated 

zirconia samples are listed in Tables 1 and 2. The isotherms are of IV type (Fig.2), characteristic of 

mesoporous materials, and similar to those usually found in inorganic oxides synthesized by the 

hard-templating route [24-26]. By using the template, samples with higher surface area and pore 

volume can be prepared. It can be observed that with the increase of the temperature of 

hydrothermal treatment the surface area and pore volume decreased. Sulfation procedure followed 

by thermal treatment at 500°C resulted in a change of textural properties of all the samples. Specific 

surface area as well as pore volume decreased after the sulfation procedure for all samples. 

However, the decrease of surface area is less pronounced for samples prepared after hydrothermal 

treatment at 100°C. 

TEM images of SO4
2-/ZrO2(100) (Fig.3, A-B) and SO4

2-/ZrO2(100)T (Fig.3 C-D) samples after 

sulfation show the formation of zirconium sulfate with bigger particle size because of  
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Fig. 3 TEM images of ZrO2(100)T and ZrO2(100) samples. 
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Fig. 4 TG/DTG curves of the sulfated zirconia samples prepared at different hydrothermal 

temperatures with or without template compared to commercial bulk sulfated zirconia. 
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Fig. 5 Zr 3d, O 1s and S 2p XPS spectra of SO4
2-/ZrO2 samples - (1) SO4

2-/ZrO2(140)(500), (2) 

SO4
2-/ZrO2(100)T(500), (3) SO4

2-/ZrO2(140)T(500). 

 

agglomeration process. The preservation of mesoporosity is better expressed in the case of SO4
2-

/ZrO2(100)T (C-D). 

TG/DTG plots of sulfated ZrO2 nanoparticles are shown in Fig. 4 and the calculated weight loss due 

to sulfate group decomposition is presented in Table 2. The weight loss registered above 600°C is 

due to the decomposition of SO4
2- groups. All samples show similar weight loss (Table 2) 

regardless of the temperature of their hydrothermal synthesis and the presence of template during 

the synthesis procedure. The calculated amount of sulfate groups is about 50-54 wt. %. Two 

additional temperature steps below 600°C were registered for SO4
2-/bulkZrO2. They are associated 

with SO4
2- groups weakly bonded to the bulk ZrO2. 

The nature of the surface environment within the SO4
2-/ZrO2 samples was explored by XPS (Fig.5, 

Table 3). Zirconium 3d spectra (Fig. 5A) of the samples consist of the doublet 3d5/2, 3d3/2 spin–orbit 

splitting. The spectrum of the SO4
2-/ZrO2(100)T(500) sample shows an additional peak with low 

intensity at 182.6 eV. According to Ardizzone [27], the Zr region of the samples after sulfation  
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Fig. 6 FT-IR spectra of adsorbed pyridine on the sulfated zirconia materials. Self-supported pellets 

were pretreated at 350°C in vacuum and contacted with Py (7 mbar) for 30 min. Spectra were 

collected after Py desorption at 100, 200, 300°C for 30 min, shown from top to bottom for each 

sample. 

 

procedure had 3d5/2 component at 182.8 eV (monoclinic phase) and in the region 183.3–186 eV 

(tetragonal phase) corresponding to Zr (IV) connected to electron-attractive groups [31-33]. After 

the sulfation the presence of sulfur into two components at 169 and 170 eV was detected, 

corresponding to deprotonated sulfated species and protonated ones, respectively. Mainly 

deprotonated sulfate species connected to the bidentate complex formation are registered in our 

samples. The asymmetric peak in the O 1s region for all samples (Fig. 5) shows the presence of one 

main component, which is attributed to oxygen in sulfates (532.4 eV) and a low intensive peak, 

registered at higher BE (534 eV) and it is due to surface OH groups.  

The components of the spectra determined by deconvolution are presented in Table 3. The data in 

Tables 2 and 3 show that only about one third of the bulk sulfur content (16.9-18.2 wt.%) can be 

found on the surface of the samples (5.3-5.6). Most of the sulfate groups in the catalysts with lower 

surface area are inaccessible for the reactant, whereas the sulfate groups on the samples with higher 

surface area can be found in the mesopores and can act as Brönsted acid centers essential for 

esterification reaction. 



11 

 

FT-IR spectra of adsorbed pyridine are presented in Fig. 6. FT-IR spectra of sulfated samples 

contain bands characteristic of both Lewis and Brönsted acid sites (Fig. 6). The protonated Py 

molecules coordinated to the conjugated base of the solid Brönsted acid (Py-B) exhibit bands at 

1537 cm−1 and 1640 cm−1. The Brönsted acidity of the sulfated ZrO2 samples prepared at 100°C is 

higher than that of prepared at 140°C. FT-IR data of Py desorbed at higher temperature is 

characteristic for the strength of acid sites of the samples. Integrated intensity data for Py desorbed 

at 100, 200 and 300°C can be found in Table 4. It can be seen that the аrea of Brönsted acid band 

and the calculated B/L ratio are higher for SO4
2-/ZrO2(100)T and SO4

2-/ZrO2(100). The calculated 

of B/L ratio increase at higher temperature but this effect is less pronounced for the SO4
2-

/ZrO2(100)T and SO4
2-/ZrO2(100) samples, indicating the presence of high concentration of strong 

Brönsted acid sites (Table 4).  
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Fig. 7 Catalytic activity of sulfated zirconia catalysts in levulinic acid esterification with ethanol. 

Reaction conditions: reaction temperature - 70°C; 2 g LA and 0.050 g catalyst (2.5 wt. % 

catalyst/LA); LA/ethanol weight ratio - 1:5.  
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3.2. Catalytic activity for LA esterification with ethanol 

The catalytic activity of the sulfated and none sulfated mesoporous ZrO2 nanoparticles was studied 

in esterification of levulinic acid with ethanol. The only registered products are ethyl levulinate and 

water. Non-sulfated ZrO2 samples show very low catalytic activity (around 1.5 - 2 % after 5 h of 

reaction) (not shown). The sulfation treatment of the Zr-containing samples leads to a significant 

increase in the catalytic activity (Fig. 7). The highest catalytic activity was observed for sulfated 

ZrO2 sample, obtained by hydrothermal synthesis at 100oC with template. The result could be 

attributed to the higher concentration of strong acid sites (Table 3) and the higher surface area 

(Table 2) of this sample assuring the high zirconia dispersion even at high calcination temperature 

(500oC) after sulfation procedure. The obtained sulfated ZrO2 samples show much higher catalytic 

activity than the sulfated bulk ZrO2 sample. The hydrothermal synthesis at a lower temperature 

(100oC) in the presence of template favors the formation of smaller ZrO2 particles with size of 1-2 

nm, which has additional positive effect on the dispersion of sulfate groups on the mesoporous 

ZrO2. Despite the equal particles size (5-6 nm) of sulfated ZrO2 nanoparticles, synthesized at 140oC 

with or without template, the SO4
2-/ZrO2(140)T shows higher catalytic activity because of its higher 

concentration of Brönsted acid sites and higher surface area compared to its analog, synthesized 

without template. It seems that both particle size and surface area have significant effect on the 

formation of acid sites and therefore on their activity in levulinic acid esterification.  

With the SO4
2-/ZrO2(100)T catalyst more than 80 % of LA conversion can be achieved, a higher 

value than the one obtained by similar type of catalysts in the open literature [6, 15, 34, 35]. The 

SO4
2-/ZrO2 sample [6] shows 9 % conversion of LA to ethyl levulinate at the same reaction 

conditions (70°C, 8 h reaction time, ethanol/LA molar ratio of 5:1, 2.5 wt.% of catalyst).  The 

sulfated Si doped ZrO2 sample shows much higher catalytic activity even at the applied reaction 

conditions (T= 70°C, LA:EtOH = 1:10, 10.0 wt.% of catalyst), where much higher amount of 

catalyst was applied. The higher catalytic activity of our SO4
2-/ZrO2(100)T sample can be explained 

by the high surface area, which can assure good accessibility of reactant molecules to the active 
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sites. The main problem of the sulfated zirconia samples is their reusability, which is of key 

importance for practical applications. A negligible activity decrease was registered after 3 reaction 

cycles on the SO4
2-/ZrO2(100)T sample – 86 % after 8 h reaction time with fresh catalyst, compared 

to 81 % after 5 h reaction time in 3 reaction cycles. The less pronounced leaching of sulfate groups 

registered on the SO4
2-/ZrO2(100)T sample after the catalytic experiment, registered by TG analysis 

(Table 2), compared to the other studied samples could be a possible reason for its stable catalytic 

activity. The use of template for the synthesis of mesoporous ZrO2 nanoparticles favors the 

formation of active sites assuring the excellent catalytic performance of the catalysts in the studied 

reaction.  

 

4. Conclusions 

Zirconia nanomaterials were prepared by hydrothermal method at two reaction temperatures (100 

and 140°C) with or without template assistance and were modified by post synthesis method with 

sulfate groups. The synthesis temperature and the presence of template are of great importance for 

the preparation of nanosised ZrO2 with high surface area and better catalytic performance in 

esterification of levulinic acid with ethanol. Sulfated ZrO2 catalyst obtained by template-assisted 

hydrothermal synthesis at 100°C followed by sulfation and calcination at 500°C showed the highest 

catalytic activity among all investigated catalyst amounting to 86 % of ethyl levulinate after 8 h of 

reaction time. The obtained nanosized ZrO2 materials are promising catalysts for the heterogeneous 

esterification of levulinic acid. 
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Table 1 Physico-chemical properties of the studied mesoporous ZrO2 nanoparticles 

Samples Crystallite sizea 

(nm) 

SBET 

(m2/g) 

Pore Volume 

(cm3/g) 

PDb 

(nm) 

ZrO2(100) 5 190 0.30 5.4 

ZrO2(100)T 1-2 263 0.44 5.2 

ZrO2(140) 6-7 150 0.30 5.3 

ZrO2(140)T 6-7 196 0.36 5.6 
a derived from XRD by applying Scherrer equation; b average pore diameter determined by BJH 

method. 

 

Table 2 Physico-chemical properties of the mesoporous sulfated ZrO2 nanoparticles 

Samples SBET 

(m2/g) 

Pore 

Volume 

(cm3/g) 

PDa 

(nm) 

SO4
2- 

cont.b 

(wt.%) 

SO4
2- 

cont./SBE

T 

S contc, 

(wt.%) 

SO4
2- 

cont.d 

(wt.%) 

SO4
2-

/ZrO2(100) 

120 0.30 5.3 35.0 0.44 11.7 43.5 

SO4
2-

/ZrO2(100)T 

252 0.40 5.2 35.8 0.21 12.0 49.5 

SO4
2-

/ZrO2(140) 

83 0.25 5.3 33.7 0.61 11.2 43.6 

SO4
2-

/ZrO2(140)T 

115 0.30 5.5 36.4 0.47 12.1 48.2 

SO4
2-

/bulkZrO2 

5 - - 33.6 10.1 11.2 24.8 

a average pore diameter determined by BJH method; b determined by TG method of the fresh 

catalysts; c recalculated from SO4
2- content determined by TG analysis;d determined by TG method 

of the spent catalysts. 

 

Table 3 XPS parameters of the studied SO4
2-/ZrO2 samples 

Samples 
Zr 

(at. %) 

O 

(at. %) 

S 

S/Zr O/Zr 

Components of Zr3d peak 

(at.%) (wt.%) 
Zr 3d 

(182.6 eV) 

Zr 3d 

(184.2 eV) 

Zr 3d 

(186.3 eV) 

SO4
2-

/ZrO2(100)T 

8.3 
75.1 

16.6 5.3 2.0 9.0 15.3 84.7 0 

SO4
2-

/ZrO2(140)T 

7.9 
74.6 

17.5 5.6 2.2 9.4 0 100 0 

SO4
2-/ZrO2(140) 7.5 75.2 17.3 5.5 2.3 10.0 0 63.5 36.5 
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Table 4 Acidity of sulfated samples determined by FT-IR spectroscopy of adsorbed pyridine 

Samples Py des. 

temperature/°

C 

Area of Lewis acid 

band (1447 cm-1) 

Area of Brönsted acid 

band (1538 cm-1) 

B/L 

SO4
2-

/ZrO2(140) 

100 0.023 0.417 18.1 

 200 0.010 0.336 33.6 

 300 0.009 0.254 28.2 

SO4
2-

/ZrO2(140)T 

100 0.045 0.549 12.2 

 200 0.018 0.475 26.4 

 300 0.005 0.380 76.0 

SO4
2-

/ZrO2(100) 

100 0.107 0.604 5.6 

 200 0.076 0.509 6.7 

 300 0.062 0.402 6.5 

SO4
2-

/ZrO2(100)T 

100 0.098 0.622 6.4 

 200 0.053 0.511 9.6 

 300 0.041 0.404 9.9 

 


