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ABSTRACT 

 

 The effect of four general anesthetics, namely chloroform, halothane, diethyl ether, 

and enflurane on the free volume fraction and lateral pressure profiles in a fully hydrated 

dipalmitoylphosphatidylcholime (DPPC) membrane is investigated by means of computer 

simulation. In order to find changes that can be related to the molecular mechanism of 

anesthesia as well as its pressure reversal, the simulations are performed both at atmospheric 

and high (1000 bar) pressures. The obtained results show that the additional free volume 

occurring in the membrane is localized around the anesthetic molecules themselves. 

Correspondingly, the fraction of the free volume is increased in the outer of the two 

membrane regions (i.e., at the outer edge of the hydrocarbon phase) where anesthetic 

molecules prefer to stay in every case. As a consequence, the presence of anesthetics 

decreases the lateral pressure in the nearby region of the lipid chain ester groups, in which the 

anesthetic molecules themselves do not penetrate. Both of these changes, occurring upon 

introducing anesthetics in the membrane are clearly reverted by the increase of the global 

pressure. These findings are in accordance both with the more than sixty years old “critical 

volume hypothesis” of Mullins, and with the more recent “lateral pressure hypothesis” of 

Cantor. Our results suggest that if anesthesia is indeed caused by conformational changes of 

certain membrane-bound proteins, induced by changes in the lateral pressure profile, as 

proposed by Cantor, the relevant conformational changes are expected to occur in the 

membrane region where the ester groups are located.  
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1. INTRODUCTION 

 

 In spite of the fact that general anesthetics are routinely used in the everyday surgical 

practice for more than one and a half centuries, and that it is also known for more than a 

century that they act in the membrane of certain cells, still very little is known about the 

molecular mechanism of general anesthesia. Some hypotheses assume that anesthesia is 

caused by the specific interaction between the anesthetic molecules and certain membrane-

bound proteins.
1-5

 However, in the frame of such “protein theories” it is very difficult to 

account for the large chemical variety of the general anesthetics. Further, neither the 

protein(s), nor their active site(s) responsible for the anesthetic action have been 

unambiguously identified yet.  

 Alternative explanations, called “lipid theories” conjecture that anesthetics alter 

certain properties of the lipid matrix, which, in turn, alters the conformation, and hence also 

the function of certain proteins.
6-13

 Several such properties of the lipid membrane have been 

hypothesized to be behind the molecular mechanism of anesthesia in the past six decades. 

Thus, in his “critical volume hypothesis”, Mullins claimed that anesthesia occurs if the molar 

volume of the membrane exceeds a certain limit.
6
 This assumption was later rationalized by 

claiming that anesthetics increase the ordering of the lipid tails, which leads to an increased 

thickness of the membrane.
11,12,14

 In some other studies the fluidity of the membrane was 

thought to be the relevant property in this respect.
15,16

 Although a number of 

experimental
11,12,15,16

 and computer simulation studies
17-20

 provided results that are consistent 

with the above hypotheses, other studies found these properties to be insensitive to the 

presence of anesthetics,
21-25

 or even provided results contradicting some of these 

assumptions.
26-29
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 This controversy of the existing results largely originates from the fact that different 

anesthetics as well as membranes of different compositions have been considered in the 

different studies. Nevertheless, any possible explanation of the molecular mechanism of 

anesthesia in the frame of the lipid theories has to be valid for all general anesthetics as well 

as for all reasonable models of the cell membrane. Further, as it is well known since the 

1950s, the anesthetic effect is reverted at elevated pressures (i.e., at about 100-200 bar).
15,30-32

 

Thus, any such explanation has also to account for this pressure reversal.  

 In 1997 Cantor suggested that the relevant membrane property lying behind the 

molecular mechanism of anesthesia might be the lateral pressure profile.
13

 According to this 

suggestion, anesthetics modify this profile in such a way that it changes the conformational 

equilibrium and hence also the function of certain proteins. Although this hypothesis became 

rather popular in the past years, its experimental test seems to be almost impossible, as it 

would require the measurement of certain components of the pressure tensor with an 

Angström resolution. Computer simulation investigation of this hypothesis, on the other hand, 

is hindered by the fact that it requires the local expression of a quantity (i.e., the pressure, 

more precisely, its lateral component) that is inherently non-local. According to the 

mechanical definition, the pressure contribution coming from the interaction of a particle pair 

can be calculated as a line integral over an open path connecting the two particles, but the 

resulting pressure depends, in general, on the choice of the path.
33

 However, it was shown that 

certain reasonable choices of the integration path, such as the Irwing-Kirkwood
34

 and the 

Harasima
35

 profiles provide compatible results with each other at least for the lateral 

component of the pressure.
36

 The use of the Harasima path has two additional advantages. 

First, this way the lateral pressure contribution of such a pair interaction can be distributed 

between the positions of the two interacting particles, which makes the calculation of the 

lateral pressure profile computationally very efficient.
37

 Further, unlike the Irwing-Kirkwood 
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contour, the Harasima path can also be used in cases when the potential energy of the system 

is not pairwise additive.
36

 The importance of this feature lies in the fact that even if the 

potential functions used in the simulation are pairwise additive, in cases when the long range 

part of the electrostatic interaction is taken into account by means of the Ewald summation 

method
38-40

 or any of its mesh variants,
41-43

 the reciprocal space term of this correction makes 

the total potential energy of the system not pairwise additive.  

 Although it was shown by Sonne et al. more than a decade ago how the lateral 

pressure contribution of the Ewald summation can be taken into account,
36

 its large 

computational cost prevents its use in simulations of systems as large as needed in studying 

lipid membranes. This difficulty led to the common practice in calculating lateral pressure 

profiles in membranes that the system is simulated using one of the fast, particle mesh 

variants of the Ewald method, and the pressure profile is calculated a posteriori on a large set 

of saved sample configurations, replacing the Ewald method with cut-off electrostatics using 

a cut-off value as large as possible.
44-52

 However, such a change in the potential between the 

simulation and the subsequent analysis might lead to a surprisingly large systematic error in 

the calculated pressure values, which can add up to several hundred bars if the applied cut-off 

is not sufficiently large.
53,54

 Very recently we demonstrated how lateral pressure profile can 

be calculated on the fly, in an accurate and computationally very efficient way using the 

Harasima path, when the long range part of the electrostatic interaction is taken into account 

in the simulation by one of the fast particle mesh Ewald methods.
53

 The capability of this 

method for such calculations was later demonstrated by calculating the lateral pressure profile 

at the liquid-vapor interface of several molecular liquids.
55

 

 In our recent publications we have studied a fully hydrated 

dipalmitoylphosphatidylcholine (DPPC) bilayer, as a simple model of the cell membrane, in 

the absence of anesthetics as well as in the presence of four widely used general anesthetic 
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molecules, namely chloroform, halothane, diethyl ether, and enflurane, both at atmospheric 

pressure and at 1000 bar, considering both the gel ()
56

 and the biologically more relevant 

liquid crystalline () phase
57

 of the bilayer. Our main approach was based on the idea that 

relevant membrane properties related to anesthesia must change in the same way upon 

addition of any general anesthetics, and in the opposite way upon increasing the pressure. 

Although a number of the membrane properties (e.g., density profiles, tail and headgroup 

orientation, tail ordering, etc.) were tested, we found that only the lateral membrane density 

(or area per headgroup) meets the above two criteria. The finding that in systems where 

anesthesia is supposed to occur the area per headgroup value exceeds a certain threshold is 

also consistent with the old critical volume hypothesis of Mullins,
6
 although it rationalizes 

this hypothesis in a different way than what was thought for a long time, namely, through the 

increase of the area rather than the thickness of the membrane.  

 Among the membrane properties investigated so far, the lateral pressure profile is 

missing, due to reason related to the technical difficulties discussed above. Having now at 

hand an efficient tool to calculate the local pressure, including also long-range interactions,
51

 

enables us to calculate the lateral pressure profile also in lipid membranes in a 

computationally feasible way. Therefore, we have repeated our simulations, performed at 

310 K, corresponding to the biologically more relevant  phase of the bilayer, by calculating 

also the pressure profile in the membrane. To further investigate the origin of the observed 

effect of the anesthetics and overall pressure on the lateral density, we have performed a 

detailed analysis of the free volume properties of the membrane, using the Voronoi-Delaunay 

method,
58-61

 both in the presence and absence of anesthetics as well as both at atmospheric 

and high pressure. Again, we are looking for changes that occur in the same direction upon 

addition of any of the anesthetics considered, but in the opposite direction upon increasing the 

pressure. 
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 This paper is organized as follows. In section 2 details of the computations, including 

the molecular dynamics simulations performed, the calculation of the lateral pressure profile, 

and Voronoi-Delaunay analysis of the free volume properties are given. The obtained results 

are presented and detailed in section 3. Finally, in section 4 the most important conclusions of 

this study are discussed and summarized.  

 

 

2. COMPUTATIONAL METHODS 

 

 2.1. Molecular Dynamics Simulations. Simulations of the fully hydrated neat DPPC 

bilayer as well as bilayers containing four different general anesthetics, namely chloroform 

(CF), halothane (HAL), diethyl ether (DE), and enflurane (ENF) have been performed on the 

isothermal-isobaric (N,p,T) ensemble at the pressures of 1 and 1000 bar. The schematic 

structure of these molecules is illustrated in Figure 1. The temperature of the systems has been 

kept at 310 K. The rectangular basic simulation box has consisted of 256 DPPC molecules, 

arranged in a bilayer containing 128 molecules in each of the two leaflets. To ensure full 

hydration, which requires the water to lipid molar ratio to exceed 29.1,
62

 8132 water 

molecules have been used. In the systems containing anesthetics 112 chloroform, 72 

halothane, 192 diethyl ether, or 96 enflurane molecules have also been placed in the 

hydrocarbon region of the membrane. The number of the anesthetic molecules has been 

chosen in such a way that they correspond to roughly the same anesthetic mass density in all 

the four systems. The molar fraction of the anesthetic molecules used in the simulations well 

(i.e., by a factor of about 3-4) exceeds what is used under surgical conditions, in order to 

magnify any possible effect of them on the membrane properties, as suggested by Oh and 
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Klein.
18

 For similar reasons, the pressure of 1000 bar used in the high pressure simulations is 

also considerably higher than what is needed for pressure reversal. 

 DPPC molecules have been modeled using a GROMOS87-based force field,
63

 

developed specifically for lipids. According to this potential model, the CH, CH2, and CH3 

groups have been treated as united atoms. This model of DPPC is known to be in the 

biologically more relevant  phase at T = 310 K and p = 1 bar.
64

 Chloroform, diethyl ether, 

and enflurane molecules have been described by the GROMOS96 force field,
65-68

 for 

halothane the potential model of Scharf and Laasonen
69

 has been used, whereas water 

molecules have been described by the rigid, three-site SPC potential.
70

 The geometry of the 

water molecules as well as all bond lengths of the DPPC and anesthetic molecules have been 

kept fixed by means of the SHAKE algorithm.
71

 Angular and torsional flexibility of DPPC 

and the anesthetics has been allowed, according to the force fields used. All interactions have 

been truncated to zero beyond the group-based center-center cut-off distance of 9.0 Å. The 

long range part of the electrostatic interaction has been accounted for using the smooth 

particle mesh Ewald (sPME) method.
42

  

 The simulations have been started from already equilibrated configurations obtained 

from our previous work,
57

 and have been performed using an in-house modified version of the 

GROMACS 5.1 molecular dynamics simulation package,
72

 which also distributes the lateral 

pressure among all the atoms present in the basic box.
73

 The equations of motion have been 

integrated in time steps of 2 fs, using the leapfrog algorithm. The temperature and pressure of 

the systems have been controlled by means of the Nosé-Hoover thermostat
74,75

 and Parrinello-

Rahman barostat,
76

 respectively, using the characteristic time of 0.5 ps in both cases. Pressure 

has been controlled in an anisotropic way, namely separate couplings have been employed 

along all three spatial directions. The lateral pressure profile has been calculated over a 20 ns 

long equilibrium trajectory in each system, whereas for the calculation of the free volume 
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characteristics 2000 sample configurations per system, separated by 10 ps long trajectories 

each, have been saved. Equilibrium snapshots of the ten systems simulated are shown in 

Figure 2. Finally, all profiles calculated have been averaged also over the two sides of the 

membrane, therefore, in the following they will always been shown only in one side of the 

membrane.   

 

 2.2. Calculation of the Lateral Pressure Profile. The calculation of the lateral 

pressure profile requires the decomposition of the pressure to contributions of well defined 

positions, preferably localized at the positions of the atoms. Any element of the global 

pressure tensor can be expressed as the sum of a kinetic, or ideal gas, and a potential, or 

excess contribution: 

 














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p
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12
,    (1) 

where mi is the mass of the ith particle, 

iv  and 

iv  are the  and  components of its velocity, 

V is the total volume of the system, and , corresponding to the excess contribution, is the 

respective element of the virial tensor. Clearly, the kinetic part of the pressure can trivially be 

decomposed to contributions of the individual atoms. However, in the case of pairwise 

additive forces the virial term can be written as an integral over an open path Cij connecting 

the pair of the interacting atoms i and j, as  

 

  

ij
Cij

ij
dsf )(

2

1
)( srr 


 .   (2) 

Here we use the Harasima path,
35

 because it allows the distribution of the lateral pressure 

among the atomic positions (equally distributing the contributions coming from pair 

interactions between the positions of the two interacting atoms).
37

 Further, the lateral pressure 
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can be localized this way even in the case of non-pairwise additive potential terms, such as 

the reciprocal space contribution of the Ewald summation or its particle mesh variants.
36

 

Thus, in the particle mesh based variants of the Ewald method, one of which is used also here, 

the virial contribution is distributed on the mesh nodes as
53

   

 

  )()(~)(FFT)(
~ 21rec,

mmmr   gfFFTBp
i  ,   (3) 

where FFT stands for fast Fourier transformation,
77

 rp is the position of a given mesh node, 

f(m
2
) and g(m) are suitably chosen functions,

53
 the charge distribution can be given as  

 

 

i

iipp qW
h

)(
1

)(~ rrr ,    (4) 

W(rp- ri) is a suitably chosen charge assignment function, qi is the charge of atom i, h is the 

mesh spacing, and the function B(m) depends on the specific interpolation scheme employed 

by the given variant of the particle mesh Ewald method. The virial contribution can then be 

interpolated back to obtain the contributions assigned to the individual atoms as 

 

 

pr

pip
iii rrWr

V

q
)()(

~ rec,rec,
 .   (5) 

It should be noted that in these equations indices  and  can only stand for the Y and Z axes, 

being parallel with the plane of the membrane, not only because here we are interested in the 

profile of only the lateral contribution of the pressure, but also because the use of the 

Harasima path does not allow the calculation of the normal component of the local virial 

tensor. 

 Having the lateral pressure been decomposed to contributions coming from the 

individual atoms, ipL , its profile along the membrane normal axis, X, can simply be 

calculated as 
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  )()( comLL XXXp
A

V
Xp i

i

i    ,   (6) 

where A is the cross-section area of the system, the brackets <…> denote ensemble averaging, 

whereas Xi and Xcom are the positions of the ith atom and of the center-of-mass of the lipid 

bilayer, respectively, along the X axis. 

 

 2.3. Calculation of the Free Volume Characteristics. Free volume properties are 

traditionally analyzed using the Voronoi and Delaunay tessellations in the system of 

interest.
58,59

 However, in its original formulation the Voronoi-Delaunay method assumes that 

the system to be studied consists of points (or spheres of equal radii, such as in atomic 

systems). When studying molecular systems, which are built up by spherical particles (i.e., 

atomic sites) of different radii, the original method needs to be improved. To keep the 

underlying physical concept unchanged, one should use the Voronoi S-tessellation,
78-80

 where 

distance of a spatial point is measured from the surface rather than from the centre of the 

atoms. Hence, the Voronoi S-region is the locus of the spatial points that are closer to the 

surface of a given atom than to that of any other atoms. Besides the Voronoi S-region, the 

other important construction of the method is the Delaunay S-simplex (tetrahedron), defined 

by four mutually neighboring atoms. The radius of the largest empty sphere that can be 

inscribed between these atoms characterizes the size of the interstitial void located between 

them. The position and radius of these interstitial spheres can be calculated simultaneously 

with the tessellation itself,
79

 while the volume of the Delaunay simplexes themselves can 

easily be obtained by means of elementary geometry.  

 In contrast to the interstitial spherical cavities, the determination of the entire empty 

volume (of irregular shape) located between the atoms is a considerably more complicated 

task. First, while the ordinary Voronoi regions are convex polyhedra with flat faces, the 
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Voronoi S-regions have curved faces, and thus their volume can only be calculated 

numerically.
81

 This makes the use of the Voronoi S-tessellation unsuitable for volumetric 

studies, since such studies need accurate and fast calculations. A reasonable compromise 

between computational cost and accuracy can be the use of the power (radical) Voronoi-

Delaunay tessellation,
60,82,83

 where the faces of the Voronoi regions are defined by the planes 

from the points of which the tangents drawn to the two spheres are of equal lengths. In system 

where the radii of the various atoms do not differ much from each other, such as in the present 

case, the power Voronoi tessellation retains the physical meaning of the original method, as in 

such cases the power Voronoi regions provide a very good approximation of the Voronoi S-

regions. Another difficulty stems from the presence of strongly overlapping (i.e., chemically 

bound) atoms. Several approaches have been proposed previously to overcome this problem, 

involving either the calculation of the volume of the overlapped regions of the atoms,
84

 or that 

of the voids.
85,86

 In the present work, we use an approach based on Delaunay subsimplexes,
87

 

in which the occupied volume of the Delaunay simplexes (and of the Voronoi regions with 

flat faces) are calculated with analytical formulas for arbitrary systems of overlapping 

atoms.
86,88

 Recently, this method was used to calculate the volumetric characteristics of 

proteins in aqueous solutions.
89,90

 

 An important characteristic of lipid bilayers is the profile of free volume along the axis 

perpendicular to the plane of the membrane. This profile can be calculated in several ways, 

e.g., by placing sample points in the system, either randomly or along a grid.
91-94

 Having the 

power Voronoi-Delaunay tessellation of the system determined, however, the profile of the 

free volume fraction, , can readily be calculated as the sum of the empty volumes of the 

Delaunay simplexes located in the different slices of the system, normalized by the total 

volume of these simplexes themselves (the position of a simplex being defined as that of its 

center). 
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3. RESULTS  

 

 3.1. Lateral Pressure Profiles. The lateral pressure profiles obtained in the pure 

membrane at 1 bar as well as in the anesthetic containing membranes both at 1 and 1000 bar 

are shown and compared in Figure 3. The pressure profiles exhibit a constant plateau in the 

bulk aqueous phase around the pL value corresponding to the overall pressure of the system. 

This plateau is followed by a clear maximum at about X = 20 Å, and a minimum around the X 

value of 12-13 Å. The position of the peak corresponds to the dense region of the lipid 

headgroups, while that of the minimum is close to the average position of the C=O groups of 

the lipid tails,
57

 i.e., the boundary of the apolar region of the membrane. In the hydrocarbon 

phase, the profile is again roughly constant, apart from the marked peak occurring at X = 0 Å, 

i.e., right in the middle of the membrane. It should be noted that here the density of the 

membrane is of minimum,
57

 therefore, the presence of this lateral pressure maximum cannot 

simply be explained by the effect of the density. Instead, it is sensible to assume that the outer 

part of the hydrocarbon phase is characterized by a rather homogeneous distribution of the 

atoms, which is reflected in the more or less constant value of pL. By contrast, in the middle 

of the membrane, i.e., in the region of the chain terminal CH3 groups, the spatial distribution 

of the atoms exhibits larger fluctuations, relatively large voids are surrounded by rather 

crowded patches, and the presence of these high density patches leads to the relatively high 

lateral pressure value. This explanation is also in accordance with our earlier finding that the 

middle of a phospholipid membrane is characterized by larger but considerably less spherical 

voids than the outer part of the hydrocarbon region.
78
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 The increase of the pressure of the system leads, as expected, to the corresponding 

overall shift of the entire lateral pressure profile, without altering much of its shape. The 

inclusion of the anesthetic molecules has a much smaller effect on the lateral pressure profile. 

Nevertheless, it leads to a slight shift of the minimum position away from the membrane 

interior and, correspondingly, to a clear decrease of the lateral pressure in the X range of 

13-18 Å in every case. This range corresponds to the lipid side of the headgroup region, 

where the glycerol backbone of the DPPC molecules as well as the ester groups linking the 

fatty acid tails to this backbone are located. In this region, the behavior of the lateral pressure 

profile meets both of our criteria, namely, it is changed in the same way (i.e., decreased) upon 

the addition of all the anesthetic molecules considered, and it is changed in the opposite way 

(i.e., increased) by increasing the overall pressure. This change might thus be related to the 

molecular mechanism of anesthesia. 

 Since in calculating the lateral pressure profile the pressure contributions were 

distributed among the different atoms,
37

 it is straightforward to separate the contributions of 

the lipid, anesthetic, and water molecules to the entire pL(X) profile. This separation is shown 

in Figure 4 for the anesthetic containing systems simulated at 1 bar. To further analyze the 

origin of the above discussed change of the pL(X) profile in the X range of 13–18 Å, we have 

calculated the difference of the lipid, anesthetic, and water contributions to the pL(X) profile 

between the anesthetic containing and pure membrane at 1 bar in every case. The obtained 

results are shown in Figure 5. The anesthetic molecules always increase the lateral pressure in 

the membrane interior, where they are located. In the middle of the membrane, the lipid 

contribution is decreased in the presence of anesthetics, presumably due to the lateral 

expansion of the membrane.
57

 In the X range relevant for us, i.e., 13 Å < X < 18 Å, both the 

lipid and the water contribution to pL(X) is decreased in the presence of anesthetics. Clearly, 

the anesthetic molecules themselves do not reach this part of the membrane, but they always 
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stay somewhat closer to the middle of the bilayer.
57

 On the other hand, water molecules can 

penetrate into this region,
95,96

 as the O atoms and polar ester (C-O-C=O) groups of the lipid 

tails are located here.
57

 The observed decrease of the lateral pressure in this part of the 

membrane can be attributed to the fact that the anesthetic molecules are accumulated in the 

immediate vicinity of this region, but do not penetrate here, and hence the anesthetic-induced 

lateral expansion of the membrane
57

 is expected to be the strongest here.  

 

 3.2. Free Volume Properties. In analyzing the voids in the different membranes, the 

simplest characteristics to be discussed is the size distribution of the elemental spherical 

vacancies located between the atoms. As it was described above, these interstitial voids are 

determined by the Delaunay tessellation of the system, namely each void corresponds to the 

center of the Delaunay simplex formed by four mutually neighboring atoms.
78

 This fact 

allows us not only to determine these spherical voids, but also to assign them to different parts 

of the system according to the atoms forming the corresponding Delaunay simplexes. Thus, 

here we defined an elemental void to belong to the lipid phase of the system if all the four 

atoms forming its Delaunay simplex belong to a DPPC (or anesthetic) molecule. Similarly, 

voids corresponding to Delaunay simplexes formed by four water atoms are regarded to 

belong to the water phase of the system, whereas those corresponding to Delaunay simplexes 

formed both by lipid and water atoms are regarded to belong to the interfacial region of the 

system.  

 The distribution of the radius Ri of the elemental interstitial voids belonging to these 

three different parts of the system is shown in Figure 6 as obtained in the pure membrane at 

1 bar as well as in the membranes containing chloroform both at 1 and 1000 bar. (Similar 

distributions have been obtained with the other anesthetic molecules, as well.) As is seen, the 

inclusion of anesthetics in the membrane does not alter the P(Ri) distributions in the water 
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phase and in the interfacial region, but shifts the distribution to slightly higher values in the 

lipid part of the system. This finding is not surprising, since the anesthetic molecules are 

located deeply inside the hydrocarbon phase of the membrane. Further, as it is expected, the 

increase of the pressure shifts all these distributions to lower values. 

 Table 1 shows the empty volume corresponding to the lipid, anesthetic, and water 

molecules, as obtained in the different systems simulated. As it was described above, the total 

volume of the Voronoi cell of an atom can be divided into “occupied” and “empty” parts, the 

former being covered by the given atom itself, while the latter not. Since the occupied volume 

of a Voronoi region simply reflects the size of its central atom, it is sensitive neither to the 

pressure nor to the presence of the anesthetics. The amount of the empty volume, on the other 

hand, is characteristic of the local arrangement of the atoms. As it is seen from Table 1, the 

empty volume corresponding both to the lipid and to the water molecules agree, within error 

bars, as obtained in the pure and anesthetic containing membranes at 1 bar in every case. On 

the other hand, considerably large empty volume is associated with the anesthetic molecules 

themselves in every case. In other words, the increase of the empty volume corresponding to 

the inclusion of the anesthetic molecules, evidenced by the lateral expansion of the 

membrane,
57

 is localized to the immediate vicinity of the anesthetic molecules. This finding is 

in line with our previous result that the presence of anesthetic molecules induces a decrease of 

the lateral pressure in the membrane region located in the immediate vicinity of the preferred 

position of the anesthetic molecules. Finally, as it is expected, the increase of the pressure 

leads to a marked decrease of the empty volume in every case, reverting thus the increase of 

the empty volume associated with the presence of the anesthetic molecules.  

 The profile of the free volume fraction, , across the membrane is shown in Figure 7, 

again as obtained in the pure membrane at 1 bar as well as in the anesthetic containing 

membranes both at 1  and 1000 bar. Clearly, the increase of the pressure leads to the decrease 
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of the empty volume fraction across the entire membrane. The inclusion of the anesthetic 

molecules in the membrane has a more subtle effect on the free volume profile. In general, it 

decreases the fraction of free volume, or leaves it unchanged at the aqueous side, and 

increases it at the lipid side of the dense headgroup region. Although there are several 

differences between the behavior of the different anesthetic molecules in this respect, the 

fraction of the empty volume is noticeably increased in their presence in the X range between 

about 8 Å and 16 Å in every case. This X range largely overlaps with that corresponding to 

the decrease of the lateral pressure (i.e., between about 13 Å and 18 Å), but extends also 

somewhat towards the membrane region in which the anesthetic molecules are located. It 

should be noted that, as described in our previous paper,
57

 anesthetic molecules prefer two 

distinct positions along the membrane normal axis in every case, namely the middle of the 

membrane, and the X range around 10 Å, although the relative weights of these two 

preferences can vary from anesthetic to anesthetic.
29,57,97

 Consistently, the fraction of the free 

volume is typically increased by the anesthetic molecules in both of these two regions; 

however, it is only the outer of these two regions in which all the anesthetic molecules 

considered leads to a clear increase of it.  

 Thus, our findings indicate that the increase of the empty volume in the membrane in 

the presence of anesthetics, associated with the anesthetic molecules themselves, leads to an 

overall increase of the fraction of empty volume in the membrane region where the anesthetic 

molecules are located, and also in the immediate vicinity of this region at its headgroup side. 

This results in a decrease of the lateral pressure in the region of the ester groups of the DPPC 

molecules, located right next to the membrane region in which the anesthetic molecules are 

accumulated. These changes are clearly reverted by the increase of the pressure, and hence 

they might be behind the molecular mechanism of anesthesia.  
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4. DISCUSSION AND SUMMARY 

 

 In our previous study we found that anesthetic induced lateral expansion of the 

membrane might be a process that is relevant for the molecular mechanism of anesthesia, 

because such a lateral expansion was observed upon the introduction of all anesthetic 

molecules considered, and this effect was clearly reverted by the increase of the pressure.
57

 

This finding was also consistent with the more than sixty years old critical volume hypothesis 

of Mullins.
6
 In the present study we analyzed in detail the origin of this anesthetic induced 

lateral expansion, and related it also to the hypothesis of Cantor, who claimed that anesthetics 

induce some changes in the lateral pressure profile of the lipid membrane, which alters the 

conformational equilibrium of certain membrane-bound proteins.
13

 In order to calculate the 

lateral pressure profile we used a computationally feasible method recently developed by us, 

which takes accurately into account also the lateral pressure contribution coming from the 

(non-pairwise additive) long range correction part of the smooth Particle Mesh Ewald 

method, and distributes the lateral pressure contributions among the different atomic sites.
53

 

 Previously, we also showed that anesthetics prefer two distinct positions in the 

membrane. The first of these positions is right in the middle of the membrane, while the 

second one is located at the outer edge of the hydrocarbon phase, close to the region of the 

C=O groups of the lipid tails.
57

 This finding was in agreement with the results of earlier 

coarse-grain simulations,
97

 and was later confirmed also by Chen et al.
29

 In the present study 

we have demonstrated that anesthetics located close to the C=O groups might be related to the 

aforementioned lateral expansion, and thus be responsible for the molecular mechanism of 

anesthesia. Thus, although in the presence of certain anesthetics the fraction of the empty 

volume is increased around both of these preferred positions, it is only at the outer position 
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that this increase of empty volume occurs in the presence of all anesthetics considered. 

Further, the presence of anesthetics is found not to alter the lateral pressure in the middle of 

the membrane, but to decrease it in the region of the ester groups of the lipid tails, very close 

to the outer preferred position of the anesthetic molecules.  

 We have shown here that the additional free volume occurring in the membrane upon 

addition of the anesthetics is localized right around the anesthetic molecules themselves, and 

thus, the empty volume increases in the region where anesthetics are preferentially located. 

This increase of the empty volume results in a decrease of the lateral pressure in the nearby 

region of the ester groups, where the anesthetic molecules do not penetrate. In other words, 

the lateral pressure decreases where the lateral expansion induced by the presence of 

anesthetics is not accompanied by the occurrence of additional (i.e., anesthetic) molecules. 

This way, we have found a link between the critical volume hypothesis of Mullins
6
 and the 

lateral pressure hypothesis of Cantor.
13

 Thus, by contrast to earlier claims,
11,12,14

 the increase 

of the membrane volume upon addition of anesthetics is caused by the lateral expansion rather 

than the thickening of the membrane.
57

 This lateral expansion is the strongest in the 

membrane region of the ester groups, where anesthetics do not penetrate, but it is right next to 

the outer of their two preferred positions. This leads to a clear decrease of the lateral pressure 

in this region, an effect that can simply be reverted by the increase of the overall pressure. As 

a consequence, given that indeed this change of the lateral pressure profile lays behind the 

molecular mechanism of anesthesia, the conformational changes of the relevant membrane 

bound protein molecules, predicted by Cantor,
13

 are also expected to occur in this region of 

the ester groups of the membrane.  
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Tables 

 

TABLE 1. Empty Volume (in Units of 10
6
Å

3
) Associated with the Different Molecules in the 

Different Membranes Simulated 

 DPPC  anesthetic  water 

 1 bar 1000 bar  1 bar 1000 bar  1 bar 1000 bar 

pure membrane 105.1±0.9 88.1±0.8  0 0  110.8±0.6 101.4±0.6 

membrane with CF 108.0±0.9 90.0±0.7  9.2±0.2 7.5±0.1  110.9±0.7 101.4±0.6 

membrane with HAL 105.7±0.9 84.8±0.8  5.6±0.1 4.6±0.1  110.8±0.7 101.2±0.6 

membrane with DE 104.9±0.8 91.5±0.6  13.2±0.2 11.3±0.1  110.6±0.6 101.3±0.6 

membrane with ENF 104.5±0.9 88.3±0.6  7.8±0.2 6.5±0.1  110.7±0.7 101.3±0.6 
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Figure legends 

 

Figure 1. Schematic structure of DPPC and of the anesthetic molecules considered. 

 

Figure 2. Equilibrium snapshot of the ten systems simulated. The C, O, N, and P atoms of the DPPC 

molecules are shown by green, red, light blue, and yellow colors, respectively. Water molecules are 

shown by red thin sticks, while anesthetic molecules are shown enlarged for better visibility (CF: 

green, HAL: dark blue, DE: red, ENF: olive).  

 

Figure 3. Comparison of the lateral pressure profile across the pure lipid membrane at 1 bar (solid 

curves) with the membranes containing anesthetics, simulated at 1 bar (filled circles) and 1000 bar 

(open circles). Top panel, orange color: membrane containing CF, second panel, red color: 

membrane containing HAL, third panel, green color: membrane containing DE, bottom panel, blue 

color: membrane containing ENF. X = 0 Å corresponds to the middle of the bilayer. Error bars are 

always smaller than the symbols. 

 

Figure 4. Total lateral pressure profile across the membranes containing CF (top panel), HAL 

(second panel), DE (third panel), and ENF (bottom panel), simulated at 1 bar (black open circles), 

along with the contributions given by the DPPC (brown solid lines), anesthetic (violet solid lines) 

and water molecules (cyan solid lines). X = 0 Å corresponds to the middle of the bilayer. 

 

Figure 5. Difference between the lateral pressure profile contributions of the DPPC (full circles), 

anesthetic (solid curves), and water molecules (open circles) as obtained in the anesthetic containing 

and pure membranes at 1 bar. Top panel, orange color: membrane containing CF, second panel, red 
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color: membrane containing HAL, third panel, green color: membrane containing DE, bottom panel, 

blue color: membrane containing ENF. X = 0 Å corresponds to the middle of the bilayer. 

 

Figure 6. Distribution of the radius of the elemental spherical interstitial voids in the lipid phase 

(brown), interfacial region (magenta), and water phase (cyan) of the pure membrane simulated at 

1 bar (solid curves), as well as in the chloroform containing membranes simulated at 1 bar (full 

circles) and 1000 bar (open circles).  

 

Figure 7. Profile of the fraction of empty volume in pure lipid membrane at 1 bar (solid curves), 

compared with that in the membranes containing anesthetics, simulated at 1 bar (filled circles) and 

1000 bar (open circles). Top panel, orange color: membrane containing CF, second panel, red color: 

membrane containing HAL, third panel, green color: membrane containing DE, bottom panel, blue 

color: membrane containing ENF. X = 0 Å corresponds to the middle of the bilayer. Error bars are 

always smaller than the symbols. 
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