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Abstract: 

 

 The adsorption behavior of three chlorinated methane derivative molecules, namely 

CH3Cl, CHCl3, and CCl4 is investigated at the (0001) surface of Ih ice at the tropospheric 

temperature of 200 K by means of grand canonical Monte Carlo simulations. This study 

completes our earlier investigations concerning the adsorption of CH4, CH2Cl2, and fluorinated 

methane derivatives. Our results show that neither CHCl3 nor CCl4 exhibits any adsorption. 

This complete lack of adsorption is attributed to the interplay of the very strong cohesion 

acting between the adsorbate molecules, and their relatively weak interaction with the ice 

phase. By contrast, CH3Cl does exhibit noticeable adsorption on ice, and the adsorbed 

molecules prefer to turn towards the ice surface by their H atoms, forming weak, C-H
….

O type 

hydrogen bonds with surface waters. The lateral (i.e., adsorbate-adsorbate) contribution to the 

total interaction energy of the adsorbed molecules is always considerably larger (in magnitude) 

than in the case of the corresponding fluorinated analogs, making also the total adsorption 

energy lower for the chlorinated molecules than for their fluorinated counterpart. As a 

consequence of this strong attraction between the chlorinated adsorbate molecules, their 

condensation occurs at lower chemical potential (and, hence, pressure) values than that of the 

fluorinated analogs, which prevents the formation or completion of the adsorption layer of the 

chlorinated molecules.  
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1. Introduction 

 

 Characterizing the adsorption processes at the ice surface is of fundamental importance 

in atmospheric sciences. Indeed, ice particles forming the polar stratospheric clouds (PSCs) 

have been recognized to participate in the chemistry of halogenated molecules in the 

troposphere that finally leads to the efficient catalytic destruction of ozone by halogenated free 

radicals.
1,2

 At lower altitudes, the selective trapping of various atmospheric pollutants at the 

surface of cirrus ice particles may be responsible for their partitioning from the gas to the ice 

phase, impacting thus on atmospheric chemistry.
3
 Adsorbed species on ice can also be 

scavenged from the troposphere by falling snow.
4
 Finally, the snowcap covering up to 50 % of 

the landmass in the Northern Hemisphere
5
 offers a large internal surface for interactions with 

atmospheric gases, where the trapped gases may undergo specific oxidative and/or 

photochemical processes that also have an impact on atmospheric chemistry.
6,7

 

 The adsorption properties of many atmospheric species on ice have thus been widely 

characterized (see, e.g., the reviews by Abbatt,
8
 Huthwelker et al.,

9
 and Bartels-Rausch et al.,

10
 

and also the compilation of kinetic and photochemical data by Crowley et al.
11

). Among these 

species, halocarbon molecules have received significant attention,
12

 not only because of their 

role in ozone destruction cycles, but also because some of these molecules are known to have a 

strong climate forcing effect.
13

 However, in the series of the experimental studies devoted to 

the characterization of the halocarbon-ice interactions, halomethane molecules were only 

considered a few times. In addition, most of these studies were based on the standard 

techniques of surface science, being thus performed far below the atmospherically relevant 

temperature range. Thus, Blanchard and Roberts,
14

 and later Sadtchenko et al.
15,16

 

characterized the interaction of CCl4 with ice using temperature programmed desorption (TPD) 

up to 130 K, and concluded that the intermolecular forces between this molecule and ice are 

quite weak, being typical of a physisorption process. They also showed that the adsorption 

state of CCl4 on amorphous ice depends on the surface coverage. Holmes and Sodeau used 

infrared (IR) spectroscopy to study the interaction of a large series of twenty-three 

halomethane molecules with ice at 12 K.
17

 They found that all these molecules interact via 

hydrogen bonding interaction between the surface waters and the halogen atom. As a 

consequence, the IR shift of the corresponding dangling H-bond was shown to strongly depend 
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on the type of the halomethane molecule.
17

 Schaff and Roberts focused on the adsorbed states 

of chloroform (CHCl3) on amorphous and crystalline ice by means of X-ray photoelectron 

spectroscopy.
18

 They evidenced significant differences between the monolayer and multilayer 

adsorption states of CHCl3 on crystalline ice, but found a single chloroform state on amorphous 

ice, irrespective of the surface coverage. The different adsorption behavior on crystalline and 

amorphous ices was later confirmed by the different desorption temperatures observed in TPD 

experiments.
19

 In these experiments, it was also shown that the chloroform molecules remain 

immobile at the ice surface up to the desorption temperature. A similar result was obtained 

later by Pysanenko et al. considering CH3Cl molecules adsorbed on ice, who concluded that 

the interaction with the polar water molecules inhibits the mobility of the adsorbed 

molecules.
20

 Moreover, it was also shown by means of metastable impact electron 

spectroscopy that CHCl3 molecules are adsorbed at the ice surface with their H atom oriented 

towards the substrate below 120 K,
21

 and for all chlorinated methane derivatives (CH4-xClx) 

that their interaction with water occurs through the oxygen atom.
22

 Finally, Vysokikh et al. 

focused on the interaction of ozone with CH4-xClx molecules adsorbed on a thin ice film over 

the temperature range of 77-292 K, and showed that these molecules cannot dissociate at the 

surface on ice, and therefore do not release chlorine, at least below 210 K.
23

  

 Despite these series of experimental studies, several questions remained open 

concerning the atomistic details of the interaction processes between chloromethane molecules 

and water at the ice surface, especially in the temperature range relevant for the upper 

troposphere - lower stratosphere (UTLS) region. Indeed, neither the orientation of the adsorbed 

molecules nor their exact location (i.e., above or within the surface layers of ice) are known in 

this temperature range. This information would, however, be of crucial importance to 

characterize the reactivity and photoreactivity of chloromethane molecules trapped by 

atmospheric ice particles or snow cover, and then better assess their exact role, for instance, in 

ozone destruction cycles.
2
 In addition, it would also be important to know what kind of 

behavior (i.e., Langmuir or not) their trapping at the ice surface exhibits, in order to better 

quantify the possible amount of chloromethanes that could be scavenged from the atmosphere, 

and thus improve our knowledge on the possible sinks for these molecules. These questions 

can conveniently be studied by computer simulation methods, as they can provide an insight at 

the atomistic level into a suitably chosen model of the system to be studied. Among the various 
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computer simulation methods, grand canonical Monte Carlo (GCMC)
24,25

 is particularly 

suitable for such studies, as in GCMC simulations the chemical potential rather than the 

number of the molecules is fixed. Thus, performing a set of GCMC simulations, in which the 

chemical potential of the adsorbate is systematically varied, the adsorption isotherm, i.e., the 

number of the adsorbed molecules as a function of their chemical potential can be conveniently 

calculated, and this function can then be converted to a more conventional (e.g., pressure 

dependent) form. Indeed, the GCMC method has been applied for studying the adsorption of 

several small molecules at various solid surfaces, including silicate minerals, such as 

kaolinite
26,27

 or zeolites,
28-34

 metal oxides,
35-38

 carbonaceous materials,
39-45

 covalent organic 

frameworks,
46-48

 self-assembled monolayers,
49,50

 and protein crystals.
51

 This method has also 

been widely applied for studying the adsorption of a number of adsorbates at the surface of 

ice,
52-60

 because the determination of the full adsorption isotherm is of central importance in 

addressing both the degree to which an atmospheric species partitions between the surface of 

ice and the gas phase, and also the corresponding mechanism. In this way, the extent of gas-to-

ice scavenging can be estimated, and this information can be incorporated into the various 

atmospheric models.
8
 

 The adsorption of halogenated methane derivatives at the surface of water or ice has, 

however, only been studied by computer simulation methods a handful of times. In an early 

study, we calculated the solvation free energy profile of CH2F2, CH2Cl2, and CHCl3 across the 

ice-vapor and water-vapor interfaces.
61

 Later, Habartová et al. calculated this profile across the 

water-vapor interface for all the partially chlorinated and brominated methane derivatives.
62

 

They also performed molecular dynamics simulations studying the properties of these 

molecules at the ice surface at infinite dilution, i.e., having one single adsorbate molecule at the 

ice surface.
63

 Harper et al. studied the adsorption of CH3Cl and CH3Br at the air/water interface 

at room temperature by vibrational sum frequency spectroscopy measurements as well as 

molecular dynamics simulations.
64

 Recently, using GCMC simulations, we compared the 

adsorption behavior of CH2F2 and CH2Cl2 at the surface of ice, and found that, due to its large 

cohesion, CH2Cl2 condenses even before the first adsorption monolayer could be built up.
58

 We 

also compared the adsorption behavior of methane and all the four different fluorinated 

methane derivatives (i.e., molecules described by the general formula CHnF4-n), and found that 

the molecules having a net dipole moment exhibit at least traces of multilayer adsorption.
59

 



 6 

 In the present study, we complete our earlier set of investigations by calculating the 

adsorption isotherm of the full set of differently chlorinated methane derivatives, i.e., 

molecules corresponding to the general formula CHnCl4-n, at the surface of Ih ice at the 

tropospheric temperature of 200 K. Since the isotherm of CH2Cl2 has already been calculated 

previously,
58

 we present new calculations concerning the adsorption of CH3Cl, CHCl3, and 

CCl4. The set of these compounds is completed by CH4, regarded here as a reference adsorbate, 

the adsorption isotherm of which has also been calculated previously.
59

  

 

 

2. Computer Simulations  

 

 The adsorption of CH3Cl, CHCl3 and CCl4 at the (0001) surface of Ih ice has been 

studied at the tropospheric temperature of 200 K by performing a set of Monte Carlo 

simulations on the grand canonical (,V,T) ensemble for each adsorbate, in which the chemical 

potential of the adsorbate, , has been systematically varied from values corresponding to 

practically no molecules being in the simulation box to values corresponding to the condensed 

phase of the adsorbate. The set of the adsorbate chemical potential values corresponding to the 

simulations are collected in Tables 1-3. The simulations have been performed in the same way 

as done previously when studying the adsorption of CH2Cl2
58

 and CH4.
59

 Thus, the X, Y and Z 

edge lengths of the rectangular basic simulation box have been 100 Å, 35.926 Å, and 38.891 Å, 

respectively, X being the interface normal axis. The Y and Z edge lengths have been chosen in 

accordance with the periodicity of the Ih ice crystal. The basic box has consisted of 2880 water 

molecules, arranged in 18 molecular layers along the X axis. This way, the two ice surfaces 

have been separated from each other by a roughly 35 Å wide vapor layer. At the beginning of 

the simulations the arrangement of the water molecules corresponded to the structure of the 

perfect (proton-disordered) Ih ice crystal, and two adsorbate molecules were randomly placed 

in the vapor phase of the system. Standard periodic boundary conditions have been applied in 

all directions.  

 The CH3Cl molecules have been modeled by the general AMBER force field (GAFF),
65

 

using the charge distribution proposed by Habartová et al.
62

 The CHCl3 and CCl4 molecules 

have been described by the potential model proposed by Dietz and Heinzinger,
66

 and by the 
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OPLS force field,
67

 respectively, while the five site TIP5P potential model
68

 has been used for 

water, since it describes accurately the melting point of Ih ice.
69,70

 All these potential models 

are rigid and pairwise additive, thus, the total energy of the system can simply be calculated as 

the sum of the pair interaction energies of the molecules. The interaction energy of a molecule 

pair is the sum of the Lennard-Jones and Coulomb contributions of all pairs of their respective 

interaction sites. Interaction sites of these models are located at the atomic positions, with the 

exception of the TIP5P water model, which contains also two non-atomic interaction sites in 

the direction of the lone pairs of the O atom.
68

 The interaction and geometry parameters of the 

potential models used are summarized in Tables 4 and 5, respectively. In accordance with the 

original parametrization of the TIP5P water model,
68

 all interactions have been truncated to 

zero beyond the center-center cut-off distance of 12.5 Å, the O and C atoms being regarded as 

centers of the water and adsorbate molecules, respectively.  

 To check the sensitivity of the results on the adsorbate potential model used, we have 

calculated the entire adsorption isotherm of CH3Cl also with the OPLS potential model.
71

 A 

few points along the isotherm of CHCl3 have also been recalculated using the OPLS model.
72

 

In the case of CH3Cl, we found a continuous increase of the number of adsorbed molecules as 

a function of the chemical potential, without observing any sudden jump of these data (see the 

inset of Figure 1). This observed lack of the point of condensation indicates that there is no 

vapor-liquid transition in this case, hence, the OPLS model of CH3Cl
71

 is already above its 

critical point at the simulation temperature of 200 K. Considering the fact that the experimental 

critical point of CH3Cl is at 417 K,
73

 it is clear that the OPLS model of CH3Cl fails in 

reproducing the attraction between the molecules, and hence leads to unreliable results, at least 

from the thermodynamic point of view. In fact, this potential model was originally developed 

to describe the molecular details of an SN2 type reaction, involving a single CH3Cl molecule in 

aqueous environment, without fitting the interaction parameters to the properties of bulk liquid 

CH3Cl.
71

 Nevertheless, apart from the results directly related to the strength of the interaction 

between the adsorbed CH3Cl molecules (such as the aforementioned lack of the point of 

condensation, position of the adsorption isotherm at too high chemical potential values, too 

small lateral interaction), even this model provided compatible results with the GAFF force 

field of CH3Cl,
65

 used in the present analysis. Further, apart from a small shift of the point of 
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condensation, the simulations performed with the OPLS model of CHCl3
72

 have also led to 

qualitatively the same conclusions as those with the potential model of Dietz and Heinzinger.
66

 

 The simulations have been performed using the code MMC.
74

 In a Monte Carlo step 

either a randomly chosen molecule has been attempted to be displaced by a random translation 

of no more than 0.25 Å and a random rotation around a randomly chosen space-fixes axis by 

no more than 15
o
, or the number of the adsorbate molecules has been attempted to be changed 

by one by either inserting or deleting a molecule. Particle displacement and insertion/deletion 

attempts have been performed in alternating order; insertion and deletion attempts have been 

done with equal probabilities, using the cavity biased scheme of Mezei.
75,76

 Thus, particle 

insertions have only been attempted in cavities of the radius of at least 2.5 Å, searched for 

along a 100 × 100 × 100 grid in the basic simulation box. This grid has been regenerated after 

every 10
6
 Monte Carlo attempts. The probability of finding a suitable cavity, Pcav, a quantity 

needed in performing the acceptance test of the cavity biased insertion/deletion attempts
75,76

 

has simply been calculated as the ratio of the number of cavities found and grid points tested. 

Particle displacement attempts have been accepted or rejected according to the standard 

Metropolis criterion.
25,77

 This way, at least 10% of the particle displacement attempts and 0.1% 

of the insertion/deletion attempts have turned out to be successful in every case.  

 The systems have been equilibrated by performing 3×10
8
 Monte Carlo steps. The 

average number of adsorbate molecules present in the basic simulation box, <N>, has then 

been calculated in a subsequent 10
8
 Monte Carlo steps long equilibrium trajectory. Further, at 

selected chemical potential values of CH3Cl and CHCl3, a sample of 2500 equilibrium 

configurations, separated from each other by 2×10
5
 Monte Carlo steps each, have been dumped 

for detailed analyses, including the calculation of the adsorbate orientational and binding 

energy distributions. All properties calculated have not only been averaged over the 2500 

sample configurations, but also over the two ice surfaces present in the basic simulation box. 

Equilibrium snapshot of the ice surface is shown in Figure 2 as obtained at four different 

chemical potential values of CH3Cl as well as at two chemical potential values of both CHCl3 

and CCl4.  

 

 

 



 9 

3. Results and Discussion 

 

 3.1. Adsorption Isotherms. The average number of adsorbate molecules in the basic 

simulation box, <N>, is shown in Figure 1 as the function of the chemical potential of the 

adsorbate molecules, , as obtained here for CH3Cl, CHCl3, and CCl4. The corresponding data 

are also included in Tables 1, 2 and 3, respectively. For completeness, earlier results 

concerning CH4
59

 and CH2Cl2
58

 are also shown. As is seen in Fig. 1, neither CHCl3 nor CCl4 

show noticeable adsorption, as their mean number in the basic box is very close to zero up to a 

certain, well defined value of , corresponding to the point of condensation, whereas they fill 

the available space in the basic box above this chemical potential. In this respect, their behavior 

is rather similar to that of CH2Cl2,
58

 but clearly differs both from that of CH3Cl, and from that 

of their fluorinated analogs (i.e., CHF3 and CF4, respectively),
59

 as these last species all show 

noticeable adsorption below the point of condensation. The <N> vs.  data corresponding to 

CH3Cl, on the other hand, exhibits a continuous, nearly exponential increase below the point of 

condensation, similarly to that of its fluorinated analog, CH3F,
59

 although to a considerably 

smaller extent. 

 In every simulation, practically all the adsorbate molecules present in the basic box 

have been found to be attached to the ice surface in the entire chemical potential range 

considered up to the point of condensation. Therefore, the <N> vs.  data corresponds directly 

to the adsorption isotherm itself, and can be converted to the conventional  vs. prel form ( 

and prel being the surface density and relative pressure, i.e., pressure normalized by that of the 

point of condensation, p0, respectively), using the equations  

 

YZ

N
Γ

2


       (1) 

and
37

 

)exp(

)exp(

00
rel






p

p
p ,      (2) 

respectively. In eq. 1, the factor 2 in the denominator accounts for the two ice surfaces present 

in the basic box, whereas in eq. 2  = 1/kBT, kB being the Boltzmann constant, and 0 is the 

chemical potential value corresponding to the point of condensation. Based on the obtained 
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<N> vs.  data, we estimated the value of 0 to be -36.29 kJ/mol for CH3Cl, -37.85 kJ/mol for 

CHCl3, and -36.41 kJ/mol for CCl4. 

 The obtained  vs. prel isotherms are shown in Figure 3. Again, for completeness, data 

obtained earlier for CH4
59

 and CH2Cl2
58

 are also included in the figure. As is expected, the  

vs. prel data of CHCl3 and CCl4, similarly to those of CH2Cl2,
58

 are both practically zero below 

the point of condensation. Showing these data on a magnified scale it is seen that, apart from 

the highest pressure part of the CHCl3 data,  increases linearly with prel, indicating that the 

adsorption of a new molecule is independent from the presence or absence of other molecules 

in the adsorption layer. The positive deviation of the CHCl3 data from this linearity at high 

pressures can be regarded as a precursor of the condensation, as it indicates that the presence of 

admolecules at the surface facilitates the adsorption of other molecules at their vicinity. The 

(prel) data of CH3Cl exhibits a continuously decreasing slope, without reaching a value of 

saturation, in the entire prel range between 0 and 1. We tried to fit the Langmuir isotherm
78,79

 to 

the rising part of the (prel) data, using the data points up to 0.46, 0.76, 0.93 and 0.975, but this 

fitting turned out to be unsuccessful in every case. The non-Langmuir character of the isotherm 

indicates that the adsorption of the CH3Cl molecules is not independent from each other. In 

other words, there is a non-negligible lateral interaction between them. Unfortunately, we are 

not aware of any experimental measurements of such isotherms for chloromethane derivatives 

interacting with crystalline ice at or around 200 K, to which the results of our simulations could 

be directly compared, as it was done in some of our previous studies devoted to the adsorption 

of small volatile organic compounds.
52,53

 Nevertheless, future measurements of these isotherms 

can provide an additional test of the reliability of the present results. 

 For the purpose of a detailed orientational and energetic analysis of the adsorbed 

molecules, we have collected 2500 sample configurations at four different chemical potential 

values of CH3Cl, and at two chemical potential values of CHCl3. In the case of CH3Cl, the first 

( = -45.89 kJ/mol) and second ( = -39.24 kJ/mol) of these chemical potential values 

correspond to the presence of only a few isolated molecules at the ice surface, and to an 

unsaturated first molecular layer, respectively, while the third ( = -36.41 kJ/mol) and fourth 

( = -36.08 kJ/mol) ones are located right below and above the point of condensation, 

respectively. In the case of CHCl3, the two chemical potential values considered, i.e., 

-37.90 kJ/mol and -37.73 kJ/mol, are located right below and above the point of condensation, 
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respectively. The chemical potential values at which these detailed analyses have been 

performed are indicated in Tables 1 and 2 as well as in Figs. 1 and 3.  

 

 3.2. Density Profiles. The density profile of the adsorbed CH3Cl and CHCl3 molecules 

along the interface normal axis, X, is shown in Figure 4.a and b, respectively, as obtained at the 

selected chemical potential values. For comparison, the density profile corresponding to the 

outmost molecular layer of the ice phase is also shown (as obtained in the system with CH3Cl 

at the  value of -45.89 kJ/mol). The water number density profile across the entire ice phase is 

shown in the inset of the figure.  

 At  = -45.89 kJ/mol the CH3Cl molecules form a highly unsaturated monolayer at the 

ice surface. Upon approaching the point of condensation, this monolayer becomes 

progressively more saturated, as evidenced by the gradual increase of the density peak located 

always at the same position of about |X| = 34 Å, i.e., at a contact distance from the ice surface. 

At  = -36.41 kJ/mol, i.e., right below the point of condensation, this monolayer is nearly 

saturated (as the amplitude of this density peak almost reaches that in the bulk liquid phase of 

CH3Cl), and a small trace of a second molecular layer also occurs around the |X| value of 

37.4 Å. However, the building up of this second molecular layer is prevented by the 

condensation of CH3Cl, occurring at an about 0.1 kJ/mol higher chemical potential value. 

Above the point of condensation, the density profile shows the typical damped oscillation 

characteristic of the liquid phase. It is also clear from the figure that up to the point of 

condensation, CHCl3 forms a highly unsaturated monolayer, while above that it forms a bulk 

liquid phase. 

 In the following analyses only the molecules that are forming the first adsorption layer 

(i.e., that are directly attached to the ice surface) have been taken into account. The outer 

boundary of the first molecular layer is defined as the position of the first minimum of the 

adsorbate density profile in the liquid phase (see Fig. 4). This way, the molecules the C atom of 

which is located below the |X| value of 36.2 Å, in the case of CH3Cl, and 36.5 Å, in the case of 

CHCl3, are considered to be in the first molecular layer.  

 

 3.3. Orientation of the Adsorbed Molecules. Describing the orientation of a rigid 

molecule relative to an external plane requires the use of two independent orientational 



 12 

variables. Therefore, describing the orientational statistics can only be done unambiguously by 

using the bivariate joint distribution of these variables.
80,81

 We showed that the angular polar 

coordinates,  and , of the vector perpendicular to the external plane (in the present case, the 

surface normal vector) in a local Cartesian frame fixed to the individual molecules represent a 

sufficient choice of such a variable pair. However, uncorrelated orientation of the molecules 

with the surface results in a uniform distribution only if cos and  are used as orientational 

variables.
80,81

 

 Here we define this local Cartesian frame in the following way. The main symmetry 

axis of the molecule, described by the general formula of CXY3 (where X stands for Cl and Y 

for H in CH3Cl, while X and Y stand for H and Cl, respectively, in CHCl3) corresponds to the z 

axis of this frame, oriented in such a way that it points from atom X to the central C atom. Axis 

x is defined by the condition that one of the three Y atoms lies within the yz plane of the frame, 

while axis y is perpendicular to x and z.  and  are then the angular polar coordinates of the 

surface normal vector, X, pointing, by our convention, away from the ice phase, in this frame. 

Thus,  is the angle between X and axis z, while  is the angle between the projection of X onto 

the xy plane and axis x. Due to the C3v symmetry of the molecules considered, this frame can 

always be chosen to satisfy the inequality of 0
o
 ≤ < 60

o
. The definition of this local Cartesian 

frame as well as that of the polar angles  and  are illustrated in Figure 5. 

 The P(cos,) orientational maps of the CH3Cl and CHCl3 molecules belonging to the 

first molecular layer at the ice surface are shown in Figure 6 as obtained at the adsorbate 

chemical potential values considered. In the case of CH3Cl, the preferential orientation of the 

molecules corresponds to cos = -1 at every chemical potential value considered, and this 

orientational preference becomes somewhat weaker with increasing surface coverage. It should 

be noted that in the case of cos = -1, the projection of the vector X to onto the xy plane of the 

local frame becomes a single point, and thus angle  loses its meaning. As a consequence, all 

points of the P(cos,) map laying along the cos = -1 line correspond to the same orientation. 

In this orientation, denoted here as ICH3Cl, the C-Cl bond stays perpendicular to the ice surface, 

pointing the Cl atom away from the ice phase, while the three H atoms point flatly towards the 

ice surface. This orientation, illustrated also in Fig. 6, agrees perfectly with what was 

previously found to be preferred by CH3F,
59

 and agrees also well with the earlier finding of 
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Harper et al. concerning the preferred orientation of CH3Cl at the free water surface.
64

 It should 

also be noted that this orientational preference is somewhat different from what was claimed to 

be the preferred orientation of CH3Cl and CH3Br by Habartová et al.
63

  

 In the case of CHCl3, we have found two preferred orientations, both corresponding to 

slightly negative cos values. The first of these orientations, denoted here as ICHCl3, 

corresponds to  = 0
o
, while in the case of the second one, marked here as IICHCl3, the value of 

 is close to 60
o
. In both of these orientations, the C-H bond is nearly parallel with the ice 

surface, tilting slightly away from the ice phase, and this tilt is somewhat stronger in the 

presence of the bulk liquid phase. In orientation ICHCl3, one C-Cl bond points as straight away 

from the ice phase as possible (within the constraint set by the alignment of the C-H bond), 

while the other two such bonds point equally towards the surface. Conversely, in orientation 

IICHCl3 two C-Cl bonds point away from, and the third one as straight as possible towards the 

ice surface. It should be noted that the CHCl3 molecule can form at least one hydrogen bond 

with a surface water, oriented in one of its preferred alignments,
52

 in both of these orientations 

The observed orientational preferences are again in a clear agreement with our previous 

findings for CHF3,
59

 and are also compatible with our earlier results obtained for CHCl3, using 

different potential models and also considerably higher surface densities than what has been 

found here to precede condensation.
82

 Besides the orientation corresponding to the C-H bond 

laying (nearly) parallel with the ice surface, we also found in this study preference for the 

orientation in which the H atom points straight to the ice surface.
82

 The present results suggest 

that this latter orientation becomes preferred only at unrealistically high surface densities.  

 

 3.4. Energetic Background of the Adsorption. To analyze also the energetic 

background of the adsorption, we have calculated the distribution of the binding energy, Ub, 

(i.e., total interaction energy with the rest of the system) of the CH3Cl and CHCl3 molecules 

belonging to the first molecular layer at the ice surface at the selected chemical potential 

values. In addition, the distribution of the interaction energy with the ice phase ( ice
b

U ) and with 

the other adsorbate molecules ( lat
b

U ) have also been calculated. The binding energy 

distributions obtained for CH3Cl and CHCl3 are shown in Figures 7.a and b, respectively. 
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 In the case of CH3Cl, the P( ice
b

U ) distribution exhibits a single peak in every case. At 

very low surface coverage, this peak is located at -42 kJ/mol, and shifts to higher energies with 

increasing surface coverage. In the case when the first molecular layer of CH3Cl is saturated, 

the position of this peak is located around -20 - -25 kJ/mol. This finding indicates that the 

interaction of CH3Cl with the ice phase is somewhat stronger than that of CH3F, as in this case 

the positions of the corresponding peaks were found to be around -30 kJ/mol and -20 kJ/mol, 

respectively.
59

 Considering that the energy of a weak, C-H
....

O type hydrogen bond is supposed 

to be around -10 – -12 kJ/mol, and that the adsorbed CH3Cl molecules prefer such an 

orientation at the ice surface in which all the three H atoms turn towards the ice phase, we can 

conclude that at low surface coverages these molecules form three such weak H-bonds with the 

surface water molecules, and maintain two of these H-bonds even when the first layer is 

saturated. The mean value of the P( ice
b

U ) distribution at the  value corresponding to very low 

surface coverage is -40.3 kJ/mol. This value can serve as an estimate of the heat of adsorption 

at infinitely low surface coverage. Since this is an experimentally accessible quantity, its 

measurement in the future can provide an important test of the validity of the model used here, 

and thus also that of this study.  

 The P( lat
b

U ) distribution of CH3Cl is bimodal at low surface coverage. The main peak 

at zero energy reflects the molecules that are isolated from the other adsorbed molecules, while 

the second peak around -6 kJ/mol is given by the adsorbed CH3Cl dimers, i.e., molecule pairs 

that are located at the vicinity of each other. At intermediate surface coverage (i.e., at 

 = -39.24 kJ/mol), the zero energy peak turns to a shoulder, and it disappears upon further 

increasing the surface coverage (evidencing the disappearance of the isolated adsorbed 

molecules), while the other peak, which remains the only peak of the distribution, shifts to 

lower energy values due to the increasing lateral interaction. In the presence of liquid CH3Cl, 

the position of the P(
lat
b

U ) peak is around -42 kJ/mol. This value is rather close to what was 

previously found for CH2Cl2, i.e., -40 kJ/mol,
58

 and it is considerably lower than that for CH3F, 

i.e., -22 kJ/mol.
59

 

 In the case of CHCl3, the P( ice
b

U ) distribution is peaked around -20 kJ/mol. This value 

is similar to what was found earlier for CH2Cl2,
58

 but it is considerably smaller (in magnitude) 
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than the value of -30 kJ/mol obtained earlier for CHF3.
59

 Considering the fact that the energy of 

a H-bonded molecule pair is also around -20 - -25 kJ/mol (considering OH-donated hydrogen 

bonds), and also that the preferred orientation of the CHCl3 molecules allows their H-bonding 

with the surface water molecules, it is sensible to assume that the CHCl3 molecules at the ice 

surface are stabilized by a relatively weak such hydrogen bond, formed with a surface water 

molecule. This conclusion is also compatible with the results of several earlier experiments, 

showing that CHCl3 is immobilized at the ice surface
19

, or directly evidencing it being H-

bonded to the surface water molecules.
17,22

 The heat of adsorption at infinitely low surface 

coverage, i.e., an experimentally accessible quantity, is estimated from the mean value of the 

P( ice
b

U ) distribution below the point of condensation as -20.5 kJ/mol. This value is also in a 

reasonable agreement with our earlier finding, obtained at substantially higher surface 

coverages employing a different potential model both for water and for CHCl3.
82

 Besides the 

main peak around -20 kJ/mol, the P( ice
b

U ) distribution exhibits also a shoulder around 

-10 kJ/mol in the presence of the condensed phase of CHCl3, which corresponds to CHCl3 

molecules having less favorable interaction with the surface waters due to the increased 

competition within the surface layer. 

 The P( lat
b

U ) distribution of CHCl3 is bimodal below the point of condensation. The 

zero energy peak is given by the isolated molecules, while that around -5 kJ/mol can be 

attributed to the adsorbed CHCl3 dimers. The energy value at which this latter peak is located 

is again compatible with our earlier findings, obtained at higher surface coverages using 

different potential models.
82

 In the case of liquid CHCl3, the P( lat
b

U ) distribution is of 

Gaussian shape, located around the lat
b

U  value of -45 kJ/mol, and reflects the interaction not 

only with the other first layer CHCl3 molecules, but also with those inside the bulk liquid 

phase. This peak again occurs at considerably lower energies than in the case of the fluorinated 

analog, i.e., CHF3, for which the position of the corresponding peak is at -28 kJ/mol.
59

 This 

difference reflects the considerably stronger intermolecular attraction acting between the 

CHCl3 than between the CHF3 molecules, and can explain the different adsorption behavior of 

these molecules. Thus, CHF3 molecules are bound considerably stronger to the ice phase than 

CHCl3, which leads to the formation of not only a saturated adsorption monolayer, but also to 
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the appearance of traces of outer molecular layers. On the other hand, the weaker ice-adsorbate 

interaction in the case of CHCl3 is coupled to a markedly stronger cohesion, which together 

leads to the condensation of CHCl3 before even traces of an adsorption monolayer could have 

been formed. Similar difference was found earlier in the adsorption behavior of CH2F2 and 

CH2Cl2,
58

 and, although to a smaller extent, also in that of CH3F and CH3Cl.  

 The distribution of the total binding energy, P(Ub), reflects the same features as what 

were already seen from the distributions of the ice and lateral contributions. At low surface 

coverages, when the lateral contribution to the total binding energy is small, the P(Ub) 

distribution is rather similar to P( ice
b

U ), its peak being located at almost the same position as 

that of the ice contribution for both adsorbates. Below the point of condensation, the position 

of this peak is rather insensitive to the surface coverage, as the increasing lateral contribution 

to the binding energy is largely compensated by the decrease of the ice contribution due to the 

increasing competition of the molecules for the adsorption sites. However, above the point of 

condensation the P(Ub) distribution is shifted to considerably lower energies, as in this case Ub 

not only contains the interaction energy of the adsorbed molecules with the ice phase and the 

first adsorption layer, but also that with their own bulk liquid phase. Thus, above the point of 

condensation the P(Ub) distribution peak is located at about -64 kJ/mol in both cases, i.e., close 

to the position of the similar peak of CH2Cl2 of -57 kJ/mol,
58

 and substantially below the 

position of the same peak obtained both for their fluorinated analogs (i.e., -39 kJ/mol for CH3F 

and -48 kJ/mol for CHF3).
59

 

 

 

4. Summary and Conclusions 

 

 In this paper, we have investigated the adsorption behavior of chlorinated methane 

derivatives at the surface of Ih ice by means of grand canonical Monte Carlo simulations under 

tropospheric conditions. The present study complements our earlier investigations, concerning 

the adsorption behavior of methane,
57

 fluorinated methane derivatives,
56,57

 and CH2Cl2.
56

 Our 

results have revealed that, similarly to CH2Cl2,
56

 but in a clear contrast with the fluorinated 

methane derivatives,
56,57

 neither CHCl3 nor CCl4 shows noticeable adsorption at the ice 

surface. The reason for this lack of adsorption is primarily the strong intermolecular attraction 
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acting between these molecules, leading to condensation before even the first adsorption layer 

could be built up. This strong cohesion is coupled with a rather weak interaction of these 

molecules with the ice phase, which causes that even traces of the adsorption layer are missing 

at the point of condensation.  

 By contrast, a nearly saturated monolayer of CH3Cl is built up before condensation of 

this adsorbate occurs. This is explained by the considerably stronger adsorbate-ice interaction 

in this case than for the methane derivatives having more chlorine atoms. This relatively strong 

interaction of CH3Cl with the ice phase originates from the fact that adsorbed CH3Cl molecules 

can orient in such a way (i.e., by turning the Cl atom straight to the vapor phase) that they form 

three weak, C-H
....

O type hydrogen bonds with the surface waters. Although such a hydrogen 

bond is certainly weaker than an OH-donated, O-H
....

Cl type one, the fact that three of such 

weak H-bonds can be formed between the adsorbed CH3Cl and surface water molecules clearly 

overcompensates the relative weakness of this H-bond.  

 From the atmospheric point of view, our results indicate that the ice surface is probably 

not a good substrate for trapping chlorinated methane derivatives at such low temperatures that 

are encountered in the UTLS region. Considering the typical concentration of these species in 

the UTLS region of 0.510
3
 - 1.510

2
 mol/m

3
,
83

 and estimating their p0 values using the 

Antoine equation to be in the range of 10
1
 – 10

3
 Pa at 200 K, the atmospherically relevant 

range of their chemical potential turns out to be around -60 kJ/mol. Although the concentration 

of these molecules can locally exceed their average concentration by several orders of 

magnitude, it is clear that, from the atmospheric point of view, only the isolated chlorinated 

methane derivative molecules being adsorbed at the ice surface are of relevance. On the other 

hand, as these molecules can catalyze various chemical reactions, such as ozone destruction in 

the troposphere, their atmospheric impact does not require their presence in high concentration. 

In this respect, it is important to emphasize that, similarly to the fluorinated methane 

derivatives,
59

 also the chlorinated molecules prefer orientations at the ice surface in which at 

least one of their halogen atoms is exposed to the gas phase, making it easily releasable upon 

photodissociation processes as well as available for reactions with other gas phase molecules.  

 

 

 



 18 

Acknowledgements  

 This project is supported by the Hungarian OTKA Foundation under project No. 

119732, by the Hungarian-French Intergovernmental Science and Technology Program 

(BALATON) under project No. TéT_15_FR-1-2016-0056, and by CNRS in the framework of 

an international program for scientific cooperation (PICS).   

 

 

References 

 

(1) Molina, M.; Tso, T. L; Molina, L. T.; Wang, F .C. Y. Antarctic Stratospheric Chemistry 

of Chlorine Nitrate, Hydrogen Chloride, and Ice: Release of Active Chlorine. Science 

1987, 238, 1253-1257. 

(2) Simpson, W. R.; von Glasow, R.; Riedel, K.; Anderson, P.; Ariya, P.; Bottenheim, J.; 

Burrows, J.; Carpenter, L. J.; Frieß, U.; Goodsite, M. E.; et al. Halogens and their Role 

in Polar Boundary Layer Ozone Depletion. Atmos. Chem. Phys. 2007, 7, 4375-4418.  

(3) Laurence, M. G.; Crutzen, P. J. The Impact of Cloud Particle Gravitational Settling on 

Soluble Trace Gas Distributions. Tellus 1998, 50B, 263-289. 

(4) Lei, Y. D.; Wania, F. Is Rain or Snow a More Efficient Scavenger of Organic 

Chemicals? Atmos. Environ. 2004, 38, 3557-3571. 

(5) Robinson, D. A.; Dewey, K. F.; Heim Jr., R. R. Global Snow Cover Monitoring: An 

Update. Bull. Am. Meteorol. Soc. 1993, 74, 1689-1696. 

(6) Dominé, F.; Shepson, P. B. Air-Snow Interactions and Atmospheric Chemistry. Science 

2002, 297, 1506-1510. 

(7) Grannas, A. M.; Jones, A. E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H. J.; 

Bergin, M.; Bottenheim, J.; Boxe, C. S.; Carver, G.; et al. An Overview of Snow 

Photochemistry: Evidence, Mechanisms and Impacts. Atmos. Chem. Phys. 2007, 7, 

4329-4373. 

(8) Abbatt, J .P. D. Interactions of Atmospheric Trace Gases with Ice Surfaces: Adsorption 

and Reaction. Chem. Rev. 2003, 103, 4783-4800. 

(9) Huthwelker, T.; Ammann, M.; Peter, T. The Uptake of Acidic Gases on Ice. Chem. Rev. 

2006, 106, 1375-1444. 



 19 

(10) Bartels-Rausch, T.; Jacobi, H. W.; Kahan, T. F.; Thomas, J. L.; Thomson, E. S.; Abbatt, 

J. P. D.; Ammann, M.; Blackford, J. R.; Bluhm; H.; Boxe. C.; et al. A Review of Air-

Ice Chemical and Physical Interactions (AICI): Liquids, Quasi-Liquids, and Solids in 

Snow. Atmos. Chem. Phys. 2014, 14, 1587-1633. 

(11) Crowley, J. N.; Ammann, M., Cox, R. A.; Hynes, R. G.; Jenkin, M. E.; Mellouki, A.; 

Rossi, M. J.; Troe, J.; Wallington, T. J. Evaluated Kinetic and Photochemical Data for 

Atmospheric Chemistry: Volume V – Heterogeneous Reactions on Solid Substrates. 

Atmos. Chem. Phys. 2010, 10, 9059-9223. 

(12) Abbatt, J. P. D.; Thomas, J. L.; Abrahamsson, K.; Boxe, C.; Granfors, A.; Jones, A. E.; 

King, M. D.; Saiz-Lopez, A.; Shepson, P. B.; Sodeau, J.; et al. Halogen Activation via 

Interactions With Environmental Ice and Snow in the Polar Lower Troposphere and 

Other Regions. Atmos. Chem. Phys. 2012, 12, 6237-6271. 

(13) Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, O. The Large 

Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. 

Sci. U.S.A. 2009, 106, 10949-10954. 

(14) Blanchard, J.; Roberts, J. T. Interaction of CCl4 with the Surface of Amorphous Ice. 

Langmuir 1994, 10, 3303-3310.  

(15) Sadtchenko, V.; Knutsen, K.; Giese, C. F.; Ronald Gentry, W. Interactions of CCl4 with 

Thin D2O Amorphous Ice Films. Part I. A Nanoscale Probe of Ice Morphology. J. Phys. 

Chem. B 2000, 104, 2511-2521. 

(16) Sadtchenko, V.; Knutsen, K.; Giese, C. F.; Ronald Gentry, W. Interactions of CCl4 with 

Thin D2O Amorphous Ice Films.2. Variations of Desorption Kinetics with Ice 

Preparation Conditions and Evidence for Distinct Strutures of Low-Density Amorphous 

Ice. J. Phys. Chem. B 2000, 104, 4894-4902. 

(17) Holmes, N. S.; Sodeau, J. R. A Study of the Interaction between Halomethanes and 

Water-Ice. J. Phys. Chem. A 1999, 103, 4673-4679. 

(18) Schaff, J. E.; Roberts, J. T. Adsorbed States of Acetonitrile and Chloroform on 

Amorphous and Crystalline Ice Studied with X-Ray Photoelectron Spectroscopy. Surf. 

Sci. 1999, 426, 384-394. 

(19) Grecea, M. L.; Backus, E. H. G.; Fraser, H. J.; Pradeep, T.; Kleyn, A. W.; Bonn, M. 

Mobility of Haloforms on Ice Surfaces. Chem. Phys. Lett. 2004, 385, 244-248. 



 20 

(20) Pysanenko, A.; Habartová, A. Svrčková, P.; Lengyel, J.; Poterya, V.; Roeselová, M.; 

Fedor, J.; Fárnik, M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. 

Chem. A 2015, 119, 8991-8999. 

(21) Aoki, M.; Ohashi, Y.; Masuda, S. Interactions of CHCl3 Molecules with a Crystalline 

Ice Grown on Pt(111) Studied by Metastable Impact Electron Spectroscopy. Surf. Sci. 

2003, 532-535, 137-141. 

(22) Cyriac, J.; Pradeep, T. Probing Difference in Diffusivity of Chloromethanes Through 

Water Ice in the Temperature Range of 110-150 K. J. Phys. Chem. 2007, 111, 8557-

8565. 

(23) Vysokikh, T. A.; Mukhamedzyanova, D. F.; Yagodovskaya, T. V.; Savilov, S. V.; 

Lunin, V. V. The Interaction of CH3Cl, CH2Cl2, CHCl3, and CCl4 with Ozone on the 

Surface of Ice under Stratospheric Conditions. Russian J. Phys. Chem. A 2007, 81, 

1836-1839. 

(24) Adams, D. J. Grand Canonical Ensemble Monte Carlo for a Lennard-Jones Fluid. Mol. 

Phys. 1975, 29, 307-311. 

(25) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon: Oxford, 

1987.  

(26) Rutkai, G.; Kristóf, T. Molecular Simulation Study of Intercalation of Small Molecules 

in Kaolinite. Chem. Phys. Letters 2008, 462, 269-274. 

(27) Croteau, T.; Bertram, A. K.; Patey, G. N. Adsorption and Structure of Water on 

Kaolinite Surfaces: Possible Insight into Ice Nucleation from Grand Canonical Monte 

Carlo Calculations. J. Phys. Chem. A 2008, 112, 10708-10712.  

(28) Jameson, C. J.; Jameson, K.; Baello, B. I.; Lim, H. M. Grand Canonical Monte Carlo 

Simulations of the Distribution and Chemical Shifts of Xenon in the Cages of Zeolite 

NaA. 1. Distribution and Xe-129 Chemical Shifts. J. Chem. Phys. 1994, 100, 5965-

5976. 

(29) Jameson, C. J.; Jameson, K.; Lim, H. M.; Baello, B. I. Grand Canonical Monte Carlo 

Simulations of the Distribution and Chemical Shifts of Xenon in the Cages of Zeolite 

NaA. 2. Structure of the Adsorbed Fluid. J. Chem. Phys. 1994, 100, 5977-5987. 

(30) Smit, B. Grand Canonical Monte Carlo Simulations of Chain Molecules: Adsorption 

Isotherms of Alkanes in Zeolites. Mol. Phys. 1995, 85, 153-172. 



 21 

(31) Pellenq, R. J. M.; Tavitian, B.; Espinat, D.; Fuchs, A. H. Grand Canonical Monte Carlo 

Simulations of Adsorption of Polar and Nonpolar Molecules in NaY Zeolite. Langmuir 

1996, 12, 4768-4783. 

(32) Macedonia, M. D.; Maginn, E. J. Pure and Binary Component Sorption Equilibria of 

Light Hydrocarbons in the Zeolite Silicalite from Grand Canonical Monte Carlo 

Simulations. Fluid Phase Equil. 1999, 158-160, 19-27. 

(33) Rutkai, G.; Csányi, É.; Kristóf, T. Prediction of Adsorption Equilibria of Water-

Methanol Mixtures in Zeolite NaA by Molecular Simulation. Mol. Simul. 2006, 32, 

869-875. 

(34) Kristóf, T.; Csányi, É.; Rutkai, G. Prediction of Adsorption and Separation of Water-

Alcohol Mixtures with Zeolite NaA. Microporous Mesoporous Mat. 2008, 114, 455-

464.  

(35) Puibasset, J.; Pellenq, R. J. M. Water Adsorption on Hydrophilic Mesoporous and Place 

Silica Substrates: a Grand Canonical Monte Carlo Simulation Study. J. Chem. Phys. 

2003, 118, 5613-5622. 

(36) Puibasset, J.; Pellenq, R. J. M. Water Adsorption in Disordered Mesoporous Silica 

(Vycor) at 300 K and 650 K : A Grand Canonical Monte Carlo Simulation Study of 

Hysteresis. J. Chem. Phys. 2005, 122, 094704-1-10. 

(37) Daub, C. D.; Patey G. N.; Jack, D. B.; Sallabi A. K. Monte Carlo Simulations of the 

Adsorption of CO2 on the MgO(100) Surface. J. Chem. Phys. 2006, 124, 114706-1-9. 

(38) Tombácz, E.; Hajdú, A.; Illés, E.; László, K.; Garberoglio, G.; Jedlovszky, P. Water in 

Contact with Magnetite Nanoparticles, as Seen from Experiments and Computer 

Simulations. Langmuir 2009, 25, 13007-13014. 

(39) Samios, S.; Stubos, A. K.; Kanellopoulos, N. K.; Cracknell, R. F.; Papadopoulos, G. K.; 

Nicholson, D. Determination of Micropore Size Distribution from Grand Canonical 

Monte Carlo Simulations and Experimental CO2 Isotherm Data. Langmuir 1997, 13, 

2795-2802. 

(40) Muller, E. A.; Hung, F. R.; Gubbins, K. E. Adsorption of Water Vapor-Methane 

Mixtures on Activated Carbons. Langmuir 2000, 16, 5418-5424. 



 22 

(41) Challa, S. R.; Sholl, D. S.; Johnson, J. K. Adsorption and Separation of Hydrogen 

Isotopes in Carbon Nanotubes: Multicomponent Grand Canonical Monte Carlo 

Simulations. J. Chem. Phys. 2002, 116, 814-824. 

(42) Striolo, A.; Chialvo, A. A.; Gubbins, K. E.; Cummings, P. T. Water in Carbon 

Nanotubes: Adsorption Isotherms and Thermodynamic Properties from Molecular 

Simulation. J. Chem. Phys. 2005, 122, 234712-1-14. 

(43) Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P. Grand Canonical Monte Carlo 

Simulation of the Adsorption Isotherms of Water Molecules on a Model Soot Particle J. 

Chem. Phys. 2007, 127, 164719-1-11. 

(44) Hantal, Gy.; Picaud, S.; Hoang, P. N. M.; Voloshin, V. P.; Medvedev, N. N.; 

Jedlovszky, P. Water Adsorption Isotherms on Porous Onionlike Carbonaceous 

Particles. Simulations with the Grand Canonical Monte Carlo Method. J. Chem. Phys. 

2010, 133, 144702-1-12. 

(45) Firlej, L. ; Kuchta, B. ; Lazarewicz, A. ; Pfeifer, P. Increased H2 Gravimetric Storage 

Capacity in Truncated Carbon Slit Pores Modeled by Grand Canonical Monte Carlo. 

Carbon 2013, 53, 208-215. 

(46) Jung, D. H.; Kim, D.; Lee, T. B.; Choi, S. B.; Yoon, J. H.; Kim, J.; Choi, K.; Choi, S. 

H. Grand Canonical Monte Carlo Simulation Study on the Catenation Effect on 

Hydrogen Adsorption onto the Interpenetrating Metal-Organic Frameworks. J. Phys. 

Chem. B 2006, 110, 22987-22990. 

(47) Garberoglio, G. Computer Simulation of the Adsorption of Light Gases in Covalent 

Organic Frameworks. Langmuir 2007, 23, 12154-12158. 

(48) Ramsahye, N. A.; Maurin, G.; Bourelly, S.; Llewellyn, P. L.; Devic, T.; Serre, C.; 

Loiseau, T.; Ferey, G. Adsorption of CO2 in Metal Organic Frameworks of Different 

Metal Centres: Grand Canonical Monte Carlo Simulations Compared to Experiments. 

Adsorption 2007, 13, 461-467. 

(49) Szőri, M.; Jedlovszky, P.; Roeselová, M. Water Adsorption on Hydrophilic and 

Hydrophobic Self-Assembled Monolayers as Proxies For Atmospheric Surfaces. A 

Grand Canonical Monte Carlo Simulation Study. Phys. Chem. Chem. Phys. 2010, 12, 

4604-4616.  



 23 

(50) Szőri, M.; Roeselová, M.; Jedlovszky, P. Surface Hydrophilicity-Dependent Water 

Adsorption on Mixed Self-Assembled Monolayers of C7-CH3 and C7-COOH residues. 

A Grand Canonical Monte Carlo Simulation Study. J. Phys. Chem. C 2011, 115, 

19165-19177.  

(51) Resat, H.; Mezei, M. Grand Canonical Monte Carlo Simulation of Water Positions in 

Crystal Hydrates. J. Am. Chem. Soc. 1994, 116, 7451-7452. 

(52) Jedlovszky, P.; Partay, L.; Hoang, P. N. M.; Picaud, S.; von Hessberg, P.; Crowley, J. 

N. Determination of the Adsorption Isotherm of Methanol on the Surface of Ice. An 

Experimental and Grand Canonical Monte Carlo Simulation Study. J. Am. Chem. Soc. 

2006, 128, 15300-15309. 

(53) Jedlovszky, P.; Hantal, Gy.; Neuróhr, K.; Picaud, S.; Hoang, P. N. M.; von Hessberg, 

P.; Crowley, J. N. Adsorption Isotherm of Formic Acid on The Surface of Ice, as Seen 

from Experiments and Grand Canonical Monte Carlo Simulation. J. Phys. Chem. C 

2008, 112, 8976-8987. 

(54) Darvas, M.; Lasne, J.; Laffon, C.; Parent, P.; Picaud, S.; Jedlovszky, P. Adsorption of 

Acetaldehyde on Ice as Seen From Computer Simulation and Infrared Spectroscopy 

Measurements. Langmuir 2012, 28, 4198-4207. 

(55) Mészár, Zs. E.; Hantal, Gy.; Picaud, S.; Jedlovszky, P. Adsorption of Aromatic 

Hydrocarbon Molecules at the Surface of Ice, As Seen by Grand Canonical Monte 

Carlo Simulation. J. Phys. Chem. C 2013, 117, 6719-6729.  

(56) Picaud, S.; Jedlovszky, P. Adsorption of H2O2 at the Surface of Ih Ice, as Seen from 

Grand Canonical Monte Carlo Simulations. Chem. Phys. Letters 2014, 600, 73-78. 

(57) Szőri, M.; Jedlovszky, P. Adsorption of HCN at the Surface of Ice. A Grand Canonical 

Monte Carlo Simulation Study. J. Phys. Chem. C 2014, 118, 3599-3609. 

(58) Sumi, I.; Picaud, S.; Jedlovszky, P. Adsorption of Methylene Fluoride and Methylene 

Chloride at the Surface of Ice under Tropospheric Conditions. A Grand Canonical 

Monte Carlo Simulation Study. J. Phys. Chem. C 2015, 119, 17243-17252. 

(59) Sumi, I.; Fábián, B.; Picaud, S.; Jedlovszky, P. Adsorption of Fluorinated Methane 

Derivatives at the Surface of Ice under Tropospheric Conditions, As Seen from Grand 

Canonical Monte Carlo Simulations. J. Phys. Chem. C 2016, 120, 17386-17399. 



 24 

(60) Szentirmai, V.; Szőri, M.; Picaud, S.; Jedlovszky, P. Adsorption of Methylamine at the 

Surface of Ice. A Grand Canonical Monte Carlo Simulation Study J. Phys. Chem. C 

2016, 120, 23480-23489. 

(61) Pártay, L. B.; Jedlovszky, P.; Hoang, P. N. M.; Picaud, S.; Mezei, M. Free-Energy 

Profile of Small Solute Molecules at the Free Surfaces of Water and Ice, as Determined 

by Cavity Insertion Widom Calculations. J. Phys. Chem. C 2007, 111, 9407-9416.  

(62) Habartová, A.; Valsaraj, K. T.; Roeselová, M. Molecular Dynamics Simulations of 

Small Halogenated Organics at the Air−Water Interface: Implications in Water 

Treatment and Atmospheric Chemistry. J. Phys. Chem. A 2013, 1176, 9205-9215. 

(63) Habartová, A.; Hormain, L.; Pluhařová, E.; Briquez, S.; Monnerville, M.; Toubin, C.; 

Roeselová, M. Molecular Simulations of Halomethanes at the Air/Ice Interface. J. Phys. 

Chem. A 2015, 119, 10052-10059. 

(64) Harper, K.; Minofar, B.; Sierra-Hernandez, M. N.; Casillas-Ituarte, N. N.; Roeselova, 

M.; Allen, H. C. Surface Residence and Uptake of Methyl Chloride and Methyl 

Alcohol at the Air/Water Interface Studied by Vibrational Sum Frequency 

Spectroscopy and Molecular Dynamics. J. Phys. Chem. A 2009, 113, 2015-2024. 

(65) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and 

Testing of a General AMBER Force Field. J. Comp. Chem. 2004, 25, 1157-1174. 

(66) Dietz, W.; Heinzinger, K. Structure of Liquid Chloroform. A Comparison between 

Computer Simulation and Neutron Scattering Results. Ber. Bunsenges. Phys. Chem. 

1984, 88, 543-546. 

(67) Duffy, E. M.; Severance, D. L.; Jorgensen, W. L. Solvent Effects on the Barrier to 

Isomerization for a Tertiary Amide from Ab Initio and Monte Carlo Calculations. J. 

Am. Chem. Soc. 1992, 114, 7535-7542. 

(68) Mahoney, M.; Jorgensen, W. L. A Five-Site Model for Liquid Water and the 

Reproduction of The Density Anomaly by Rigid, Nonpolarizable Potential Functions. J. 

Chem. Phys. 2000, 112, 8910-8922. 

(69) Nada, H.; van der Eerden, J. P. M. J. An Intermolecular Potential Model for the 

Simulation of Ice and Water Near the Melting Point: A Six-Site Model of H2O. J. 

Chem. Phys. 2003, 118, 7401-7413. 



 25 

(70) Vega, C.; Sanz, E.; Abascal, J. L. F. The Melting Temperature of the Most Common 

Models of Water. J. Chem. Phys. 2005, 122, 114507-1-9. 

(71) Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. Theoretical Examination of the SN2 

Reaction Involving Chloride Ion and Methyl Chloride in the Gas Phase and Aqueous 

Solutions. J. Am. Chem. Soc. 1985, 107, 154-163. 

(72) Jorgensen, W. L.; Briggs, J. M.; Leonor Contreras, M. Relative partition Coefficients 

for Organic Solutes from Fluid Simulations. J. Phys. Chem. 1990, 94, 1683-1686. 

(73) CRC Handbook of Chemistry and Physics; 63
rd

 Edition, Weast, R. C.; Astle, M. J.; 

Eds.; CRC Press: Boca Raton, 1982-1983. 

(74) Mezei, M. MMC: Monte Carlo Program for Simulation of Molecular Assemblies. URL: 

http://inka.mssm.edu/~mezei/mmc. 

(75) Mezei, M. A Cavity-Biased (T, V, ) Monte Carlo Method for the Computer-

Simulation of Fluids. Mol. Phys. 1980, 40, 901-906. 

(76) Mezei, M. Grand Canonical Ensemble Monte Carlo Study of Dense Liquid Lennard-

Jones, Soft Spheres and Water. Mol. Phys. 1987, 61, 565-582. Erratum: 1989, 67, 1207-

1208. 

(77) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. 

Equation of State Calculations by Fast Computing Machines J. Chem. Phys. 1953, 21 

1087-1093. 

(78) Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part 

I: Solids. J. Am. Chem. Soc. 1916, 38, 2221-2295. 

(79) Shaw, D. J. Introduction to Colloid and Surface Chemistry, Butterworths: London, 

1980.  

(80) Jedlovszky, P.; Vincze, Á.; Horvai, G. New Insight into the Orientational Order of 

Water Molecules at the Water/1,2-Dichloroethane Interface: A Monte Carlo Simulation 

Study. J. Chem. Phys. 2002, 117, 2271-2280. 

(81) Jedlovszky, P.; Vincze, Á.; Horvai, G. Full Description of the Orientational Statistics of 

Molecules Near to Interfaces. Water at the Interface with CCl4. Phys. Chem. Chem. 

Phys. 2004, 6, 1874-1879. 

(82) Picaud, S.; Hoang, P. N. M. Molecular Dynamics Simulations of Chloroform on Ice. 

Phys. Chem. Chem. Phys. 2004, 6, 1970-1974. 



 26 

(83) Harper, D. B. The Contribution of Natural Halogenation Processes to the Atmospheric 

Halomethane Burden. In Naturally-Produced Organohalogens; Grimwall, A.; de Leer, 

E. W. B.; eds.; Springer: Dordrecht, 1995, pp. 21-33.  

 

 

 



 27 

Tables 

Table 1. Data of the Adsorption Isotherm of CH3Cl on Ice 

/kJ mol
-1 <N> p/p0 /mol m

2 

-61.69 0.0006 2.32×10
-7

 3.57×10
-5

 

-60.02 0.0019 6.32×10
-7

 1.13×10
-4

 

-58.36 0.0050 1.72×10
-6

 2.97×10
-4

 

-56.70 0.0140 4.67×10
-6

 8.32×10
-4

 

-55.04 0.0344 1.27×10
-5

 2.04×10
-3

 

-53.37 0.0924 3.45×10
-5

 5.49×10
-3

 

-51.71 0.2740 9.37×10
-5

 1.63×10
-2

 

-50.05 0.6309 2.55×10
-4

 3.75×10
-2

 

-48.38 1.454 6.93×10
-4

 8.64×10
-2

 

-47.55 1.946 1.14×10
-3

 0.116 

-46.72 2.408 1.88×10
-3

 0.143 

-45.89
a 

4.236 3.10×10
-3

 0.252 

-45.06 5.827 5.12×10
-3

 0.346 

-44.23 7.871 8.44×10
-3

 0.468 

-43.40 10.09 1.39×10
-2

 0.600 

-42.56 12.32 2.29×10
-2

 0.732 

-41.73 17.07 3.78×10
-2

 1.02 

-40.90 25.53 6.23×10
-2

 1.52 

-40.07 34.90 0.103 2.07 

-39.24
a 

47.53 0.169 2.83 

-38.41 65.45 0.279 3.89 

-37.58 88.87 0.461 5.28 

-36.75 116.0 0.760 6.90 

-36.41
a 

130.7 0.928 7.77 

-36.33 134.6 0.975 8.00 

-36.25 638.0   

-36.16 668.9   

-36.08
a 

668.7   

-35.75 671.2   

-35.08 674.7   

-33.42 690.5   

-31.76 703.5   
a
2500 sample configurations have been saved for detailed analyses at these chemical potentials
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Table 2. Data of the Adsorption Isotherm of CHCl3 on Ice 

/kJ mol
-1 <N> p/p0 /mol m

2 

-47.21 0.0057 3.61×10
-3

 3.39×10
-4

 

-46.38 0.0098 5.95×10
-3

 5.82×10
-4

 

-45.54 0.0156 9.80×10
-3

 9.27×10
-4

 

-44.71 0.0260 1.62×10
-2

 1.55×10
-3

 

-43.88 0.0437 2.67×10
-2

 2.60×10
-3

 

-43.05 0.0690 4.39×10
-2

 4.10×10
-3

 

-42.22 0.118 7.24×10
-2

 7.04×10
-3

 

-41.39 0.199 0.119 1.18×10
-2

 

-40.56 0.334 0.197 1.98×10
-2

 

-39.73 0.552 0.325 3.28×10
-2

 

-38.89 0.932 0.535 5.54×10
-2

 

-38.73 1.121 0.592 6.66×10
-2

 

-38.56 1.335 0.654 7.94×10
-2

 

-38.39 1.468 0.723 8.72×10
-2

 

-38.23 1.751 0.799 0.104 

-38.06 1.999 0.883 0.119 

-37.90
a 

2.522 0.975 0.150 

-37.81 406.3   

-37.73
a 

406.1   

-37.56 406.9   

-37.40 404.3   

-37.23 406.4   

-36.40 406.0   

-35.57 406.5   

-33.91 408.2   

-32.24 408.1   

-30.58 408.1   
a
2500 sample configurations have been saved for detailed analyses at these chemical potentials
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Table 3. Data of the Adsorption Isotherm of CCl4 on Ice 

/kJ mol
-1 <N> p/p0 /mol m

2 

-51.17 0.0001 1.40×10
-4

 5.94×10
-6

 

-49.50 0.0003 3.80×10
-4

 1.78×10
-5

 

-47.84 0.0006 1.03×10
-3

 3.57×10
-5

 

-46.18 0.0017 2.81×10
-3

 1.01×10
-4

 

-44.51 0.0044 7.64×10
-3

 2.61×10
-4

 

-42.85 0.0118 2.08×10
-2

 7.01×10
-4

 

-41.19 0.0394 5.64×10
-2

 2.34×10
-3

 

-39.53 0.0918 0.153 5.46×10
-3

 

-37.86 0.264 0.417 1.57×10
-2

 

-37.36 0.359 0.563 2.13×10
-2

 

-37.20 0.411 0.622 2.44×10
-2

 

-37.03 0.456 0.687 2.71×10
-2

 

-36.87 0.501 0.760 2.98×10
-2

 

-36.70 0.563 0.839 3.34×10
-2

 

-36.53 0.665 0.928 3.95×10
-2

 

-36.45 0.703 0.975 4.18×10
-2

 

-36.37 326.6   

-36.20 323.0   

-34.54 324.5   

-32.87 327.0   

-31.21 327.4   
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Table 4. Interaction Parameters of the Molecular Models Used
a
 

Molecule Site /Å /kJ mol
-1 q/e 

CH3Cl
b
 

C 3.40 0.460 -0.442 

H 2.50 0.070  0.238 

Cl 3.50 1.110 -0.272 

     

CHCl3
c
 

C 3.40 0.424  0.179 

H 2.20 0.083  0.082 

Cl 3.44 1.248 -0.087 

     

CCl4
d
 

C 3.80 0.208  0.248 

Cl 3.47 1.109 -0.062 

     

Water
e
 

O 3.12 0.670  0.000 

H - -  0.241 

L
f 

- - -0.241 

a,  and q stand for the Lennard-Jones distance and energy parameters and for the fractional 

charges, respectively. 

b
GAFF force field, Lennard-Jones parameters are taken from Ref. 65, fractional charges from 

Ref. 62.   

c
Ref. 66.   

d
OPLS model, Ref. 67 .  

e
TIP5P model, Ref. 68.   

f
Non-atomic interaction site.
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Table 5. Geometry Parameters of the Potential Models Used  

 

molecule bond bond length (Å) angle
 

bond angle (deg) 

CH3Cl 

C-H 1.090   

C-Cl 1.800   

  H-C-Cl 108.72 

     
 C-H 1.100   

CHCl3 
C-Cl 1.785   

  H-C-Cl 107.58 

     

CCl4 
C-Cl 1.769   

  F-C-F 109.47 

     
 O-H 0.957   

H2O 
O-L 0.700   

  H-O-H 104.50 

   L-O-L 110.70 
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Figures Legend 

 

Figure 1. Average number of adsorbate molecules in the basic simulation box as a function of 

their chemical potential, as obtained in the present work for CH3Cl (red circles), CHCl3 (blue 

down triangles) and CCl4 (orange diamonds). For comparison, results obtained previously for 

CH4 (Ref. 59, black squares) and CH2Cl2 (Ref. 58, green up triangles) are also shown. The 

lines connecting the points serve just as guides to the eye. The arrows indicate the systems that 

have been used for detailed orientational and energetic analyses (see the text). The inset shows 

the comparison of the <N> vs.  data of CH3Cl as obtained with the GAFF (Ref. 65, filled 

circles) and OPLS (Ref. 71, open circles) force fields.  

 

Figure 2. Equilibrium snapshots (side view) of the systems with CH3Cl at four different 

chemical potentials (top row), with CHCl3 at two different chemical potentials (bottom left) 

and with CCl4 at two different chemical potentials (bottom right). Only the upper half of the 

basic simulation box is shown in every case. Oxygen, hydrogen, carbon, and chlorine atoms 

are shown by red, white, grey, and green colors, respectively. 

 

Figure 3. Adsorption isotherm (in the form of surface excess vs. relative pressure) of CH3Cl 

(red circles), CHCl3 (blue down triangles) and CCl4 (orange diamonds) on ice, as obtained 

from our simulations. For comparison, the isotherms obtained previously for CH4 (Ref. 59, 

black squares) and CH2Cl2 (Ref. 58, green up triangles) are also shown. The inset shows the 

isotherms of CH2Cl2, CHCl3, and CCl4 on a magnified scale. The arrows indicate the systems 

that have been used for detailed orientational and energetic analyses (see the text).  
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Figure 4. Number density profile of (a) CH3Cl at four selected chemical potential values, and 

(b) CHCl3 at two selected chemical potential values at the surface of ice along the surface 

normal axis, X. Number density profile of the water molecules in the outmost layer of the ice 

phase is also shown (black short dashed line). The dashed black vertical lines mark the outer 

boundary of the first molecular layer (see the text). The inset shows the water number density 

profile across the entire ice phase. All profiles shown are averaged over the two surfaces in the 

basic box. 

 

Figure 5. Definition of the local Cartesian frame fixed to the individual CXY3 molecules, and 

of the polar angles  and  of the surface normal axis, X, pointing, by our convention, away 

from the ice phase, in this frame. 

 

Figure 6. P(cos,) orientational maps of the molecules belonging to the first molecular layer 

at the ice surface at four different chemical potential values for CH3Cl (top row), and at two 

different chemical potential values for CHCl3 (bottom left and right). Lighter shades of grey 

correspond to higher probabilities (see the grayscale). The orientations preferred by the 

adsorbed molecules are also illustrated (bottom middle). X is the surface normal axis, pointing 

away from the ice phase. Color coding of the atoms is the same as in Fig. 2. 

 

Figure 7. Distributions of the interaction energy of (a) the CH3Cl, and (b) the CHCl3 molecules 

belonging to the first molecular layer at the ice surface with the rest of the system (bottom 

panels), with the other adsorbate molecules (middle panels) and with the ice phase (top panels). 

The distributions are shown at four and two different chemical potential values for CH3Cl and 

CHCl3, respectively.  
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Figure 1 

Sumi et al. 
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Figure 4 

Sumi et al. 
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Figure 5 

Sumi et al. 
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Figure 6 

Sumi et al. 
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Figure 7.a 

Sumi et al. 
 

-80 -60 -40 -20 0
0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.08

0.10

total

binding energy
 

P
(U

b
)

U
b

 
/
 
kJ mol

-1

  = -45.89 kJ/mol

  = -39.24 kJ/mol

  = -36.41 kJ/mol

  = -36.08 kJ/mol

lateral

contribution

 

 

P
(U

b

la
t )

CH
3
Cl

ice

contribution

 

 

 

P
(U

bic
e )

 

(a) 



 41 

Figure 7.b 

Sumi et al. 
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