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THE MAXIMAL SUBGROUPS AND THE
COMPLEXITY OF THE FLOW SEMIGROUP OF

FINITE (DI)GRAPHS

GÁBOR HORVÁTH, CHRYSTOPHER L. NEHANIV,
AND KÁROLY PODOSKI

Dedicated to John Rhodes on the occasion of his 80th birthday.

Abstract. The flow semigroup, introduced by John Rhodes, is an
invariant for digraphs and a complete invariant for graphs. After
collecting together previous partial results, we refine and prove
Rhodes’s conjecture on the structure of the maximal groups in
the flow semigroup for finite, antisymmetric, strongly connected
digraphs.

Building on this result, we investigate and fully describe the
structure and actions of the maximal subgroups of the flow semi-
group acting on all but k points for all finite digraphs and graphs
for all k ≥ 1. A linear algorithm (in the number of edges) is pre-
sented to determine these so-called ‘defect k groups’ for any finite
(di)graph.

Finally, we prove that the complexity of the flow semigroup
of a 2-vertex connected (and strongly connected di)graph with n

vertices is n − 2, completely confirming Rhodes’s conjecture for
such (di)graphs.

1. Introduction

John Rhodes in [9] introduced the flow semigroup, an invariant for
graphs and digraphs (that is, isomorphic flow semigroups correspond to
isomorphic digraphs). In the case of graphs, this is a complete invariant
determining the graph up to isomorphism. The flow semigroup is the
semigroup of transformations of the vertices generated by elementary
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collapsings corresponding to the edges of the (di)graph. An elementary
collapsing corresponding to the directed edge uv is a map on the vertices
moving u to v and acting as the identity on all other vertices. (See
Section 2 for all the precise definitions.)

A maximal subgroup of this semigroup for a finite (di)graph D =
(VD, ED) acts by permutations on all but k of its vertices (1 ≤ k ≤
|VD| − 1) and is called a “defect k group”. The set of defect k groups
of a (di)graph is also an invariant. For each fixed k, they are all iso-
morphic to each other in the case of (strongly) connected (di)graphs.
Rhodes formulated a conjecture on the structure of these groups for
strongly connected digraphs whose edge relation is anti-symmetric in
[9, Conjecture 6.51i (2)–(4)]. We show that his conjecture was cor-
rect, and we prove it here in sharper form. Moreover, extending this
result, we fully determine the defect k groups for all finite graphs and
digraphs.

Rhodes further conjectured [9, Conjecture 6.51i (1)] that the Krohn–
Rhodes complexity of the flow semigroup of a strongly connected, anti-
symmetric digraph D on n vertices is n−2. We confirm this conjecture
when the digraph is 2-vertex connected, and bound the complexity in
the remaining cases.

The structure of the argument is as follows. First, a maximal group
in the flow semigroup of a digraph D is the direct product of maximal
groups of the flow semigroups of its strongly connected components.
Thus one needs only to consider strongly connected digraphs. It turns
out, that if D is a strongly connected digraph, then the defect k group
(up to isomorphism) does not depend on the choice of the vertices it acts
on. Furthermore, for a strongly connected digraph, its flow semigroup
is the same as the flow semigroup of the simple graph obtained by
“forgetting” the direction of the edges. This is detailed in Section 2
and is based on [9, p. 159–169]. Thus, one only needs to consider the
defect k groups of the flow semigroup for simple connected graphs.

In Section 3 we list some useful lemmas and determine the defect
k group of a cycle. In Section 4 we prove that the defect 1 group of
arbitrary simple connected graph is the direct product of the defect 1
groups of its 2-vertex connected components. The defect 1 group of an
arbitrary 2-vertex connected graph Γ has been determined by Wilson
[15]. He proved that the defect 1 group is either An−1 or Sn−1, unless
Γ is a cycle or the exceptional graph displayed in Figure 1.

In particular, Rhodes’s conjecture (as phrased for strongly connected,
antisymmetric digraphs in [9, Conjecture 6.51i (2)]) about the defect
1 group holds, and more generally: the defect 1 group of the flow
semigroup of a simple connected graph is indeed the product of cyclic,
alternating and symmetric groups of various orders. A straightforward
linear algorithm is given to determine the direct components of the
defect 1 group of an arbitrary connected graph (see Section 6).
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Figure 1. Exceptional graph

In Section 5 we determine the defect k groups (k ≥ 2) of arbitrary
graphs by considering the so-called maximal k-subgraphs (maximal
subgraphs for which the defect k group is the full symmetric group)
and prove that the defect k group of a graph is the direct product of
the defect k groups of the maximal k-subgraphs (i.e. of full symmetric
groups). In Section 6 we provide a linear algorithm (in the number of
edges of Γ) to determine the maximal k-subgraphs of an arbitrary con-
nected graph. Finally, in Section 7 we confirm [9, Conjecture 6.51i (1)]
about the Krohn–Rhodes complexity of digraphs when the digraph is
2-vertex connected, and we prove some bounds on the complexity of the
flow semigroup in the remaining cases. (See Section 7 for the definition
of Krohn–Rhodes complexity.)

We have collected all these results into the following main theorem.

Theorem 1.

(1) Let D be a digraph, then every maximal subgroup of SD is (iso-
morphic to) the direct product of maximal subgroups of SDi

,
where the Di are the strongly connected components of D.

(2) Let D be a strongly connected digraph. Let Vk, V
′
k ⊆ D be subsets

of nodes such that |Vk| = |V ′
k| = k. Let Gk,Vk

, Gk,V ′

k
be the

defect k groups acting on V \ Vk and V \ V ′
k, respectively. Then

Gk,Vk
≃ Gk,V ′

k
as permutation groups.

(2r) Let D be a strongly connected digraph, and ΓD be the graph
obtained from D by forgetting the direction of the edges in D.
Then SD = SΓD

.
(3) Let Γ be a simple connected graph of n vertices, and let Γ1, . . . ,Γm

be its 2-vertex connected components. Then the defect 1 group of
Γ is the direct product of the defect 1 groups of Γi (1 ≤ i ≤ m).

(4) Let Γ be a 2-vertex connected simple graph with n ≥ 2 vertices.
Then the defect 1 group of Γ is isomorphic (as a permutation
group) to
(a) the cyclic group Zn−1 if Γ is a cycle;
(b) S5 ≃ PGL2(5) acting sharply 3-transitively on 6 points, if

Γ is the exceptional graph (see Figure 1);
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(c) Sn−1 or An−1, otherwise, where the defect 1 group is An−1

if and only if Γ is bipartite.
(4c) Let Γ be a 2-vertex connected simple graph with n ≥ 2 vertices.

Then the complexity of SΓ is #G (SΓ) = n− 2.
(4cc) Let Γ be a 2-edge connected simple graph with n ≥ 2 vertices.

Then for the complexity of SΓ we have n−3 ≤ #G (SΓ) ≤ n−2.
(5) Let k ≥ 2, Γ be a simple connected graph of n vertices, n > k.

(a) If Γ is a cycle, then its defect k group is the cyclic group
Zn−k.

(b) Otherwise, let Γ1, . . . ,Γm be the maximal k-subgraphs of Γ,
and let Γi have ni vertices. Then the defect k group of Γ is
the direct product of the defect k groups of Γi (1 ≤ i ≤ m),
thus it is isomorphic (as a permutation group) to

Sn1−k × · · · × Snm−k.

Our main contribution to Theorem 1 are items (3), (4c), (4cc) and (5).
Items (1), (2) and (2r) (among some basic definitions and notations)
are detailed in Section 2 and are based on [9, p. 159–169]. In Section 3
we list some useful lemmas and determine the defect k group of a
cycle. Item (3) is proved in Section 4, while item (4) has already
been proved by Wilson [15]. Then in Section 5 we prove item (5). In
Section 6 we provide a linear algorithm (in the number of edges of Γ) to
determine the maximal k-subgraphs of an arbitrary connected graph to
help putting item (5) more into context. Finally, items (4c) and (4cc)
are proved in Section 7.

East, Gadouleau and Mitchell [6] are currently looking into other
properties of flow semigroups. In particular, they provide a linear al-
gorithm (in the number of vertices of a digraph) for whether or not
the flow semigroup contains a cycle of length m for a fixed positive
integer m. Furthermore, they classify all those digraphs whose flow
semigroups have any of the following properties: inverse, completely
regular, commutative, simple, 0-simple, a semilattice, a rectangular
band, congruence-free, is K-trivial or K-universal, where K is any of
Green’s H-, L-, R-, or J -relation, and when the flow-semigroup has a
left, right, or two-sided zero.

Rhodes’s original conjecture [9, Conjecture 6.51i] is about strongly
connected, antisymmetric digraphs. By [11] a strongly connected an-
tisymmetric digraph becomes a 2-edge connected graph after forget-
ting the directions. Therefore Theorem 1 almost completely settles
Rhodes’s conjecture [9, Conjecture 6.51i]. To completely settle the last
remaining part of Rhodes’s conjecture [9, Conjecture 6.51i (1)], one
should find the complexity of the flow semigroups for the rest of the
2-edge connected graphs.

Problem 1. Determine the complexity of SΓ for a 2-edge connected
graph Γ which is not 2-vertex connected.
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The smallest such graph is the “bowtie” graph:

Problem 2. Let Γ be the graph with vertex set {u, v, w, x, y } and
edge set { uv, vw, wu, wx, xy, yw}. Determine the complexity of SΓ.

Ultimately, the goal is the determine the complexity for all flow semi-
groups.

Problem 3. Determine the complexity of SΓ for an arbitrary finite
graph (or digraph) Γ.

2. Flow semigroup of digraphs

For notions in graph theory we refer to [4, 7], in group theory to [12]
in permutation groups to [1, 5], in semigroup theory to [2, 3].

A semigroup is a set with a binary associative multiplication. A
transformation on a set X is a function s : X → X. It operates (or acts)
on X by mapping each x ∈ X to some x · s ∈ X. Here we write x · s or
xs for transformation s applied to x ∈ X. A transformation semigroup
S is a set of transformations s ∈ S on some set X such that S is closed
under (associative) function composition. Also, S itself is then said to
operate or to act on the set X. Note that in this paper functions act on
the right, therefore transformations are multiplied from left to right.
Denoting by ss′ the transformation of X obtained by first applying s
and then s′, we have x ·ss′ = (x ·s) ·s′. If a semigroup element s acts on
a set X, and for some Y ⊇ X the action of s is not defined on Y \X,
then we may consider s acting on Y , as well, with the identity action
on Y \X.

A permutation group is a nonempty transformation semigroup G that
contains only permutations and such that that if g ∈ G then the inverse
permutation g−1 is also in G. Furthermore, for a set Y ⊆ X and a
transformation s on X define

Y s = { ys | y ∈ Y } .

A subgroup G of a transformation semigroup S is a subset of S whose
transformations satisfy the (abstract) group axioms. It is not hard
to show that if S is a transformation semigroup acting on X, then G
contains a (unique) idempotent e2 = e (which does not generally act as
the identity map on X), and furthermore distinct elements of G when
restricted to Xe are distinct, permute Xe, and comprise a permutation
group acting on Xe (see [9, p. 49]).

A digraph (V,E) is a set of nodes (or vertices) V , and a binary
relation E ⊆ V × V . An element e = (u, v) ∈ E is called a directed
edge from node u to node v, and also denoted uv. A loop-edge is an
edge from a vertex to itself. A graph (V,E) is a set of nodes V and
a symmetric binary relation E ⊆ V × V . If (u, v) ∈ E, then uv is
called an (undirected) edge. Such a graph is called simple if it has no
loop-edges. In this paper we consider only digraphs without loop-edges
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and simple graphs. A walk is a sequence of vertices (v1, . . . , vn) such
that vivi+1 is a (directed) edge for all 1 ≤ i ≤ n− 1. By cycle we will
mean a simple cycle, that is a closed walk with no repetition of vertices
except for the starting and ending vertex. A path is a walk with no
repetition of vertices. A (di)graph Γ = (V,E) is (strongly) connected
if there is a path from u to v for all distinct u, v ∈ V . By subgraph
Γ′ = (V ′, E ′) ⊆ Γ we mean a graph for which V ′ ⊆ V , E ′ ⊆ E. If Γ′ is
an induced subgraph, that is E ′ consists of all edges from E with both
endpoints in V ′, then we explicitly indicate it. A strongly connected
component of a digraph Γ is a maximal strongly connected subgraph
of Γ.

For a digraph D = (VD, ED) without any loop-edges, the flow semi-
group S = SD is the semigroup of transformations acting on VD defined
by

S = SD = 〈euv | uv ∈ ED〉 ,

where euv is the elementary collapsing corresponding to the directed
edge uv ∈ ED, that is, for every x ∈ VD we have

x · euv = xeuv =

{

v, if x = u,

x, otherwise.

Thus, the flow semigroup of a (di)graph D is generated by idempotents
(elementary collapsings) corresponding to the edges of D. The flow
semigroup SD is also called the Rhodes semigroup of the (di)graph.

A maximal subgroup of SD is a subgroup that is not properly con-
tained in any other subgroup of SD. In order to determine the maxi-
mal subgroups of SD, one can make several reductions by [9, Proposi-
tion 6.51f]. First, one only needs to consider the maximal subgroups of
SDi

for the strongly connected components Di of D. Strongly connected
components are maximal induced subgraphs such that any vertex can
be reached from any other vertex by a directed path.

Lemma 2 ([9, Proposition 6.51f (1)]). Let D be a digraph, then ev-
ery maximal subgroup of SD is (isomorphic to) the direct product of
maximal subgroups of SDi

, where the Di are the strongly connected
components of D.

This is (1) of Theorem 1. An element s ∈ S is of defect k if |VDs| =
|VD| − k. Let Vk = { v1, v2, . . . , vk } ⊆ VD. The defect k group Gk,Vk

associated to Vk (called the defect set) is generated by all elements of S
restricted to VD \ Vk which permute the elements of VD \ Vk and move
elements of Vk to elements of VD \ Vk:

Gk,Vk
=

〈

s ↾VD\Vk
: s ∈ S, (VD \ Vk)s = VD \ Vk, Vks ⊆ VD \ Vk

〉

,

where s ↾VD\Vk
denotes the restriction of the transformation s onto the

set VD \ Vk. Now, Gk,Vk
is a permutation group acting on VD \ Vk.
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For this reason VD \ Vk is called the permutation set of Gk,Vk
, and the

elements of Gk,Vk
are sometimes called defect k permutations. Fur-

thermore, if the defect set contains only one vertex v, then by abuse
of notation we write defect v or defect point v instead of defect { v }.
In general, the defect k group Gk,Vk

can depend on the choice of Vk.
However, by [9, Proposition 6.51f (2)] it turns out that if the graph is
strongly connected then the defect k group Gk is unique up to isomor-
phism.

Lemma 3 ([9, Proposition 6.51f (2)]). Let D be a strongly connected
digraph. Let Vk, V

′
k ⊆ VD be subsets of nodes such that |Vk| = |V ′

k| = k.
Then the action of Gk,Vk

on VD \ Vk is equivalent to that of Gk,V ′

k
on

VD \ V ′
k. That is, Gk,Vk

≃ Gk,V ′

k
as permutation groups.

This is (2) of Theorem 1. By Lemma 3, we may write Gk instead of
Gk,Vk

without any loss of generality. Furthermore, the case of strongly
connected graphs can be reduced to the case of simple graphs. Let
Γ = (V,E) be a simple (undirected) graph, we define SΓ by considering
Γ as a directed graph where every edge is directed both ways. Namely,
let DΓ = (V,ED) be the directed graph on vertices V such that both
uv ∈ ED and vu ∈ ED if and only if the undirected edge uv ∈ E. Then
let SΓ = SDΓ

.
Furthermore, for every digraph D = (VD, ED), one can associate an

undirected graph Γ by “forgetting” the direction of edges in D. Pre-
cisely, let ΓD = (VD, E) be the undirected graph such that uv ∈ E
if and only if uv ∈ ED or vu ∈ ED. The following lemma due to Ne-
haniv and Rhodes shows that if a digraph D is strongly connected then
the semigroup SD corresponding to D and the semigroup SΓD

corre-
sponding to the simple graph ΓD are the same. Moreover, Lemma 4
immediately implies that the transformation semigroup SD is an invari-
ant for digraphs and a complete invariant for (simple) graphs: That is,
isomorphic digraphs have the isomorphic flow semigroups, and graphs
are isomorphic if and only if their flow semigroups are isomorphic as
transfromation semigroups.

Lemma 4 ([9, Lemma 6.51b]). Let D be an arbitrary digraph. Then

eab ∈ SD ⇐⇒

{

a → b is an edge in D, or

b → a is an edge in a directed cycle in D.

In particular, if D is strongly connected then SD = SΓD
.

Proof. Let b → a → u1 → · · · → un−1 → b be a directed cycle in D.
Then an easy calculation shows that

eab =
(

ebaeun−1beun−2un−1
. . . eu1u2

eau1

)n
.

For the other direction, assume eab = euvs for some s ∈ SD. Then euvs
moves u and v to the same vertex, while eab moves only a and b to the
same vertex. Thus { a, b } = {u, v }. �
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This is (2r) of Theorem 1. Therefore, in the following we only con-
sider simple, connected, undirected graphs Γ = (V,E), that is no self-
loops or multiple edges are allowed. Furthermore, Γ is 2-edge connected
if removing any edge does not disconnect Γ. Rhodes’s conjecture [9,
Conjecture 6.51i (2)–(4)] is about strongly connected, antisymmetric
digraphs. Note that by [11] a strongly connected antisymmetric di-
graph becomes a 2-edge connected graph after forgetting the directions.

Let us fix some notation. The letters k, l, m and n will denote
nonnegative integers. The number of vertices of Γ is usually denoted
by n, while k will denote the size of the defect set. Usually we denote
the defect k group of a graph Γ by Gk or GΓ, depending on the context.
We try to heed the convention of using u, v, w, x, y as vertices of graphs,
V as the set of vertices, E as the set of edges. Furthermore, the flow
semigroup is mostly denoted by S, its elements are denoted by s, t, g,
h, p, q. The cyclic group of m elements is denoted by Zm.

We will need the notion of an open ear, and open ear decomposition.

Definition 5. Let Γ be an arbitrary graph, and let Γ′ be a proper
subgraph of Γ. A path (u, c1, . . . , cm, v) is called a Γ′-ear (or open ear)
with respect to Γ, if u, v ∈ Γ′, u 6= v, and either m = 0 and the edge
uv /∈ Γ′, or c1, . . . , cm ∈ Γ \ Γ′. An open ear decomposition of a graph
is a partition of its set of edges into a sequence of subsets, such that
the first element of the sequence is a cycle, and all other elements of
the sequence are open ears of the union of the previous subsets in the
sequence.

A connected graph Γ with at least k vertices is k-vertex connected if
removing any k − 1 vertices does not disconnect Γ. By [14] a graph is
2-vertex connected if and only if it is a single edge or it has an open
ear decomposition.

3. Preliminaries

Let Γ = (V,E) be a simple, connected (undirected) graph, and for
every 1 ≤ k ≤ |V |−1, let Gk denote its defect k group for some Vk ⊆ V ,
|Vk| = k. Let S = SΓ be the flow semigroup of Γ. The following is
immediate.

Lemma 6 ([9, Fact 6.51c]). Let s ∈ S be of defect k. If seuv is of
defect k, as well, then u /∈ V s or v /∈ V s.

Furthermore, it is not too hard to see that every defect 1 permuta-
tion arises from the permutations generated by cycles (in the graph)
containing the defect point.

Lemma 7 ([9, Proposition 6.51e]). Let Γ be a connected graph, and let
G1 denote its defect 1 group, such that the defect point is v ∈ V . Then

G1 = 〈(u1, . . . , uk) as permutation | (u1, . . . , uk, v) is a cycle in Γ〉 .
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These yield that the defect k group of the n-cycle graph is cyclic,
proving items (4a) and (5a) of Theorem 1:

Lemma 8. The defect k group of the n-cycle is isomorphic to Zn−k.

Proof. Let x1, x2, . . . xn be the consecutive elements of the cycle Γ =
(V,E). If s ∈ S is an element of defect k then by Lemma 6 we have
that sexixi+1

is of defect k if and only if xi /∈ V s or xi+1 /∈ V s. This
means that if u1, u2, . . . un−k are the consecutive elements of V s in the
cycle and sexixi+1

is of defect k, as well, then

u1exixi+1
, u2exixi+1

, . . . , un−kexixi+1

are the consecutive elements of V sexixi+1
. Thus the cyclic ordering

of these elements cannot be changed. Hence Gk is isomorphic to a
subgroup of Zn−k.

Now, assume that v1, v2, . . . vk, u1, u2, . . . un−k are the consecutive el-
ements of Γ, and the defect set is Vk = { v1, . . . , vk }. Let

s1 = ev1v2 . . . evjvj+1
. . . evk−1vk ,

s2 = eun−kvkeun−k−1un−k
. . . euj−1uj

. . . eu1u2
evku1

,

s = s1s2.

It easy to check that

vis = u1, u1s = u2, . . . , ujs = uj+1, . . . , un−ks = u1.

Therefore s, s2, . . . , sn−k are distinct elements of Gk, hence Gk ≃ Zn−k.
�

4. Defect 1 groups

In this Section we prove item (3) of Theorem 1, which states that
the defect 1 group of a simple connected graph is the direct product of
the defect 1 groups of its 2-vertex connected components. This follows
by induction on the number of 2-vertex connected components from
Lemma 9. The case where Γ is 2-vertex connected (that is item (4) of
Theorem 1) is covered by [15, Theorem 2].

Lemma 9. Let Γ1 and Γ2 be connected induced subgraphs of Γ such
that Γ1 ∩ Γ2 = { v }, where there are no edges in Γ between Γ1 \ { v }
and Γ2 \ { v }. Then the defect 1 group of Γ1 ∪ Γ2 is the direct product
of the defect 1 groups of Γ1 and Γ2.

Proof. Let GΓi
denote the defect 1 group of Γi, where the defect point is

v. By Lemma 7, GΓ is generated by cyclic permutations corresponding
to cycles through v in Γ. Now, Γ1∩Γ2 = { v }, and every path between
a node from Γ1 and a node from Γ2 must go through v, hence every

cycle in Γ is either in Γ1 or in Γ2. Let c
(1)
i , . . . , c

(mi)
i be the permutations

corresponding to the cycles in Γi (i = 1, 2). Since these cycles do not
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involve v by Lemma 7, we have c
(j1)
1 c

(j2)
2 = c

(j2)
2 c

(j1)
1 for all 1 ≤ ji ≤ mi,

i = 1, 2, thus

GΓ =
〈

c
(1)
1 , . . . , c

(m1)
1 , c

(1)
2 , . . . , c

(m2)
2

〉

=
〈

c
(1)
1 , . . . , c

(m1)
1

〉

×
〈

c
(1)
2 , . . . , c

(m2)
2

〉

= GΓ1
×GΓ2

.

�

5. Defect k groups

We prove item (5b) of Theorem 1 in this Section. In the following we
assume k ≥ 2, and every graph Γ is assumed to be simple connected.
We start with some simple observations.

Lemma 10. Let Γ be a connected graph, and let Γ′ be a connected
subgraph of Γ. If Γ′ has at least k + 1 vertices, then the defect k group
of Γ contains a subgroup isomorphic (as a permutation group) to the
defect k group of Γ′. Furthermore, if Γ\Γ′ contains at least one vertex,
and Γ′ has at least k vertices, then the defect k group of Γ contains a
subgroup isomorphic (as a permutation group) to the defect k−1 group
of Γ′.

Proof. Let Γ = (V,E), Γ′ = (V ′, E ′). First, assume |V ′| ≥ k + 1,
and let Vk = { v1, . . . , vk } ⊆ V ′. Let Gk,Vk

and G′
k,Vk

be the defect
k-groups of Γ and Γ′. Let g ∈ G′

k,Vk
be arbitrary. Then there exists

s ∈ SΓ′ with defect set Vk such that s ↾V ′\Vk
= g. Now, E ′ ⊆ E,

hence every elementary collapsing of Γ′ is an elementary collapsing
of Γ, as well, Thus s ∈ SΓ, and s acts as the identity on V \ V ′.
Furthermore, if s′ ∈ SΓ′ is another element with defect set Vk such
that s′ ↾V ′\Vk

= g = s ↾V ′\Vk
, then s′ ∈ SΓ with s′ ↾V \Vk

= s ↾V \Vk
.

Thus ϕ : G′
k,Vk

→ Gk,Vk
, ϕ(g) = s ↾V \Vk

is a well defined injective
homomorphism of permutation groups.

Second, assume |V ′| ≥ k, and let Vk−1 = { v1, . . . , vk−1 } ⊆ V ′. Let
v ∈ V \ V ′, and let Vk = Vk−1 ∪ { v }. Let u be a neighbor of v and
let e = evu. Let Gk,Vk

be the defect k-group of Γ and let G′
k−1,Vk−1

be

the defect (k − 1)-group of Γ′. Let g ∈ G′
k−1,Vk−1

be arbitrary. Then
there exists s ∈ SΓ′ with defect set Vk−1 such that s ↾V ′\Vk−1

= g. Now,
es ∈ SΓ has defect set Vk, and es ↾V \Vk

acts as g on V ′ \ Vk−1, and acts
as the identity on V \ (V ′ ∪ { v }). Furthermore, if s′ ∈ SΓ′ is another
element with defect set Vk−1 such that s′ ↾V ′\Vk−1

= g = s ↾V ′\Vk−1
,

then es ↾V \Vk
= es′ ↾V \Vk

. As g ∈ G′
k−1,Vk−1

was arbitrary, we have

that ϕ : G′
k−1,Vk−1

→ Gk,Vk
, ϕ(g) = es ↾V \Vk

is a well defined injective
homomorphism of permutation groups. �

Lemma 11. Let 1 ≤ m ≤ l < k ≤ n − 2, and assume Γ contains the
following subgraph:
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x1

y

x2 . . . xl

vu1

x2 . . . xl

u2

...

um

If Vk is a set of nodes of size k such that y, x1, . . . , xl ∈ Vk, and v, ui /∈
Vk for some 1 ≤ i ≤ m, then the defect k group Gk,Vk

contains the
transposition (ui, v).

Proof. Let

r =

{

ss1eyx1
ex1u1

, if i = 1,

ss1 . . . siptti−1 . . . t1q, if i ≥ 2,

where

s = evxl
exlxl−1

. . . ex2x1
ex1y,

s1 = eu1x1
ex1x2

. . . exl−1xl
exlv,

sj = eujuj−1
. . . eu2u1

eu1x1
ex1x2

. . . exl−j+1xl−j+2
, (2 ≤ j ≤ m),

p = eyx1
ex1u1

eu1u2
. . . eui−1ui

,

t = exl−i+2xl−i+1
. . . ex2x1

ex1y,

tj = exl−j+2xl−j+1
. . . ex2x1

ex1u1
eu1u2

. . . euj−1uj
, (2 ≤ j ≤ m),

t1 = evxl
exlxl−1

. . . ex2x1
ex1u1

,

q = eyx1
ex1x2

. . . exl−1xl
exlv.

Then r transposes ui and v and fixes all other vertices of Γ outside the
defect set. �

Note that Lemma 11 is going to be useful whenever Γ contains a
node with degree at least 3.

Lemma 12. Let k ≥ 2, Γ′ = (V ′, E ′) be such that |V ′| > k and its
defect k group is transitive (e.g. if Γ′ is a cycle with at least k + 1
vertices). Let Γ = (V ′ ∪ { v } , E ′ ∪ { x1v }) for a new vertex v and
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some x1 ∈ Γ′, where the degree of x1 in Γ′ is at least 2. Then the defect
k group of Γ is isomorphic to Sn−k.

Proof. Let n be the number of vertices of Γ, then n ≥ k + 2. Let the
vertices of Γ′ be y, x1, x2, . . . , xk−1, u1, u2, . . . , un−k−1 such that u1 and
y are neighbors of x1 in Γ′. Let the defect set be { y, x1, . . . , xk−1 }.
Applying Lemma 11 to the subgraph with vertices {x1, v, y, u1 } we
obtain that the defect k group of Γ contains the transposition (u1, v).
Since the defect k group of Γ′ is transitive and contained in the defect
k group of Γ by Lemma 10, the defect k group of Γ contains the trans-
position (ui, v) for all 1 ≤ i ≤ n− k− 1. Therefore, the defect k group
of Γ is isomorphic to Sn−k. �

Motivated by Lemma 12, we define the k-subgraphs and the maximal
k-subgraphs of a graph Γ.

Definition 13. Let Γ be a simple connected graph, k ≥ 2. A connected
subgraph Γ′ ⊆ Γ is called a k-subgraph if its defect k group is the
symmetric group of degree |Γ′| − k. A k-subgraph is a maximal k-
subgraph if it has no proper extension in Γ to a k-subgraph. Finally,
we say that a k-subgraph Γ′ is nontrivial if it contains a vertex having
at least 3 distinct neighbors in Γ′.

Note that every maximal k-subgraph is an induced subgraph. A
trivial k-subgraph is either a line on k + 1 points or a cycle on k + 1
or k + 2 points. Furthermore, a trivial maximal k-subgraph cannot
be a cycle by Lemma 12, unless the graph itself is a cycle. Finally,
any connected subgraph of k + 1 points is trivially a k-subgraph, thus
every connected subgraph of k + 1 points is contained in a maximal
k-subgraph. Note that the intersection of two maximal k-subgraphs
cannot contain more than k vertices:

Lemma 14. Let Γ1,Γ2 be k-subgraphs such that |Γ1 ∩ Γ2| > k. Then
Γ1 ∪ Γ2 is a k-subgraph, as well.

Proof. Choose the defect set Vk such that Vk $ Γ1 ∩ Γ2, and let v ∈
(Γ1 ∩ Γ2)\Vk. Then the symmetric groups acting on Γ1 \Vk and Γ2\Vk

are subgroups in the defect k group of Γ1∪Γ2. Thus, we can transpose
every member of Γi \ (Vk ∪ { v }) with v. Therefore, the defect k group
of Γ1 ∪ Γ2 is the symmetric group on (Γ1 ∪ Γ2) \ Vk. �

Lemma 15. Let Γ be a simple connected graph, and let Γ′ be a k-
subgraph of Γ. Let x1 ∈ Γ′, v /∈ Γ′, and let P = (x1, x2, . . . , xl, v) be a
shortest path between x1 and v in Γ for some l ≤ k−1. Assume that x1

has at least 2 neighbors in Γ′ apart from x2. Then the subgraph Γ′ ∪ P
is a k-subgraph.

Proof. First, consider the case x2, . . . , xl ∈ Γ′. Let u, y be two neighbors
of x1 in Γ′ distinct from x2, and choose the defect set Vk such that it
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contains y, x1, . . . , xl and does not contain u. By Lemma 11 the defect
k group of Γ′ ∪ { v } contains the transposition (u, v). Furthermore,
the defect k group of Γ′ is the whole symmetric group on Γ′ \ Vk.
Thus, the defect k group of Γ′ ∪ { v } is the whole symmetric group on
(Γ′ \ Vk) ∪ { v }.

Now, if not all of x2, . . . , xl are in Γ′, then, by the previous argu-
ment, one can add them (and then v) to Γ′ one by one, and obtain an
increasing chain of k-subgraphs. �

As a corollary, we obtain that every vertex of degree at least 3 to-
gether with at least two of its neighbors is contained in exactly one
nontrivial maximal k-subgraph.

Corollary 16. Let Γ be a simple connected graph with n vertices such
that n > k, and let x1 be a vertex having degree at least 3. Then there
exists exactly one maximal k-subgraph Γ′ containing x1 such that x1

has degree at least 2 in Γ′. Furthermore, Γ′ is a nontrivial k-subgraph,
and if Γx1

is the induced subgraph of the vertices in Γ that are of at
most distance k − 1 from x1, then Γx1

⊆ Γ′.

Proof. Any connected subgraph of Γ with k + 1 vertices containing x1

and any two of its neighbors is a k-subgraph. Thus there exists at least
one maximal k-subgraph containing x1 and two of its neighbors.

Let Γ′ be a maximal k-subgraph containing x1 and at least two of
its neighbors. Assume that Γx1

6⊆ Γ′. Let v ∈ Γx1
\Γ′ be any vertex at

a minimal distance from x1, and let P = (x1, . . . , xl, v) be a shortest
path between x1 and v. If l = 1, then P = (x1, v). Now x1 has at
least two neighbors in Γ′ apart from v, therefore Γ′∪P is a k-subgraph
by Lemma 15, which contradicts the maximality of Γ′. Thus l ≥ 2,
in particular all neighbors of x1 in Γ are in Γ′, as well, and thus Γ′

is a nontrivial k-subgraph. Hence x1 has at least two neighbors in Γ′

apart from x2, therefore Γ′ ∪ P is a k-subgraph by Lemma 15, which
contradicts the maximality of Γ′. Thus Γx1

⊆ Γ′.
Now, assume that Γ′ and Γ′′ are maximal k-subgraphs containing x1

and at least two of its neighbors. Then Γx1
⊆ Γ′ and Γx1

⊆ Γ′′. Note
that either Γx1

= Γ (and hence |Γx1
| = n > k), or there exists a vertex

v ∈ Γ which is of distance exactly k from x1. Let P = (x1, . . . , xk, v)
be a shortest path between x1 and v, and let u and y be two neighbors
of x1 distinct from x2. Then { x1, . . . , xk, y, u } ⊆ Γx1

, thus |Γx1
| > k.

Therefore |Γ′ ∩ Γ′′| ≥ |Γx1
| > k, yielding Γ′ = Γ′′ by Lemma 14. �

Lemma 17. Let Γ′ be a nontrivial k-subgraph of Γ, and let P be a
Γ′-ear. Then Γ′ ∪ P is a (nontrivial) k-subgraph of Γ.

Proof. Let Γ, Γ′ and P = (w0, w1, . . . wi, wi+1) be a counterexample,
where i is minimal. There exists a shortest path (w0, y1, . . . , yl, wi+1)
in Γ′ among those where the degree of some yj or of w0 or of wi+1 is at
least 3 in Γ′. (At least one such path exists, because Γ′ is connected,
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and is a nontrivial k-subgraph, hence contains a vertex of degree at
least 3.) For easier notation, let y0 = w0, yl+1 = wi+1. Let y′ ∈
Γ′ \ { y0, y1, . . . , yl, yl+1 } be a neighbor of yj; this exists, because the
degree of yj is at least 3, and otherwise a shorter path would exist
between w0 and wi+1.

If j + 1 ≤ k − 1 (that is j ≤ k − 2), then by Lemma 15 the induced
subgraph on Γ′ ∪ {w1 } is a k-subgraph, thus Γ′ ∪ {w1 } with the ear
(w1, . . . , wi, wi+1) is a counterexample with a shorter ear.

Similarly, if l−j+2 ≤ k−1 (that is l+3−k ≤ j), then by Lemma 15
the induced subgraph on Γ′ ∪ {wi } is a k-subgraph, thus Γ′ ∪ {wi }
with the ear (w0, w1, . . . , wi) is a counterexample with a shorter ear.

Finally, if k − 1 ≤ j ≤ l + 2 − k, then 2k − 3 ≤ l. Let Γ′′ be the
cycle P ∪ (y0, y1, . . . , yl, yl+1) together with y′ and the edge yjy

′. Then
Γ′′ is a k-subgraph by Lemma 12, |Γ′ ∩ Γ′′| = l+2 ≥ 2k−1 > k, hence
Γ′ ∪ Γ′′ = Γ′ ∪ P is a k-subgraph by Lemma 14. �

Corollary 18. Let Γ be a simple connected graph with n vertices such
that n > k, and assume that Γ is not a cycle. Suppose uv is an edge
contained in a cycle of Γ. Then there exists exactly one maximal k-
subgraph Γ′ containing the edge uv. Furthermore, Γ′ is a nontrivial
k-subgraph, and if Γuv is the 2-edge connected component containing
uv, then Γuv ⊆ Γ′.

Proof. Any connected subgraph of Γ with k + 1 vertices containing
the edge uv is a k-subgraph. Thus there exists at least one maximal
k-subgraph Γ′ containing the edge uv. We prove first that Γ′ is a
nontrivial k-subgraph, then prove Γuv ⊆ Γ′, and only after that do we
prove that Γ′ is unique.

Assume first that Γ′ is a trivial k-subgraph. If Γ′ were a cycle, then
Γ \ Γ′ contains at least one vertex, because Γ′ is an induced subgraph
of Γ. Then Lemma 12 contradicts the maximality of Γ′. Thus Γ′ is a
line of k + 1 vertices. Let Γ2 be a shortest cycle containing uv. Now,
there must exist a vertex in Γ \ Γ2, otherwise either Γ = Γ2 would be
a cycle, or there would exist an edge in Γ \ Γ2 yielding a shorter cycle
than Γ2 containing the edge uv. Let x2 ∈ Γ \ Γ2 be a neighbor of a
vertex in Γ2. By Lemma 12 the induced subgraph on Γ2 ∪ { x2 } is
a k-subgraph. Thus Γ′ 6⊆ Γ2, otherwise Γ′ would not be a maximal
k-subgraph. Let x1 ∈ Γ′∩Γ2 be a vertex such that two of its neighbors
are in Γ2 and its third neighbor is some x2 ∈ Γ′ \ Γ2. Note that every
vertex in Γ′ is of distance at most k−1 from x1, because u, v ∈ Γ′∩Γ2.
Thus, if |Γ2| ≥ k + 1, then Γ2 together with x2 and the edge x1x2

is a k-subgraph by Lemma 12, and hence Γ2 ∪ Γ′ is a k-subgraph by
Lemma 15, contradicting the maximality of Γ′. Otherwise, if |Γ2| ≤ k,
then every vertex in Γ2 is of distance at most k− 1 from x1, and hence
Γ2 ∪ Γ′ is a k-subgraph by Lemma 15, contradicting the maximality of
Γ′. Therefore Γ′ is a nontrivial k-subgraph.
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Now we show that the two-edge connected component Γuv ⊆ Γ′. Let
Γ,Γ′ be a counterexample to this such that the number of vertices of
Γuv is minimal, and among these counterexamples choose one where
the number of edges of Γuv is minimal. Using an ear-decomposition
[11], Γuv is either a cycle, or there exists a 2-edge connected subgraph
Γ1 ⊆ Γuv and there exists

(1) either a Γ1-ear P such that Γuv = Γ1 ∪ P ,
(2) or a cycle Γ2 such that |Γ1 ∩ Γ2| = 1 and Γuv = Γ1 ∪ Γ2.

If Γuv is a cycle containing the edge uv, and Γuv 6⊆ Γ′, then going along
the edges of Γuv, one can find a Γ′-ear P ⊆ Γuv. Then Γ′ ∪ P is a
k-subgraph by Lemma 17, contradicting the maximality of Γ′. Thus
Γuv is not a cycle. Let us choose Γ1 from cases (1) and (2) so that it
would have the least number of vertices.

Assume first that case (1) holds. By minimality of the counterex-
ample, Γ1 ⊆ Γ′. If P 6⊆ Γ′, then going along the edges of P one can
find a Γ′-ear P ′ ⊆ P . But then Γ′ ∪ P ′ is a k-subgraph by Lemma 17,
contradicting the maximality of Γ′.

Assume now that case (2) holds. Again, by induction, Γ1 ⊆ Γ′. If
Γ2 6⊆ Γ′, then either |Γ′ ∩ Γ2| = 1 or going along the edges of Γ2 one
can find a Γ′-ear P ′ ⊆ Γ2. The latter case cannot happen, because then
Γ′ ∪ P ′ is a k-subgraph by Lemma 17, contradicting the maximality of
Γ′. Thus |Γ′ ∩ Γ2| = 1, and hence Γ′∩Γ2 = Γ1∩Γ2. Let Γ1∩Γ2 = {x1 },
and let v1 be a neighbor of x1 in Γ1 \ Γ2, and let v2 be a neighbor of
x1 in Γ2 \ Γ1. If |Γ2| ≤ k, then Γ2 can be extended to a connected
subgraph of Γ having exactly k + 1 vertices, which is a k-subgraph.
If |Γ2| ≥ k + 1, then Γ2 ∪ { v1 } is a k-subgraph by Lemma 12. In
any case, there exists a maximal k-subgraph Γ′

2 ⊇ Γ2. For notational
convenience, let Γ′

1 denote the maximal k-subgraph Γ′ containing Γ1.
We prove that Γ′

2 = Γ′
1 = Γ′, thus Γ′ contains Γ2, contradicting that

we chose a counterexample.
Now, both Γ1 and Γ2 contain at least two neighbors of x1. Let Vi ⊆ Γi

be the set of vertices with distance at most k− 1 from x1 (i ∈ { 1, 2 }).
If |Γi| ≤ k, then Vi contains all vertices of Γi, otherwise |Vi| ≥ k
(i ∈ { 1, 2 }). By Lemma 15, the induced subgraph on V1 is contained
in Γ′

2. Thus, if V1 contains all vertices of Γ1, then Γ1 ⊆ Γ′
2, hence we

have Γ′
1 = Γ′

2. Similarly, the induced subgraph on V2 is contained in
Γ′
1. Thus, if V2 contains all vertices of Γ2, then Γ2 ⊆ Γ′

1, hence we have
Γ′
1 = Γ′

2. Otherwise, |Γ′
1 ∩ Γ′

2| ≥ |V1| + |V2| − |{ x1 }| ≥ 2k − 1 > k,
hence by Lemma 14 we have Γ′

1 = Γ′
2.

Finally, we prove uniqueness. Let Γ′ and Γ′′ be two maximal k-
subgraphs containing the edge uv. Then both Γ′ and Γ′′ contain Γuv.
If Γ = Γuv, then Γ′ = Γuv = Γ′′. Otherwise, there exists a vertex x2 ∈
Γ\Γuv such that it has a neighbor x1 ∈ Γuv. Note that x1 has degree at
least 3 in Γ. Let V1 be the vertices of Γ of distance at most k− 1 from
x1. Note that if V1 does not contain all vertices of Γ, then |V1| > k.
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By 2-edge connectivity, Γuv ⊆ Γ′ contains at least two neighbors of x1,
thus V1 ⊆ Γ′ by Lemma 15. Similarly, Γuv ⊆ Γ′′ contains at least two
neighbors of x1, thus V1 ⊆ Γ′′ by Lemma 15. If V1 contains all vertices
of Γ, then Γ′ = Γ = Γ′′. Otherwise, |Γ′ ∩ Γ′′| ≥ |V1| > k, and Γ′ = Γ′′

by Lemma 14. �

Recall that by [11] a strongly connected antisymmetric digraph be-
comes a 2-edge connected graph after forgetting the directions. Thus
Rhodes’s conjecture about strongly connected, antisymmetric digraphs
[9, Conjecture 6.51i (3)–(4)] follows immediately from the following the-
orem on 2-edge connected graphs:

Theorem 19. Let n > k ≥ 2, Γ be a 2-edge connected simple graph
having n vertices. If Γ is a cycle, then the defect k group is Zn−k. If Γ
is not a cycle, then the defect k group is Sn−k.

Proof. If Γ is a cycle, then its defect k group is Zn−k by Lemma 8.
Since Γ is 2-edge connected with at least 3 vertices, every edge of Γ is
contained in a cycle. Thus, if Γ is not a cycle, then the defect k group
is Sn−k by Corollary 18. �

The final part of this section is devoted to prove item (5b) of Theo-
rem 1. First, we define bridges in Γ:

Definition 20. A path (x1, . . . , xl) in a connected graph Γ for some
l ≥ 2 is called a bridge if the degree of xi in Γ is 2 for all 2 ≤ i ≤ l− 1,
and if Γ \ { xjxj+1 } is disconnected for all 1 ≤ j ≤ l− 1. The length of
the bridge (x1, . . . , xl) is l.

The intersection of maximal k-subgraphs turn out to be bridges:

Lemma 21. Let Γ1 and Γ2 be distinct maximal k-subgraphs of the
connected simple graph Γ. Assume that Γ is not a cycle. Then Γ1 ∩ Γ2

is either empty, or is a bridge (x1, . . . , xl) such that

(1) l ≤ k, and
(2) if l ≥ 2 and Γi \ {x1, . . . , xl } (i ∈ { 1, 2 }) contains a neighbor

of x1 (resp. xl), then Γi contains all neighbors of x1 (resp. xl),

Proof. Note that Γ1 and Γ2 are induced subgraphs of Γ, thus so is
Γ1 ∩ Γ2.

We prove first that Γ1∩Γ2 is connected (or empty) if Γ1 is a nontriv-
ial maximal k-subgraph. Suppose that u, v ∈ Γ1 ∩ Γ2 are in different
components of Γ1 ∩ Γ2 such that the distance between u and v is min-
imal in Γ2. Due to the minimality, there exists a path (u, x1, . . . , xl, v)
such that x1, . . . , xl ∈ Γ2 \ Γ1. Then P = (u, x1, . . . , xl, v) is a Γ1-ear,
and Γ1 ∪ P would be a k-subgraph by Lemma 17, contradicting the
maximality of Γ1. Thus Γ1 ∩ Γ2 is connected. One can prove similarly
that Γ1 ∩ Γ2 is connected if Γ2 is a nontrivial maximal k-subgraph.

Now we prove that Γ1 ∩ Γ2 is connected, even if both Γ1 and Γ2

are trivial maximal k-subgraphs. As Γ1 $ Γ, Γ1 cannot be a cycle
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hence must be a line (x1, . . . , xk+1). Note that the degree of xi in Γ for
2 ≤ i ≤ k must be 2, otherwise a nontrivial maximal k-subgraph would
contain xi, and thus also Γ1 by Corollary 16. In particular, if Γ1∩Γ2 is
not connected, then x1, xk+1 ∈ Γ1∩Γ2, xi /∈ Γ1∩Γ2 for some 2 ≤ i ≤ k,
and Γ1∪Γ2 would be a cycle. However, by Corollary 18, the edge x1x2

is contained in a unique nontrivial maximal k-subgraph, contradicting
that it is also contained in the trivial maximal k-subgraph Γ1.

Now, we prove (1). By Corollary 18, Γ1∩Γ2 cannot contain any edge
uv which is contained in a cycle. As Γ1 ∩ Γ2 is connected, it must be a
tree. However, Γ1∩Γ2 cannot contain any vertex of degree at least 3 in
Γ1∩Γ2, otherwise that vertex would be contained in a unique maximal
k-subgraph by Corollary 16. Thus Γ1 ∩ Γ2 is a path (x1, . . . , xl). Now,
l ≤ k by Lemma 14, proving (1). Note that if any xi (2 ≤ i ≤ l− 1) is
of degree at least 3 in Γ, then {xi−1, xi, xi+1 } is contained in a unique
maximal k-subgraph by Corollary 16, a contradiction. For (2) observe
that at least two neighbors of x1 (resp. xl) are in Γi, and thus all
its neighbors must be in Γi by Corollary 16. Finally, if l ≥ 2 then
Γ \ {xjxj+1 } is disconnected for all 1 ≤ j ≤ l − 1 follows immediately
from Corollary 18 and the fact that any edge that is not contained in
any cycle disconnects the graph Γ. �

Edges of short maximal bridges (having length at most k − 1) are
contained in a unique maximal k-subgraph:

Lemma 22. Let Γ be a simple connected graph with n vertices such that
n > k, and let uv be an edge which is not contained in any cycle. Let
(x1, . . . , xl) be a longest bridge containing the edge uv. If l ≤ k−1, then
uv is contained in a unique maximal k-subgraph Γ′, and furthermore,
Γ′ is a nontrivial k-subgraph.

Proof. As uv is not part of any cycle in Γ, uv is a bridge of length 2.
Note that a longest bridge (x1, . . . , xl) containing uv is unique, because
as long as the degree of at least one of the path’s end vertices is 2 in Γ,
the path can be extended in that direction. The obtained path is the
unique longest bridge containing uv.

Let Γ′ be a maximal k-subgraph containing uv, and assume l ≤ k−1.
Note that the distance of x1 and xl is l− 1 ≤ k− 2. As |Γ| ≥ k+ 1, at
least one of x1 and xl has degree at least 3 in Γ, say x1. We distinguish
two cases according to the degree of xl.

Assume first that xl is of degree 1. As Γ′ is a connected subgraph
having at least k + 1 vertices, Γ′ must contain x1 and at least two of
its neighbors. Then by Corollary 16 it contains all vertices of Γ of
distance at most k − 1 from x1. In particular, Γ′ must contain the
bridge (x1, . . . , xl). However, there is a unique (nontrivial) maximal
k-subgraph Γ′

1 containing x1 and two of its neighbors by Corollary 16,
and thus Γ′ = Γ′

1 is that unique maximal k-subgraph.
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Assume now that xl is of degree at least 3. As Γ′ is a connected
subgraph having at least k + 1 vertices, Γ′ must contain x1 and at
least two of its neighbors, or xl and at least two of its neighbors. If Γ′

contains x1 and at least two of its neighbors, then by Corollary 16 it
contains all vertices of Γ of distance at most k−1 from x1. In particular,
Γ′ must contain the bridge (x1, . . . , xl) and all of the neighbors of xl.
Similarly, one can prove that if Γ′ contains xl and two of its neighbors,
then it also contains the bridge (x1, . . . , xl) and all of the neighbors
of x1. However, there is a unique (nontrivial) maximal k-subgraph
Γ′
1 containing x1 and two of its neighbors by Corollary 16, and also a

unique (nontrivial) maximal k-subgraph Γ′
l containing xl and two of its

neighbors by Corollary 16. Therefore Γ′ must equal to both Γ′
1 and Γ′

l,
and hence is unique. �

In particular, in non-cycle graphs trivial maximal k-subgraphs or in-
tersections of two different maximal k-subgraphs consist of edges that
are contained in long bridges (having length at least k). The key ob-
servation in proving item (5b) of Theorem 1 is that a defect k group
cannot move a vertex across a bridge of length at least k:

Lemma 23. Let 2 ≤ k ≤ l, Γ1 and Γ2 be disjoint connected subgraphs
of the connected graph Γ, and (x1, x2, . . . , xl) be a bridge in Γ such that
x1 . . . , xl /∈ Γ1 ∪ Γ2, x1 has only neighbors in Γ1 (except for x2), xl has
only neighbors in Γ2 (except for xl−1). Assume Γ has no more vertices
than Γ1 ∪ Γ2 ∪ (x1, . . . , xl). Let the defect set be Vk = {x1, . . . , xk }.
Then for any u ∈ Γ1 and v ∈ Γ2 there does not exist any permutation
in Gk,Vk

which moves u to v.

Proof. Let S = SΓ. Assume that there exists u ∈ Γ1, v ∈ Γ2, and
a transformation g ∈ S of defect Vk such that g ↾V \Vk

∈ Gk,Vk
and

ug = v. Let s0 ∈ Gk,Vk
be the unique idempotent power of g, that is

s0 is a transformation of defect Vk that acts as the identity on Γ \ Vk.
Then there exists a series of elementary collapsings e1, . . . , em such
that g = e1 . . . em. For every 1 ≤ d ≤ m let sd = s0e1 . . . ed. Now,
sm = s0e1 . . . em = s0g = gs0 = g. In particular, both sm and s0 are
of defect k, hence sd is of defect k for all 1 ≤ d ≤ m. Consequently,
|Γ1sd| = |Γ1|, |Γ2sd| = |Γ2| and Γ1sd ∩ Γ2sd = ∅ for all 1 ≤ d ≤ m.

For an arbitrary s ∈ S, let

i(s) =















0, if Γ1s ⊆ Γ1,

l + 1, if Γ1s 6⊆ Γ1 ∪ { x1, . . . , xl } ,

min
1≤i≤l

{Γ1s ⊆ Γ1 ∪ {x1, . . . , xi } }, otherwise.
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Similarly, let

j(s) =















l + 1, if Γ2s ⊆ Γ2,

0, if Γ2s 6⊆ Γ2 ∪ { x1, . . . , xl } ,

max
1≤j≤l

{Γ2s ⊆ Γ2 ∪ {xj , . . . , xl } }, otherwise.

Note that for arbitrary s ∈ S and elementary collapsing e, we have
|i(s)− i(se)| ≤ 1, |j(s)− j(se)| ≤ 1. Furthermore, both |i(sd)− i(sde)| =
1 and |j(sd)− j(sde)| = 1 cannot happen at the same time for any
1 ≤ d ≤ m, because that would contradict Γ1sd ∩ Γ2sd 6= ∅.

For s0 we have i(s0) = 0 < l + 1 = j(s0), for sm we have i(sm) =
l + 1 ≥ j(sm). Let 1 ≤ d ≤ m be minimal such that i(sd) ≥ j(sd).
Then i(sd−1) < j(sd−1). From sd−1 to sd either i or j can change and
by at most 1, thus i(sd) = j(sd). If i(sd) = j(sd) ∈ { 1, . . . , l }, then
xi(sd) ∈ Γ1sd∩Γ2sd, contradicting Γ1sd∩Γ2sd = ∅. Thus i(sd) = j(sd) /∈
{ 1, . . . , l }. Assume i(sd) = j(sd) = l + 1, the case i(sd) = j(sd) = 0
can be handled similarly.

Now, j(sd) = l + 1 yields Γ2sd ⊆ Γ2. Furthermore, |Γ2sd| = |Γ2|,
thus Γ2sd = Γ2. From i(sd) = l + 1 we have Γ1sd ∩ Γ2 6= ∅. Thus
Γ1sd ∩ Γ2sd = Γ1sd ∩ Γ2 6= ∅, a contradiction. �

Corollary 24. Let Γ1 and Γ2 be connected subgraphs of Γ such that
Γ1 ∩ Γ2 is a length k bridge in Γ. Let Vk = Γ1 ∩ Γ2 be the defect set.
Let Gi be the defect k group of Γi, G be the defect k group of Γ1 ∪ Γ2.
Then

G = G1 ×G2.

Proof. By Lemma 10 we have G1, G2 ≤ G. Since G1 and G2 act on
disjoint vertices, their elements commute. Thus G1 × G2 ≤ G. Now,
Vk is a bridge of length k, thus by Lemma 23 (applied to the disjoint
subgraphs Γ1 \ Vk and Γ2 \ Vk) there exists no element of G moving a
vertex from Γ1 to Γ2 or vice versa. Therefore G ≤ G1 ×G2. �

Finally, we are ready to prove item (5b) of Theorem 1.

Proof of item (5b) of Theorem 1. If Γ is a cycle, then its defect k group
is Zn−k by Lemma 8. Otherwise, we prove the theorem by induction on
the number of maximal k-subgraphs of Γ. If Γ is a maximal k-subgraph,
then the theorem holds, and the defect k group of Γ is Sn−k. In the
following we assume that Γ contains m-many maximal k-subgraphs for
some m ≥ 2, and that the theorem holds for all graphs with at most
(m− 1)-many maximal k-subgraphs.

We consider two cases. Assume first that there exists a degree 1
vertex x1 ∈ Γ, such that there exists a path (x1, . . . , xk+1) which is
a bridge. Let Γ1 be the path (x1, . . . , xk+1), and let Γ2 be Γ \ {x1 }.
Now, Γ1 is a trivial maximal k-subgraph, hence Γ2 contains the same
maximal k-subgraphs as Γ except Γ1. Furthermore, Γ2 is connected,
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and cannot be a cycle because the degree of x2 in Γ2 is 1. Let the sizes
of the maximal k-subgraphs of Γ2 be n2, . . . , nm, then by induction the
defect k group of Γ1 is Sn2−k×· · ·×Snm−k. The size of Γ1 is n1 = k+1,
its defect k-group is Sn1−k. Furthermore, Γ1∩Γ2 is a bridge of length k.
By Corollary 24 the defect k-group of Γ is Sn1−k×Sn2−k×· · ·×Snm−k.

In the second case, no degree 1 vertex x1 is in a path (x1, . . . , xk+1)
which is a bridge. Then any maximal bridge (x1, . . . , xl) with a degree
1 vertex x1 has length l ≤ k, and, as the bridge cannot be extended,
xl must have degree at least 3. Moreover, (x1, ..., xl) lies in a maximal
k-subgraph containing xl and all its neighbors by Lemma 22 and Corol-
lary 16. In particular every bridge in Γ of length at least k + 1 occurs
between nodes of degree at least 3. Hence every bridge of length at
least k + 1 occurs between two nontrivial maximal k-subgraphs by
Corollary 16. For every vertex v having degree at least 3 in Γ, let
Γv be the unique maximal k-subgraph containing v and all its neigh-
bors (Corollary 16). By definition, these are all the nontrivial maximal
k-subgraphs of Γ.

Let Γk be the graph whose vertices are the nontrivial maximal k-
subgraphs, and ΓuΓv is an edge in Γk (for Γu 6= Γv) if and only if there
exists a bridge in Γ between a vertex u′ ∈ Γu of degree at least 3 in
Γu and a vertex v′ ∈ Γv of degree at least 3 in Γv. By Corollary 18,
Γu = Γv if u and v are in the same 2-edge connected component. As
the 2-edge connected components of Γ form a tree, the graph Γk is a
tree.

Now, Γk has m vertices. Let Γ1 be a leaf in Γk, and let Γm be its
unique neighbor in Γk. Let x1 ∈ Γ1 and xl ∈ Γm be the unique vertices
of degree at least 3 in Γi (i ∈ { 1, l }) such that there exists a bridge
P = (x1, . . . , xl) in Γ. Note that the length of P is at least k, otherwise
Γ1 = Γm would follow by Lemma 22. Furthermore, any other bridge
having an endpoint in Γ1 must be of length at most k, because every
degree 1 vertex is of distance at most k − 1 from a vertex of degree at
least 3. Thus every bridge other than P and having an endpoint in Γ1

is a subset of Γ1 by Corollary 16.
Let Γ2 = (Γ \ Γ1) ∪ P . Now, Γ1 is a maximal k-subgraph, Γ2 has

one less maximal k-subgraphs than Γ. Furthermore, Γ2 is connected,
because every bridge other than P and having an endpoint in Γ1 is a
subset of Γ1. Finally, Γ2 is not a cycle, because it contains the vertex
x1 which is of degree 1 in Γ2. Let the sizes of the maximal k-subgraphs
of Γ2 be n2, . . . , nm, then by induction the defect k group of Γ1 is
Sn2−k × · · · × Snm−k. Let the size of Γ1 be n1, its defect k-group is
Sn1−k. Furthermore, Γ1 ∩ Γ2 is a bridge of length k. By Corollary 24
the defect k-group of Γ is Sn1−k × Sn2−k × · · · × Snm−k. �
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6. An algorithm to calculate the defect k group

Note that by items (3) and (4) of Theorem 1 the defect 1 group can
be trivially computed in O (|E|) time by first determining the 2-vertex
connected components [8], and whether each is a cycle, the exceptional
graph (Figure 1) or if not, whether or not it is bipartite.

For k ≥ 2 one can check first if Γ is a cycle (and then the defect
group is Zn−k) or a path (and then the defect group is trivial). In
the following, we give a linear algorithm (running in O (|E|) time) to
determine the maximal k-subgraphs (k ≥ 2) of a connected graph Γ
having n vertices, |E| edges where at least one vertex is of degree at
least 3.

During the algorithm we color the vertices. Let us call a maximal
subgraph with vertices having the same color a monochromatic compo-
nent. First, one finds all 2-edge connected components and the tree of
two-edge connected components in O (|E|) time using e.g. [13]. Color
the vertices of the nontrivial (i.e. having size greater than 1) 2-edge
connected components such that two distinct vertices have the same
color if and only if they are in the same nontrivial 2-edge connected
component. Furthermore, color the uncolored vertices having degree
at least 3 by different colors from each other and from the colors of
the 2-edge connected components. Then the monochromatic compo-
nents are each contained in a unique nontrivial maximal k-subgraph by
Corollaries 16 and 18 (a nontrivial maximal k-subgraph may contain
more than one of these monochromatic components). Furthermore, the
monochromatic components and the degree 1 vertices are connected by
bridges. If any of the bridges connecting two monochromatic compo-
nents is of length at most k − 1, then recolor the two monochromatic
components at the ends of the bridge and the vertices of the bridge
by the same color, because these are contained in the same maximal
k-subgraph by Corollary 16. Similarly, if any of the bridges connecting
a monochromatic component and a degree 1 vertex is of length at most
k − 1, then recolor the monochromatic component and the vertices of
the bridge by the same color, because these are contained in the same
maximal k-subgraph by Lemma 22. Repeat recoloring along all bridges
of length at most k−1 in O (|E|) time. Then we obtain monochromatic
components Γ1, . . . ,Γl connected by long bridges (i.e. bridges of length
at least k), and possibly some long bridges to degree 1 vertices. Now,
we have finished coloring.

For every 1 ≤ i ≤ l, let Γ′
i be the induced subgraph having all vertices

of distance at most k−1 from Γi, which can be obtained in O (|E|) time
by adding the appropriate k − 1 vertices of the long bridges to the ap-
propriate monochromatic component. Note that the obtained induced
subgraphs are not necessarily disjoint. Then Γ′

1, . . . ,Γ
′
l are the non-

trivial maximal k-subgraphs of Γ by Lemma 22. Again, by Lemma 22,
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the trivial maximal k-subgraphs of Γ are the paths containing exactly
k + 1 vertices in a long bridge. These can also be computed in O (|E|)
time by going through all long bridges. By item (5b) of Theorem 1,
the defect k group of Γ as a permutation group is the direct product of
the defect k groups of Γ′

1, . . .Γ
′
l, and the defect k groups of the trivial

maximal k-subgraphs.

7. Complexity of the flow semigroup of (di)graphs

In this section we apply our results and the complexity lower bounds
of [10] to verify [9, Conjecture 6.51i (1)] for 2-vertex connected graphs.
That is, we prove that the Krohn–Rhodes (or group-) complexity of the
flow semigroup of a 2-vertex connected graph with n vertices is n − 2
(item (4c) of Theorem 1). Then we derive item (4cc) of Theorem 1 as
a further consequences of our results.

For standard definitions on wreath product of semigroups, we refer
the reader to e.g. [9, Definition 2.2]. A finite semigroup S is called
combinatorial if and only if every maximal subgroup of S has one
element. Recall that the Krohn–Rhodes (or group-) complexity of a
finite semigroup S (denoted by #G (S)) is the smallest non-negative
integer n such that S is a homomorphic image of a subsemigroup of
the iterated wreath product

Cn ≀Gn ≀ · · · ≀ C1 ≀G1 ≀ C0,

where G1, . . . , Gn are finite groups, C0, . . . , Cn are finite combinatorial
semigroups, and ≀ denotes the wreath product (for the precise defini-
tion, see e.g. [9, Definition 3.13]). The definition immediately implies
that if a finite semigroup S is the homomorphic image of a subsemi-
group of T , then #G (S) ≤ #G (T ). More can be found on the complex-
ity of semigroups in e.g. [9, Chapter 3]. We need the following results
on the complexity of semigroups.

Lemma 25 ([9, Prop. 6.49(b)]). The flow semigroup Kn of the com-
plete graph on n ≥ 2 vertices has #G (Kn) = n− 2.

Lemma 26 ([10, Sec. 3.7]). The complexity of the full transformation
semigroup Fn on n points is #G (Fn) = n− 1.

The well-known L-order is a pre-order, i.e. a transitive and reflexive
binary relation, on the elements of a semigroup S given by s1 �L s2
if s1 = s2 or ss1 = s2 for some s ∈ S. The L-classes of S are the
equivalence classes of the L-order. The L-classes are thus partially
ordered by L1 �L L2 if and only if SL1 ∪ L1 ⊇ SL2 ∪ L2. One says
that a finite semigroup S is a T1-semigroup if it is generated by some
�L-chain of its L-classes, i.e. if there exist L-classes L1 �L · · · �L Lm

of S such that S = 〈L1 ∪ . . . ∪ Lm〉. Equivalently, S is a T1-semigroup
if there exist Ui ⊆ Li (1 ≤ i ≤ m) for such a chain of L-classes of S
such that S = 〈U1 ∪ . . . ∪ Um〉.
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Lemma 27 ([10, Lemma 3.5(b)]). Let S be a noncombinatorial T1-
semigroup. Then

#G (S) ≥ 1 + #G (EG(S)) ,

where EG(S) is the subsemigroup of S generated by all its idempotents.

Now we prove [9, Conjecture 6.51i (1)] for 2-vertex connected graphs.

Proof of item (4c) of Theorem 1. Let Γ be a 2-vertex connected sim-
ple graph with n ≥ 2 vertices. Let Kn denote the flow semigroup of
the complete graph on vertices V , where |V | = n. Then #G (SΓ) ≤
#G (Kn) = n − 2 by Lemma 25. We proceed by induction on n. If
n ≤ 3, then Γ is a complete graph, and #G (SΓ) = n−2 by Lemma 25.
From now on we assume n > 3 and Γ = (V,E).

Case 1. Assume first that Γ is not a cycle. Let (u, v) and (x, y)
be two disjoint edges in Γ. Let G1 be the defect 1 group with defect
set V \ {u } and idempotent euv as its identity element. Then euv �L

exyeuv = euvexy. Let T be 〈G1 ∪ { euvexy }〉. Since G1 �L { euvexy } is an
L-chain in T , T is a T1-semigroup. Furthermore, T is noncombinatorial
since G1 is nontrivial. Thus, by Lemma 27

(1) #G (T ) ≥ 1 + #G (EG(T )) .

Let Γ′ be the complete graph on V \ { u }. Let a, b ∈ V \ { u } be
arbitrary distinct vertices. By item (4) of Theorem 1, G1 is 2-transitive.
Let π ∈ G1 be such that π(x) = a and π(y) = b. There is a positive
integer ω > 1, with πω = euv. In particular, euv commutes with π.
Observe that

πω−1euvexyπ = euv
(

πω−1exyπ
)

= euveab, and thus
(

πω−1exyeuvπ
)

↾V \{u }= eab.

That is, we obtain the generators eab of SΓ′ by restricting the idempo-
tents euveab ∈ T to V \ {u }. Therefore, SΓ′ is a homomorphic image
of a subsemigroup of EG(T ), yielding

#G (EG(T )) ≥ #G (SΓ′) .

By induction, #G (SΓ′) = n − 3. Applying (1), we obtain #G (T ) ≥
n−2. Since T is a subsemigroup of SΓ, we obtain #G (SΓ) ≥ #G (T ) ≥
n− 2.

Case 2. Assume now that Γ is the n-node cycle (u, v1, . . . , vn−1).
Then (u, v1) and (v2, v3) are disjoint edges. Let G1 ≃ Zn−1 be the de-
fect 1 group with defect set V \{u } and idempotent euv1 as its identity
element. Let π be a generator of G1 with cycle structure (v1, . . . , vn−1).
Then euv1 �L ev2v3euv1 = euv1ev2v3 . Let T be 〈G1 ∪ { euv1ev2v3 }〉. Since
G1 �L { euv1ev2v3 } is an L-chain in T , T is a T1-semigroup. Further-
more, T is noncombinatorial since G1 is nontrivial. Thus, by Lemma 27

(2) #G (T ) ≥ 1 + #G (EG(T )) .
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Let Γ′ be an (n−1)-node cycle with nodes V \{u } = { v1, . . . , vn−1 }.
Note that euv1 = πn−1, and therefore euv1 commutes with π. Let
vi−1, vi, vi+1 ∈ V \ { u } be three neighboring nodes in Γ′, where the
indices are in { 1, . . . , n− 1 } taken modulo n− 1. Observe that

πn−2euv1evi−1viπ = euv1
(

πn−2evi−1viπ
)

= euv1evivi+1
, and thus

(

πn−2euv1evi−1viπ
)

↾V \{u } = evivi+1
.

That is, we obtain the generators evivi+1
of SΓ′ by restricting the idem-

potents euv1evivi+1
∈ T to V \ { u }. Therefore, SΓ′ is a homomorphic

image of a subsemigroup of EG(T ), yielding

#G (EG(T )) ≥ #G (SΓ′) .

By induction, #G (SΓ′) = n − 3. Applying (2), we obtain #G (T ) ≥
n− 2. Since T is a subsemigroup of SΓ, we have #G (SΓ) ≥ #G (T ) ≥
n− 2. �

Note that by Lemma 4 a strongly connected digraph has the same
flow semigroup as the corresponding graph. Thus, item (4c) of Theo-
rem 1 proves Rhodes’s conjecture [9, Conjecture 6.51i (1)] for 2-vertex
connected strongly connected digraphs, as well. The following lemma
bounds the complexity in the remaining cases.

Lemma 28. Let k be the smallest positive integer such that for a graph
Γ the flow semigroup SΓ has defect k group Sn−k. Then #G (SΓ) ≥
n− 1− k.

Proof. Assume first k = n − 1. Then the lemma holds trivially. From
now on, assume k ≤ n − 2. Let uv be an edge in Γ. Let Vk be an
arbitrary k-element subset of the vertex set V disjoint from {u, v }. Let
Gk be the defect k group with defect set Vk. Let S be the subsemigroup
of SΓ generated by Gk and euv. As Gk ≃ Sn−k, we have that S is
the semigroup of all transformations on V \ Vk. Hence, #G (S) =
#G (Fn−k) = n − k − 1 by Lemma 26. Whence, #G (SΓ) ≥ #G (S) =
n− k − 1. �

By Theorem 19, it immediately follows that the complexity of the
flow semigroup of a 2-edge connected graph Γ is at least n − 3. Fur-
thermore, #G (SΓ) ≤ #G (Kn) = n−2 by Lemma 25. This finishes the
proof of item (4cc) of Theorem 1.
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