Extended Bicolorings of Steiner Triple Systems of Order $2^h - 1$

Csilla Bujtás*, Mario Gionfriddo, Elena Guardo, Lorenzo Milazzo, Zsolt Tuza
and Vitaly Voloshin

Abstract. A bicoloring of a Steiner triple system STS(n) on n vertices is a coloring of vertices in such a way that every block receives precisely two colors. The maximum (resp. minimum) number of colors in a bicoloring of an STS(n) is denoted by χ (resp. χ'). All bicolorable STS($2^h - 1$)s have upper chromatic number $\chi \leq h$; also, if $\chi = h < 10$, then lower and upper chromatic numbers coincide, namely, $\chi = \chi' = h$.

In 2003, M. Gionfriddo conjectured that this equality holds whenever $\chi = h \geq 2$.

In this paper we discuss some extensions of bicolorings of STS(v) to bicoloring of STS($2v + 1$) obtained by using the ‘doubling plus one construction’. We prove several necessary conditions for bicolorings of STS($2v + 1$) provided that no new color is used. In addition, for any natural number h we determine a triple system STS($2^{h+1} - 1$) which admits no extended bicolorings.

1. Introduction

A Steiner triple system STS(v) is a pair (X, B), where X is a finite set of vertices, $|X| = v$, and B is a family of subsets of X, called blocks, such that each block contains three vertices, and any two distinct vertices of X appear together in precisely one block of B. It is well known since the 1850’s that an STS(v) exists if and only if $v \equiv 1$ or 3 (mod 6).

A k-coloring of (X, B) is a surjective mapping ϕ from X onto a finite set C, with $|C| = k$, whose elements are called colors. It is customary to assume that $C = \{1, 2, \ldots, k\}$. For each $i \in C$, the set $\phi^{-1}(i) = \{x : \phi(x) = i\}$ is a color class. A k-coloring of (X, B) is called a k-bicoloring if the vertices of each block are colored with exactly two colors. Given a k-bicoloring C, if the cardinalities of color classes are $n_1 \leq n_2 \leq \cdots \leq n_k$ (always assuming $n_1 \geq 1$), then for brevity we write $C = C(n_1, n_2, \ldots, n_k)$.

The systems STS($2v + 1$) obtained by doubling plus one construction are fundamental in the bicoloring theory of Steiner triple systems. A system STS($2v + 1$) = (X, B) is obtained from an STS(v) = (X', B') by a doubling plus one construction in the following

Received May 14, 2016; Accepted March 26, 2017.
Communicated by Xuding Zhu.
2010 Mathematics Subject Classification. 05C15, 51E10, 05B07.
Key words and phrases. coloring, Steiner triple system, mixed hypergraph, upper chromatic number, extended bicoloring.
*Corresponding author.
way. For vertices, we write \(X' = \{x_1, x_2, \ldots, x_v\} \), and introduce a new set of vertices \(X'' \) such that \(|X''| = v + 1 \) and \(X' \cap X'' = \emptyset \). We set \(X = X' \cup X'' \), and denote the vertices in \(X'' \) by \(y_1, y_2, \ldots, y_{v+1} \). Next we consider a factorization \(F = (F_1, F_2, \ldots, F_v) \) of the complete graph whose vertex set is \(X'' \). (Note that \(|X''| \) is even whenever an STS(\(v \)) exists.) For blocks, we set \(B \) to include all the blocks of \(B' \), moreover all the blocks of type \(\{x_i, y_l, y_m\} \) where \(x_i \in X' \) and \(\{y_l, y_m\} \) is an edge in the factor \(F_i \). The system STS(\(2v+1 \)) is then defined as the pair \((X, B)\).

Historically, the concept of bicoloring is originated from the theory of mixed hypergraph coloring, which was introduced in [12, 13]. The maximum (resp. minimum) \(k \) for which there exists a \(k \)-bicoloring of an STS is called the upper (resp. lower) chromatic number, and it is denoted by \(\chi \) (resp. by \(\chi \)). The first results on bicolorings of STSs were published in [9]; further early works on this subject are [3, 6, 8, 10]. For a survey we refer to [11].

The following theorem summarizes key results from [9] which are important for the proofs in next sections.

Theorem 1.1. [9] If \(S \) is a bicolorable STS(\(v \)) with \(v \leq 2^h - 1 \), then \(\chi(S) \leq h \). Moreover, for any \(k \)-bicoloring \(C = C(n_1, n_2, \ldots, n_k) \) of \(S \), the following inequalities hold: \(n_1 \geq 2^0, n_2 \geq 2^1, n_3 \geq 2^2, \ldots, n_k \geq 2^{k-1} \). In particular, if \(\chi(S) = h \), then:

1. \(v = 2^h - 1 \);
2. in any \(h \)-bicoloring of \(S \) the cardinalities of the color classes are \(2^0, 2^1, 2^2, \ldots, 2^{h-1} \);
3. \(S \) is obtained from the STS(3) by repeated applications of a ‘doubling plus one construction’.

Let \(S' = (X', B') = \text{STS}(v) \) be an \(h \)-bicolorable system with a bicoloring \(C' = \{n_1, n_2, \ldots, n_h\} \), and let \(S = (X, B) = \text{STS}(2v+1) \) be a system obtained by doubling plus one construction from \(S' \). The system \(S \) certainly is \((h+1) \)-bicolorable with a bicoloring \(C'' = \{n'_1, n'_2, \ldots, n'_h, n''_{h+1}\} \) where \(n''_{h+1} = v+1 \) and \(n''_i = n'_i \) for all \(1 \leq i \leq h \). This bicoloring is obtained by coloring the subsystem \(S' \) with \(C' \) and the vertices in \(X'' = X - X' \) with a new color denoted by \(h+1 \), where \(|X''| = v+1 \). It is absolutely non-obvious, however, what happens if one intends to color \(S \) with the same number, only \(h \), of colors with which \(S' \) has been colored.

It was proved in [1] that if an STS(\(2^h - 1 \)) is obtained by a sequence of doubling plus one constructions starting from STS(3), then \(\chi = \chi = h \) with all \(h < 10 \); i.e., their upper chromatic number and lower chromatic number are equals.
The ‘sequence of doubling plus one constructions’ condition above is substantial. For example, as proved in [7, Theorem 9], among the 80 pairwise non-isomorphic Steiner triple systems of order 15 there are only 23 which are bicolorable, and each of them is obtained from STS(3) by iterating the doubling plus one construction. (For the history of enumerating all STS(15) systems, see [2, p. 15].) Moreover, there exists a bicolorable STS(19) with \(\chi = 3 \) and \(\bar{\chi} = 4 \) [7, Theorem 12].

In [4], M. Gionfriddo raised a challenging related conjecture, which is the main motivation of our current work.

Conjecture 1.2. [4] If an \(S = STS(2^h - 1) \) is obtained by a sequence of doubling plus one constructions from STS(3), then \(\chi(S) = \bar{\chi}(S) = h \).

Should there exist counterexamples to this conjecture, an \((h-1) \)-bicoloring of a smallest counterexample would induce an \((h-1) \)-bicoloring of an STS(\(2^h-1 \)) as well. This leads to the notion of ‘extended bicoloring’. Suppose that the system \(S = (X, B) \) of order \(2v+1 \) is obtained from its subsystem \(S' = (X', B') \) by doubling plus one construction, and that \(C' \) is a \(k \)-bicoloring of \(S' \) (for any \(k \)). We say that a \(k \)-bicoloring \(C = \{n_1, n_2, \ldots, n_k\} \) of \(S \) with the same number \(k \) of colors is an extended bicoloring or extended \(k \)-bicoloring of \(S' \) if \(C \) coincides with \(C' \) on the vertices of \(S' \). It is important to emphasize that no new color is allowed on \(S \setminus S' \). In [5] the authors found the first STS(\(v \))s with extended bicolorings for \(v \equiv 3 \) or 7 (mod 12) and \(v > 3 \).

Assuming that \(C \) is an extended bicoloring of \(C' = \{n_1', \ldots, n_k'\} \), we will denote the \(i \)th color class of \(C' \) by \(C'_i \). Hence, \(|C'_i| = n'_i \) for \(i = 1, 2, \ldots, k \), and \(n'_1 \leq \cdots \leq n'_k \) is assumed. With a slight abuse of notation, the color classes \(C_1, \ldots, C_k \) of \(C \) are ordered such that \(C'_i \subseteq C_i \) holds for each \(i = 1, 2, \ldots, k \). Then, let \(n_i \) denote \(|C_i| \). (But here it would certainly make a loss of generality to assume that the values \(n_i \) are in increasing order.) For \(1 \leq i \leq k \) we shall write

\[
 c_i = n_i - n'_i
\]

to denote the number of vertices in \(X'' = X \setminus X' \) which belong to \(C_i \).

Concerning extended bicolorings the following important results were proved in [1,5]; they will be useful in the next sections.

Theorem 1.3. [1,5] If \(C \) is an extended \(h \)-bicoloring of an STS(\(2^h+1 \)) then it satisfies the following equalities:

\[
 \sum_{i=1}^{h} c_i^2 + \sum_{i=1}^{h} 2^i c_i = 2^{2h} \quad \text{and} \quad \sum_{i=1}^{h} c_i = 2^h.
\]

Theorem 1.4. [1] If \(C \) is an extended \(h \)-bicoloring of an STS(\(2^h+1 \)) with \(c_i > 0 \) and \(c_j > 0 \) for some \(1 \leq i < j \leq h \), then \(c_i \leq 2^{i-1} + 2^{j-1} \) and \(c_j \leq 2^{i-1} + 2^{j-1} \).
Theorem 1.5. [1] If C is an extended h-bicoloring of an $\text{STS}(2^{h+1} - 1)$, then there exists at least one $c_i = 0$ and all the $c_j > 0$ are even.

Theorem 1.6. [1] Let C be an extended h-bicoloring of an $\text{STS}(2^{h+1} - 1)$, and let $1 \leq i < j - 1 \leq h - 1$ such that $c_i > 0$, $c_j > 0$, and $c_k = 0$ for every $k \in \{1, 2, \ldots, j - 1\} \setminus \{i\}$. Then, $c_{j+t} > 0$ for every $t \geq 0$.

Our goal in Section 2 is to strengthen the necessary conditions listed above; our results will restrict the possible candidates of (c_1, \ldots, c_h)-sequences to only two basic types. In Section 3, we explicitly construct an infinite class of Steiner triple systems $\text{STS}(2^{h+1} - 1)$ obtained by a sequence of doubling plus one constructions from $\text{STS}(3)$, which do not admit any extended h-bicolorings.

2. Necessary conditions

Throughout this section we assume that C is an extended h-bicoloring of an $\text{STS}(2^{h+1} - 1)$ which corresponds to a solution (c_1, \ldots, c_h) of the system (1.1). We will strengthen Theorem 1.6 by excluding some further subclasses of the possible solutions (c_1, \ldots, c_h).

To state our first observation we introduce the notation $I^0 = \{q : c_q = 0\}$.

Lemma 2.1. Let C be an extended h-bicoloring of an $\text{STS}(2^{h+1} - 1)$ which corresponds to a solution (c_1, \ldots, c_h) of the system (1.1). Then, for every i with $c_i > 0$,

$$\sum_{q \in I^0} 2^{q-1} + 1 \leq c_i$$

must hold.

Proof. Since the system $\text{STS}(2^{h+1} - 1)$ is obtained by doubling plus one construction, there is a corresponding factorization F of X''. If $x' \in X'' \cap C_i$ and $x_l \in \bigcup_{q \in I^0} C_q$, then the only way to bicolor the unique triple containing the vertex pair (x', x_l) is that its third vertex — which is the other end of the edge incident to x' in $F_l \in F$ — belongs to $X'' \cap C_i$. By definition, for distinct vertices of $\bigcup_{q \in I^0} C_q$ the corresponding third vertices are distinct. \hfill \Box

Proposition 2.2. Let C be an extended h-bicoloring of an $\text{STS}(2^{h+1} - 1)$ which corresponds to a solution (c_1, \ldots, c_h) of the system (1.1). Then, (c_1, \ldots, c_h) must be one of the following two types.

(a) $(0, \ldots, 0, c_j, \ldots, c_h)$ where $j \geq 2$ and $0 < c_k$ for every $j \leq k \leq h$;

(b) $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, \ldots, c_h)$ where $2 \leq i \leq j - 2$, $0 < c_i$, and $0 < c_k$ for every $j \leq k \leq h$.
Proof. Assume that c_k and c_ℓ are positive entries and $k \neq \ell$. Lemma 2.1 and Theorem 1.4 imply that
\[
\sum_{q \in I^0} 2^{q-1} + 1 \leq 2^{k-1} + 2^{\ell-1}.
\]
In particular, for any s with $c_s = 0$
\[
2^{s-1} < 2^{k-1} + 2^{\ell-1},
\]
and $k < \ell < s$ cannot be valid. In other words, in the sequence (c_1, \ldots, c_h) none of the zero entries are preceded by more than one positive entry. If all zeros precede every positive entry, we get case (a). Note that $j \geq 2$ follows from Theorem 1.5.

If there is exactly one positive entry c_i which precedes one or more zeros, we have a sequence $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, \ldots, c_h)$ where $1 \leq i \leq j-2$, $0 < c_i$, and $0 < c_k$ for every $j \leq k \leq h$. To obtain case (b), it suffices to prove that $i \geq 2$. Suppose for a contradiction that $i = 1$ that is, $c_1 > 0$ holds. By Theorem 1.4 $c_1 \leq 2^{j-1} + 1$ and by Theorem 1.5 c_1 must be even. Hence, $c_1 \leq 2^{j-1}$. Let x' be a vertex from $C_1 \cap X''$, and consider a c_k with $k \geq j$. By Theorems 1.4 and 1.5 we have that $c_k \leq 2^{k-1}$. Thus,
\[
2^h = |X''| = c_1 + \sum_{k=j}^h c_k \leq 2^{j-1} + \sum_{k=j}^h 2^{k-1} = 2^h.
\]
Consequently, $c_1 = 2^{j-1}$ and $c_k = 2^{k-1}$ for all $j \leq k \leq h$. Plugging in, we derive that the left-hand side of (1.1) is equal to
\[
\sum_{k=1}^h c_k^2 + \sum_{k=1}^h 2^k c_k = 2^{2j-2} + \sum_{k=j}^h 2^{2k-2} + 2^j + \sum_{k=j}^h 2^{2k-1}.
\]
But this is $2^{2h} + 2^j$, rather than 2^{2h}, a contradiction. \hfill \square

We proceed with two propositions related to the solutions of type $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, c_{j+1}, \ldots, c_h)$ with $i \geq 2$. They are of a technical nature; their eventual goal is to exclude the possibility of $c_2 > 0$.

Proposition 2.3. Let C be an extended h-bicoloring of an STS($2^h+1 - 1$), associated with a solution $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, c_{j+1}, \ldots, c_h)$, for some $i \geq 2$ and $j \geq i+2$. Then there exist nonnegative integers $T \leq 2^{i-1}$, $P_k \leq 2^{i-1}$, and $P'_k \leq 2T$ (for $k = j, \ldots, h$), such that
\[
c_i = 2^{j-1} - 2^{i-1} + 2T \quad \text{and} \quad c_k = 2^{k-1} + P_k - P'_k
\]
hold. Moreover, $\sum_{k=j}^h P_k = 2^{i-1}$ and $\sum_{k=j}^h P'_k = 2T$.

Proof. Consider an extended h-bicoloring C of S satisfying the conditions, and fix a vertex $x' \in C_i \cap X''$. This vertex x' is in $2j-1 - 2j-1 - 1$ monochromatic pairs of X'', all contained in factors of F corresponding to vertices of X' colored with k such that $1 \leq k \leq j - 1$ and $k \neq i$. So, $c_i \geq 2j-1 - 2j-1$. By Theorem 1.5 it is necessary that $c_i \leq 2j-1 + 2j-1$, therefore $c_i = 2j-1 - 2j-1 + 2T$ holds for some $0 \leq T \leq 2j-1$. Note that $2T$ is the number of monochromatic pairs containing x' inside factors belonging to the vertices from $X' \cap \bigcup_{k=j}^{h} C_k$; or equivalently, $2T$ is the number of blocks $B = \{x', x'', u\}$ in S with $x'' \in C_i \cap X''$ and $u \in X' \cap C_k$ for some $j \leq k \leq h$.

Since C is a bicoloring, each block B of S meets exactly two color classes. Moreover, $|B \cap X''|$ is either 0 or 2, as S is obtained by doubling plus one construction from S'. Now, consider a color class C_k with $j \leq k \leq h$. We may have three types of blocks $B \in B$ incident with x' and contained entirely in $C_i \cup C_k$.

1. $B = \{x', y, z\}$ with $y \in C_k \cap X''$ and $z \in C_i \cap X'$. The number of these blocks is denoted by P_k.

2. $B = \{x', y, u\}$ with $y \in C_k \cap X''$ and $u \in C_k \cap X'$. The number of these blocks is denoted by Y_k.

3. $B = \{x', x'', u\}$ with $x'' \in C_i \cap X''$ and $u \in C_k \cap X'$. The number of these blocks is denoted by P'_k.

There exist $n'_i = 2i-1$ pairs (x', z) with $z \in C_i \cap X'$, and each of them is covered by exactly one block B of type 1. Hence, $\sum_{k=1}^{h} P_k = 2i-1$. We have already observed that $2T$ is the total number of blocks belonging to type 3. This implies $\sum_{k=1}^{h} P'_k = 2T$.

The number of pairs (x', u) with $u \in C_k \cap X'$ is exactly $n'_k = 2k-1$, each of them is covered by a block of type 2 or 3. Hence, $Y_k + P'_k = 2k-1$ holds for every $j \leq k \leq h$. On the other hand, each of the c_k pairs (x', y) with $y \in C_k \cap X''$ is contained in a block of type 1 or 2. Hence, $P_k + Y_k = c_k$ follows. From these equalities, we obtain $c_k = 2k-1 + P_k - P'_k$. □

In the proposition above, by Theorem 1.5 we have that c_i and all c_k must be even. It means that if some P_k is odd ($j \leq k \leq h$), then the corresponding P'_k must be odd as well; and vice versa.

Proposition 2.4. If an extended h-bicoloring is defined by a solution of type $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, c_{j+1}, \ldots, c_h)$, then with the notation above, the following equation holds:

\[(2.1) \quad 4T^2 + 2j+1T + \sum_{k=j}^{h} [(P_k - P'_k)^2 + 2k+1(P_k - P'_k)] = 2^{2i-2} \]

where $i \geq 2$, $0 < T \leq 2j-1$, $0 \leq P_k \leq 2j-1$, and $0 \leq P'_k \leq 2T$.

Proof. The proposition is easily derived from the first equation of system (1.1), by replacing c_i and c_k (for $j \leq k \leq h$) with the values obtained in the previous proposition.

It is easy to verify that T must be positive. In fact, if $T = 0$, then, since $\sum_{k=j}^{h} (P_k^2 + 2^{k+1}P_k) > 2^{2i-2}$, (2.1) does not hold for any $i \geq 2$. \hfill \Box

Proposition 2.5. If $c_i > 0$ and $c_{i+1} = 0$, then $i = 2$ is not possible.

Proof. We have that $0 < T \leq 2$, $0 \leq P_k \leq 2$, and $0 < P'_k \leq 4$ for all $j \leq k \leq h$. The following Table 2.1 shows all possible values of T, P_k, and P'_k.

<table>
<thead>
<tr>
<th>T</th>
<th>P_k</th>
<th>P'_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_{k_1} = 1, P_{k_2} = 1$</td>
<td>$P'{k_1} = 1, P'{k_2} = 1$</td>
</tr>
<tr>
<td>1</td>
<td>$P_{k_1} = 2, P_{k_2} = 0$</td>
<td>$P'{k_1} = 0, P'{k_2} = 2$</td>
</tr>
<tr>
<td>2</td>
<td>$P_{k_1} = 2$</td>
<td>$P'_{k_1} = 4$</td>
</tr>
<tr>
<td>2</td>
<td>$P_{k_1} = 2, P_{k_2} = 0$</td>
<td>$P'{k_1} = 0, P'{k_2} = 4$</td>
</tr>
<tr>
<td>2</td>
<td>$P_{k_1} = 2, P_{k_2} = 0$</td>
<td>$P'{k_1} = 2, P'{k_2} = 2$</td>
</tr>
<tr>
<td>2</td>
<td>$P_{k_1} = 1, P_{k_2} = 1$</td>
<td>$P'{k_1} = 3, P'{k_2} = 2$</td>
</tr>
<tr>
<td>2</td>
<td>$P_{k_1} = 2, P_{k_2} = 0, P_{k_3} = 0$</td>
<td>$P'{k_1} = 0, P'{k_2} = 2, P'_{k_3} = 2$</td>
</tr>
<tr>
<td>2</td>
<td>$P_{k_1} = 1, P_{k_2} = 1, P_{k_3} = 0$</td>
<td>$P'{k_1} = 1, P'{k_2} = 1, P'_{k_3} = 2$</td>
</tr>
</tbody>
</table>

Table 2.1

For the values in Table 2.1, (2.1) does not hold. Consequently, $i > 2$ and $c_2 = 0$ must hold. \hfill \Box

From the previous propositions we observe that solutions of system (1.1) which may allow extended bicolorings are only of the following two types:

(a) $(0, \ldots, 0, c_j, \ldots, c_h)$ with some $j \geq 2$;

(b) $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, c_{j+1}, \ldots, c_h)$ with some $i \geq 3$ and $j \geq i + 2$.

3. A class of systems with no extended bicolorings

As we mentioned in Section 1, it was shown in [1] that no $S' = STS(2^h - 1)$ has an extended bicoloring for $h < 10$.

In the next theorem we prove that at least some triple systems have this property for each h.
Theorem 3.1. For every integer \(h \geq 2 \) there exists an \(\text{STS}(2^h - 1) \) \(S_h \) obtained from \(\text{STS}(3) \) by a sequence of doubling plus one constructions, such that \(\chi(S_h) = \chi(S_h) = h \).

Proof. For every \(h \geq 2 \) we describe an explicit (non-recursive) algebraic construction of a system \(\text{STS}(2^h - 1) \) with the required properties, which will be denoted by \(S_h \).

Let \(h \geq 2 \), and consider the \(h \)-dimensional vector space \(F^h \) over the field \(\text{GF}(2) \). Then, the vertex set \(X_h \) of \(S_h \) consists of the non-zero vectors of \(F^h \), and the set of blocks is defined as

\[
B = \left\{ \{x, y, z\} \subseteq X_h \mid x + y + z = 0 \right\}.
\]

Clearly, for every two distinct non-zero vectors \(x \) and \(y \) there exists a unique \(z \in X_h \) satisfying \(x + y + z = 0 \) which can equivalently be written as \(x + y = z \). Hence, \(S_h \) is an \(\text{STS}(2^h - 1) \). Inside \(S_h \), the vertices having zero as their last coordinate together determine an \(\text{STS}(2^{h-1} - 1) \) which is isomorphic to \(S_{h-1} \). Thus, for each \(h \geq 2 \), \(S_h \) can be obtained by a sequence of doubling plus one constructions from \(\text{STS}(3) \). By Theorem 1.1, every \(S_h \) is bicolorable and \(\chi(S_h) = h \). We will show that none of the constructed systems \(S_h \) has extended bicolorings.

Let \(C \) be a bicoloring of \(S_h \) with color classes \(C_1, \ldots, C_\ell \). We need to prove \(\ell = h \). For this purpose we are going to analyze the positions of blocks with respect to \(C_1, \ldots, C_\ell \).

Claim 3.2. For any two color classes \(C_i \) and \(C_j \), if there exists a block which contains one vertex from \(C_i \) and two vertices from \(C_j \), then for every block \(B \subseteq C_i \cup C_j \) the same property holds; that is, \(|B \cap C_i| = 1 \) and \(|B \cap C_j| = 2 \).

Proof. Assume to the contrary that there are two blocks \(B_1 = \{a, b, c\} \) and \(B_2 = \{d, x, y\} \) inside \(C_i \cup C_j \) such that \(a, x, y \in C_i \) and \(b, c, d \in C_j \).

If these are six different vertices, consider the block incident with \(a \) and \(d \). Its third vertex, say \(e \), has color either \(i \) or \(j \); we may assume without loss of generality that \(e \in C_i \). On the other hand, if \(B_1 \) and \(B_2 \) are not disjoint, then they share exactly one vertex, and renaming the vertices (and changing the indices \(i \) and \(j \) if necessary) we may assume again that \(\{a, b, c\} \) and \(\{a, d, e\} \) are two blocks with \(a, b \in C_i \) and \(b, c, d \in C_j \).

By definition of \(S_h \), we have \(a = b + c = d + e \). Consider first the element \(z = b + e \). Since \(C \) is a bicoloring, and \(\{z, b, c\} \) is a block in \(S_h \), we obtain \(z \in C_i \cup C_j \). On the other hand, \(z = c + d \) also holds and \(z \notin C_j \) follows. Thus, \(z \in C_i \). (Note for this analysis that \(z \) is non-zero because \(b \neq e \), and also it is distinct from each of \(a, c, d \) since \(z = c + d \), and \(z = a \) would imply \(b + c = b + e \), contradicting \(c \neq e \).)

Next, let us consider \(z' = a + b + e \). Since both \(a \) and \(z = b + e \) belong to \(C_i \), we see that \(z' \notin C_i \). But \(z' = d + e + b + e = b + d \) and \(z' = b + c + b + e = c + e \) are valid as well. The former one implies \(z' \notin C_j \), while the latter implies \(z' \in C_i \cup C_j \). This contradiction proves the claim. \(\square \)
By Claim 3.2 and by the basic property of Steiner triple systems, we can define an orientation \vec{K}_ℓ of the complete graph on the vertex set $\{1, 2, \ldots, \ell\}$ such that an edge ij is oriented from i to j if and only if there exists a block B in S_h with $|B \cap C_i| = 1$ and $|B \cap C_j| = 2$.

Claim 3.3. The orientation \vec{K}_ℓ is transitive.

Proof. For three color classes of C, namely for C_i, C_j, and C_k, assume that we have the orientations \vec{ij} and \vec{jk} in \vec{K}_ℓ. Take three vertices, one from each color class, $x \in C_i$, $y \in C_j$, and $z \in C_k$. Since C is a bicoloring, $a = x + z$ belongs to $C_i \cup C_k$. On the other hand, $a = (x + y) + (z + y)$, and our condition $\vec{ij}, \vec{jk} \in E(\vec{K}_\ell)$ implies that $x + y \in C_j$ and $z + y \in C_k$. Hence, $a \in C_k$ and ik is oriented from i to k. This proves the transitivity of the orientation \vec{K}_ℓ. □

Consequently, the defined orientation is a linear ordering. So, for every bicoloring C of S_h, there is an order $C_{i_1}, \ldots, C_{i_{h'}}$ of the color classes satisfying the following condition. If $j < k$, every block intersecting C_{i_j} and C_{i_k} contains one vertex from the former class and two vertices from the latter one.

Claim 3.4. For every j, the color class C_{i_j} contains exactly 2^{j-1} vertices.

Proof. Observe that every block meets C_{i_1} in at most one vertex, hence $|C_{i_1}| = 1$. Then, we may proceed by induction on j. In the color class C_{i_j}, each pair x, y of vertices is covered by a block whose third vertex is from $\bigcup_{p=1}^{j-1} C_{i_p}$. Each block of this type covers exactly two vertex pairs between C_{i_j} and $\bigcup_{p=1}^{j-1} C_{i_p}$. Hence, by the induction hypothesis, we obtain

$$\left(\frac{|C_{i_j}|}{2}\right) = \frac{1}{2} |C_{i_j}| \sum_{p=1}^{j-1} |C_{i_p}| = \frac{1}{2} |C_{i_j}| (2^{j-1} - 1)$$

that proves $|C_{i_j}| = 2^{j-1}$. □

By Claim 3.4, the $2^h - 1$ vertices of S_h are partitioned into exactly h color classes in any bicoloring. Therefore, $\chi(S_h) = \overline{\chi}(S_h) = h$, and consequently S_h admits no extended bicolorings. □

The system S_h has a large number of bicolorings; we can take the coordinates i_1, i_2, \ldots, i_h in any order, and define the jth color class as the set of those vectors in which the coordinate i_j is 1, and all later coordinates are zero. In particular, fixing one coordinate to be 1 provides h different positions for a set of cardinality 2^{h-1} that can be taken as the largest color class. Hence, S_h has at least $h!$ different bicolorings.

As we have seen, S_h is obtained by doubling plus one construction, contains S_{h-1} as a subsystem and admits no extended bicolorings. Another kind of construction is described in the following result.
Theorem 3.5. Suppose that S' is an STS($2^h - 1$) such that $\chi(S') = \overline{\chi}(S') = h$, moreover there is a (unique) set of 2^{h-1} vertices which is the largest color class in every bicoloring of S'. Then S' can be extended to an STS($2^{h+1} - 1$) system S via doubling plus one construction such that S does not admit any extended bicoloring.

Proof. Let $S' = (X', B')$ be an STS($2^h - 1$) satisfying the assumptions of the theorem. Let $m = 2^{h-1}$ and denote by Y the set $\{y_1, \ldots, y_m\}$ of 2^{h-1} vertices which has to be the largest color class independently of the actual choice of the bicoloring. We extend S' to an STS($2^{h+1} - 1$) denoted as $S = (X, B)$, and write X in the form $X = X' \cup Y' \cup Y''$, where the sets $Y' = \{y'_1, \ldots, y'_m\}$ and $Y'' = \{y''_1, \ldots, y''_m\}$ are viewed as two copies of Y.

We keep all blocks of S' to form a subsystem of S. The further blocks of S are defined as follows. If $xy, y_j \in B'$ for an $x \in X' \setminus Y$ and some $y_i, y_j \in Y$, then its copies $xy'_iy'_j$ and $xy''_iy''_j$ are blocks in B. To partition the remaining vertex pairs into triples, we note that the complete bipartite graph with vertex classes Y' and Y'' admits a 1-factorization into perfect matchings F_1, \ldots, F_m. Then the following blocks are created: $y_i \cup f$, where $f \in F_i$, for $i = 1, 2, \ldots, m$.

Consider any bicoloring \mathcal{C} of S. On the set X' this induces a bicoloring of S', therefore the entire Y is monochromatic. Analogously, since the subsystems induced by $(X' \setminus Y) \cup Y'$ and $(X' \setminus Y) \cup Y''$ are isomorphic to S', each of Y' and Y'' is monochromatic. Moreover, the colors on $Y \cup Y' \cup Y''$ cannot occur in $X' \setminus Y$. Since $Y \cup Y' \cup Y''$ cannot be monochromatic, we obtain that \mathcal{C} uses more than h colors (in fact precisely $h + 1$ ones). Thus, S does not have an extended bicoloring. \hfill \Box

We note that the assumption on the unique largest color class implies that S' is obtained by doubling plus one construction from a Steiner triple system S'' of order 2^{h-1}. It is not required, however, that also S'' is created in the same way.

4. Concluding remarks

For the systems STS($2^{h+1} - 1$) we gave new necessary conditions for the existence of extended bicolorings. In particular, we obtained that the solutions of the equation system (1.1), which possibly may define extended bicolorings, can only be of two types: $(0, \ldots, 0, c_i, 0, \ldots, 0, c_j, c_{j+1}, \ldots, c_h)$ with $i \geq 3$, and $(0, \ldots, 0, c_i, c_{i+1}, \ldots, c_h)$.

It is important to stress that extended bicolorings of triple systems STS($2^h - 1$) have not been found yet, while on the other hand the construction of Section 3 — which provably does not admit an extended bicoloring — does not include all triple systems obtainable by a sequence of doubling plus one constructions from STS(3). Hence, Gionfriddo’s conjecture remains open.
Acknowledgments

We thank the anonymous referee for the helpful comments.

References

Csilla Bujtás
Faculty of Information Technology, University of Pannonia, H-8200 Veszprém, Hungary;
and MTA Rényi Institute, H-1053 Budapest, Hungary
E-mail address: bujtas@dcs.uni-pannon.hu

Mario Gionfriddo, Elena Guardo and Lorenzo Milazzo
Department of Mathematics and Computer Science, University of Catania, Viale A.
Doria, 6, 95125 - Catania, Italy
E-mail address: gionfriddo@dmi.unict.it, guardo@dmi.unict.it,
milazzo@dmi.unict.it

Zsolt Tuza
Faculty of Information Technology, University of Pannonia, H-8200 Veszprém, Hungary;
and MTA Rényi Institute, H-1053 Budapest, Hungary
E-mail address: tuza@dcs.uni-pannon.hu

Vitaly Voloshin
Department of Mathematics, Troy University, Troy, AL, USA
E-mail address: vvoloshin@troy.edu