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Abstract

We study Schroedinger operators with random edge weights and their expected
spectral measures µH near zero. We prove that the measure exhibits a spike of the form
µH(−ε, ε) ∼ C

|log ε|2 (first observed by Dyson), without assuming independence or any

regularity of edge weights. We also identify the limiting local eigenvalue distribution,
which is different from Poisson and the usual random matrix statistics. We then use the
result to compute Novikov-Shubin invariants for various groups, including lamplighter
groups and lattices in the Lie group Sol.
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1 Introduction

In this paper, we study a class of Schroedinger operators with random edge weights given
by:

(Hf)(i) = ai−1f(i− 1) + aif(i+ 1)

where ai form a stationary process. One can think of such an operator as a perturbation of
the standard adjacency operator on Z (with all ai = 1) by random noise. It is well known
that the presence of even small amount of noise can dramatically influence the spectral
properties of H. While the spectral measure of the standard adjacency operator is absolutely
continuous, the noisy variant typically has a fully discrete spectrum with exponentially
localized eigenfunctions. This phenomenon is known as Anderson localization and is well
studied in mathematical physics.

A natural object of study is the expected spectral measure, denoted µH , which is the
spectral measure of H averaged over all random instances. Here, another phenomenon
occurs, related to the behavior of µH at zero. The standard adjacency operator on Z has
spectral measure µ with bounded density near zero, so in particular µ(−ε, ε) ∼ ε

π
. In

contrast, µH can exhibit behavior of the form:

µH(−ε, ε) ∼ C

|log ε|2
,

which goes to 0 as ε → 0 slower than any power of ε. If µH happens to have a density,
this means it must have a sharp spike near 0 of the form 1

ε
· C
|log ε|3 . This phenomenon was

first observed in the famous paper by Dyson [Dys53], who proved µH(−ε, ε) ∼ C
|log ε|2 for a

specific choice of edge weight distribution. One could expect that such behavior should be
typical, independent of any particular properties of the distribution, and indeed, heuristic and
numerical arguments supporting this claim have been given in the physics literature [ER78].
However, despite over 60 years from Dyson’s original paper, the only rigorous general result
in this direction was [CP89], where authors prove a lower bound µH(−ε, ε) ≥ C

|log ε|3 for

independent weights with bounded continuous density supported away from zero.
In this paper, we settle the question, proving:

Theorem 1.1. Let ai be i.i.d. random variables such that σ2 = Var log |ai| <∞. Then for
the random Schroedinger operator H defined by:

(Hf)(i) = ai−1f(i− 1) + aif(i+ 1)

we have

µH(−ε, ε) =
σ2∣∣log2 ε

∣∣(1 + oε(1)) (1)

Notably, we do not assume any regularity of the distribution: it can even take finitely
many values. A version of this theorem holds also for edge weights which are not independent,
as long as they satisfy suitable correlation decay (see Theorem 3.10 for precise statement).
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Our theorem easily reproduces Dyson’s result from [Dys53], see the discussion after Theorem
3.10.

The crucial ingredient in the proof is truncating the operator H to a finite interval and
finding a discrete process that counts its eigenvalues. We then proceed to identify a scaling
limit of this process, which involves the Brownian Motion arising as the limit of the discrete
random walk with steps log |a2i−1

a2i
|.

In the course of proving the theorem, we also establish eigenvalue bounds for finite
Schroedinger operators. These are expressed in terms of up- and down-crossings, see Sections
2.3 and 2.4 for details and precise definitions:

Proposition 1.2. Let Hn be a Schroedinger operator of size n, with n odd, with edge weights
ai. Let Mλ

n denote the number of eigenvalues of Hn inside the interval (0, λ). Let D1±δ
n denote

the number of (1 ± δ) |log λ|-downcrossings made by the process
∑k

i=1 log
∣∣∣a2i−1

a2i

∣∣∣. Let Bδ
n be

denote the number of k for which |log |ak|| > δ
8
|log λ|. Then for any δ ∈ (0, 1) and λ <

(
δ

16n

) 2
δ

we have:
D1+δ
n − 2Bδ

n ≤Mλ
n ≤ D1−δ

n + 2Bδ
n

Under the same assumptions, the analysis also yields an explicit limit of the local eigen-
value statistics around 0. The limiting distribution has a simple description in terms of up-
and down-crossings, or wells, made by the underlying Brownian Motion. Figure 1 shows an
example of wells made by a Brownian Motion. We highlight that the limiting distribution
is different from Poisson or the usual random matrix statistics.

Figure 1: A random walk path with two wells of depth 4

Theorem 1.3. Let ai be i.i.d. random variables such that σ2 = Var log |ai| <∞. Let H be
the random Schroedinger operator defined by:

(Hf)(i) = ai−1f(i− 1) + aif(i+ 1)
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and let Hn the restricton of H to an interval of length n + 1. Let {Λn(t, η), t, η > 0} be
the process equal to the number of eigenvalues of Hbtnc inside the interval (0, e−η

√
n). Let

{Λ(t, η), t, η > 0} be the process equal to the total number of disjoint η-wells that a Brownian
Motion with variance σ2 makes inside the interval [0, t] (see Definition 2.16). Consider a
subsequence of n such that btnc is odd.

Then the process Λn(t, η) converges to the process Λ(t, η), i.e. all finite dimensional
distributions of Λn converge weakly to finite dimensional distributions of Λ(t, η).

As a corrollary, for the smallest positive eigenvalue λ
(n)
0 of Hn, we have:

− log λ
(n)
0√

n
=⇒ σ · sup

t∈[0,1]

|B(t)|

in distribution, where B(t) is a Brownian Motion of variance 1 (see Remark 3.4).
We then proceed to apply our result to computation of topological invariants of groups

called the Novikov-Shubin invariants. Let G be a finitely generated group and H ∈ C[G] a
group ring element that determines a self-adjoint operator H : `2(G)→ `2(G) with spectral
measure µH . The Novikov-Shubin invariant of H, denoted α(H), is determined by the
behavior of µH at zero:

α(H) := lim inf
ε→0

log(µH(−ε, ε)− µH({0}))
log ε

Informally, if α(H) = α and α > 0, this means that µH(−ε, ε) behaves like ∼ εα. In general,
Novikov-Shubin invariants are rather difficult to compute, but carry interesting topological
information about manifolds with fundamental group G – see [Eck00], [Lüc02] for further
background on α(H).

Of particular interest is the question of positivity of α(H). Note, for example, that
behavior of the form µH ∼ C

|log ε|2 implies α(H) = 0. It was conjectured by Lott and Lück

[LL95] that α(H) > 0 for any group G and any H ∈ C[G]. This has been recently disproved
in [GV]. Our paper provides a new counterexample:

Theorem 1.4. There exists a group G = Z2oAZ, with A a hyperbolic matrix, and H ∈ C[G]
corresponding to a random walk on G such that α(H) = 0.

In comparison to previous work, this gives a simple counterexample which is not only
finitely presented, but also a lattice in a Lie group (Sol), see Section 4.2 for a more precise
statement. In conjunction with [GV], our technique can be also used to prove α(H) = 0 for
lamplighter groups Γ o Z with Γ arbitrary, see Section 4.3.

The connection between group theory and random Schroedinger operators comes in the
form of a construction due to [Gra14] that allows one, for certain semidirect products G, to
build, given H ∈ C[G], a random Schroedinger operator whose expected spectral measure is
equal to µH (see Section 4.2 for details). To compute this measure, one needs the full power
of our main theorem. For lamplighters, one obtains i.i.d. edge weights, but the underlying
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distribution can be discrete (e.g. for Z2 o Z), so it is important that we have (1) without
any smoothness assumption about the edge weights. In the case G = Z2 oA Z, the resulting
operator has dependent edge weights, which we can handle thanks to the hyperbolic nature
of the underlying map.

The paper is organized as follows. In Section 2, we restrict H to a finite interval and
derive a process that counts the eigenvalues of this restriction. This part is completely
deterministic. In Section 3, we use that process to prove the main theorem which establishes
equation (1) under suitable assumptions. Then, in Section 4, we describe the connection
to group theory and proceed to apply the main theorem to computations for the groups
mentioned above.

2 The eigenvalue process and its limit

2.1 The expected spectral measure of H

Let Ω be a probability space and let (. . . , a−1, a0, a1, . . . ) : Ω→ RZ be a bi-infinite sequence of
real numbers drawn from some joint shift-invariant probability distribution. We will always
assume that almost surely, none of ai are equal to 0. The distribution defines a random
Schroedinger operator H given by:

(Hf)(i) = ai−1f(i− 1) + aif(i+ 1)

In this section, we define what is meant by the expected spectral measure of H. There
are standard definitions of this object, but we want to avoid technicalities coming from (i)
the fact that the moments of the ai may not exist; and (ii) having to find the domain of H
on which it is self-adjoint.

Let µ, ν be probability measures. The Kolmogorov distance dK(µ, ν) is defined as dK(µ, ν) =
supx |µ(−∞, x]− ν(−∞, x]|. Note that if a sequence of measures µn forms a Cauchy sequence
with respect to dK , it converges weakly to some measure µ.

Let Hn denote the finite dimensional operator equal to the restriction of H to the set
{1, . . . , n + 1} by setting ai = 0 for i /∈ {1, . . . , n}. In this way, we obtain a random finite
dimensional operator Hn whose (random) spectral measure µHn is defined as its empirical
eigenvalue distribution. Let µn denote the expected spectral measure of Hn, i.e. the average
of µHn take over the randomness of edge weights.

Proposition 2.1. The sequence of measures {µ2k−1}∞k=1 converges weakly to some limit
measure µ that satisfies dK(µ, µ2k−1) ≤ 1

2k
.

Proof. For k ≥ 1, consider the operators H2k−1 and H2k+1−1. Let H̃2k+1−1 denote the operator

obtained from H2k+1−1 by setting a2k = 0. Since the matrix H2k+1−1− H̃2k+1−1 has a possibly

nonzero entry only at a2k , we have rank(H2k+1−1 − H̃2k+1−1) ≤ 1. By a standard matrix
inequality [BS10, Theorem A.43]:

dK(µH
2k+1−1

, µH̃
2k+1−1

) ≤ 1

2k+1
· rank(H2k+1−1 − H̃2k+1−1) ≤ 1

2k+1
(2)
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Note that the matrix H̃2k+1−1 consists of two disjoint blocks corresponding to vertices
{1, . . . , 2k} and {2k + 1, . . . , 2k+1}. This and the shift-invariance of the distribution of

(. . . , a−1, a0, a1, . . . ) implies that the expected spectral measure of H̃2k+1−1 is the same as the
expected spectral measure of H2k−1. Thus, inequality (2) holds after taking expectations:

dK(µ2k , µ2k+1) ≤ 1

2k+1
(3)

Altogether, (3) implies that the sequence of measures µ2k is a Cauchy sequence, so it
converges weakly to a measure µ. The bounds used above easily imply that d(µ, µ2k) ≤∑∞

i=k

(
1
2

)i+1
= 1

2k
as claimed.

Definition 2.2. The expected spectral measure µT of the random Schroedinger operator H
is defined as the limit measure µ constructed in Proposition 2.1.

Note that in the case where all ai are bounded, H is a bounded operator on `2(Z). One
can then define the spectral measure of an instance Hω as follows. Let δ0(0) = 1, δ0(i) = 0
for i 6= 0. The spectral measure µHω is defined via specifying its moments:

mk =
〈
δ0, (Hω)kδ0

〉
=

∫
R
xkdµHω (4)

Since the operator Hω is bounded, the moment sequence mk specifies the measure uniquely.
One then defines the expected spectral measure µH simply as the expectation of the measures
µHω . The approximation by finite operators claimed in Proposition 2.1 is then obtained by
a bounded operator analogue [BSV13, Lemma 6.1] of inequality (2).

2.2 Transfer matrices

Throughout the following sections, we are concerned with a single instance Hω, which we
will call H from now on. Therefore, H is a fixed, deterministic operator – we introduce the
probabilistic part of the analysis in Section 3.

To control the spectral measure of H, we will approximate H by operators Hn supported
on finite intervals. In Section 2.2, we use the standard transfer matrix approach to derive
a process that counts the eigenvalues of Hn. After the setup contained in Section 2.3, we
analyze the process in Section 2.4 and find its limiting behavior in Section 2.5.

Let Hn be the restriction of H to the set {1, . . . , n+ 1}, i.e. the operator obtained from
H by putting all weights outside the interval [1, n + 1] equal to 0. For any given λ ∈ R, we
are interested in computing the number of eigenvalues of Hn inside the interval [0, λ]. We
shall perform this computation using the transfer matrix approach.

We start with the eigenvalue equation. For the first and last equation we set a0 = an+1 =
1, φ0 = φn+2 = 0. The eigenvalue equation can be then written as:

Hnφ = λφ

ak−1φk−1 − λφk + akφk+1 = 0, k = 1, 2, . . . , n+ 1
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Letting:

T λk−1 =

(
λ
ak
−ak−1

ak

1 0

)
, k = 1, 2, . . . , n+ 1

we can write the recursion as: (
φk+1

φk

)
= T λk−1

(
φk
φk−1

)
In particular, λ is an eigenvalue if and only if for some c we have:(

0
c

)
= T λn · · · · · T λ0

(
1
0

)
(5)

We will be interested in the evolution of (T 0
k · · · · · T 0

0 )−1 · T λk · · · · · T λ0 as k changes from
0 to n. Let:

Rλ
k := (T 0

k )−1T λk =

(
0 1

−ak+1

ak
0

)( λ
ak+1

− ak
ak+1

1 0

)
=

(
1 0
− λ
ak

1

)
Now we rewrite:

(T 0
k · · · · · T 0

0 )−1 · T λk · · · · · T λ0 = (Rλ
k)T

0
k−1·····T

0
0 · (Rλ

k−1)T
0
k−2·····T

0
0 · · · · ·Rλ

0 (6)

where RA
k = A−1RkA.

It is desirable to express (6) in a more tractable way. Define:

Sk =
k∑
i=1

2 log

∣∣∣∣a2i−1

a2i

∣∣∣∣
We first compute products of odd and even numbers of T 0

k . We have:

T 0
k+1T

0
k =

(
0 −ak+1

ak+2

1 0

)(
0 − ak

ak+1

1 0

)
=

(
−ak+1

ak+2
0

0 − ak
ak+1

)
(7)

so:

T 0
2k · T 0

2k−1 · · · · · T 0
1 · T 0

0 = (−1)k

(
0 − εk·e−

1
2Sk

a2k+1

εk · e
1
2
Sk 0

)
(8)

T 0
2k+1T

0
2k · T 0

2k−1 · · · · · T 0
1 · T 0

0 = (−1)k+1

(
εk+1 · e

1
2
Sk+1 0

0 εk·e−
1
2Sk

a2k+1

)
(9)

where we have written
∏k

i=1
a2i−1

a2i
as εk · e

1
2
Sk with εk = ±1.
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We now have:

Qλ
k := (Rλ

2k+1)T
0
2k·····T

0
0 (Rλ

2k)
T 0
2k−1·····T

0
0 =

(
1− λ2

a22k+1
λ e−Sk
a22k+1

−λeSk 1

)
(10)

We will now prove a lemma that justifies the usefulness of the representation (6). Let
H = {z ∈ C : =z ≥ 0} ∪ {∞} be the upper half plane. We can identify a vector ( ab ) with
a point z ∈ H by letting z = a

b
. In this identification, the vector ( 1

0 ) is mapped to ∞.
We can translate the action of matrices on vectors into action on H. Recall that matrices
A ∈ SL(2,R) act by isometries of the hyperbolic plane H in the upper half plane model. A
matrix:

A =

(
a b
c d

)
corresponds to the map TA : H → H such that TA(z) = az+b

cz+d
. To simplify notation, we will

write A instead of TA.
From now on we assume that n is odd. This implies that

(T 0
n · · · · · T 0

0 )−1(0) = 0 (11)

Lemma 2.3. Let Mλ
n denote the number of eigenvalues of Hn inside the interval [0, λ] and

let Jλn denote the number of times the process (Rλ
k)T

0
k−1·····T

0
0 · · · · ·Rλ

0(∞) passes 0 or ∞ as k
ranges from 0 to n. Then Mλ

n = d1
2
Jλne.

Proof. Let A = [0, λ]× [0, n]. We define f : [0, λ]× {0, . . . , n} → ∂H by:

f(λ∗, k) = (Rλ∗

k )T
0
k−1·····T

0
0 · · · · ·Rλ∗

0 (∞)

and interpolate f linearly to obtain a continuous map f : A → S1. Note that by (5) and
(11), λ∗ is an eigenvalue whenever:

(Rλ∗

k )T
0
k−1·····T

0
0 · · · · ·Rλ∗

0 (∞) = 0

Figure 2: The loop from Lemma 2.3

Let S1, S2, S3, S4 be the sides of the rectangle A (see Figure 2). Since A is contractible
and f is continuous, the loop f : S1 ∪ S2 ∪ S3 ∪ S4 → ∂H has winding number zero. Since
f(S1) = f(S4) = {∞}, the same is true for the loop f : S2 ∪ S3 → ∂H. Since f is monotone
on both of these intervals, with opposite direction, the number of times it passes 0 on them
is the same, which easily finishes the proof.
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2.3 Crossings and the rotation process

In Section 2.2 we have shown that in order to study the number of eigenvalues of Hn, we
have to study the time evolution of a process given by composing rotations (see equation 10
and remark thereafter). In the following sections, we study this process in detail and derive
its continuous-time scaling limit.

We consider a fixed, deterministic operator Hn on the interval of size n, given by edge
weights {ak}nk=1. The process constructed in the previous section can be described informally
as follows. Starting from the initial point v0 ∈ R, each point vk will be moved by a rotation
Rk to a new point vk+1. The center of each rotation, equal to i e−Sk

|a2k+1|
, is obtained as a product

of ai and λ represents the speed of rotation.
Formally, we study the process defined by:

Qλ
k =

(
1− λ2

a22k+1
λ e−Sk
a22k+1

−λeSk 1

)
,

vλk = Qλ
k−1(vλk−1)

vλ0 =∞

The process described in (10) is exactly of this form.
Let H = {z ∈ C : Imz ≥ 0} ∪ {∞} and ∂H = R ∪ {∞}. Since we would like to study

the points log vk for vk ∈ ∂H, it is natural to introduce the following setup. For k ∈ Z, let
Ak = {R + k · iπ} ∪ {−∞,+∞}. Let A =

⊔∞
k=1 Ak be the union of lines plus points ±∞,

connected in such a way that A2k ∩ A2k+1 = {+∞},A2k−1 ∩ A2k = {−∞}. Considering
exp : A → ∂H, we can treat its inverse as a (multi-valued) map log : ∂H → A, where
A2k ⊆ log({z ≥ 0}) and A2k+1 ⊆ log({z ≤ 0}).

Remark 2.4. Note that A has a natural ordering inherited from the real line, which we
will denote by ≥A. If x ∈ Aj and y ∈ Ai for j > i, then x ≥A y. If x, y are in the
same component, x ≥A y means x ≥ y if x, y ∈ A2i or x ≤ y if x, y ∈ A2i+1. The time
evolution governed by Qk is monotone with respect to this ordering, i.e. if y ≥A y′, then
Qk(y) ≥A Qk(y

′).

The processes studied below will consist of points starting at +∞ ∈ A1 and decreasing
monotoneously until they jump past −∞ to A2, whereupon they increase until they jump
to A3, and so on.

We introduce the scaled version of the processes, defined as follows:

Xk =
1

|log λ|
Sk

Yk =
1

|log λ|
log vλk

Xk is supposed to represent the rescaled motion of the rotation center, while Yk is the rescaled
trajectory of vk. With this setup, Yk takes values in A, either in A2i if vλk ≥ 0 or A2i+1 if
vλk ≤ 0. It jumps from Ai to Ai+1 whenever vλk changes sign.
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Note that for vλk−1 > 0, so that Yk−1 ∈ A2i for some i, we can write:

Yk =
1

|log λ|
log

∣∣∣∣∣∣
(1− λ2

a22k−1
)λ−Yk−1 + 1

a22k−1
λ1+Xk−1

1− λ1−Yk−1−Xk−1

∣∣∣∣∣∣
where Yk ∈ A2i if the expression under the absolute value is nonnegative and Yk ∈ A2i+1

otherwise.

Remark 2.5. Assume that vk−1 > 0 and 1− λ2

a22k−1
> 0. Then vk makes a jump, i.e. vk ≤ 0,

if and only if 1−Xk−1 − Yk−1 ≤ 0.

We now introduce the concept of crossings, which relate to the number of jumps made
by the process. Let X(t) be a real valued function from R or Z. Define

M(t1, t2) = max
t∈[t1,t2]

X(t)

m(t1, t2) = min
t∈[t1,t2]

X(t)

Definition 2.6. Let τ0 = 0 and define for i ≥ 1:

τ2i−1 = inf{s ≥ τ2i−2 | M(τ2i−2, s)−X(s) ≥ α}
τ2i = inf{s ≥ τ2i−1 | m(τ2i−1, s)−X(s) ≤ −α}

We will say that X has made a α-downcrossing at time τ2i−1 and a α-upcrossing at time τ2i,
for i ≥ 1. Both down- and upcrossings will be called crossings.

Definition 2.7. Given a function X(t) and α > 0, the α-crossing process associated to X
is defined as:

Zα(t) =

{
−M(τ2i, t) + α

2
∈ A2i+1, for t ∈ [τ2i, τ2i+1)

−m(τ2i−1, t)− α
2
∈ A2i, for t ∈ [τ2i−1, τ2i)

where τk are times of subsequent crossings as in Definition 2.6.

Informally, the proces Zα(t) evolves as follows. It is started in A1 at α
2

and decreases
monotoneously as it is ”pushed” by −M(τ0, t) + α

2
. The moment M(τ0, t)−X(t) ≥ α, Zα(t)

jumps to A2 and everything starts afresh, only with −M(τ0, t)+ α
2

replaced with −m(τ1, t)− α
2

and moving in the opposite direction. The process jumps to A3 when X(t) −m(τ1, t) ≥ α
and so on.

Definition 2.8. We say that a process Y has made a jump at time k if Yk ∈ Aj and
Yk−1 ∈ Aj−1.

With these definitions, the first crossing is always a downcrossing. Note that the times
of successive jumps of the α-crossing process Zα(t) are exactly the times of α-crossings of
the underlying function X.
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2.4 Upper and lower bounds on the number of jumps

In this Section, we prove upper and lower bounds on the number of jumps of Y in terms of
crossings made by X. The Propositions below will be used for λ = e−

√
n but are stated and

proved in generality, with λ arbitrary. Proposition 1.2 follows by recalling that by Lemma
2.3, the number of eigenvalues is d1

2
Jne and that is simply the number of downcrossings.

In both Propositions below, we consider the processes Y and Zα, the α-crossing process
associated to X for appropriate value of α. We will only consider the case when Y, Z ∈ A2i,
as the case of the odd numbered component is handled in a similar way. We can write the
one step recursion for Z as Zk+1 = z′(Xk+1, Zk), where z′ is given by:

z′(x, z) =

{
−x+ α

2
∈ A2i+1, if z ≥ −x+ α

2

max{z,−x− α
2
} ∈ A2i, otherwise

Likewise, we can write the one step recursion for Y as Yk+1 = y′(Xk, Yk, a2k+1), where y′

is given by:

y′(x, y, a) =
1

|log λ|
log

(1− λ2

a2
)λ−y + 1

a2
λ1+x

1− λ1−y−x

In both proofs, we will repeatedly use the following estimates, which hold if |log |ak|| ≤
δ
16
|log λ|, δ < 2 and λ < 1:

λ
δ
8 <

1

a2
k

< λ−
δ
8 (12)

1− λ2

a2
k

> 1− λ2− δ
8 > 0 (13)

Proposition 2.9. Pick δ ∈ (0, 2). Let Jn be equal to the number of jumps made by {Yk}nk=1.
Let Cn be equal to the number of (2 − δ) |log λ|-up- or down-crossings made by Sk and let

Bn be the number of k such that |log |ak|| > δ
16
|log λ|. Then for all λ <

(
δ

32n

) 4
δ we have

Jn ≤ 2Bn + Cn.

Proof. First, we replace Y by a process defined as follows. Suppose that Yk ∈ Ai. Whenever
|log |ak|| > δ

16
|log λ|, instead of following its usual evolution, the modified process jumps to

Yk ∈ Ai+2, i.e. the same point, but two components ahead. Since Y can make at most one
jump in one step, the modified process is always ahead of Y , in particular, it makes at least
as many jumps. Thus, it suffices to bound the number of jumps of Y by Cn, under the
assumption that |log |ak|| ≤ δ

16
|log λ|, since the remaining jumps are taken care of by the

term 2Bn.
Let Z be the (2 − δ)-crossing process associated to X (Definition 2.7). Recall that Cn,

the number of (2 − δ)-crossings made by X, is equal to the number of jumps made by Z.
Thus we need to prove that Z makes at least as many jumps as Y .

Recall the one step recursion for Y and Z. Suppose that Zk ∈ Ai and let Wk = Zk +
(−1)i δ

4n
· k. The evolution of Wk is governed by the recursion:

w′(x,w, k) = z′
(
x,w − (−1)i

δ

4n
· k
)

+ (−1)i
δ

4n
· (k + 1)

11



Note that w′ makes jumps at the same time as z′. We claim that in order to prove that Z
makes at least as many jumps as Y , it suffices to prove that for any values of x,w, a, k such
that k ≤ n and a satisfies (12), (13) we have:

w′(x,w, k) ≥A y
′(x,w, a) (14)

We prove inductively that Wk ≥A Yk+1, from which the claim about the number of jumps
follows as Wk makes a jump if and only if Zk makes a jump. For the base case k = 0, we
have:

y′(∞) =
1

|log λ|
log

1− λ2

a2

λ
> 1 +

1

|log λ|
log(1− λ2− δ

8 ) > 1− δ

8
(15)

where the last estimate follows from λ
δ
8 < 1

2
, easily implied by λ <

(
δ

32n

) 4
δ . Thus, Y1 > 1− δ

8
>

1− δ
2

= Z0. The map y′ is monotone, meaning that y1 ≤A y2 implies y′(x, y1, a) ≤A y
′(x, y2, a).

The inductive step then follows by applying (14) and then monotonicity::

Wk+1 = w′(Xk+1,Wk, k) ≥A y
′(Xk+1,Wk, a2k+3) ≥A y

′(Xk+1, Yk+1, a2k+3) = Yk+2

Note that the increments of w′ and y′ are translation invariant, so without loss of generality
we can put x = 0. The results hold for all values of ak satisfying the assumptions, so we
suppress the variable a and write y(w) for y(0, w, a).

We only consider the case when y, z ∈ A2i as the case of the odd numbered component
is handled in a similar way. We first claim that if 1− δ

4
≥ u ≥ −1 + δ

2
, then y′(u)− u < δ

4n
.

We have:

y′(u)− u =
1

|log λ|
log

(1− λ2

a2
)λ−u + 1

a2
λ

1− λ1−u − u
(12)

≤ 1

|log λ|
log

1 + λ1+u− δ
8

1− λ1−u ≤

1

|log λ|
log

1 + λ
3
8
δ

1− λ δ
4

≤ 1

|log λ|
· λ

δ
4 + λ

3
8
δ

1− λ δ
4

≤ 1

|log λ|
· 2 · λ δ

4

1− λ δ
4

The assumptions λ <
(

δ
32n

) 4
δ and δ < 2 easily imply 1

|log λ| < 2 and 1

1−λ
δ
4
< 2, so we get:

y′(u)− u < 8 · λ
δ
4 <

δ

4n

again by λ <
(

δ
32n

) 4
δ .

We now prove (14). The first case to consider is when y′ does not jump, which by Remark
2.5 and (13) implies w < 1. Then, either w′ jumps and the claim is trivial, or it does not.
In that case, we have w < 1 − δ

2
+ δ

4n
· k < 1 − δ

4
and z′ = max{w − δ

4n
· k,−1 + δ

2
}. If

w ≥ −1 + δ
2

+ δ
4n
· k, then z′ = w − δ

4n
· k, so w′ = w + δ

4n
. Also 1 − δ

4
≥ w ≥ −1 + δ

2
, so

y′(w)− w < δ
4n

= w′ − w as desired. If w < −1 + δ
2

+ δ
4n
· k, then:

y′(w) < y′
(
−1 +

δ

2
+

δ

4n
· k
)
< −1 +

δ

2
+

δ

4n
· k +

δ

4n
= z′ +

δ

4n
· (k + 1) = w′

12



The other remaining case is when y′ makes a jump, so w ≥ 1. This means that z ≥
1− δ

4n
· k > 1− δ

4
> 1− δ

2
, so z′ makes a jump as well. Also, z′ = 1− δ

2
∈ A2i+1 and w′ > z′.

It thus suffices to prove that y′ ≤A 1− δ
2

in A2i+1, which translates to y′ ≥ 1− δ
2

since we are
in an odd numbered component. We have y′(w) > y′(∞) and y′(∞) > 1− δ

2
by (15).

Proposition 2.10. Pick δ ∈ (0, 2). Let Jn be equal to the number of jumps made by {Yk}nk=1.
Let Cn be equal to the number of (2 + δ) |log λ|-up- or down-crossings made by Sk and let Bn

be the number of k such that |log |ak|| > δ
16
|log λ|. Then for all λ < 1 we have Cn−2Bn ≤ Jn.

Proof. As in Proposition 2.9, we replace Y by a process which makes two jumps whenever
|log |ak|| > δ

16
|log λ|. Now it suffices to bound the number of jumps of Y from below by Cn,

under the assumption that |log |ak|| ≤ δ
16
|log λ|, since the remaining jumps are taken care of

by the term 2Bn.
Let Z be the (2 + δ)-crossing process associated to X (Definition 2.7). We only consider

the case when Yk, Zk ∈ A2i as the other one is handled in a similar way. Recall that Cn, the
number of (2 + δ)-crossings made by X, is equal to the number of jumps made by Z. Thus
we need to prove that Y makes at least as many jumps as Z.

Recall the one step recursion for Y and Z. We claim that in order to prove that Y makes
at least as many jumps as Z, it suffices to prove that for any values of x, z, a such that a
satisfies (12), (13) we have:

z′(x, z) ≤A y
′(x, z, a) (16)

We prove inductively that Zk ≤A Yk+1 for all k ≥ 0. The base case is clear since Z0 = 1+ δ
2

and
Y1 < 1. The map y′ is monotone, meaning that y1 ≤A y2 implies y′(x, y1, a) ≤A y

′(x, y2, a).
The inductive step then follows by applying (16) and then monotonicity::

Zk+1 = z′(Xk+1, Zk) ≤A y
′(Xk+1, Zk, a2k+3) ≤A y

′(Xk+1, Yk+1, a2k+3) = Yk+2

Note that the increments of z′ and y′ are translation invariant, so without loss of generality
we can put x = 0. The results hold for all values of ak satisfying the assumptions, so we
suppress the variable a and write y(w) for y(0, w, a).

To prove (16), consider first the case when y′(z) does not make a jump, which by Remark
2.5 and (13) means z < 1. This in particular means that z′ does not make a jump, so
z′ = max{z,−1 − δ

2
}. Since y′ is increasing, we have y′(z) > z. On the other hand, since

z ≥A −∞, we have:

y′(z) ≥ y′(−∞) =
1

|log λ|
log

1

a2
λ ≥ −1− δ

8

Thus, y′ ≥ max{z,−1− δ
8
} ≥ z′, finishing the claim.

The other case is when y′ makes a jump from A2i to A2i+1, so that z ≥ 1. Then either
z < 1 + δ

2
, so z′ remains in A2i and the claim is trivial, or z ≥ 1 + δ

2
∈ A2i. In that case

z′ = 1 + δ
2
∈ A2i+1 and we need to prove y′ ≥A 1 + δ

2
∈ A2i+1, that is, y′ ≤ 1 + δ

2
since we are

13



in the odd numbered component. Since z ≥A 1 + δ
2
∈ A2i, by monotonicity of y′ we have:

y′(z) ≤ y′
(

1 +
δ

2

)
=

1

|log λ|
log

(1− λ2

a2
)λ−1− δ

2 + 1
a2
λ

λ−
δ
2 − 1

≤

1 +
δ

2
+

1

|log λ|
log

1 + 1
a2
λ2+ δ

2

λ−
δ
2 − 1

< 1 +
δ

2
+

1

|log λ|
log

1 + λ2+ 3
8
δ

λ−
δ
2 − 1

It suffices to make the expression under the logarithm smaller than 1. This is easily implied

by λ < 1 and λ−
δ
2 > 3, which follows from the assumption that λ <

(
1
3

) 2
δ .

We note that for even values of n, we obtain similar statements, but with roles of down-
and upcrossings reversed. In particular, we obtain an analogue of Proposition 1.2 for even
n, which is identical but bounds the number of jumps in terms of upcrossings, rather than
downcrossings of Sk.

2.5 Convergence to the scaling limit

We now study the continuous-time scaling limit of the processes Y . To this end, we put
λ = e−

√
n and consider a sequence of processes Y (n) such that the underlying functions X(n)

converge to some function X. The reason for this particular scaling is related to Brownian
scaling which we shall use in Section 3 when introducing the probabilistic part of the analysis.
In the formula below the reader should recognize the same scaling as in the Central Limit
Theorem.

We introduce the continuous time version of the discrete process X with scaling λ = e−
√
n.

For any η, we can write:

X(n)
ηn (t) :=

1√
η2n

S
(n)

η2nt

We introduce the superscript n to emphasize that for different values of n, the sums S
(n)
k

depend on different sets of edge weights {a(n)
k }nk=1 for each n. While it may seem natural to

consider sequences obtained from a single infinite operator H restricted to finite intervals,
we will need the main theorem of this section stated in generality.

We will establish the main theorem of this section under the following assumptions.

Condition 2.11. X
(n)
n (t) converge uniformly on some interval [0, T ] to a function X(t) such

that X(0) = 0.

Condition 2.12. Fix some ν > 0. Whenever M(t)−X(t) = 2ν (resp. m(t)−X(t) = −2ν),
for any ε > 0 there exists t′ < t+ε such that M(t′)−X(t′) > 2ν (resp. m(t′)−X(t′) < −2ν).

Condition 2.13. We have:

lim
n→∞

max
k=1,...,n

∣∣∣log |a(n)
k |
∣∣∣

√
n

= 0 (17)
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Note that Condition 2.13 is not implied by Condition 2.11 since Condition 2.11 only

implies that

∣∣∣∣log

∣∣∣∣a(n)2k−1

a
(n)
2k

∣∣∣∣∣∣∣∣ are small in the limit and implies nothing about
∣∣∣log |a(n)

k |
∣∣∣.

Theorem 2.14. Let X
(n)
n (t) be a sequence of piecewise linear functions that converge uni-

formly on some interval [0, T ] to a function X(t) such that X(0) = 0 (Condition 2.11).
Suppose that X(t) satisfies Condition 2.12 with ν = 1 and Condition 2.13 is satisfied. Let Jn
denote the number of jumps made by {Y (n)

k }nk=1 and let J denote the number of 2-crossings
made by X. Then Jn converges to J as n→∞.

Proof. Let Cα
n denote the number of α-crossings made by Xn, let Cα denote the number of

α-crossings made by X and let Bδ
n denote the number of k such that

∣∣∣log
∣∣∣a(n)
k

∣∣∣∣∣∣ > δ
16

√
n.

Pick δ > 0. By applying Propositions 2.9 and 2.10 with λ = e−
√
n, for large enough n we

obtain:
C2+δ
n − 2Bδ

n ≤ Jn ≤ C2−δ
n + 2Bδ

n (18)

Since Xn converge to X uniformly, it is easy to see that for large enough n we have C2+δ
n ≥

C2+2δ and C2−δ
n ≤ C2−2δ. Moreover, Condition 2.12 implies that C2−2δ and C2+2δ converge

to C2 = J as δ → 0. Also, by Condition 2.13 we have that Bδ
n converges to 0 as n → ∞.

Thus, we can make the upper and lower bound in (18) arbitrarily close to J by first picking
small enough δ and then large enough n, depending on δ, which finishes the proof.

Remark 2.15. The proofs of Proposition 2.9 and 2.10 imply that the discrete process Y is
always bounded from both sides by (2 ± δ)-crossing processes Z2±δ, outside of jump times
τi. This can be actually used to prove the convergence of the processes Y to the 2-crossing
process Z2. We do not spell out the details as we only need the convegence of the number of
jumps.

We are now ready to prove the Lemma which summarizes the connection between the
asymptotic number of eigenvalues of Schroedinger operators described in Section 2.2 and the
processes introduced above.

Definition 2.16. We say that an interval [a, b] ⊆ [0, T ] is an s-well of X for some s > 0 if:
1. b = T or X(a) = X(b); 2. X(a) > X(x) for all x ∈ (a, b) and X(a)−X(x) ≥ s for some
x ∈ (a, b).

Remark 2.17. Note that the maximal number of disjoint s-wells made by X inside [0, T ] is
equal to the number of s-downcrossings.

Lemma 2.18. Let {H(n)}∞n=1 be a family of Schroedinger operators, each given by edge

weights {a(n)
i }ni=1. Let H

(n)
m denote the operator H(n) restricted to the interval [1,m+ 1]. For

t, η > 0, let Λn(t, η) denote the number of eigenvalues of H
(n)
btnc inside the interval [0, e−η

√
n].

Consider a subsequence of n such that btnc is odd. Suppose that Conditions 2.11. 2.12 and

2.13 are satisfied, including Condition 2.12 with ν = η. In particular, X
(n)
n converge to some

function X. Let Λ(t, η) denote the number of 2η-downcrossings of X inside the interval
[0, 1

2
t]. Then Λn(t, η) converges to Λ(t, η) as n→∞.
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Figure 3: X(t) makes a 4-downcrossing at t1 and t3 and 4-upcrossing at t2 and t4. The
resulting 4-wells are shown in grey.

Proof. Recall that:

S
(n)
k =

k∑
i=1

U
(n)
i =

k∑
i=1

2 log

∣∣∣∣∣a
(n)
2i−1

a
(n)
2i

∣∣∣∣∣
X(n)
n (t) =

1√
n
S

(n)
nt

where the superscript n emphasizes that, for different n, the sums S(n) depend on a different
set of edge weights a

(n)
i .

Put T = 1
η2
t. By letting n′ = η2n, Λn(t, η) is equal to the number of eigenvalues of H

(n)
bTn′c

inside the interval [0, e−
√
n′ ]. By Lemma 2.3, this is equal to d1

2
Jne, where Jn is the number of

jumps made up to time 1
2
Tn′ by the process {Y (n),λ}

1
2
Tn′

k=1 , with λ = e−
√
n′ and the underlying

random walk being X
(n)
n′ . Note that the scaling factor n′ is now different than the sample

number n. The factor of 1
2

appears since each step of the discrete process used in Section
2.3 actually corresponds to two steps of the eigenvalue counting process from Section 2.2(see
equation (10)).

We have:

X
(n)
n′ (t) =

1√
n′
S

(n)
n′t =

1

η
· 1√

n
S

(n)

η2nt

Since by assumption X
(n)
n (t)→ X(t), we have X

(n)
n′ (t)→ Xη(t) := 1

η
·X(η2t).

Since X satisfies Condition 2.12 with ν = η, it follows that Xη satisfies the same condition
with ν = 1. Since the assumptions of Theorem 2.14 are satisfied for Xη, the number of jumps

made by {Y (n),λ}
1
2
Tn′

k=1 converges to the number of 2-down- or upcrossings thatXη makes inside

16



the interval [0, 1
2
T ]. This is the same as the number of 2η-crossings made by X inside [0, 1

2
t].

This finishes the proof by noting that if C is the number of 2-down- or upcrossings, then
d1

2
Ce is the number of 2-downcrossings since the first crossing is always a downcrossing.

3 Local statistics and the expected spectral measure

at zero

In this section, we use the limiting process from the previous section to derive the limit
of local eigenvalue statistics of Hn and compute µH , the expected spectral measure of the
random Schroedinger operator H, near zero. The main focus of this section are Theorem
3.3, Lemma 3.9 and Theorem 3.10. We shall use the notation from Section 2. Whenever
we speak of convergence in distribution of processes, we shall mean weak convergence of
measures on C([0, T ]).

3.1 Local eigenvalue statistics

In this Section, we consider a random Schroedinger operator with edge weights given by a
sequence of random variables {ai}∞i=1. We define:

Ui = 2 log

∣∣∣∣a2i−1

a2i

∣∣∣∣ , Sn =
n∑
i=1

Ui, Xn(t) =
1√
n
Sbntc

Definition 3.1. Suppose that {Ui}∞i=1 satisfy EUi = 0 and EU2
i <∞. We say that Ui satisfy

the functional Central Limit Theorem if Xn converge in distribution on some interval [0, T ]
to a Brownian motion X with mean zero.

Proposition 3.2. Suppose that {ai}∞i=0 are identically distributed and E(log |ai|)2 < ∞.
Then for any ε > 0 we have:

P
(

max
k=1,...,n

|log |ak||√
n

> ε

)
→ 0

i.e. the sequence of variables {maxk=1,...,n
log |ak|√

n
}∞n=1 converges to 0 in probability.

Proof. LetXk = log2 |ai|, so that EXk <∞. A simple exercise in probability (see e.g. [Bil95],
Problem 21.3) shows that when variables Xk are identically distributed with EX1 <∞, we
have Emaxk=1,...,nXk = o(n). This together with Markov’s inequality proves the desired
claim.

If the functional Central Limit Theorem is satisfied, we can use Lemma 2.18 and Sko-
rokhod almost sure representation to obtain convergence in distribution of the local eigen-
value statistics. This describes the limiting local eigenvalue distribution around 0 in terms
of crossings made by a Brownian motion, recall Definition 2.6. We note that the limiting
distribution is not Poisson, as Proposition 3.5 shows that it exhibits a Gaussian tail.
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Theorem 3.3. Suppose that Ui satisfy the functional Central Limit Theorem and let Var log |ai| =
σ2 < ∞. Let Hm be the operator H restricted to the interval [1,m + 1]. For t, η > 0, let
{Λn(t, η), t, η > 0} denote the random process equal to the number of eigenvalues of Hbtnc
inside the interval [0, e−η

√
n] and let {Λ(t, η), t, η > 0} denote the random process equal to

the maximal number of disjoint η-wells made by a Brownian motion with variance σ2 inside
the interval [0, t]. Consider a subsequence of n such that btnc is odd.

Then the process Λn(t, η) converges to the process Λ(t, η), i.e. all finite dimensional
distributions of Λn converge weakly to finite dimensional distributions of Λ.

Proof. By assumption, Xn converge weakly to X, which is a Brownian Motion with variance
8σ2. By Skorokhod representation theorem ([Kal02], Theorem 4.30), we can find a common
probability space such that Xn → X uniformly almost surely. The maximum process M−X
is equal in distribution to a reflected Brownian motion and it is standard ([MP10]) that
almost surely the Brownian motion has no isolated zeros. These two facts easily imply
that X almost surely satisfies Condition 2.12 for any value of ν. Moreover, by Proposition
3.2 and almost sure representation of variables converging in probability, we obtain that
Condition 2.13 is satisfied almost surely. Thus, almost surely the conditions of Theorem
2.14 are satisfied.

By Lemma 2.18, for any t, η it holds that Λn(t, η) converges to the number of 2η-wells
that X makes inside the interval [0, 1

2
t]. By Brownian scaling this has the same distribution

as the number of η-wells that a Brownian motion with variance σ2 makes inside the interval
[0, t], which is exactly Λ(t, η). The same statement holds for Λn treated as a process - for
any finite number of {(t1, η1), . . . , (tk, ηk)} convergence holds simultaneously almost surely
for all ti, ηi, which implies weak convergence of all finite dimensional distributions.

Note that the limiting 2-crossing process Z2 is discontinuous, but is right continuous with
left limits. Then Remark 2.15 also implies that the processes Y (n) converge weakly to Z2.
We do not describe this in detail as below we only need the weak convergence of the number
of eigenvalues and not of the processes Y (n) themselves.

Remark 3.4. Various questions about the eigenvalues of Hn can be phrased in terms of
crossings made by the limiting Brownian Motion X. For example, let λ

(n)
0 be the smallest

positive eigenvalue of Hn. It follows from the preceding Theorem that
− log λ

(n)
0√

n
converges in

distribution to the maximal size of a downcrossing made by X inside the interval [0, 1], that
is, the maximal η such that M(t)−X(t) = η for some t ∈ [0, 1]. Since M(t)−X(t) is equal
in distribution to a reflected Brownian motion |X(t)|, we obtain that:

− log λ
(n)
0√

n
=⇒ σ · sup

t∈[0,1]

|B(t)|

in distribution, where B(t) is the standard Brownian Motion of variance 1.

Proposition 3.5. With Λ(t, η) defined as in Theorem 3.3, for some constants a, b > 0
depending on t, η, σ we have

P(Λ(t, η) > m) ≤ ae−bm
2
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Proof. Suppose that Λ(t, η) > m, so X(t) has made more than 2m η-up- or down-crossings

inside the interval [0, t]. By Brownian scaling, we can put η′ = η
√
t

σ
and instead consider η′-

crossings of a standard Brownian motion inside the interval [0, 1] Let T1, . . . , T2m be the times
between subsequent η-up- or down-crossings. The times Ti are independent and identically
distributed. Moreover, note that R(t) = M(t) − X(t) has the distribution of a reflected
Brownian motion, so by the reflection principle we have:

P(Ti ≤ x) = P(max
[0,x]

R(t) ≥ η′) ≤ 2 · P(max
[0,x]

B(t) ≥ η′) = 4 · P(B(x) ≥ η′) ≤ 4e−
η′2
2x

Since there are more than 2m crossings inside [0, 1], this means that T1 + . . . T2m < 1.
Let ∆2m = {(x1, . . . , x2m) ∈ [0, 1]2m|

∑2m
i=1 xi ≤ 1}. We have:

P(T1 + . . . T2m < 1) ≤
∫

∆2m

2m∏
i=1

P(Ti ∈ dxi) ≤ 4

∫
∆2m

2m∏
i=1

e
− η
′2

2xi = 4

∫
∆2m

e
− η
′2
2

∑2m
i=1

1
xi ≤

4

∫
∆2m

e
−2m2η′2 1∑2m

i=1
xi ≤ 4 · vol(∆2m) · e−2η′2·m2

= 4 · e
−2η′2·m2

(2m)!

3.2 The expected spectral measure at zero

Having established weak convergence of the local eigenvalue statistics, we now set the back-
ground to compute the expected spectral measure of H. We shall consider sequences of Ui
satisfying the following technical condition:

Condition 3.6. At least one of the following holds:

1. for some γ > 2 we have E |log |ai||γ <∞ and for some constant C and any n ≥ 1:

E |U1 + · · ·+ Un|γ ≤ Cn
γ
2 , (19)

2. The ai are i.i.d. and E |log |ai||2 <∞.

Note that in the i.i.d. case a standard computation verifies the inequality (19) with
γ = 2. However, we will later work in the setting when Ui are dependent, but exhibit a
suitable correlation decay (see Section 4.2).

Having established weak convergence of the number of jumps, we would like to establish
that the convergence also holds in expectation. This will be implied by the upcoming Lemma
3.8. An important element in the proof is the maximal inequality of [Mó76], whose special
case says the following:

Proposition 3.7. Let S(i, j) =
∑j

k=i Uk,M(i, j) = maxi≤k≤j S(i, k). If for some γ > 2 and
A > 0 we have:

E |S(i, j)|γ ≤ A(j − i+ 1)
γ
2
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for all j > i ≥ 1, then:
E |M(i, j)|γ ≤ cγ · A(j − i+ 1)

γ
2

for all j > i ≥ 1, with the constant cγ depending only on γ.

Lemma 3.8. Suppose that Ui satisfy Condition 3.6. Let Jn be the random variable equal
to the number of jumps made by Y (n) in the interval [1, n]. Then the family of variables
{Jn}n≥1 is uniformly integrable.

Proof. By Proposition 2.9 with δ = 1 and λ = e−
√
n, we obtain Jn ≤ 2Bn + Cn for all n

greater than some global constant n0, where:

Bn =
n∑
i=1

1{|log|ai||> 1
16

√
n}

is the number of times i such that |log |ai|| > 1
16

√
n and Cn is the number of 1-crossings

made by Xn. Thus, it suffices to show that Bn and Cn are uniformly integrable. We will first
prove the general case. Then we give a different argument for the i.i.d. case under weaker
moment assumptions.

To prove that Bn is uniformly integrable, it suffices to show that EBn → 0. By Condition
3.6 we can estimate:

EBn = n · P
(
|log |ai|| >

1

16

√
n

)
≤ n · E |log |ai||γ

n
γ
2 ( 1

16
)γ

.

Since γ > 2, this converges to 0 as n→∞.
For a crossing [s, t], its length is t − s. To show that Cn are uniformly integrable, it

suffices to show that the expected number of 1-crossings [s, t] of length at most n · 2−`0 is
at most ε(`0) for all n, where ε(`0) → 0 as `0 → ∞. Indeed, for given `0 the number of
1-crossings that are longer is bounded independently of n.

We first bound the expected number e(n, `) of 1-crossings that are of length at least
n ·2−` and at most 2n ·2−`. To each such crossing [s, t] we associate the first time of the form
k · b2−`nc contained in [s, t] for some integer k. Each such time is contained in at most one
such crossing, so the number of such crossings is bounded above by the sum of the indicators
over such times that a crossing contains that time.

As a consequence, e(n, `) is bounded by the number of such times, which is 2`, times
the maximal probability that a crossing contains a given time. If this happens, then the
range (i.e. the maximum minus the minimum) of the process Sk over the interval [i, j] of
size 4n · 2−` centered at that time is at least

√
n. In particular, either M(i, j) ≥

√
n/2,

or the same holds for the absolute minimum. By Markov’s inequality, Proposition 3.7 and
Condition 3.6 we get

P(M(i, j) ≥
√
n/2) ≤ 2γ/2E|M(i, j)|γ

nγ/2
≤ c · E|S(i, j)|γ

nγ/2
≤ c′ · (4n · 2−`)γ/2

nγ/2
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giving e(n, `) ≤ 4γ/2c′ · 2`2−`γ/2. As a result, the expected number of 1-crossings of length at
most n · 2−`0 is at most

c

dlog2 ne∑
`=`0

2`(1−γ/2) <
c · 2`0(1−γ/2)

1− 2(1−γ/2)
=: ε(`0)→ 0

as long as γ > 2.

Proof of the i.i.d. case. We now prove the i.i.d. case assuming only E |log |ai||2 < ∞. It
suffices to show that the variance of Bn is uniformly bounded in n. The Bn are Bernoulli
random variables, so their variance is bounded by their mean. We have

E(Bn) = n · P
(
|log |a1|| >

1

16

√
n

)
≤ n · E |log |ai||2

n( 1
16

)2
,

which is bounded.
To show that Cn is uniformly integrable, it suffices to show exponential tails uniform in

n, namely a bound of the form P(Cn ≥ k) < ck for some c < 1. Let a be a large constant
to be chosen later. We divide the interval [1, n] into a intervals I1, . . . , Ia of size n

a
. Let Nn,j

denote the number of crossings with starting points in Ij. It suffices to show that each Nn,j

has exponential tails uniform in n.
If the walk makes at least 2 crossings inside Ij = [s, t], then the maximal absolute

increment between times s, t in this interval is at least
√
n. With the notation of Proposition

3.7 either M(s, t) ≥
√
n/2 or the same holds for the absolute minimum. By the classical

Kolmogorov maximal inequality for i.i.d variables

P(M(s, t) > λ) ≤ (s− t) · Var Ui
λ2

,

which gives

P (Ni,j ≥ 2) ≤ 2 · n/a · Var Ui
n/4

. (20)

By choosing a large enough, we can make the right hand side smaller than some global
constant b < 1, which we fix from now on.

We can write for any i:

P(Nn,j ≥ 2i) =
i∏

k=1

P(Nn,j ≥ 2k | Nn,j ≥ 2k − 2)

If we stop the random walk in the time interval Ij after the 2k − 2nd crossing (when it
exists), the conditional law of the remaining stretch is another independent random walk
in a smaller interval. The conditional probability of the remaining walk making a double
crossing is at most b again. This shows that all terms in the above product are bounded
above by b, so Nn,j has exponential tails uniform in n, as required.
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The crucial step in computing the spectral measure of H is approximation by an operator
Hn on a finite interval. The spectral measure of Hn is computed in the following lemma.

Lemma 3.9. Fix K > 0 and let n = bK2 |log ε|2c be odd (in particular, n→∞ as ε→ 0).
Let Hn be equal to the operator H restricted to the interval {1, . . . , n + 1} and let µn be its
expected spectral measure. Assume that for all i Var log |ai| = σ2 <∞. Suppose that:

1. Ui satisfy the functional Central Limit Theorem (Definition 3.1)

2. Ui satisfy Condition 3.6

Then there exists cK such that limK→∞ cK = 0 and for sufficiently small ε:∣∣∣∣∣µn(−ε, ε)− σ2∣∣log2 ε
∣∣
∣∣∣∣∣ ≤ cK∣∣log2 ε

∣∣
Proof. Let MK,n denote the number of eigenvalues of Hn inside the interval [−ε, ε] and let
M+

K,n denote the number of eigenvalues inside the interval [0, ε]. We start by ruling out zero
eigenvalue of Hn. The equation for eigenvectors (see Section 2.2) with λ = 0 can be solved
recursively and for odd n the only solution is identically zero. Since we assumed n is odd,
all the eigenvalues of Hn are thus nonzero. Since the underlying graph is bipartite, every
eigenvalue λ+ ∈ (0, ε] has a corresponding eigenvalue λ− = −λ+ ∈ [−ε, 0), so:

MK,n = 2M+
K,n

Let JK denote the number of 1
K

-crossings that a Brownian motion with variance σ2 makes
inside the interval [0, 1]. By Brownian scaling this is the same as the number of 1-crossings
that a Brownian motion with variance σ2 makes inside the interval [0, K2]. By assumption,

Ui = 2 log
∣∣∣a2i−1

a2i

∣∣∣ satisfy the functional Central Limit Theorem. Since ε = e−
1
K

√
n, by putting

t = 1, s = 1
K

in Theorem 3.3 we obtain that M+
K,n converges weakly to

⌈
1
2
JK
⌉
. Thus we

obtain:

MK,n = 2M+
K,n ⇒ 2

⌈
1

2
JK

⌉
= JK + 1{JK=2k+1}

By Lemma 3.8 the family {MK,n}n≥1 is uniformly integrable since MK,n differs from the
number of jumps by at most one. Weak convergence thus implies convergence in expectation,
so by letting:

aK,n = EMK,n − EJK − E1{JK=2k+1} (21)

for each fixed K we have limn→∞ aK,n = 0.
We shall now compute EJK . We shall use standard properties of Brownian motion,

which can be found e.g. in [MP10]. We first compute τ , the expected time to make an up
or down crossing. Let X be a Brownian motion with variance σ2. Consider τ1 = inf{t ≥ 0 :
M(0, t)−X(t) = 1}. Since M(0, t)−X(t) has the distribution of a reflected Brownian motion,
τ1 has the same distribution as τ2 = inf{t ≥ 0 : X(t) = 1 ∨X(t) = −1}. It is standard that
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Eτ2 < ∞. If X(t) is stopped at time τ2, by Wald identity we obtain EX(τ2)2 = σ2 · Eτ2,
which gives Eτ2 = 1

σ2 . Clearly we can treat the event {m(0, t) − X(t) = −1} in the same
way, so we have:

τ = Eτ2 =
1

σ2
(22)

Now, let Ti be i.i.d. random variables equal to the times between successive up or down
crossings made by X(t). Note that ETi = τ and we can write JK as:

JK = sup{n :
n∑
i=1

Ti ≤ K2}

In other words, JK is equal to the number of jumps up to time K2, made by a renewal
process with expected renewal time τ . By the law of large numbers for renewal processes
[Dur10], it follows that limK→∞

EJK
K2 = 1

τ
. Let:

bK =
EJK
K2
− 1

τ
(23)

so that limK→∞ bK = 0.
In this way we obtain:

µn(−ε, ε) =
EMK,n

n

(21)
=

EJK + E1{JK=2k+1} + aK,n
n

=

EJK
K2∣∣log2 ε

∣∣ +
E1{JK=2k+1} + aK,n

n

(23)
=

1
τ

+ bK∣∣log2 ε
∣∣ +

E1{JK=2k+1} + aK,n
n

(22)
=

σ2∣∣log2 ε
∣∣ +

1∣∣log2 ε
∣∣(bK +

1

K2
(E1JK=2k+1 + aK,n))

Recall that limn→∞ aK,n = 0, and n = K2 |log ε|2, so for fixed K for sufficiently small ε
aK,n < 1. Also, E1{JK=2k+1} ≤ 1. Thus, we can let cK = bK + 3

K2 and the lemma is
proved.

We are now ready to prove our main theorem.

Theorem 3.10. Let µH be the expected spectral measure of H as defined by Definition 2.2.
With notation and assumptions of Lemma 3.9 the following holds:

µH(−ε, ε) =
σ2∣∣log2 ε

∣∣(1 + oε(1))

Proof. Let n = K2 |log ε|2 be equal to n = 2k for some k, with K > 0 to be chosen later.
By Proposition 2.1 and choice of n = 2k, we have dK(µH , µn) ≤ 1

n
. By the definition of

the Kolmogorov distance, this implies:

|µn(−ε, ε)− µH(−ε, ε)| ≤ 2

n
=

2

K2
∣∣log2 ε

∣∣
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By Lemma 3.9, there exists some ε(K) such that for all ε < ε(K) we have:∣∣∣∣µn(−ε, ε)− σ2

|log ε|2

∣∣∣∣ ≤ cK∣∣log2 ε
∣∣

Using the triangle inequality and multiplying by | log ε|2/σ2 we get∣∣∣∣∣µH(−ε, ε) · |log ε|2

σ2
− 1

∣∣∣∣∣ ≤ 1

σ2

(
2

K2
+ cK

)
.

Since limK→∞ cK = 0, for every δ > 0 we can find K(δ) such that the right hand side is
smaller than δ for all ε < ε(K(δ)), which proves the claim.

We now discuss how the above result relates to Dyson’s results from [Dys53]. Dyson

considers random variables λj and the matrix Λ defined by Λj+1,j = −Λj,j+1 = iλ
1
2
j and

zero otherwise. He then proceeds to compute the function M(z), defined as the fraction of

eigenvalues of Λ inside the interval (−
√
z,
√
z). To translate to our setting, we put ai = λ

1
2
i

in the definition of the operator Hn and note that Λ is conjugate to Hn by a diagonal matrix
A with Ak,k = (−i)k−1. We then get M(z) = µH(−ε, ε) for ε =

√
z.

In Section VI, Dyson computes the asymptotics of M(z) explicitly for λj drawn from the
probability distribution Gn(λ) = nn

(n−1)!
λn−1e−nλ, where n ≥ 1 is an integer parameter. These

asymptotics can be easily recovered from Theorem 3.10 by simply computing the variance
Var log |ai| with ai =

√
λi. For example, for n = 1 λj are exponential random variables and

by computing the variance of their logarithm we obtain µ(−ε, ε) ∼ C
|log ε|2 for C = 1

4
· π2

6
,

which is in agreement with Dyson’s explicit computation (formula (72) in [Dys53]; the factor
1
4

comes from ε =
√
z in the formula for M(z)).

4 Spectral measures for groups

4.1 Random Schroedinger operators from group ring elements

In this section, we use random Schroedinger operators to study spectral measures of group
ring elements. The construction and exposition below is based on [Gra14]. We assume
familiarity with Pontryagin duality for Abelian groups.

Let Γ be a discrete group, M a discrete Abelian group and ρ : Γ y M an action of Γ
on M . Let X = M̂ denote the Pontryagin dual of M . Each m ∈ M determines a function
m̂ : X → C, given by m(x) = x(m), and by linearity we can extend this to C[M ], i.e. to any

f ∈ C[M ] we associate f̂ : X → C, which we shall call the Fourier transform of f .
Given ρ, we also have a dual action ρ̂ : Γ y X, given by (ρ̂(γ)(x))(m) = x(ρ(γ−1) ·m).

If we choose a generating set S for Γ, we can consider the Schreier graph Schr(Γ, X, S)
associated to the dual action ρ̂.

We consider the semidirect product corresponding to the action ρ, i.e. the group G =
M o Γ. Let H ∈ C[G] be a self-adjoint group ring element, which we identify with the
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corresponding self-adjoint operator H : `2(G) → `2(G). Every such element can be written
as:

H =
∑
γ

γ · fγ

where fγ ∈ C[M ]. Let f̂γ : X → C denote the dual of fγ.
For x ∈ X, let Schr(x) denote the connected component of the Schreier graph Schr(Γ, X, S)

containing x. We define Hx : `2(Schr(x)) → `2(Schr(x)) as the convolution operator on
Schr(x) with the following edge labels. The label of edge from y to ρ̂(γ) · y is given by

f̂γ(y). Note that since X is equipped with the Haar measure ν, we can treat Hx as a random
operator, where x is chosen randomly according to ν.

For a self-adjoint H : `2(G)→ `2(G), µH will denote its spectral measure, i.e. the unique
measure such that for any k ≥ 0, we have:〈

δe, H
kδe
〉

=

∫
R
xkdµH(x)

where δe ∈ `2(G) equals 1 at e (the identity element) and zero otherwise.
In order to compute µH , we invoke the following theorem [Gra14], which gives the corre-

spondence between the spectral measure of H and the expected spectral measure of Hx.

Theorem 4.1. The spectral measure µH is equal to the expected spectral measure of the
family Hx, i.e. for any Borel subset A:

µH(A) =

∫
X

µHx(A)dν(x)

In the examples we study, we shall take Γ = Z and fγ 6= 0 only for γ = a, a−1, where
a = 1 is the standard generator of Z. In that case, the corresponding operator Hx can be
easily described. If x ∈ X is chosen from the Haar measure ν on X, for almost every x
Schr(x) will be isomorphic to Z, with the edge weight from n to n+ 1 given by f̂γ(ρ̂(an)(x)).
Therefore Hx is a random Schroedinger operator on Z, where the randomness in edge weights
f̂γ(ρ̂(an)(x)) comes from the random choice of x.

The above correspondence shows that in order to compute µH , it suffices to analyze the
expected spectral measure of the random Schroedinger operator Hx. We shall now perform
this computation for specific examples, using results derived in previous sections.

4.2 Semidirect products by hyperbolic matrices

In this section we consider groups G of the following form. Let Z act on Z×Z by a hyperbolic

matrix A ∈ SL(2,Z). For concreteness we take A =

(
2 1
1 1

)
.

Let G = Z × Z oA Z be the corresponding semidirect product. Let s, t be the standard
generators of Z × Z and let a denote the generator of Z. Note that groups of this type
correspond precisely to lattices in the Sol group [MS12].
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We consider the switch-walk operator H ∈ C[G] shifted by 5e:

H = a · (s+ t+ s−1 + t−1 + 5e) + (s+ t+ s−1 + t−1 + 5e) · a−1

We shall prove the following theorem:

Theorem 4.2. The spectral measure of H ∈ C[G] satisfies:

µH(−ε, ε) =
C∣∣log2 ε
∣∣(1 + oε(1))

for some constant C > 0. In particular, the Novikov-Shubin invariant of H is equal to 0.

We start with a technical lemma needed to ensure that assumptions of the main theorem
are satisfied.

Lemma 4.3. Let {Ui}∞i=1 be a stationary sequence of random variables such that EUi = 0,
EU4

i < ∞. Let Ui1,...,ik = Ui1 · · · · · Uik . Assume that Ui1,...,ik satisfy uniformly exponential
correlation decay, i.e. there exist c > 0 and λ < 1 such that for any l ≥ 2 and any
i1 ≤ · · · ≤ ik ≤ ik+1 ≤ · · · ≤ il we have:∣∣EUi1,...,ik,ik+1,...,il − EUi1,...,ik · EUik+1,...,il

∣∣ ≤ cλik+1−ik

Then Ui satisfy Condition 3.6 with γ = 4, i.e. for some constant C > 0:

E(U1 + · · ·+ Un)4 ≤ Cn2

Proof. Let us expand:

E(U1 + · · ·+ Un)4 =
∑

1≤i1,...,i4≤n

EUi1,...,i4

Let us order the indices so that i1 ≤ · · · ≤ i4. We define a block of size l to be a maximal
set of indices I = {ik, ik+1, . . . , ik+l−1} such that |ik+j − ik+j−1| ≤ b log n for j = 1, . . . , l− 1,
with b chosen so that cλb logn = n−2.

Consider a term in which there is a block containing only a single index ik. The number
of such terms is at most n4. By correlation decay, for each such term we can write:

EUi1,...,ik−1,ik,...,i4 ≤ EUi1,...,ik−1
· EUik,...,i4 + n−2 ≤ EUi1,...,ik−1

· (EUik · EUik+1,...,i4 + n−2) + n−2

Since EUi = 0, the contribution from a single such term is O(n−2), so the total contribution
from such terms is O(n2).

If there is no block with only a single index, then there is either one block {i1, i2, i3, i4} or
two blocks {i1, i2}, {i3, i4}. The number of one block terms is at most n · (b log n)3 = O(n2),
so we only need to bound the contribution from the two block terms. Note that for any k:

EUikik+1
≤ cλik+1−ik
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Since i3 − i2 > b log n, we have:

EUi1,i2,i3,i4 ≤ EUi1,i2 · EUi3,i4 + n−2 ≤ c2 · λi2−i1 · λi4−i3 + n−2

The second term is again bounded by the number of possible terms n4 times n−2, which
gives O(n2). For the first term on the right hand side, there are n choices for i1 and i3, and
once these are chosen, summation over possible values of i2 and i4 gives a geometric series
bounded by 1

1−λ , so we obtain that the total contribution is also O(n2).

Proof of Theorem 4.2. We apply the construction from Section 4.1. The Pontriagin dual of
Z× Z is equal to T = S1 × S1, with the dual action ρ̂ given by ρ̂(a)(x) = ATx. To simplify

expressions we define B = AT . Let f = s+ t+ s−1 + t−1 + 5e. The dual f̂ : T→ C is given
by:

f̂(z1, z2) = 2Rez1 + 2Rez2 + 5

By construction from Section 4.1, the random Schroedinger operator corresponding to H is
given as follows. The random edge weight from n to n + 1 is given by an = f̂(Bnx), where
x ∈ T chosen uniformly from the Haar measure.

It suffices to check that the random Schroedinger operator defined as above satisfies the

assumptions of Theorem 3.10. Writing Ui = log
∣∣∣a2i−1

a2i

∣∣∣ explicitly, we obtain:

Ui = log

∣∣∣∣∣ f̂(B2i−1x)

f̂(B2ix)

∣∣∣∣∣
Letting φ : T→ R be equal to:

φ(y) = log

∣∣∣∣2Re(B−1y1) + 2Re(B−1y2) + 5

2Re(y1) + 2Re(y2) + 5

∣∣∣∣ (24)

and S = B2 we can write Ui = φ(Six). Note that, thanks to the shift by 5e, φ is a well
defined C∞-function on T.

We first check that Ui satisfy the functional Central Limit Theorem. We say that φ :
T → R is a coboundary if there exists a measurable h such that φ = h − h ◦ S. We can
invoke the functional Central Limit Theorem proved for actions of toral automorphisms in
[LB99], which can be stated as follows:

Proposition 4.4. Let S : T → T be a toral map generated by a hyperbolic matrix. Let
φ ∈ L2(T) with Fourier series:

φ(·) =
∑
k∈Z2

ck · e2iπ〈k,·〉

such that c0 =
∫
T φ = 0.

If φ is not a coboundary and the Fourier coefficients ck satisfy for some A > 0 and θ > 2:∣∣c(k1,k2)

∣∣ ≤ A
2∏
i=1

1

(1 + |ki|)
1
2 logθ(2 + |ki|)

(25)

then the functional Central Limit Theorem holds for the sequence {Siφ}∞i=0.
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This statement is implied by the main theorem of [LB99] via Remark 1 therein.
Since φ as defined is (24) is a smooth function, its Fourier coefficients ck decay faster

than any polynomial |k|−α, so in particular condition (25) is satisfied.
It remains to check that φ is not a coboundary. To this end, it suffices to exhibit a

periodic orbit {x, Sx, . . . , Sk−1x} such that
∑k−1

i=0 φ(Six) 6= 0. Recalling that S = B2 and
φ(y) = g(B−1y)− g(y) for g(y) = log |2Rey1 + 2Rey2 + 5|, this is equivalent to:

g(x) + g(B2x) + · · ·+ g(B2kx) 6= g(Bx) + g(B3x) + · · ·+ g(B2k+1x) (26)

Recall that B = AT =

(
2 1
1 1

)
. It is readily checked that the set {(1

3
, 0), (2

3
, 1

3
), (2

3
, 0), (1

3
, 2

3
)}

is periodic and corresponds to the set of points {(e 4
3
iπ, 1), (e

4
3
iπ, e

3
3
iπ), (e

4
3
iπ, 1), (e

2
3
iπ, e

2
3
iπ)} ⊆

T. After computing both sides of (26) we conclude that they are not equal, which proves
that φ is not a coboundary. Note that this is the only step of the proof where we use the
specific form of the matrix A and the same proof will hold for different choices of A, provided
one can prove that φ is not a coboundary (e.g. by exhibiting a suitable periodic orbit).

The second step is to verify that Ui satisfy Condition 3.6. This is taken care of by
Lemma 4.3, provided we can establish uniform exponential correlation decay. Actions of
hyperbolic matrices are well known to satisfy such exponential decay of correlations for
smooth observables. We use the main theorem from [Rue76], which implies the following as
a special case:

Proposition 4.5. Let S : T → T be a toral map generated by a hyperbolic matrix. Then
there exist C, k > 0 such that if φ′, φ′′ : T→ R are C1 functions, we have:∣∣∣µ((φ′ ◦ S−m′) · (φ′′ ◦ S−m′′))− µ(φ′) · µ(φ′′)

∣∣∣ ≤ C‖φ′‖C1 · ‖φ′′‖C1 · e−k|m′−m′′|

where µ(f) =
∫
T fdµ and µ is the Lebesgue measure.

We use the notation of Lemma 4.3. Let l ≥ 2 and let i1 ≤ · · · ≤ ik ≤ ik+1 ≤ · · · ≤ il be
such that |ik+1 − ik| ≥ n. Define:

φ′(x) = Ui1+n,...,ik+n =
k∏
j=1

Uij+n =
k∏
j=1

φ(Sij+nx)

φ′′(x) = Uik+1,...,il =
l∏

j=k+1

Uij =
l∏

j=k+1

φ(Sijx)

so that EUi1,...,ik = µ(φ′ ◦ S−n) = µ(φ′) and EUik+1,...,il = µ(φ′′).
With this notation, we have:

Ui1,...,il =
l∏

j=1

Uij = (φ′ ◦ S−n) · φ′′

and EUi1,...,il = µ((φ′ ◦S−n) ·φ′′). Note that ‖φ′‖C1 , ‖φ′′‖C1 are bounded by a global constant
that depends only on l and ‖φ‖C1 . Applying Proposition 4.5 for m′ = 0,m′′ = n proves that
the assumptions of Lemma 4.3 are satisfied, so Ui satisfy Condition 3.6.
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4.3 Lamplighter groups

We shall now describe how a similar approach can be used for computing spectral measures
of lamplighter groups. We start with the standard lamplighter group Z2 o Z = ⊕ZZ2 o Z.

Let Z2 = {e, t}. Let e0 denote the element of ⊕ZZ2 that has e at every position and
let ti denote the element of ⊕ZZ2 that has t at position zero and e elsewhere. Consider the
switch-walk operator H ∈ C[Z2 o Z] given by:

H = a · (p · e0 + (1− p) · t0) + (p · e0 + (1− p) · t0) · a−1

so letting fa = p · e0 + (1− p) · t0 we have:

H = a · fa + fa · a−1

This operator corresponds to the random walk on G where at each step we move either left
or right and then either leave the current lamp intact with probability p or change it with
probability 1− p.

The Pontriagin dual of M = ⊕ZZ2 is equal to X =
∏

Z Z2, with the Haar measure on
X being the usual product measure. Since ρ : Z y M is action by translations, the dual
action ρ̂ : Z y X is given by (ρ̂(a)(y))j = yj−1, i.e. the Bernoulli shift. Therefore, the edge
weights in the corresponding random Schroedinger operator will be i.i.d. with distribution
determined by f̂a :

∏
Z Z2 → C. Since ê0 = 1, t̂0 = (−1)y0 , for y ∈

∏
Z Z2 we have:

f̂a(y) = p+ (1− p)(−1)y0

so the edge weight is equal to 1 or 2p− 1 with probability 1
2

each.

We consider p 6= 1
2
, as otherwise the relevant random variables log

∣∣∣a2i−1

a2i

∣∣∣ are infinite with

positive probability (note that p = 1
2

gives edge weights 0 or 1, i.e. the edge percolation on
Z). For such an operator we can apply Theorem 3.10 and obtain the spectral measure at
zero to be µH(−ε, ε) ≈ C

|log ε|2 , with C = 1
4
(log |2p− 1|)2.

A similar approach can be used for general lamplighter groups of the form G = Λ o Z,
where the lamp group Λ is not necessarily Abelian or finite. Let Λ be generated by a set S
closed under inverses and let λ = 1

|S|
∑

s∈S s0. Consider the switch-walk operator H ∈ C[G]
given by:

H = a · λ+ λ · a−1

Such an operator corresponds to the random walk on G where at each step we move either
left or right and then change the lamp by performing a step of a simple random walk in Λ.

In this setting, it is known (Grabowski and Virág, unpublished) that the random Schroedinger
operator corresponding to H is obtained by putting i.i.d. weights on the edges, each drawn
from the distribution given by µλ, the spectral measure of the simple random walk on Λ. As
before, we are in position to use Theorem 3.10 and get µH(−ε, ε) ≈ C

|log ε|2 .

Note that this method can be extended to H of more general form, where instead of
λ = 1

|S|
∑

s∈S s0 we consider general elements f ∈ C[⊕ZΛ], in particular, involving si for
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i 6= 0. In that case, the edge weights in the corresponding random Schroedinger operator
will not be independent anymore. However, what remains true is the edge weights are
obtained by a factor of i.i.d. process. More precisely, if f contains only si for |i| ≤ k, the
edge weights in the operator will be obtained as follows - we put i.i.d. labels on the edges and
then each edge is assigned a weight that depends only on the labels in a neighborhood of that
edge of size k. Thus, the obtained weights are weakly dependent and the same technique as
in Section 4.2 can be used to obtain the theorem in this case.
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