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Auditory foreground-background discrimination 2 

Abstract 

For studying multistable auditory perception, we propose a paradigm that evokes integrated or segregated 

perception of a sound sequence, and permits decomposition of the segregated grouping into foreground and 

background sounds. The paradigm combines 3-tone pitch patterns with alternating timbres, resulting in a 

repeating 6-tone structure that can be perceived as rising based on temporal proximity, or as falling based on 

timbre similarity. Listeners continuously report their percept while EEG is recorded. Results show an ERP 

modulation starting at ~70 ms after sound onset that can be explained by whether a sound belongs to 

perceived foreground or background, with no additional effect of integrated vs. segregated grouping. 

Auditory grouping as indexed by the mismatch negativity did not correspond with reported sound grouping. 

The paradigm offers a new possibility for investigating effects of conscious perceptual organization on sound 

processing. 

Keywords: auditory bistability, sound grouping, perceptual organization, background inhibition, Wessel 

effect, auditory streaming, P1, N1, MMN 
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Auditory foreground-background discrimination 3 

Introduction 

The phenomenon of perceptual bistability, referring to qualitative changes in perception without 

corresponding change in the stimulus input, has long attracted scientific interest (Leopold, Wilke, Maier, & 

Logothetis, 2002; Orbach, Ehrlich, & Heath, 1963; for recent overview, see Schwartz, Grimault, Hupé, 

Moore, & Pressnitzer, 2012). One reason is that bistability permits to investigate processes of perceptual 

organization as originally brought up by the Gestalt school of psychology (Köhler, 1947). Much of the early 

research into perceptual bistability was devoted to the visual modality (for reviews, see e.g. Blake & 

Logothetis, 2002; Leopold & Logothetis, 1999). However, by now it has been established that perceptual 

bistability can also be observed in the auditory modality and that bistable auditory and visual perceptual 

phenomena follow similar principles (Kondo et al., 2012; Pressnitzer & Hupé, 2006; Schwartz et al., 2012).  

Recording brain responses such as event-related potentials (ERPs) in bi-/multistable stimulus configurations 

permits investigating processes accompanying the currently experienced perceptual organization without the 

confounding influence of actual stimulus changes, thus providing insights into the hidden processes of object 

formation (Gutschalk et al., 2005; Hill, Bishop, Yadav, & Miller, 2011; Snyder, Holder, Weintraub, Carter, 

& Alain, 2009; Szalárdy, Bıhm, Bendixen, & Winkler, 2013; Winkler, Takegata, & Sussman, 2005). 

However, the range of multistable phenomena available to auditory researchers is still rather limited 

(Schwartz et al., 2012). Here we present a new paradigm evoking multistable auditory perception, and apply 

it to the investigation of foreground/background decomposition of an auditory scene. 

The issue of auditory foreground/background decomposition has been raised in several experimental and 

theoretical papers (Cusack, Deeks, Aikman, & Carlyon, 2004; Elhilali, Xiang, Shamma, & Simon, 2009; 

Sussman, Bregman, Wang, & Khan, 2005; Winkler, Denham, Mill, Bıhm, & Bendixen, 2012; Winkler, 

Denham, & Nelken, 2009). There is consensus that when the auditory scene is attentively segregated into 

two or more different streams, one of these sound streams is perceived in the foreground while the other 

sounds fall in the background. Somewhat less is known about the extent of processing received by the 

background sounds (see, however, Alain & Woods, 1993, 1994; Arnott & Alain, 2002; Nager, Teder-
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Auditory foreground-background discrimination 4 

Salejärvi, Kunze, & Münte, 2003; Sussman et al., 2005; Winkler, Teder-Salejärvi, Horváth, Näätänen, & 

Sussman, 2003). One reason for this is that the vast body of studies investigating the principles of sound 

organization used versions of the classical auditory streaming paradigm (Moore & Gockel, 2012). In this 

paradigm, a three-tone pattern of sounds (ABA) is repeated, formed by two types of sounds (A and B) that 

differ in some physical feature(s). This type of sequence can be heard as one coherent sound stream 

consisting of all sounds (ABA-ABA-ABA-; the ‘Integrated’ percept) or as two separate streams, one of 

which contains only the A sounds (A-A-A-A-A-A-) while the other stream contains only the B sounds (-B---

B---B-; the ‘Segregated’ percept). Prolonged exposure to such sequences, where the A and B tones differ in 

some feature/s, leads to perception switching back and forth between the different interpretations (Bendixen 

et al., 2013; Bendixen, Denham, Gyimesi, & Winkler, 2010; Bıhm et al., 2013; Denham, Gyimesi, Stefanics, 

& Winkler, 2010, 2013; Denham & Winkler, 2006; Pressnitzer & Hupé, 2006; Roberts, Glasberg, & Moore, 

2002; Szalárdy, Bendixen, Tóth, Denham, & Winkler, 2013). Typically, experimenters using the auditory 

streaming paradigm asked participants to mark their perception in a manner as to distinguish between the 

‘Integrated’ and the ‘Segregated’ percepts, but not to further distinguish between ‘Segregated – A sound 

appearing in the Foreground’ and ‘Segregated – B sound appearing in the Foreground.’ In fact, it might be 

difficult for participants to make such a distinction because, given the relative simplicity of the stimulus 

configuration in the ‘ABA’ paradigm, it is conceivable that the representations of the A and B streams are 

maintained in parallel, or that rapid switching between them occurs. Although there have been attempts to 

instruct participants to specifically attend to either the A or the B tones during a ‘Segregated’ percept 

(Gutschalk et al., 2005), this procedure might confound percept-dependent processes with attention- and/or 

task-related effects.  

In order to avoid such issues, we designed a stimulus paradigm in which the ‘Segregated’ percept made the 

discrimination of foreground and background easy, such that we could rely on the perceptual reports of the 

participants and eliminate confounds from additional processes. We adapted a design suggested by Wessel 

(1979), presenting a repeating three-sound pattern of rising pitch (123) combined with an alternation of 

timbre (A and B), resulting in a repeating six-tone A1B2A3B1A2B3 structure (cf. Figure 1a). This structure 
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Auditory foreground-background discrimination 5 

can be perceived as rising in pitch – dropping back to the base level after each triplet –  based on temporal 

proximity (A1B2A3B1A2B3…), or as falling in pitch (A3-A2-A1-A3-A2-A1… and B3-B2-B1-B3-B2-

B1…), based on timbre similarity. The rising percept corresponds to ‘Integration’ of all the sounds, and the 

falling percept corresponds to ‘Segregation’ – in this case, segregation by timbre in spite of frequency 

proximity, as has been shown to occur with other paradigms (Cusack & Roberts, 2000; Dolležal, 

Beutelmann, & Klump, 2012; Grimault, Bacon, & Micheyl, 2002; Iverson, 1995; Singh, 1987; Szalárdy, 

Bendixen et al., 2013). Importantly, when this sequence is heard as ‘Segregated’, the impression is hearing 

one stream with its characteristic timbre in the foreground, and the remaining sounds forming the 

background. The distinction between foreground and background is subjectively much more salient than the 

perceptual difference between the two possible foreground-background configurations in the ‘ABA’ auditory 

streaming paradigm. Therefore, provided that the paradigm adapted from Wessel (1979) encourages bi-

/multistable perception, it might lend itself to the study of auditory scene decomposition including a 

distinction between the foreground and the background percept. Therefore, in a series of pilot studies, we 

determined that perception indeed switches back and forth between the different possible organizations when 

listeners are exposed to relatively long (few minutes) sequences of the A1B2A3B1A2B3 type. Results of the 

pilot experiments were similar to the behavioral data obtained in the main experiment, and are therefore not 

reported separately here. 

In the main experiment, we combined the new auditory multistability paradigm with measuring the 

electroencephalogram (EEG) to investigate ERP correlates of auditory scene decomposition. Our 

measurement approach for the ERPs was twofold.  First, we directly measured whether the ERPs elicited by 

the tones would be modulated by the currently experienced percept. For this purpose, we compared ERPs 

elicited by physically identical tones when they were perceived as part of a rising pattern (‘Integrated’), as 

part of a falling pattern in the foreground (‘Segregated-Foreground’), or remained in the background while 

the tones of the other timbre were perceived as falling (‘Segregated-Background’). With the same 

instruction, we could thus disentangle the aspects of perceptual organization (‘Integrated’ vs. ‘Segregated’) 
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Auditory foreground-background discrimination 6 

and of foreground-background decomposition, providing one step further towards a hierarchical 

decomposition model of an auditory scene (Cusack et al., 2004). 

Second, we added an indirect ERP measure to evaluate not only the processing of the individual tones, but 

also the interpretation of the tone sequence that is represented in the auditory system (Sussman, Ritter, & 

Vaughan, 1999; Winkler et al., 2009; Winkler, Sussman et al., 2003). This measure was based on the 

mismatch negativity (MMN), an ERP component indicating that the auditory system detected a regularity 

violation in a sequence of sounds (Näätänen, Paavilainen, Rinne, & Alho, 2007; Winkler, 2007). To 

determine whether the auditory system formed a representation linking a given set of sounds appearing in the 

stimulus sequence, one can set up some regularity connecting these sounds and then insert occasional 

violations of the regularity into the tone sequence. If the regularity violations elicit the MMN component, 

one can infer that the regularity must have been extracted (Schröger, 2007). Thus MMN can be used to 

indicate which sounds have been linked together at the time the deviance was encountered. 

In this vein, for testing whether MMN can offer an index of the sound organization in our multistable 

paradigm, two additional feature regularities were introduced into the A1B2A3B1A2B3 sequence. A 

duration regularity was set up by assigning a characteristic duration value to each rising tone triplet (i.e., 

‘A1B2A3’ or ‘B1A2B3’), with the duration value randomly chosen separately for each triplet. Note that this 

regularity pertains to temporally adjacent tones (cf. Figure 1b). Occasionally, the regularity was violated by 

the third tone of the triplet having a duration value different from the first two tones. If MMN was elicited by 

these violations, one could infer that the auditory system formed a representation of the tone sequence based 

on temporal adjacency, corresponding to the rising percept. However, when the tones were linked by timbre 

similarity, the duration values were changing randomly within each perceived triplet, and thus no MMN 

should be elicited (cf. Figure 1b). Following the same principle, a location regularity was introduced by 

assigning a characteristic location value to each of the falling tone triplets (i.e., ‘A3A2A1’ and ‘B3B2B1’), 

with the location value randomly chosen separately for each triplet. Again, this regularity was violated 

occasionally by the third tone of the triplet having a location value different from the initial two tones. If 
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Auditory foreground-background discrimination 7 

MMN was elicited by these violations, one could infer that the auditory system formed a representation of 

the tones based on timbre similarity, corresponding to the falling percept. 

Note that this MMN-based testing is indicative of internal representations formed and maintained by the 

auditory system, which do not necessarily correspond to conscious perception of the tone sequence (see e.g. 

Takegata et al., 2005; van Zuijen, Simoens, Paavilainen, Näätänen, & Tervaniemi, 2006). When linking the 

MMN-related representations to the consciously reported perceptual groupings, three alternatives are 

conceivable on the basis of previous studies. First, it is possible that the auditory system’s representation 

corresponds to the consciously perceived organization of the sounds (Rahne, Böckmann, von Specht, & 

Sussman, 2007; Sussman, Ritter, & Vaughan, 1998; Winkler, van Zuijen, Sussman, Horváth, & Näätänen, 

2006). In this case, we should see each feature regularity violation eliciting MMN only when listeners 

experience the corresponding percept. This result would suggest that perceptual grouping is constrained by, 

or alternatively acts upon, the representations available to the deviance detection process reflected by the 

MMN. Second, it is possible that processes producing the MMN response are bound by the physical features 

of the tone sequence, independent of the reported perceptual organization (Ross, Tervaniemi, & Näätänen, 

1996). In this case, only the regularity carried by physically adjacent tones would be extracted, and thus 

MMN should be elicited only by violations of the duration regularity. This result would suggest that 

conscious perception is not based on the grouping mechanisms indexed by MMN in this paradigm. Finally, it 

is possible that the auditory system maintains all the perceptual interpretations in parallel although only one 

of them is consciously experienced at each point in time (Horváth, Czigler, Sussman, & Winkler, 2001; 

Winkler et al., 2012). In this case, we should find MMN for both feature regularity violations independent of 

the currently experienced percept. This result would suggest that multistable perception reflects a decision 

between multiple alternative groupings, each based on representations also entering the deviance-detection 

process indexed by the MMN response. 

Materials and Methods 

Participants 
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Auditory foreground-background discrimination 8 

Twenty-two young healthy volunteers with self-reported normal hearing participated in the experiment 

(mean age: 25.0 years, SD: 6.2 years, range: 20-45 years; 14 females, 8 males; 21 right-handed, 1 

ambidextrous). Two participants were excluded from further analysis due to difficulties with the task: one of 

them could not be trained to discriminate between the two timbres and therefore never started the main 

experiment, the other one completed the experiment but was excluded post-hoc due to poor performance in 

the control sequences (see below). Data of another three participants had to be excluded because their 

perceptual reports were very unbalanced towards segregation by timbre (the falling percept), leaving 

insufficient (fewer than 10) EEG epochs for deviant trials obtained during the rising percept. The mean age 

of the remaining seventeen participants was 24.7 years. Written informed consent was obtained from each 

participant according to the Declaration of Helsinki after the experimental procedure was explained to them. 

Participants received course credit or modest financial compensation for their contribution.  

Apparatus and Stimuli 

Participants were seated in a sound-attenuated and electrically shielded chamber (IAC 402-A single-walled, 

Industrial Acoustics Company GmbH, Niederkrüchten, Germany) at the Institute of Psychology, University 

of Leipzig, Germany. A computer screen was placed in front of them at a distance of ca. 100 cm, displaying 

a fixation cross during stimulus presentation. Four-minute sequences of tones were presented binaurally via 

Sennheiser HD 25-1 headphones with a mean level of 60 dB sound pressure level, calibrated with an 

artificial head (HEAD acoustics HMS III.0) with direction-independent equalization. Participants held a 

response pad in their hands and responded with their left- and right-hand thumbs as instructed (see below).  

Auditory stimuli were generated with MATLAB (Mathworks, http://www.mathworks.com) with a sampling 

frequency of 48000 Hz. Stimuli were six different complex tones resulting from the combination of two 

different timbres (A and B, see below) with three different base frequency values (392 Hz, low; 415.3 Hz, 

middle; and 440 Hz, high; corresponding to 1 semitone difference between adjacent base frequencies). Each 

of the six stimuli could have any one of three tone duration values (70, 110, or 150 ms; each including a 5 ms 

onset and 5 ms offset ramp) and any one of three perceived locations (left/middle/right, created by interaural 

time difference, ITD, values of -500, 0, or +500 micro-seconds). The timbre difference was produced by the 
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Auditory foreground-background discrimination 9 

selection and weighting of the complex tones’ harmonic partials. Timbre A was composed of 8 pure 

sinusoidal tones for the base frequency and the 2nd to 8th harmonics, each of them starting in sine phase, and 

weighted by the same factor (0.125). Timbre B contained 4 pure sinusoidal tones (again starting in sine 

phase) at the base frequency and the 3rd, 5th, and 7th harmonics, with each harmonic being assigned a specific 

weighting: 0.35, 0.45, 0.15, and 0.05, respectively. This created the impression of a brighter sound for timbre 

B than for timbre A. These stimulus parameters were chosen on the basis of pilot studies with the goal that 

the three possible percepts (see Introduction and below) should appear with approximately equal probability. 

An audio file for demonstration can be accessed on-line at http://www.uni-

leipzig.de/~biocog/bendixen/szalardy_winkler_schroeger_widmann_bendixen_2013_samplesound.mp3. 

The arrangement of the timbres, base frequency values, tone durations, and perceived locations followed pre-

defined patterns (Figure 1). The two different timbres were strictly alternating (ABABAB…), while the base 

frequency values followed a repeating three-tone rising pattern (low-middle-high; i.e., 123123…). This 

resulted in a regularly repeating 6-tone structure (A1B2A3B1A2B3…), which was presented with a uniform 

200-ms onset-to-onset interval, pre-tested in our pilot experiments to result in ambiguous perception of the 

sequence. Variation in the duration and location features was added for the purpose of testing percept-

dependent MMN elicitation (see Introduction). Pilot studies confirmed that this additional variation in the 

stimuli did not affect the clarity of the perceptual organizations. Each rising triplet (‘A1B2A3’ or ‘B1A2B3’) 

had a common tone duration, with duration chosen randomly for each triplet. Each falling triplet (‘A3-A2-

A1’ and ‘B3-B2-B1’) had a common location, with location chosen randomly for each triplet. Thus the 

duration and the location values of the tones did not vary within the corresponding triplets (unless the 

regularity was violated, see below); but both varied between triplets. Both the duration and the location 

regularities were violated within 12.5% of the triplets. This was achieved by changing the duration/location 

of the triplet’s third tone from the value set up for the first and second tones to one of the other two possible 

tone durations/locations. Each deviant triplet was preceded by at least two standard triplets. In the beginning 

of each stimulus block, four standard cycles (containing the full six-tone pattern) were presented. The last 

deviant in each block was followed by at least one standard cycle. 
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Auditory foreground-background discrimination 10 

Additional control sequences were introduced to verify that participants were reliably discriminating 

between timbre A and timbre B, and that they were using the correct response mappings for the various 

percepts (see below). An unambiguous counterpart was created for each percept. The control for the rising 

percept was generated by using only the A or only the B timbre, with the arrangement otherwise identical to 

the above description. This resulted in sequences of the type A1A2A3A1A2A3… or B1B2B3B1B2B3…, in 

which unambiguous percepts of rising triplets are created due to the absence of the timbre variation. Control 

sequences for the falling percept were generated by omitting every other tone from the ambiguous 

sequences, resulting in sequences that were indeed physically falling (A3-A2-A1-A3-A2-A1… and B3-B2-

B1-B3-B2-B1…). These sequences were not only unambiguously perceived as falling, but also permitted a 

clear distinction between timbre A and timbre B. The duration and location regularities and deviations were 

also included in the control sequences for the purpose of testing MMN elicitation under unambiguous 

stimulus conditions. Control sequences were composed by concatenating short trains (range 3 to 7 seconds, 

mean 5 s) of the four control patterns described above (rising-timbre A, rising-timbre B, falling-timbre A, 

falling-timbre B) in random order and without any breaks. Based on the pilot experiments, the durations of 

the short trains were chosen to match the time range during which the same percept was expected to be 

experienced by the listener in the ambiguous condition. The time interval during which the listener 

continuously marks experiencing the same percept is termed “perceptual phase”. 

Experimental Procedure 

The experiment included 14 stimulus blocks overall. The first three and the final three blocks were control 

sequences, with a duration of four minutes per block. Each of the control blocks contained a summed length 

of 80 seconds of control-rising segments (40 seconds rising-timbre A, 40 seconds rising-timbre B), 80 

seconds of control-falling-A segments, and 80 seconds of control-falling-B segments. Altogether, the six 

control blocks included 100 deviants for the duration regularity (based on the rising arrangement), and 100 

deviants for the location regularity (based on the falling arrangement) to be used for the ERP analysis. 
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Auditory foreground-background discrimination 11 

The 4th to 11th blocks contained four minutes of the ambiguous sequence followed by a short (15-20 seconds) 

control sequence, which contained each unambiguous percept exactly once in a randomized order and for a 

randomly selected duration. The purpose of appending these control sequences to the ambiguous sequences 

was to check the participants’ response accuracy throughout the whole experiment; the appended sequences 

were only used for analyzing the behavioral responses. In the ambiguous part of the stimulus blocks, 

altogether 400 duration regularity deviants and 400 location regularity deviants were delivered. A balanced 

distribution of the three possible percepts (rising / falling-timbre A / falling-timbre B) would thus yield 133.3 

deviants of each type encountered during each of the three possible percepts.  

During each block, participants were asked to listen to the sound sequence and continuously indicate their 

percept by depressing the corresponding buttons on the response pad. They were told to press one of the 

buttons as long as they heard a falling-A sequence, another button as long as they heard a falling-B sequence, 

and both buttons at the same time as long as they heard a rising sequence. They were instructed not to press 

any of the buttons if they were unsure or if their percept did not fall into any of the three pre-defined 

categories. The assignment of the left and right buttons to timbre A and B was counterbalanced across 

participants. Button states were sampled every 8 ms (125 Hz sampling rate).  

Prior to the experiment, the possible percepts were explained to participants with the help of auditory and 

visual illustrations. The experimenter made sure that participants understood the instructions, and that they 

were able to discriminate between the two timbres, by presenting 48-second training blocks containing only 

unambiguous control sequences as many times as needed. Experimental blocks were started after reliable 

performance was achieved in the training blocks. Between the experimental blocks, participants were given 

breaks as needed. The overall experiment including electrode application and removal lasted for about four 

hours. 

EEG Recording 

EEG was recorded from 34 active electrodes placed on the scalp using Ag/AgCl-electrodes on a BrainVision 

EEG system (Fp1, AFz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, 
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Auditory foreground-background discrimination 12 

CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10 scalp locations, left and right mastoid M1 and M2) 

according to the international 10-20 system (Chatrian, Lettich, & Nelson, 1985; Jasper, 1958). Sampling rate 

was 500 Hz. FCz was used as an online reference. An additional electrode was attached to the tip of the nose, 

to be used for off-line re-referencing. The vertical electrooculogram (VEOG) was recorded between two 

electrodes attached above and below the left eye, and the horizontal electrooculogram (HEOG) was recorded 

between two electrodes placed laterally to the left and right outer canthi.  

Data Analysis 

Behavioral data. For the ambiguous sequences, perceptual phases (the time interval during which the 

participant pressed the same button or button combination) of rising, falling-A and falling-B percepts were 

extracted from the button presses, separately for each participant. Because there might be some inaccuracy in 

synchronizing the button press and release movements, perceptual phases shorter than 300 ms were removed 

from the analysis (Moreno-Bote, Shpiro, Rinzel, & Rubin, 2010). The proportion of each percept was 

calculated as the percentage of time that the given percept was reported relative to the overall duration of the 

stimulus block. For each percept, the average duration of all corresponding perceptual phases was calculated 

per stimulus block. When a given percept was not reported within a stimulus block, the proportion and phase 

duration was taken to be 0 for that percept within the corresponding block. 

For the control sequences, the initial 1000 ms after the start of a new segment were discarded to allow for 

decision and response time. For the remaining time of the segment (2000 to 6000 ms depending on segment 

length), the proportion of time during which the participant pressed the button associated with the 

corresponding percept was calculated. As a sign of reliable reporting, a minimum of 85% correct was 

required for each percept, separately for the average of the control blocks and the average of the control 

segments appended to the ambiguous sequences. One participant failed to meet this criterion and was 

therefore excluded from further analysis. 

EEG data. The continuous EEG record was re-referenced off-line to the signal recorded at the tip of the 

nose. EEG data were filtered with a 0.5 to 100 Hz bandpass filter; followed by an automatic eye movement 
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Auditory foreground-background discrimination 13 

correction procedure (Gratton, Coles, & Donchin, 1983). After eye movement correction, a lowpass filter of 

30 Hz was applied. Subsequently, segments were extracted from the continuous EEG separately for the two 

types of analyses. 

Comparing the processing of the individual tones between the perceptual organizations. For comparing the 

ERP responses elicited by the same tones between the possible percepts, the EEG recorded in the ambiguous 

sequences was epoched into 1000-ms long segments (from -500 to +500 ms) containing five consecutive 

tones of the same percept, with the center tone starting at time 0. Epochs were selected so that the center tone 

was preceded by four other tones and followed by three other tones of the same percept. No baseline 

correction was applied to avoid any confounds introduced by percept-related modulations of the ERP during 

the baseline interval. (The results remained the same when ERP amplitudes were measured relative to a 400-

ms pre-stimulus baseline, which covered the two preceding tones.) Epochs with falling-timbre A and falling-

timbre B percepts were collapsed into falling percept and separated according to whether the center tone was 

perceived in the foreground or in the background. Note that in the epochs extracted for the falling percept, 

foreground and background tones alternated (while perceiving falling-A, the B tones fall in the background, 

and vice versa). Therefore the tone following the center tone always belonged to the opposite percept 

(foreground or background) than the center tone. In contrast, in the epochs for the rising percept, each tone 

was perceived in the foreground.  

Epochs were rejected when the signal range throughout the epoch exceeded 100 µV at any electrode. 

Artifact-free epochs were averaged separately for the rising, falling-foreground and the falling-background 

percept. P1 amplitude was measured from the individual averages at Cz in the latency range of 55-85 ms 

following tone onset. N1 amplitude was measured from the preceding P1 peak (peak-to-peak measurement) 

in the latency range of 105-135 ms from tone onset to eliminate carry-over effects of the possible 

percept-related modulation of the preceding P1 response. P1 and N1 amplitudes were entered into repeated-

measures analyses of variance (ANOVAs) with the factor Percept (rising vs. falling-foreground vs. falling-

background). All significant effects are reported together with the partial η2 effect size measure. Where 
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Auditory foreground-background discrimination 14 

appropriate, Greenhouse–Geisser correction was applied, and the ε correction factors are reported. Post-hoc 

tests were performed with Tukey HSD. 

Comparing deviance-detection responses between the perceptual organizations. For comparing the 

deviance-related ERP responses between the different percepts, the EEG of the ambiguous sequences was 

epoched from -100 to +300 ms relative to deviation onset. For location deviants (and the corresponding 

standards), deviation onset corresponds to stimulus onset. For duration deviants, deviation onset corresponds 

to stimulus offset for duration shortenings, and to expected stimulus offset for duration prolongations. 

Physically identical standards were chosen for comparison and epoched with the same temporal reference. In 

all cases, baseline correction was performed using the 100-ms pre-stimulus interval. Epochs with a signal 

range above 100 µV at any electrode were excluded from the averaging. Moreover, responses to tones 

immediately following a deviant were excluded, and a time interval of -300 to +400 ms around each button 

press or release was also excluded to avoid overlap with response-related potentials and to allow for 

reorganization of the conscious perceptual interpretation of the tone sequence. The remaining artifact-free 

epochs were averaged separately for standard and deviant tones, and for each percept. Again, epochs elicited 

during the falling-timbre A and falling-timbre B percepts were collapsed into one falling percept. Separate 

averages were formed for falling-foreground and falling-background tones. Deviant-minus-standard 

difference waveforms were created by subtracting the average ERP elicited by standard tones from the 

average ERP elicited by deviant tones.  

The same analysis steps (without the separation by percept) were repeated for the EEG of the control 

sequences. Only epochs during which participants gave correct responses to the tone sequence were accepted 

for averaging. 

For statistical analysis, data were re-referenced to the right mastoid electrode based on a priori knowledge on 

MMN topography, following standard recommendations to fully evaluate the component by capturing both 

frontal and temporal contributions (Kujala, Tervaniemi, & Schröger, 2007). The time window for analyzing 

MMN was set to 90-130 ms from deviation onset. MMNs for duration and location deviants were tested 
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Auditory foreground-background discrimination 15 

separately for the control sequences (control-rising for testing duration MMN, control-falling for testing 

location MMN), and for the ambiguous sequences separately for each of the three percepts (rising, falling-

foreground, falling-background). The presence of the MMN component was verified by one-tailed t-tests of 

the averaged signal of the frontocentral electrode cluster (F3, Fz, F4, C3, Cz and C4). MMN amplitudes were 

then compared across the four conditions by means of a repeated-measures ANOVA with the 4-level factor 

Condition (control, ambiguous-rising, ambiguous-falling-foreground, ambiguous-falling-background).  

Results 

Behavioral Measures 

Each participant reported switching between the different percepts within the stimulus blocks. Only one 

participant did not experience all the three possible alternatives within the ambiguous sequences: this 

participant reported only the rising and falling-A percepts but not falling-B (except in the corresponding 

control sequences). The proportion of the rising percept across participants was 27.02% (S.D. = 11.70%), 

while falling-A was reported in 39.91% (S.D. = 10.00%) and falling-B in 32.80% (S.D. = 15.19%) of the 

time. The average phase duration was 4.72 s (S.D. = 2.23 s) for the rising percept, 8.29 s for the falling-A 

(S.D. = 5.24 s) and 7.48 for the falling-B (S.D. = 4.65 s) percepts. Participants did not press any of the 

buttons only during the remaining 0.27% of the stimulus time, suggesting that they heard one of the three 

predefined patterns most of the time. 

ERP Measures 

Comparing the processing of the individual tones between the perceptual organizations. Figure 2 shows 

the ERPs recorded during the rising, falling-foreground and the falling-background percept (note that 

foreground vs. background refers to the center tone). The ANOVA of the P1 amplitude revealed a significant 

main effect of Percept [F(2,32) = 10.954, ε = 0.938, p < .001, η2 = 0.406]. This was caused by significantly 

larger P1 amplitudes during the falling-background percept than during the rising and the falling-foreground 

percept [Tukey HSD with df = 32: p = .005 and p < .001]. P1 amplitudes obtained during the rising and the 

falling-foreground percept did not significantly differ from each other [Tukey HSD with df = 32: p = .537].  
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Auditory foreground-background discrimination 16 

The observed P1 modulation can thus be accounted for by whether a tone belonged to the perceptual 

foreground or background, while the overall perceptual organization (rising vs. falling) had no effect on the 

P1 amplitude.  

The statistical analysis of the N1 amplitude measured from the preceding P1 peak revealed no main effect of 

Percept [F(2,32) = 0.845, p = .439]. 

Comparing deviance-detection responses between the perceptual organizations. MMN for duration 

deviants was elicited in the control-rising conditions [t(16) = -1.989, p = .032] as well as in all ambiguous 

conditions, regardless of whether the percept was rising [t(16) = -2.081, p = .027], falling-foreground [t(16) 

= -3.079, p = .003] or falling-background [t(16) = -2.559, p = .011] (cf. Figure 3, top row). The MMN 

amplitude did not differ between these four conditions [F(3,48) = 0.114, p = .951]. In contrast, location 

MMN was only elicited in the control-falling condition [t(16) = -2.810, p = .006] but not in any of the 

ambiguous conditions (rising [t(16) = 0.080, p = .468], falling-foreground [t(16) = 0.480, p = .319],  falling-

background [t(16) = -0.927, p = .184]; cf. Figure 3, bottom row). This result was corroborated by the 

significant effect of Condition in the ANOVA [F(3,48) = 2.994, ε = 0.923, p = .039, η2 = 0.158].  

Discussion 

We tested the utility of a new multistable stimulus paradigm for studying perceptual sound organization, and 

applied it for the investigation of the foreground-background decomposition of an auditory scene. Our 

paradigm, which was based on Wessel’s (1979) work, proved to be suitable for eliciting multistable auditory 

perception with prolonged exposure (4-minute stimulus sequences). By means of this paradigm, we showed 

that the initial sensory processing of an incoming tone (indicated by the P1 wave of the ERP) is modulated 

by whether this tone belongs to the currently perceived foreground or background, whereas the quality of the 

overall perceptual organization (‘Integrated’ vs. ‘Segregated’) did not affect the ERP in the P1 latency range. 

Further, we found that sound grouping reflected by the MMN component does not fully correspond to the 

consciously experienced perceptual organization in this paradigm. 

A New Tool For Investigating Auditory Multistability 
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Auditory foreground-background discrimination 17 

Wessel (1979) reported a stimulus configuration that is ambiguous in that the same physical input can be 

interpreted in different ways. We showed here that this ambiguity translates into multistability with 

prolonged exposure to the stimulus sequence. Behavioral reports indicated that participants experienced 

perceptual switching between the alternative sound organizations, similarly to that shown by previous studies 

using the classical ‘ABA’ auditory streaming paradigm (Bendixen et al., 2013; Bendixen et al., 2010; Bıhm 

et al., 2013; Denham et al., 2010, 2013; Denham & Winkler, 2006; Pressnitzer & Hupé, 2006; Roberts et al., 

2002; Szalárdy, Bendixen et al., 2013). We thereby add a new option to the range of multistable phenomena 

in audition (Schwartz et al., 2012). Reporting perception is easy for participants in this paradigm, because the 

rising and falling pitch arrangement of the ‘Integrated’ and ‘Segregated’ sound organizations enables a clear 

perceptual decision. While experiencing segregation (falling pitch), participants can exploit the timbre 

difference between the sounds and thus again can clearly distinguish which sound stream they perceive in the 

foreground. Only two out of twenty-two participants had difficulties in performing the task (due to 

difficulties in discriminating the two different timbres). The remaining twenty participants reported no 

hesitation about their experienced percepts. This verbal report is corroborated by the very low proportion of 

responses during which participants were unsure of their percept. 

After the experiment, participants’ told that they never heard the two kinds of falling percepts at the same 

time. Instead, one of them always formed the foreground (falling A or falling B), and tones of the other 

timbre were perceived as interspersed events that did not form another falling stream in the background but 

remained as single-tone ‘leftovers’ from the foreground. This gives a much clearer foreground-background 

distinction than the classical ‘ABA’ paradigm, in which an ‘A’ and a ‘B’ stream are usually formed and 

experienced in parallel during the ‘Segregated’ percept. A possible explanation for the clear foreground-

background phenomenology in the present paradigm is the overlap in the frequency regions occupied by the 

two different ‘streams’, requiring a high amount of inhibition in order to link the tones of the foreground 

timbre across the intervening sounds of the other timbre. In summary, the paradigm appears to be suitable for 

encouraging a clear distinction between the foreground and the background in addition to that of the 
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Auditory foreground-background discrimination 18 

‘Integrated’ and the ‘Segregated’ sound organization, and thus permits to disentangle these two different 

aspects of decomposing an auditory scene. 

Foreground-Background Discrimination Indicated By P1 

We analyzed early sensory processing of incoming tones by means of comparing the P1 and N1 amplitudes 

between different perceptual sound organizations. P1 amplitude was affected by one aspect of auditory scene 

decomposition: whether the sound was a part of the foreground or the background, but not by the perceptual 

organization (‘Integrated’ vs. ‘Segregated’) per se. The N1 wave (measured from the preceding P1 peak) was 

not affected by either aspect of auditory scene decomposition. This is an important observation with regard 

to previous findings in the ‘ABA’ paradigm. These results showed percept-dependent differences in sensory 

processing (Gutschalk et al., 2005; Hill et al., 2011; Szalárdy, Bıhm et al., 2013; Winkler et al., 2005) but 

could not reveal whether these differences were due to the large-scale perceptual organization of the auditory 

scene, or to effects of foreground-background distinction. For instance, Szalárdy, Bıhm et al. (2013) found 

an enhanced P1 wave for tones perceived as ‘Segregated’ compared to ‘Integrated’, but this result is 

confounded by the fact that the ‘Segregated’ organization contains both foreground and background tones 

while the ‘Integrated’ organization contains only foreground tones. Similar results were shown by Gutschalk 

and colleagues (2005); these authors manipulated the formation of foreground and background during 

‘Segregated’ percepts by instruction. However, this approach also suffers from possible confounding factors, 

because the listener’s task is different depending on the actual perceptual organization. Using unbiased 

instructions (i.e., no task difference accompanying the perceived sound organization) we show here that it is 

the foreground-background decomposition and not the large-scale organization of the auditory scene itself 

that affects the early sensory processing of incoming tones.  

Sound processing was affected as early as 70 ms following stimulus onset. When a sound was a part of the 

background, it elicited more positive amplitudes in the latency range of the P1 than when the same sound 

belonged to the foreground. This effect probably does not reflect a genuine P1 amplitude modulation, but a 

longer-lasting ERP modulation covering also the N1 latency range (see below). Studies investigating 
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Auditory foreground-background discrimination 19 

bistability in the visual domain (e.g., binocular rivalry) have also suggested that the neural correlates of 

perception appear as early as in the P1 latency range. For instance, Valle-Inclan, Hackley, de Labra and 

Alvarez (1999) found higher ERP amplitudes from about 70 ms after stimulus onset for stimuli presented to 

the dominant eye compared to the suppressed eye (see also Roeber & Schröger, 2004; Roeber et al., 2008). 

Such early ERP modulations are difficult to reconcile with bottom-up effects on stimulus processing, but can 

be explained by top-down modulations of early sensory processes (realized via efferent feedback) depending 

on the current perceptual organization. Top-down effects would be facilitated by the fact that stimulus onset 

times were fully predictable in the present paradigm. Such top-down modulations might consist in an 

enhanced processing of foreground and/or a suppressed processing of background stimuli. According to the 

baseline hypothesis proposed by Hillyard and Anllo-Vento (1998) as well as Luck and colleagues (Luck & 

Hillyard, 1995; Luck et al., 1994), the P1 is suppressed for unattended stimuli compared to a neutral baseline 

or an attended stimulus. Yet a contrasting hypothesis postulates that the P1 increases with inhibition 

(Klimesch, 2011). This so-called inhibition hypothesis suggests that P1 does not reflect sensory processing 

and cannot be explained as a sensory evoked component as it is not affected by the stimulus properties. 

Rather, it reflects inhibition of task-irrelevant stimuli and/or networks. Our results are in line with the 

inhibition hypothesis, showing larger P1 for background than for foreground tones. This is consistent with 

our above suggestion of selectively suppressing the tones of one timbre in order to be able to perceive the 

tones of the other timbre as a coherent stream in the foreground. 

In contrast to the P1, the amplitude of the N1 was not affected by the percept. This result is consistent with 

the results of Szalárdy, Bıhm et al. (2013) who found that the N1 wave did not show percept-dependent 

effects in the classical ‘ABA’ streaming paradigm. However, it contrasts the results of Gutschalk et al. 

(2005), who found that both the P1 and the N1 were modulated by the percept in ‘ABA’ sequences. It is 

possible that Gutschalk et al.’s results were due to modulation of the N1 wave by attentional processes 

(Hillyard, Hink, Schwent, & Picton, 1973; Parasuraman, 1978). Indeed, Gutschalk et al. found that N1 

amplitude increased when the ‘Segregated’ sound organization was perceived, and in that case participants 

were instructed to attend to one of the streams. This attentional bias might have resulted in the N1 
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Auditory foreground-background discrimination 20 

enhancement in the ‘Segregated’ compared to the ‘Integrated’ sound organization. Without such attentional 

effects, the N1 wave appears to be unmodulated by the current percept of the listener (present data and 

Szalárdy, Bıhm et al., 2013). This conclusion refers to the N1 wave as measured from the preceding P1 

peak, thereby removing the influence of the longer-lasting ERP modulation by percept that starts at the P1 

latency range and extends into the N1 range. 

Figure 2 is indicative of some percept-related ERP effects emerging even before the P1 latency range. 

Specifically, we observed a short-latency peak appearing at around 30 ms after stimulus onset, whose 

occurrence was not expected on the basis of previous studies. In a post-hoc analysis, we quantified the effect 

in the interval from 13 to 43 ms after stimulus onset and investigated whether it was affected by the current 

percept. The analysis revealed a main effect of Percept [F(2,32) = 3.892, ε = 0.959, p = .031, η2 = 0.196]. 

Follow-up tests revealed a significantly higher amplitude during rising than during falling-background 

percepts [Tukey HSD with df = 32: p = .047], whereas the corresponding difference between rising and 

falling-foreground percepts failed to reach statistical significance [Tukey HSD with df = 32: p = .063]. The 

amplitude of the short-latency peak was not different between falling-foreground and falling-background 

percepts [Tukey HSD with df = 32: p = .991]. Although no post-hoc explanation for the occurrence of this 

peak and its percept-related modulation can be given at this point, it is important to consider that its 

modulation by the current percept differed from the pattern observed during the P1 latency range. 

Specifically, falling-background sounds elicited markedly different amplitudes than falling-foreground and 

rising sounds in the P1 latency range, whereas it was the sounds perceived as rising that differed from 

falling-background and (by tendency) from falling-foreground during the early short-latency peak. 

Therefore, the effect in the P1 latency range cannot simply reflect a carry-over effect from this earlier 

difference. Nevertheless, future studies should carefully investigate both the early short-latency peak and the 

longer-lasting ERP modulation by percept starting at the P1 latency range. Special care should be given to 

the possibility that either of these effects might reflect a carry-over effect from the processing of the previous 

sound rather than a modulation of sensory processing of the newly incoming sound.  
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Auditory foreground-background discrimination 21 

Taken together, our results indicate that foreground-background discrimination in a segregated auditory 

scene affects the ERPs elicited by incoming tones at early latency ranges. These effects may be associated 

with the inhibition of background tones, though future studies are required to confirm this interpretation. 

Note that the observed ERP modulation not only provides information about sound processing mechanisms, 

but it can also serve as a post-hoc verification of participants performing their task in accordance with the 

instructions. This is because “random” pressing of the buttons would not have led to reliable ERP effects. 

Percept-Independent MMN Elicitation 

Our second set of ERP analyses was conducted to study the correspondence between the reported perceptual 

organizations and the grouping of the tones in the auditory system. Tone grouping was measured indirectly 

via the elicitation of the MMN component by infrequent violations of feature regularities that could only be 

extracted if the corresponding groups were formed. Two types of regularities and corresponding violations 

were inserted into the sequence, allowing us to test at the same time the existence of groupings 

corresponding to the ‘Integrated’ (rising) and ‘Segregated’ (falling) organizations at the level of the deviance 

detection processes reflected by the MMN component.  

The first hypothesis for the relationship between the grouping processes underlying MMN and perception 

(see Introduction) was that the deviance-detection processes reflected by MMN refer only to that 

representation of the sound sequence which is currently consciously experienced by the listener (Rahne et al., 

2007; Sussman et al., 1998). We did not find evidence for such a correspondence between the groupings in 

the auditory system and in conscious perception. Our results are instead compatible with the second 

hypothesis: MMN elicitation followed the physical arrangement of the tones (Ross et al., 1996). MMN was 

elicited for violations of the duration regularity, which was carried by physically adjacent tones both during 

rising and falling percepts, and even when the deviant tone belonged to the background. In contrast, MMN 

for violations of the location regularity, carried by non-adjacent tones, was not elicited in any of the 

ambiguous conditions, not even when the percept at the time of encountering the deviant was falling, thereby 

promoting the sound organization that should have facilitated regularity extraction. 
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Auditory foreground-background discrimination 22 

We also found no evidence for the third hypothesis, the parallel existence of alternative groupings in the 

auditory system (Horváth et al., 2001; Winkler et al., 2012). On this hypothesis, MMN should have been 

elicited by each regularity violation, irrespective of the current percept. However, MMN was only elicited by 

violations of the duration regularity which corresponds to grouping the rising patterns, but not by violations 

of the location regularity, which corresponded to falling patterns. Therefore, multistable perception in this 

paradigm cannot be conceptualized as a selection from the alternative groupings initially formed by 

lower-level auditory processes contributing to the elicitation of MMN. Thus the current results are 

compatible with the conclusion of some previous studies dissociating MMN and perception (Sussman, 

Winkler, Huotilainen, Ritter, & Näätänen, 2002; Takegata et al., 2005; van Zuijen et al., 2006).  

Importantly, location MMN was clearly elicited in the control sequences with the falling stimulus 

arrangement. Therefore, it was principally possible to extract the location regularity just as well as the 

duration regularity. The most plausible explanation for the absence of location MMN in the ambiguous 

sequences then is that MMN-related processing was bound by the physical arrangement of the tone 

sequence, in particular by temporal adjacency of the tones carrying the feature regularities. Note that 

adjacency is not a necessary constraint for regularity extraction (Bendixen, Schröger, Ritter, & Winkler, 

2012) and thus it would have been possible to find location MMN even during rising percepts. Yet not 

finding location MMN even for deviants in the foreground stream during a falling percept is indeed 

surprising in view of many previous studies showing that conscious perception corresponds with MMN-

related processing (Rahne et al., 2007; Sussman et al., 1998, 1999; Winkler, Kushnerenko et al., 2003; 

Winkler, Sussman et al., 2003; Winkler, Teder-Salejärvi et al., 2003). However, in these studies, conscious 

perception did not arise from multistable stimulus configurations but was driven by experimental 

manipulations such as changing basic auditory grouping cues (e.g., frequency or temporal proximity), adding 

visual cues, or giving instructions to maintain a certain percept. A previous study that investigated percept-

dependent deviance detection without the confounding influence of actual stimulus or instruction changes 

(Winkler et al., 2005) likewise found that an early deviance detection response was not affected by conscious 

perception, although the response obtained in this study was too early for being an MMN component. The 
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Auditory foreground-background discrimination 23 

current results suggest that MMN elicitation does not necessarily follow the reported perceptual organization 

of the participants, and thus perceptual grouping in our paradigm is likely neither constrained by nor acts 

upon the representations available to MMN-related processing. 

Integrating The Findings On Single-Tone Processing And Deviance Detection 

We showed that conscious perceptual organization affected the initial sensory processing of the tones as 

early as 70 ms after stimulus onset (indexed by the P1 amplitude), but did not affect deviance detection 

processes at around 110 ms after deviation onset (indexed by MMN elicitation). The temporal relation of 

these effects seems difficult to reconcile with the view that the sound groupings available to MMN-related 

processing represent an intermediate step in the decomposition of the auditory scene (Winkler et al., 2005). If 

conscious perceptual grouping occurred on the basis of the extracted feature regularities, it should not affect 

sound processing at earlier latency ranges than MMN-related processing. Therefore, the present data suggest 

that the P1 and MMN components reflect parallel and independent processing routes in this paradigm. 

Indeed, if P1 does not reflect sensory processing, but rather inhibition of the currently task-irrelevant stimuli 

(Klimesch, 2011), then the two processes do not need to fit a single processing sequence and both can feed to 

conscious perception. The deviance detection indexed by MMN is largely based on sensory (bottom-up) 

processes (Ross et al., 1996) with only limited modulations by top-down effects (Sussman, 2007). Some of 

the top-down effects, such as target selection, are not reflected by the MMN (see, e.g., Näätänen, 1990). 

Inhibition of the processing of sounds which are currently in the background may be another top-down 

process not affecting deviance detection. Note that many previous studies showing that MMN elicitation is 

percept-dependent applied stimulus paradigms in which perceptual organization was driven by sensory 

(bottom-up) factors (e.g., Sussman et al., 1999; Winkler, Kushnerenko et al., 2003; Winkler, Sussman et al., 

2003), whereas percept-independent MMN elicitation has been shown for more complex forms of perceptual 

grouping involving top-down factors (Ross et al., 1996; but see Sussman et al., 1998). 

We suggest that the two systems indexed by P1 and MMN provide complementary information: Whereas the 

system indexed by P1 appears to be related to the stimuli which are currently suppressed, the system indexed 
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by MMN is related to possible groupings of the sounds primarily based on their acoustic features. Selecting 

groupings for perception should then occur after the processes reflected by MMN and could utilize 

information from both routes. However, the lack of MMN elicitation by regularity violations relevant for the 

grouping underlying the falling percept suggests that even taken together, these two systems do not cover all 

aspects of sound grouping. That is, in the current study, we found no ERP correlate for the groupings based 

on timbre similarity. Whether this indicates that the processing of timbre-based grouping1 is done by a 

dedicated system or that the current stimulus configuration represents a larger category of grouping 

processes hitherto not addressed in the simplified paradigms tested with ERPs remains to be seen, as also the 

relation of these assumed grouping processes to the ones reflected by MMN. 

Future Directions 

The design of the present study was optimized towards studying the effects of the currently experienced 

perceptual organization on ERP correlates of sensory processing. A valuable addition might be provided by 

additionally taking the time since switching to the current perceptual organization (i.e., the time since the last 

response) into account. This would allow for investigating dynamic aspects of auditory perceptual 

organization. These aspects of auditory stream segregation have been investigated using the classical ‘ABA’ 

paradigm (Snyder, Carter, Lee, Hannon, & Alain, 2008; Snyder, Carter, Hannon, & Alain, 2009; Snyder, 

Holder et al., 2009) and could be easily transferred to our new multistability paradigm. The study of 

dynamics could also be extended to assess individual differences, investigating, for example, whether 

listeners with shorter perceptual phases show more pronounced inhibition processes. 

Conclusions 

We proposed a new paradigm of auditory multistability that lends itself to investigating not only auditory 

integration and segregation mechanisms, but also foreground-background decomposition of an auditory 

scene. With this paradigm, we showed that the processing of incoming sounds was affected by the 

foreground-background distinction as early as 70 ms after sound onset. Conscious perceptual organization 
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and foreground-background distinction had, however, no effect on auditory grouping as measured by MMN-

related processing. 
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Contact details for reprints 

Correspondence concerning this article should be addressed to Alexandra Bendixen, Department of 

Psychology, Cluster of excellence “Hearing4all”, European Medical School, Carl von Ossietzky University 

of Oldenburg, Ammerländer Heerstr. 114-118, D-26111 Oldenburg, Germany. E-Mail: 

alexandra.bendixen@uni-oldenburg.de 

Footnotes 

1The evidence relating MMN and timbre processing is equivocal. Small timbre changes elicit MMN 

(Tervaniemi, Winkler, & Näätänen, 1997). However, large timbre changes, which can be regarded as 

evidence that the sound was produced by a different source, elicit a large negativity in the N1 range, such 

that MMN and N1 cannot be disentangled (e.g., Escera, Alho, Winkler, & Näätänen, 1998). 
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Figure Captions 

 

Figure 1a: Experimental design by Wessel (1979). The left side of the figure shows the sound sequence: a repeating 

three-tone pattern of rising frequency combined with a timbre alternation (timbre A and B). The right side of the figure 

demonstrates the possible percepts: rising, falling A or falling B. Participants continuously indicate their current 

perception of the sequence by depressing specified buttons. Figure 1b: Present paradigm, modified for testing MMN 

elicitation. The left side shows the same sound sequence as on Figure 1a, but each rising triplet has a separate common 

duration value, with duration chosen randomly for each triplet. The duration deviant tone is marked by a black arrow. 

The right side of the figure shows the expected results if MMN elicitation were to correspond with the conscious 

perceptual organization of the sounds: In this case, MMN is only expected when the sequence is perceived as rising. 

The location regularity and its violations created for the falling triplets (not depicted on the figure) followed the same 

principles as the duration regularity shown for the rising triplets. 
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Figure 2. Left panel: Grand-average (N=17) ERP responses elicited by five consecutive tones of the same percept at the 

Cz electrode for the rising (black), falling-foreground (grey) and falling-background (dotted grey) percepts. Note that 

foreground vs. background refers to the center tone (starting at the 0 time point); the foreground-background structure is 

alternating for tones of the falling percept. The time intervals of the P1 and N1 are marked by grey shades. The black 

and grey rectangles underneath the ERP figure represent the timing of the tones, including their alternation in timbre. 

The dotted grey rectangles represent the P1 and N1 for two preceding tones and one following tone of the same percept. 

Right panel: Scalp topographies of the P1 wave elicited by the center tone, separately for the rising (top), falling-

foreground (middle) and falling-background (bottom) percepts. Maps were spline interpolated with a smoothing factor 

of 10-7. Calibration for the greyscale maps is shown on the right-hand side. 
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Figure 3. Grand-average (N=17) ERP responses elicited by standard (dotted black line) and deviant (solid grey line) 

tones, and deviant-minus-standard difference waves (solid black line) at the frontocentral electrode cluster (F3, Fz, F4, 

C3, Cz and C4). Top row shows ERPs for duration deviants, bottom row shows ERPs for location deviants. The 

different columns correspond to the different conditions and percepts: control sequences (extreme left), ambiguous-

rising (left), ambiguous-falling-foreground (right) and ambiguous-falling-background (extreme right). 
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