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Abstract

This paper extends two numerical methods for the stability analysis of a class of
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equation involves delayed terms with both continuous and piecewise constant arguments,
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1 Introduction

As the importance of delay effects has been realized in several engineering and biological appli-
cations, the attention to the analysis of time-delay systems has increased in the recent decades.
Time delay is inherently present in machine tool vibrations [1], control systems [2], traffic dy-
namics [3], human balancing [4], population dynamics [5] or epidemiology [6], just to mention
a few examples. The local stability analysis of these time-delay systems provides the primary
characteristics of their behavior around stationary states. Consequently, several analytical
and numerical methods have been developed for local stability analysis. For instance, the D-
subdivision method [7] gives a closed form solution for the stability boundaries of autonomous
delay-differential equations in the space of system parameters. While closed form solutions can
be derived for the stability boundaries of most autonomous systems, the stability analysis of
time-periodic systems usually requires numerical approximation techniques, especially in the
presence of time-delays. The related literature provides many numerical methods for the sta-
bility analysis of time-periodic time-delay systems, such as the semi-discretization method [8],
full discretization method [9], spectral element method [10] or the pseudospectral collocation
method [11, 12], just to mention a few examples.
In digitally controlled mechanical systems (see e.g. [13]), the state variables in the governing
equations appear with piecewise constant arguments due to sampled data hold in the feedback
loop, which results in a hybrid system. Here, the terms with piecewise constant arguments will
be referred as terms with discrete delays. The open-loop system can also incorporate delayed
terms, whose arguments are continuous functions of time. In the following, these terms will be
referred as terms with continuous delays.
Mathematical models involving both discrete and continuous delays can arise in case of coupled
haptic systems (see e.g. [14, 15]), where the haptic device is subjected to both human interaction
and digital feedback control. In these models, continuous delay terms are present due to
the reaction delay of the human operator, while discrete delay terms are originated from the
sampling and actuation scheme of the digital controller. Further examples for hybrid time-
delay systems can be taken from the field of machine tool vibrations. Here the continuous
delay is present due to the so-called regenerative effect of the cutting process [16], while the
discrete delays are originated from the feedback control of the workpiece-tool system and from
the feedback loop of the active damper used for the vibration suppression of the cutting tool.
In spite of the relevant applications of time-delay systems subjected to digital feedback control,
their numerical stability analysis is not well-established in the engineering literature. In this
paper, two existing numerical methods, the pseudospectral tau (PT) method and the spectral
element (SE) method are extended for the stability analysis of linear hybrid time-periodic
time-delay systems.
The extended numerical methods are tested on two engineering applications. First, the math-
ematical model of a coupled haptic system is analyzed. To our knowledge, stability analysis
of coupled haptic systems has been carried out in the literature either with the omission of
discrete delay terms or with the substitution of continuous delay terms by continuous non-
delayed terms. Therefore, this paper presents the stability analysis of a coupled haptic system
considering continuous and discrete delays simultaneously.
The second application is for milling processes subjected to active damping. In the machining
literature, such processes have been modeled using continuous, non-delayed feedback terms in
the control input. However in practice, active damping is realized using a digital feedback
controller which necessitates the incorporation of discrete delay terms in the governing equa-
tions. In this paper, the stability analysis of milling processes subjected to active damping is
performed with the consideration of discrete delay in the feedback loop.
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2 The equation under analysis

In this paper the stability of the dynamical system

ẋ(t)=A(t)x(t) +
m∑
a=1

Ba(t)x(t−τa) +
n∑
b=0

Cbx(tj−b∆t), t ∈ [tj, tj+1), (1)

is analyzed with initial condition

x(θ) = x0(θ), θ ∈ [−τ, 0], (2)

where j ∈ N; x : [−τ,∞) → Rs; A, Ba : R → Rs×s; Cb ∈ Rs×s and A(t) = A(t + T ),
Ba(t) = Ba(t + T ) ∀t, with T being the time-period of the periodic coefficients. The non-
zero continuous delays are denoted by τa > 0, a = 1, 2, . . . ,m and the length of time history
is τ = max(τ1, τ2, . . . , τm, n∆t). Equation (1) models the digital feedback control of a time-
periodic system with system delays. The digital control applies state feedback via gain matrices
Cb. The state is measured at each sampling instant tj + b∆t, j ∈ N, b = 0, 1, . . . , n; while the
control input is updated at time instants tj = j∆T , j ∈ N, where ∆t is the sampling period
and ∆T = v∆t is the actuation period, with v ∈ Z+ being the number of samples between
two control input updates while Z+ denotes the set of positive integer numbers. The control
input is held constant between the two endpoints of each actuation period in accordance with
a zero-order hold. In this paper it is assumed that the calculation of the control input requires
the knowledge of the state in n + 1 consecutive sampling instants from domain [tj − n∆t, tj],
therefore the state-feedback terms in (1) are subjected to delays. The employment of past
samples aims to cover a broader group of control methods of delayed systems (involving e.g.
the finite spectrum assignment [17], Smith predictor [18], act-and-wait [19] and optimal control
[20] methods), where not only the most recent samples but past samples or a weighted sum
of past samples also contribute to the control law. In (1), x(t−τa), a = 1, 2, . . . ,m; are terms
with continuous delays, while x(tj−b∆t), j ∈ N, b = 0, 1, . . . , n; are terms with discrete delays.
In case of a general choice for T and ∆T this system is quasi-periodic. In this paper it is
assumed that T/∆T = σ/ρ, with σ, ρ ∈ Z+, thus Tp = σ∆T = ρT is the principal period
of the system. Note that although (1) contains only constant continuous delays (pointwise
delays), DDEs involving distributed continuous delay terms can also be approximated by (1)
using numerical quadratures as introduced in [21].
The stability of (1) is determined by the characteristic multipliers of the monodromy operator
U , which is defined as

xjTp = Ux(j−1)Tp , j = Z+, (3)

where function segment xt is given by the shift

xt(θ) = x(t+ θ), θ ∈ [−τ, 0]. (4)

Equation (1) is asymptotically stable if and only if all the characteristic multipliers of U are
within the unit circle of the complex plane [22]. In the next section, the extension of the PT
and the SE methods are presented for the matrix approximations of U .
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3 Numerical stability analysis

This section details the application of the PT [23] and SE [21] methods for the approximation
of the monodromy operator of the hybrid system (1). While the PT method discretizes the
operator differential equation form, the SE method is based on the operator equation form of
(1). For the approximation of the operator differential equation and the operator equation,
both numerical techniques use the method of weighted residuals and the tau method. In this
section, the main steps of the approximation schemes are given for the hybrid system (1). The
full description of the PT and SE methods for continuous-time (non-hybrid) systems can be
found in [23] and [21], respectively.

3.1 Pseudospectral tau method

Using function segment xt, (1) can be converted to the operator differential equation form

ẋt = G(t)xt + Hxtj , t ∈ [tj, tj+1) , (5)

where operators G(t) and H are defined as

(G(t)ψ)(θ) =

{
A(t)ψ(0) +

∑m
a=1 Ba(t)ψ(−τa) θ = 0,

d
dθ
ψ(θ) θ ∈ [−τ, 0),

(Hψ)(θ) =

{∑n
b=0 Cbψ(−b∆t) θ = 0,

0 θ ∈ [−τ, 0),

(6)

with ψ : [−τ, 0] → Rs. The PT method approximates function segment xt with its Lagrange
interpolant x̃t as

x̃t(θ) =
N+1∑
k=1

φk(θ)x̃t(θk), (7)

where φk(θ) are the Lagrange base polynomials (see Appendix A) with {θk}N+1
k=1 being the point

set of interpolation. After the substitution of (7) to (1), the equation is multiplied with test
functions {ψi(θ)}Ni=1 and integrated over domain θ ∈ [−τ, 0] according to the standard steps of
the weighted residual method. In case of independent test functions, this gives N independent
equations and the (N + 1)-st equation is obtained from the pointwise satisfaction of (5) at
θ = 0. Consequently, the final form of the approximate system is given by

Nẏ(t) = M(t)y(t) + Hy(tj), t ∈ [tj, tj+1) , (8)

where, after coordinate transformation ζ = 2θ/τ + 1, the sub-matrices of N, M(t), H ∈
Rs(N+1)×s(N+1) and the sub-vectors of y(t) ∈ Rs(N+1)×1 are given as

Ni,k =

{
I
∑N+1

q=1 φk(ηq)ψi(ηq)wq i = 1, 2, . . . , N ;

Iφk(1) i = N + 1;

Mi,k(t) =

{
I 2
τ

∑N+1
q=1

∑N+1
l=1 φ′k(ζl)φl(ηq)ψi(ηq)wq i = 1, 2, . . . , N ;

A(t)φk(1) +
∑m

a=1 Ba(t)φk(1− 2τa/τ) i = N + 1;

Hi,k =

{
0 i = 1, 2, . . . , N ;∑n

b=0 Cbφk(1− 2b∆t/τ) i = N + 1;

yk(t) = x̃t (τ(ζk − 1)/2) ,

(9)
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where {ηq}N+1
q=1 is the quadrature point set and wq are the weights used for numerical integration.

During computations, the point set of interpolation {ζk}N+1
k=1 is chosen to be the Chebyshev

points of second kind (see Appendix B), while the quadrature points {ηq}N+1
q=1 are set to be the

Legendre-Gauss-Lobatto points (see Appendix C). The test functions are selected as the set
{ψi(ζ)}Ni=1 of Legendre polynomials up to degree N − 1 (see Appendix D). Note that the PT
method is not restricted to the above mentioned sets of interpolation points, quadrature points
and test functions. Other sets of points (e.g. the Clenshaw-Curtis [24] points) can be used
alternatively for integration and interpolation as long as they are convergent on continuous
functions. The set of test functions is required to span an N -dimensional space in the space of
interpolation functions.
The PT method approximates the hybrid time-periodic DDE (1) by the hybrid time-periodic
ordinary differential equation (ODE) (8). In order to obtain an approximation for the mon-
odromy operator, (8) is further approximated using a piecewise constant approximation of
M(t). In particular, the actuation period ∆T is split onto ṽ intervals and M(t) is averaged as

M̃j,u =
1

∆t̃

∫ ∆t̃

0

M
(
(jṽ + u− 1)∆t̃+ t

)
dt, (10)

where ∆t̃ = ∆T/ṽ with ṽ ∈ Z+ and u = 1, 2, . . . , ṽ; j = 0, 1, . . . , σ − 1. This way, the time-
periodic ODE (8) is approximated on t ∈ [0, Tp) with the series of autonomous ODEs

N ˙̃yj,u(t) = M̃j,uỹ
j,u(t) + Hỹj,0(jṽ∆t̃), t ∈

[
(jṽ+u−1)∆t̃, (jṽ+u)∆t̃

)
,

ỹj,u((jṽ+u−1)∆t̃) = ỹj,u−1((jṽ+u−1)∆t̃),
(11)

with j = 0, 1, . . . , σ − 1. Here, ỹj,u(t) is the approximation of y(t) in the domain t ∈[
(jṽ+u−1)∆t̃, (jṽ+u)∆t̃

)
. Equation (11) results in the discrete mapping

Yj+1 = ΦjYj, j = 1, 2, . . . , σ − 1; (12)

between the two endpoints of actuation periods (that is between time instants tj and tj+1),
where

Yj = ỹj,0(jṽ∆t̃), Φj = αj + βj,ṽN
−1H, (13)

with
αj = eG̃j,ṽeG̃j,ṽ−1 · · · eG̃j,1 , (14)

and βj,ṽ is defined by the recurrence relation

βj,u = eG̃j,uβj,u−1 +

∫ ∆t̃

0

eG̃j,u(1−t/∆t̃)dt , u = 1, 2, . . . , ṽ, (15)

with
βj,0 = 0, G̃j,u = ∆t̃N−1M̃j,u . (16)

Note that when G̃j,u is invertible, one gets∫ ∆t̃

0

eG̃j,u(1−t/∆t̃)dt = ∆t̃
(

eG̃j,u − I
)

G̃−1
j,u. (17)

Finally, the matrix approximation of the monodromy operator is

U = Φσ−1Φσ−2 · · ·Φ0 . (18)
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3.2 Spectral element method

The SE method converts the original problem (1) to the operator equation

(A z)(t) = 0, t ∈ [0, Tp) , (19)

where operator A is defined as

(A z)(t) = ż(t) − A(t)z(t) −
m∑
a=1

Ba(t)z(t − τa) −
n∑
b=0

Cbz(tj − b∆t), t ∈ [tj, tj+1) , (20)

j = 0, 1, . . . , σ − 1. The domain t ∈ [−ΓTp, Tp) of z(t) is then split to (Γ + 1)Eρ number of
equidistant segments, where

Γ =


floor

(
max(τ,Tp)

Tp

)
if max(τ, Tp) modTp = 0,

floor
(

max(τ,Tp)

Tp

)
+ 1 otherwise,

(21)

E is the number of segments within time period T and the modulo operation is defined according
to

amod b = a− b floor(a/b). (22)

With the introduction of equidistant segments (19) transforms to

(
S lzl

)
(t)−

m∑
a=1

(
Ql,azl−ra−1

)
(t)−

m∑
a=1

(
Rl,azl−ra

)
(t)

−
n∑
b=0

jl∑
j=jl−1

(
P l,j,bzdjv−b

)
(t) = 0, t ∈ [(l − 1)h, lh) , (23)

where l = 1, 2, . . . , Eρ; and solution segment (or element) zl denotes the solution z(t) over
domain t ∈ [(l − 1)h, lh), with h = T/E being the element length. Boundary conditions

zl+1(lh) = zl(lh), l = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ− 1; (24)

provide the continuity between adjacent elements. Operators related to the continuous terms
are defined as

(
S lzl

)
(t) =

{
żl(t)−A(t)zl(t) if t ∈ [(l − 1)h, lh) ,

0 otherwise,(
Ql,azl−ra−1

)
(t) =

{
Ba(t)zl−ra−1(t− τa) if t ∈ [(l − 1)h, (l − 1)h+ ϑa) ,

0 otherwise,(
Rl,azl−ra

)
(t) =

{
Ba(t)zl−ra(t− τa) if t ∈ [(l − 1)h+ ϑa, lh) ,

0 otherwise,

(25)

while operators related to the hybrid terms are

(
P l,j,bzdjv−b

)
(t)=

{
Cbzdjv−b

(j∆T−b∆t) if t ∈
[
κl,j1 , κ

l,j
2

)
,

0 otherwise,
(26)
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where for ∆T/h ≤ 1

κl,j1 =


(l − 1)h j = jl−1 ,

(l − 1)h+ ∆T (j − jl−1)− γl−1 jl−1 < j < jl ,

lh− γl j = jl ,

κl,j2 =

{
(l − 1)h+ ∆T (j + 1− jl−1)− γl−1 jl−1 ≤ j < jl ,

lh j = jl ,

(27)

and for ∆T/h > 1

κl,j1 =


(l − 1)h if j = jl and γl ≥ h ,

(l − 1)h if j = jl−1 and γl < h ,

jl∆T if j = jl and γl < h ,

κl,j2 =

{
lh if j = jl ,

jl∆T if j = jj−1 ,

(28)

with

ra =

{
floor

(
τa
h

)
− 1 if τamodh = 0,

floor
(
τa
h

)
otherwise,

ϑa =

{
h if τamodh = 0,

τamodh otherwise,

jl = floor

(
lh

∆T

)
, γl = (lh)mod∆T, de = floor

(
e∆t

h

)
+ 1.

(29)

After applying the elementwise coordinate transformation

ζ l =
2 (t− (l − 1)h)

h
− 1, (30)

and dropping index l immediately (since ζ l ∈ [−1, 1), ∀ l), equation (23)–(26) is transformed
as follows

(
S lzl

)
(ζ)−

m∑
a=1

(
Ql,azl−ra−1

)
(ζ)−

m∑
a=1

(
Rl,azl−ra

)
(ζ)

−
n∑
b=0

jl∑
j=jl−1

(
P l,j,bzdjv−b

)
(ζ) = 0, ζ ∈ [−1, 1) , (31)

l = 1, . . . , Eρ;

zl+1(−1) = zl(1), l = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ− 1; (32)

(
S lzl

)
(ζ)=

{
2
h
z′l(ζ)−A

(
h
2
(ζ+1)+h(l−1)

)
zl(ζ) if ζ ∈ [−1, 1) ,

0 otherwise,

(
Ql,azl−ra−1

)
(ζ)=

{
Ba

(
h
2
(ζ+1)+h(l−1)

)
zl−ra−1(ζ+2−ϑ̃a) if ζ ∈

[
−1,−1+ϑ̃a

)
,

0 otherwise,(
Rl,azl−ra

)
(ζ)=

{
Ba

(
h
2
(ζ+1)+h(l−1)

)
zl−ra(ζ−ϑ̃a) if ζ ∈

[
−1+ϑ̃a, 1

)
,

0 otherwise,(
P l,j,bzdjv−b

)
(ζ)=

{
Cbzdjv−b

(1−ν̃jv−b) if ζ ∈
[
κ̃l,j1 , κ̃

l,j
2

)
,

0 otherwise,

(33)
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respectively, where for ∆T/h ≤ 1

κ̃l,j1 =


−1 if j = jl−1 ,

−1 + ∆T̃ (j − jl−1)− γ̃l−1 if jl−1 < j < jl ,

1− γ̃l if j = jl ,

κ̃l,j2 =

{
−1 + ∆T̃ (j + 1− jl−1)− γ̃l−1 if jl−1 ≤ j < jl ,

1 if j = jl

(34)

and for ∆T/h > 1

κ̃l,j1 =


−1 if j = jl and γl ≥ h ,

−1 if j = jl−1 and γl < h ,

1− γ̃l if j = jl and γl < h ,

κ̃l,j2 =

{
1 if j = jl ,

1− γ̃l if j = jj−1 ,

(35)

with

∆T̃ =
2∆T

h
, γ̃l =

2γl
h
, ϑ̃a =

2ϑa
h
, ν̃e =

2 (deh− e∆t)
h

. (36)

In each element, the SE method approximates solution segments zl by their Lagrange inter-
polants as zl ≈ z̃l, where

z̃l =
N+1∑
k=1

φk(ζ)z̃l,k, (37)

with z̃l,k = z̃l(ζk) and {ζk}N+1
k=1 being the set of interpolation grid points, which is chosen to

be the Legendre-Gauss-Lobatto points. The system of operator equations (31) is multiplied
with test functions {ψi(ζ)}Ni=1 and integrated over the domain ζ ∈ [−1, 1] according to the
standard steps of the weighted residual method. The test functions are chosen to be the
Legendre polynomials up to degree N − 1. With the above considerations equations (31)–(32)
are discretized as

N+1∑
k=1

Sli,kz̃l,k =
m∑
a=1

N+1∑
k=1

(
Ql,a
i,kz̃l−ra−1,k + Rl,a

i,kz̃l−ra,k

)
+

n∑
b=0

jl∑
j=jl−1

N+1∑
k=1

Pl,j,b
i,k z̃djv−b,k , i = 1, 2, . . . , N ; l = 1, 2, . . . , Eρ; (38)

and
z̃l+1,1 = z̃l,N+1, l = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ− 1; (39)

respectively, where

Sli,k =

∫ 1

−1

(
2
h
φ′k(ζ)I− φk(ζ)A

(
h
2
(ζ+1)+h(l−1)

))
ψi(ζ)dζ , (40)

Ql,a
i,k =

∫ −1+ϑ̃a

−1

Ba

(
h
2
(ζ+1)+h(l−1)

)
φk

(
ζ+2−ϑ̃a

)
ψi(ζ)dζ , (41)

Rl,a
i,k =

∫ 1

−1+ϑ̃a

Ba

(
h
2
(ζ+1)+h(l−1)

)
φk

(
ζ−ϑ̃a

)
ψi(ζ)dζ , (42)

Pl,j,b
i,k = Cbφk(1−ν̃jv−b)

∫ κ̃l,j2

κ̃l,j1

ψi(ζ)dζ . (43)
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Consequently, the numerical evaluation of integral terms in (40)–(43) give

Sli,k = I
2

h

N+1∑
q=1

φ′k(ηq)ψi(ηq)wq −A
(
h
2
(ηk+1)+h(l−1)

)
ψi(ηk)wk ,

Ql,a
i,k =

ϑ̃a
2

N+1∑
q=1

Ba

(
ϑa
2

(ηq+1)+h(l−1)
)
φk

(
ϑ̃a
2

(ηq−1)+1
)
ψi

(
ϑ̃a
2

(ηq+1)−1
)
wq ,

Rl,a
i,k =

2−ϑ̃a
2

N+1∑
q=1

Ba

(
h−ϑa

2
(ηq+1)+ϑa+h(l−1)

)
φk

(
2−ϑ̃a

2
ηq− ϑ̃a

2

)
ψi

(
2−ϑ̃a

2
ηq+

ϑ̃a
2

)
wq ,

Pl,j,b
i,k = Cbφk(1−ν̃jv−b)

κ̃l,j2 − κ̃
l,j
1

2

N+1∑
q=1

ψi

(
κ̃l,j2 −κ̃

l,j
1

2
ηq +

κ̃l,j2 +κ̃l,j1

2

)
wq ,

(44)

The non-zero parts of the matrix approximation U ∈ Rs(1+EρΓN)×s(1+EρΓN) of the monodromy
operator are given by

U (1 :sEρ(Γ−1)N, sEρN+1:sEρΓN) = I,

U (sEρ(Γ−1)N+1:s+sEρΓN, :) = Λ−1Υ,
(45)

where the non-zero parts of matrix Λ ∈ Rs(1+EρN)×s(1+EρN) are calculated according to

Λ (1 :s, 1:s) = I,

Λ (s+s(l−1)N+1:s+slN, 1:s+sEρN) = Λl, l = 1, 2, . . . , Eρ;
(46)

with

Λl = ΛS
l +

m∑
a=1

(
ΛQ
l,a + ΛR

l,a

)
+

n∑
b=0

jl∑
j=jl−1

ΛP
l,j,b , (47)

and
ΛS
l (:, s(l−1)N+1:s+slN) =

[
Sli,k
]N,N+1

i=1,k=1
,

ΛQ
l,a (:, s(l−ra−2)N+1:s+s(l−ra−1)N) =

[
−Ql,a

i,k

]N,N+1

i=1,k=1
, if l ≥ ra+2,

ΛR
l,a (:, s(l−ra−1)N+1:s+s(l−ra)N) =

[
−Rl,a

i,k

]N,N+1

i=1,k=1
, if l ≥ ra+1,

ΛP
l,j,b (:, s(djv−b−1)N+1:s+sdjv−bN) =

[
−Pl,j,b

i,k

]N,N+1

i=1,k=1
, if djv−b ≥ 1,

(48)

The first and second arguments of the above matrices indicate the indices of the rows and
the columns, respectively, according to Matlab syntax. The non-zero parts of matrix Υ ∈
Rs(1+NEρ)×s(1+NEρΓ) are calculated according to

Υ (1 :s, sEρΓN+1:s+sEρΓN) = I,

Υ (s+s(l−1)N+1:s+slN, 1:s+sEρΓN) = Υl, l = 1, 2, . . . , Eρ;
(49)

where

Υl =
m∑
a=1

(
ΥQ
l,a+ΥR

l,a

)
+

n∑
b=0

jl∑
j=jl−1

ΥP
l,j,b , (50)

with

ΥQ
l,a (:, s(EρΓ+l−ra−2)N+1:s+s(EρΓ+l−ra−1)N)=

[
Ql,a
i,k

]N,N+1

i=1,k=1
, if l<ra+2,

ΥR
l,a (:, s(EρΓ+l−ra−1)N+1:s+s(EρΓ+l−ra)N)=

[
Rl,a
i,k

]N,N+1

i=1,k=1
, if l<ra+1,

ΥP
l,j,b (:, s(EρΓ+djv−b−1)N+1:s+s(EρΓ+djv−b)N)=

[
Pl,j,b
i,k

]N,N+1

i=1,k=1
, if djv−b<1.

(51)

8



In summary, the steps of the computation of U are the following. First, the parameters in
(21), (29) and (34)–(36) are calculated, then the terms in (44) are computed for all indices.
Thereafter matrices Λ and Υ are assembled according to (46)–(48) and (49)–(51), respectively.
Finally, the matrix approximation U of the monodromy operator is constructed as (45).
In both the PT and the SE methods, the eigenvalues of matrix U approximate a finite number
of characteristic multipliers of the monodromy operator U . The eigenvalues of U can be
calculated using the standard algorithms of numerical linear algebra. In the following section,
stability diagrams are determined for engineering problems by checking the largest in-modulus
eigenvalue of the matrix approximation U computed by the PT or the SE method. A point
in the stability diagram is marked stable if the the largest in-modulus eigenvalue of U has a
magnitude less than one.
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4 Applications

This section presents two engineering applications for the numerical methods detailed in Section
3. First, an extended mathematical model of a coupled haptic system is presented and stability
analysis is performed. Thereafter, the mathematical model of the milling process subjected to
active damping is investigated, where the sampling effect and zero-order hold of the control
loop are taken into account.

4.1 Coupled haptic system

Figure 1: Concentrated parameter model of the haptic device based on [15] with simultaneous
consideration of continuous delay τ in the human interaction and discrete delay ∆t in the digital
controller.

As it was mentioned in Section 1, stability analysis has not yet been performed for haptic
systems with the consideration of both continuous delay from human interaction and discrete
delay from the control input. Based on the mechanical model presented in [15], this subsection
derives a mathematical model, which takes into account both the delayed human interaction
and the digital control. The formulas given in Section 3 are applied to the mathematical model
and stability diagrams are computed in the space of control parameters.
Figure 1 shows the concentrated parameter model of the device in the rendered direction.
Coordinates x1(t) and x2(t) describe the motion in the rendered subspace from the view point
of the operator and from the view point of the virtual environment (actuator), respectively. The
motion of the human hand in the rendered direction is given by xh(t). The effective masses m1

and m2 characterize the inertia properties of the haptic device in the rendered subspace, while
parameters ke and be are the effective stiffness and damping values for the rendered direction.
In the rendered subspace, the effective mass of the human hand is mh.
In [15], this concentrated parameter model was analyzed with a passive human interaction
force. Here, an active human interaction force fa is modeled, which is provided by a feedback
force control mechanism. As shown in Figure 4 in [15], the model with a passive human
interaction force cannot fully explain the increased stability observed in experiments. In [15],
the authors proposed that the stabilizing effect of humans’ active control can be modeled
with a delayed proportional-differential (PD) control, which was demonstrated using a single
mass-spring system with a natural frequency matching the dominant vibration frequency of
the passive system at the loss of stability. Here, a unified model involving both the haptic
mechanism of [15] and the active human control fa is analyzed.

10



The model shown in Figure 1 incorporates two human interaction force terms. The passive
human interaction force

fc(t) = kc (x1(t)− xh(t)) + bc (ẋ1(t)− ẋh(t)) , (52)

characterized by grasp stiffness kc and damping bc, results from the visco-elastic contact be-
tween the human tissue and the endpoint link of the haptic device. In addition to the contact
properties, the active human interaction force

fa(t) = Ph (Fm(t− τ)− Fd) +DhḞm(t− τ), (53)

aims to capture the feedback mechanism of the human behavior. This is equivalent to a force
control model with a desired contact force Fd, where the human operator measures the stiffness-
related contact force component

Fm(t) = kc (x1(t)− xh(t)) (54)

by tactile receptors. The human force control is modeled by a delayed PD control, where Ph

and Dh are the proportional and derivative feedback gains, respectively, while τ captures the
reaction delay between perception and muscle activation. Note that as [15] explains, during
experiments humans were asked to keep a constant contact force with the haptic device, which
motivated the employment of force feedback in fa(t).
In addition to the active human interaction force, another control force is acting on the haptic
device from the actuator side: the digital control force

fv(t) = −Px2(tj)−D
x2 (tj)− x2 (tj −∆t)

∆t
, t ∈ [tj, tj + ∆t) , (55)

which provides the virtual environment for the human operator. The control force is produced
according to a PD feedback rule, where the derivative term is computed using the difference be-
tween two consecutive position samples. The proportional and derivative gains of the controller
are denoted by P and D, respectively.
Based on the concentrated parameter model shown in Figure 1, the governing equations are

m1ẍ1(t) + be(ẋ1(t)−ẋ2(t)) + ke(x1(t)−x2(t)) = −fc(t),

m2ẍ2(t) + be(ẋ2(t)−ẋ1(t)) + ke(x2(t)−x1(t)) = −
(
P+

D

∆t

)
x2(tj) +

D

∆t
x2(tj −∆t),

mhẍh(t) = fc(t)− fa(t),

(56)

where t ∈ [tj, tj + ∆t) and fc(t) and fa(t) are given in (52) and (53), respectively. In first-order
form, the governing equations read as

ẋ(t) = Ax(t) + Bx(t− τ) + C0x(tj) + C1x(tj −∆t) + E, t ∈ [tj, tj + ∆t) , (57)
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where the vectors and matrices are

x = [x1 ẋ1 x2 ẋ2 xh ẋh]ᵀ , E =

[
0 0 0 0 0 − PhFd

mh

]ᵀ
,

A =



0 1 0 0 0 0
−ke+kc

m1
− be+bc

m1

ke
m1

be
m1

kc
m1

bc
m1

0 0 0 1 0 0
ke
m2

be
m2

− ke
m2
− be
m2

0 0

0 0 0 0 0 1
kc
mh

bc
mh

0 0 − kc
mh
− bc
mh

 ,

B =
kc

mh


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Ph Dh 0 0 −Ph −Dh

 ,

C0 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −P∆t+D

m2∆t
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 , C1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 D

m2∆t
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 .

(58)

For the perturbation ξ(t) = x(t)− xe about equilibrium

xe = (A + B + C0 + C1)−1 E, (59)

one obtains the hybrid DDE

ξ̇(t) = Aξ(t) + Bξ(t− τ) + C0ξ(tj) + C1ξ(tj −∆t), t ∈ [tj, tj + ∆t) , (60)

which determines the stability of (57) about xe.
Formulas derived in Section 3 can be applied to (60) for the computation of matrix approxima-
tion U of monodromy operator U . The monodromy operator’s largest-in-modulus eigenvalue,
also called as dominant characteristic multiplier, uniquely determines the stability of (60) (for
more details see Chapter 8 in [22]). This dominant multiplier is approximated by that of matrix
U. If the dominant multiplier of U converges with the increase of approximation parameters to
that of U , the stability of (60) can be checked for fixed sets of system and control parameters
by the computation of U at sufficiently high approximation parameters. Stability diagrams
of (60) can thus be constructed over a grid of parameter plane (P,D), where a grid point is
marked stable if the dominant multiplier of U has absolute value less than one, otherwise the
grid point is marked unstable. Using this method, first the convergence of stability boundaries
is analyzed, then convergence of the dominant characteristic multiplier is checked at particular
points of the parameter plane (P,D).
Figures 2–4 show the stability boundaries of equation (60) computed according to Section 3
with parameters given in the corresponding captions of the figures and in Table 1. In Table 1,
fs stands for the sampling frequency of the control loop of the haptic device, hence the sampling
period is ∆t = 1/fs = 0.00125 [s].
Figures 2–3 show the stability boundaries computed by the PT and SE methods, respectively,
with human control parameters Ph = 0 and Dh = 0, that is without active human interaction.
If there is no active human interaction, then the term with continuous delay disappears in (60),
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fs 800 [Hz]

m1 0.2615 [kg]

m2 0.0254 [kg]

mh 0.8 [kg]

ke 15620 [N/m]

kc 1000 [N/m]

be 2 [Ns/m]

bc 1.6 [Ns/m]

Table 1: System parameters used for the stability computations of (60)

Figure 2: Stability diagrams, computed by the PT method, for the haptic system (60) without
active human interaction (Ph = 0, Dh = 0) and with parameters given according to Table 1. In
panels A) and B), stability boundaries are shown for two different time history lengths τ with
increasing order N of polynomial approximation. The exact stability boundaries are shown
with thick gray lines.

therefore the time length of history segment does not need to be equal to the human reaction
delay τ . In this case, both the exact monodromy operator U and the exact stability boundary
can be calculated (see Figures 2–3) as detailed in [25].
The results in Figure 2 show that in case of the PT method, the closer the length τ of history
segment is to its minimum length τmin = ∆t, the smaller order N of polynomial approximation
is required for accurate stability boundaries. Note that since (60) incorporates no time-periodic
coefficients, there is no need for the piecewise constant approximation of time-periodic terms in
case of the PT method. As a result, ṽ = 1 is applied during stability computations. Due to the
lack of time-periodic coefficients, the principal period Tp = σ∆t can be chosen as an arbitrary
integer σ ∈ Z+ multiple of the sampling period ∆t. For the PT method σ = 1 was used, while
for the SE method σ = 10 and σ = 20 were applied.
Figure 3 shows the stability boundaries computed by the SE method for different σ values,
with changing order N of polynomial approximation and with changing element number E. In
contrast with the PT method, the convergence rate of stability boundaries, in case of the SE
method, depends not on the length of time history segment but on the length of the principle
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Figure 3: Stability diagrams, computed by the SE method, for the haptic system (60) without
active human interaction (Ph = 0, Dh = 0), with time history length τ = 0.1 [s] and system
parameters given according to Table 1. In panels A) and B), stability boundaries are shown
with fixed element number E and increasing order N of polynomial approximation for two
different principal periods Tp = σ∆t . In panels C) and D), stability boundaries are shown
with fixed order N of polynomial approximation and increasing E element number for two
different principal periods. The exact stability boundaries are shown with thick gray lines.

period. As it can be inferred from Figure 3, longer principal period results slower convergence
with respect to both the order N of polynomial approximation and element number E.
Figure 4 shows the stability boundaries computed by the PT and SE methods with non-zero
human control parameters, that is with active human interaction. It can be observed that with
the increase of order N of polynomial approximation, the stability boundaries converge to the
same curve in case of both methods. As a reference, the case with no active human interaction
is also plotted in Figure 4. It can be seen that the applied human control parameters affect the
bottom part of the stability boundary, which corresponds to the experimental observations in
[15].
Stability diagrams show only whether the system stays around its stationary state. However, it
does not give insight into the decay of transients due to perturbations. In order to extract this
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Figure 4: Stability diagrams, calculated by different numerical methods, for the haptic system
(60) with active human interaction characterized by parameters τ = 0.1 [s], Ph = −200 [N/m],
Dh = −5 [Ns/m] and by parameters given according to Table 1. The stability boundaries in
panels A) and B) were computed with the PT and SE methods, respectively, in both cases for
increasing order N of polynomial approximation. As reference, the exact stability boundary
for the case of no active human interaction (Ph = 0, Dh = 0) is shown with gray color.

information one should determine the absolute value of the dominant characteristic multiplier
(for further details see [13]). In Figures 5–7, the normalized error

en(k) =

∣∣∣∣µk − µ∗µ∗

∣∣∣∣ (61)

of dominant characteristic multipliers µk with respect to the accurate dominant characteristic
multiplier µ∗ is plotted in terms of approximation parameter k, in 6 points of the (P,D)
parameter plane. The coordinates of these points, marked in Figures 2–4, are given in Table 2,
where the absolute values of the accurate dominant multipliers employed for the construction
of Figures 5–7 are shown as well. Note that only for the case without active human interaction
force (that is when Ph = 0 and Dh = 0) can the exact dominant multiplier µ∗exact be determined.
Otherwise the dominant multipliers can only be approximated. Consequently, in the case of
non-zero active human interaction force (Ph = −200 [N/m] and Dh = −5 [Ns/m]) the accurate
dominant multipliers were calculated using the two different numerical schemes of Section 3 at
high approximation numbers. In particular, for the pseudospectral tau method, the accurate
dominant multiplier µ∗PT was computed using N = 80, while for the SE method, the accurate
dominant multiplier µ∗SE was calculated using N = 80 and E = 1. As Table 2 and Figures 5–7
show, the absolute values of the dominant characteristic multipliers computed by the PT and
SE methods converge to the same values in case of non-zero active human interaction force
for all investigated points of control parameters with a normalized difference less than 0.1%.
Furthermore, both methods converge to the exact dominant multiplier µ∗exact in case of no active
human interaction.
In conclusion, it seems likely that the presented methods give results convergent to the ex-
act stability boundaries and dominant characteristic multipliers of (60) in the case of active
human interaction. This convergence property might hold even for sets of system parameters
different from those in Table 1. However, in order to verify this conjecture one must perform a
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#

|µ∗|
P

[N/m]
D

[Ns/m](Ph, Dh)=(0, 0) (Ph, Dh)=(−200,−5)[SI]

|µ∗exact| |µ∗SE| |µ∗PT|
∣∣∣∣ |µ∗SE|−|µ∗PT|
|µ∗PT|

∣∣∣∣
1 1.02382 1.02382 1.02382 5.39×10−6 2000 -5

2 1.06473 1.06473 1.06472 8.13×10−6 6000 -5

3 0.99877 0.99516 0.99516 2.87×10−7 2000 10

4 0.99909 0.99760 0.99760 1.23×10−7 6000 10

5 0.99749 0.99415 0.99317 9.82×10−4 2000 25

6 1.05337 1.05343 1.05260 7.89×10−4 6000 25

Table 2: Coordinates of the 6 investigated points of parameter plane (P,D), marked in Figures
2–4. The accurate dominant characteristic multiplier µ∗ is given by the exact dominant mul-
tiplier µ∗exact for the case without active human interaction force (when Ph = 0 and Dh = 0)
while it is given by the dominant characteristic multipliers µ∗SE and µ∗PT computed using the
SE method with N = 80, E = 1 and the PT method with N = 80, respectively, and assuming
active human interaction force (when Ph = −200 [N/m] and Dh = −5 [Ns/m]).

precise theoretical convergence analysis, which is out of the scope of this paper. Nevertheless,
the numerical results presented in this study can serve as a good base for a later theoretical
convergence analysis.
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Figure 5: Convergence diagrams of the dominant characteristic multiplier corresponding to the
respective panels of Figure 2. The diagrams show the normalized error en of the dominant
characteristic multiplier in terms of polynomial order N for 6 points of the (P,D) parameter
plane given in Table 2 and indicated in Figure 2. Diagrams were computed by the PT method
for the case of no active human interaction (Ph = 0, Dh = 0), using parameters according to
Table 1 and τ = 0.1 [s] for panel A), and τ = 0.01 [s] for panel B).

4.2 Milling process with active damper

In machining processes the large amplitude self-excited vibration between the workpiece and
the tool is called machine tool chatter. One of the most accepted explanations for machine tool
chatter is the so called regenerative effect [1, 26], which can be modeled by DDEs. So-called
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Figure 6: Convergence diagrams corresponding to the respective panels of Figure 3. The
diagrams show the normalized error en of the dominant characteristic multiplier in terms of
polynomial order N and element number E for 6 points of the (P,D) parameter plane given in
Table 2 and indicated in Figure 3. Diagrams were computed by the SE method for the case of
no active human interaction (Ph = 0, Dh = 0) using parameters given in Table 1 and τ = 0.1
[s]. In panels A) and C) σ = 10, while in panels B) and D) σ = 20 is applied.
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Figure 7: Convergence diagrams corresponding to the respective panels of Figure 4. Diagrams
show the normalized error en of the dominant characteristic multiplier in terms of polynomial
order N for 6 points of the (P,D) parameter plane given in Table 2 and indicated in Figure 4.
Panels A) and B) were computed by the PT and SE methods, respectively, using parameters
given in Table 1 and assuming active human interaction characterized by parameters Ph = −200
[N/m], Dh = −5 [Ns/m] and τ = 0.1 [s].

stability lobes diagrams (SLDs) are used to depict the regions associated with chatter-free
machining in the parameter space of spindle speed Ω (in [rpm]) and axial depth of cut ap

(see Figure 8). In the machining literature it has been a subject of great interest how the
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stable domains in SLDs can be increased (thus chatter can be suppressed). There exist passive
[27, 28], semi-active [29, 30] and active [31, 32] methods for the suppression of machine tool
chatter. The active methods use a feedback loop, which usually involves a digital feedback
controller in practice. However, apart from some studies presented for turning [33, 34], most
existing models of active chatter suppression neglect the sampling effect and the zero-order
hold of the feedback loop. Such study has not yet been presented for milling, mostly due to
the required high computational effort of the stability analysis based on the existing standard
methods of the literature. In this subsection, first a nonlinear mathematical model is derived
for the milling process subjected to digital position control at the tool tip. Thereafter, stability
analysis of the variational system around the stationary solution of this mathematical model is
performed using the numerical methods detailed in Section 3 and results are visualized in the
form of SLDs.

Figure 8: Model of milling subjected to active damping

One of the simplest models of regenerative vibrations in milling assumes that the tool (or the
workpiece) can oscillate in the direction of the feed velocity only (for details see Chapter 5.2.1
in [8]). In addition, the model shown in Figure 8 takes into account a feedback loop controlled
by a PD controller, which provides the active damping to the milling process. The displacement
and the velocity of the tool tip are measured and used in the calculation of the control force
Q which acts at the tool tip. The tool is modeled by a block of mass mt, connected to the
tool holder via a spring of stiffness kt and a dash-pot of viscous damping bt as shown in Figure
8. The workpiece is assumed to move horizontally with a constant feed velocity vf relative to
the tool holder. The undamped natural angular frequency of the tool is ωn =

√
kt/mt and

the damping ratio is ζ = bt/(2mtωn). Using dimensionless time t̄ = ωnt and dropping the bar
immediately, the governing equations are

ẋ(t)=A0x(t) + C(x(tj−δt)−xd(tj−δt))− f(t,x(t),x(t−τd)) , t ∈ [tj, tj + δT ) , (62)

with δt = ωn∆t and δT = ωn∆T being the dimensionless sampling and actuation periods,
respectively. The state x(t) and the desired trajectory xd(t) are defined as

x(t) =

 x(t)

ẋ(t)

 , xd(t) =

 xd(t)

ẋd(t)

 , (63)
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while

A0 =

 0 1

−1 −2ζ

 , C=

 0 0

−kP −kD

 , f(t,x(t),x(t−τd))=
Fc(t,x(t),x(t−τd))

mtω2
n

 0

1

 .
(64)

The controller uses PD control in order to stabilize the oscillator about the desired trajectory
xd(t). The control force Q consists of proportional and differential terms with feedback gains P
and D, respectively. Note that the difference between the measured and the desired trajectory
is fed back with a delay δt in the control force term. This delay accounts for the processing
time of the measured data and for the estimation of the desired state. Due to the rescaled
time, dimensionless control gains are introduced as kP = P/(mtω

2
n) and kD = D/(mtωn). The

dimensionless regenerative delay (which coincides with the tooth passing period) is τd = 2π/Ωd,
with Ωd = 2πΩZ/(60ωn) being the dimensionless spindle speed and Z being the number of
cutting teeth. The cutting force is the resultant of forces acting on the teeth (see Figure 9),
hence the horizontal component of the resultant cutting force is

Fc(t,x(t),x(t−τd)) =

Z∑
p=1

gp(t) (Ft,p(t,x(t),x(t−τd)) cos(ϕp(t)) + Fn,p(t,x(t),x(t−τd)) sin(ϕp(t))) , (65)

where the window function

gp(t) =

{
1 if ϕent ≤ ϕp(t) mod 2π ≤ ϕex ,

0 otherwise ,
(66)

models whether the pth tooth is in or out of cut while ϕent and ϕex stand for the entrance
angle and the exit angle of the cutting teeth. For up-milling operation ϕent = 0 and ϕex =
arccos(1− 2ae/d), while for down-milling operation ϕent = arccos(2ae/d− 1) and ϕex = π, with
ae being the radial immersion (see Figure 8) and d is the diameter of the tool (see Figure 9).
The tangential and normal force components of the pth tooth are both calculated according to

Figure 9: Cutting model: A) circular tooth path approximation B) tangential and normal
cutting force components

19



Taylor’s 3/4 rule (see [35]) as

Ft,p(t,x(t),x(t−τd)) = apKth
3/4
p (t,x(t),x(t−τd)) ,

Fn,p(t,x(t),x(t−τd)) = apKnh
3/4
p (t,x(t),x(t−τd)) ,

(67)

respectively. Here the angular position of the pth tooth at dimensionless time instant t is
ϕp(t) = (Ωdt+ (p− 1)2π) /Z, while the tangential and normal cutting force coefficients are Kt

and Kn, respectively. By assuming circular tooth path (see Figure 9), the chip thickness on the
pth tooth at dimensionless time instant t can be approximated as

hp(t,x(t),x(t−τd)) ≈ ∆x(x(t),x(t−τd)) sin(ϕp(t)) , (68)

where
∆x(x(t),x(t−τd)) = fZ + x(t)− x(t−τd) (69)

is the difference in the relative position of the tool and the workpiece between two consecutive
cuts while the feed per tooth rate is given by fZ = v̄fτd, with v̄f = vf/ωn being the specific feed
velocity.
It is assumed that the stationary solution xs(t) for (62) is equal to the desired solution xd(t),
which gives

ẋs(t) = A0xs(t)− f(t,xs(t),xs(t−τd)) . (70)

Since f(t+ τd, ·, ·) = f (t, ·, ·), there exists a τd-periodic stationary solution xp(t) = xp(t + τd)
of (70). If the desired solution is set to be the periodic stationary solution of (70), that is
xd(t) = xp(t), then f(t,xp(t),xp(t−τd)) = fp(t) becomes solely time-dependent (see (64)–(69)).
Consequently, (70) becomes a linear time-periodic ordinary differential equation for which the
τd-periodic stationary solution xp(t) can be computed on a simple way. Here, it is important
to note that in practice xp(t) and, consequently, xs(t) cannot be determined accurately due to
modeling and parameter uncertainties, therefore the desired solution of the controller cannot
be set equal to the stationary solution xs(t). This implies that the actual stationary solution
is different from xs(t) and is determined by the nonlinear hybrid DDE (62). Nevertheless,
here it is assumed that xd(t) = xp(t) is known exactly as the τd-periodic stationary solution
of (70). Consequently, linear stability properties can be analyzed by the variational system of
(62) about the stationary solution xp(t).
In (62), the decomposition of state variables as x(t) = xp(t)+ξ(t) and the first-order Taylor
expansion of f(t,x(t),x(t−τd)) about xp(t) with respect to perturbation ξ(t) leads to the
variational system

ξ̇(t) = (A0−B(t))ξ(t)+B(t)ξ(t−τd)+Cξ(tj−δt) t ∈ [tj, tj + δT ), (71)

where

B(t) =

 0 0

Hd 0

 Z∑
p=1

Bp(t) , (72)

and
Bp(t) = gp(t) sin3/4(ϕp(t)) (Kr cos(ϕp(t)) + sin(ϕp(t))) , (73)

with Hd = 3apKnf
−1/4
Z /(4mtω

2
n) being the dimensionless specific cutting force coefficient and

Kr = Kt/Kn is the cutting force coefficient ratio.
Similarly as in Section 4.1, the stability of variational system (71) can be analyzed using the
matrix approximation U of the monodromy operator U of (71). Matrix U can be constructed
using the numerical methods presented in Section 3 and by the computation of its largest-
in-modulus eigenvalue the dominant characteristic multiplier of U can be approximated. In
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ζ 0.05

Kr 3

ae/D 0.5

Z 2

Table 3: System parameters used for the stability computations of (71)

#
|µ∗|

ρ σ Ωd =
2πρ

δt σ
Hd

|µ∗SE| |µ∗PT|
∣∣∣∣ |µ∗SE|−|µ∗PT|
|µ∗PT|

∣∣∣∣
1 0.90572 0.90436 1.50×10−3 74 5 0.8491 0.3

2 0.59035 0.59031 6.82×10−5 9 1 1.3963 0.3

3 0.60778 0.60732 7.66×10−4 58 9 1.9500 0.3

4 8.40669 8.39782 1.06×10−3 74 5 0.8491 0.75

5 0.83694 0.83708 1.60×10−4 9 1 1.3963 0.75

6 41.99581 41.97366 5.28×10−4 58 9 1.9500 0.75

Table 4: Coordinates of the 6 investigated points of parameter plane (Ωd, Hd), marked in Figure
10. The accurate dominant characteristic multiplier µ∗ is given by the dominant characteristic
multipliers µ∗SE and µ∗PT computed using the SE method with N = 80, E = 1 and the PT
method with N = 80, ṽ = 40, respectively.

the following, first the convergence of stability boundaries is analyzed in the plane (Ωd, Hd)
of system parameters with respect to increasing approximation parameters. Thereafter, the
convergence of the dominant characteristic multiplier is studied in 6 points of the parameter
plane (Ωd, Hd).
It is important to note that xp(t) is not involved in the variational system (71), therefore the
periodic solution of (70) does not need to be determined for the construction of U. It is also
worth noting that in general B(t) is discontinuous with respect to time, which can destroy the
convergence properties of the standard SE method. In this paper the problem given by the
discontinuities in B(t) is solved by separating the integral terms in (41)–(42) at the discontinuity
points of Bp(t) (for details see [36]).
The period of functions gp(t) is τd and the digital control introduces an additional time period:
the dimensionless actuation period δT = vδt, v ∈ Z+. Consequently, (71) is a quasi-periodic
system. Here, it is assumed that the ratio of the actuation period and the tooth-passing period
is rational and a principal period can be given as Tp = δTσ = τdρ, with σ, ρ ∈ Z+. Thus, the
case given in Section 2 can be applied.
The SLD approximations corresponding to (71) are shown in Figures 10–13 for a fixed parameter
set given in the caption and in Table 3. Note that v = 1 is assumed for all cases, which results
that the actuation period is equal to the sampling period, that is δT = δt.
In panels A) and B) of Figure 10, the stability diagrams were computed using the PT method.
There are two approximation parameters in the PT method: order N of polynomial approx-
imation and resolution ṽ of the dimensionless actuation period δT . The stability boundary
converges if both N and ṽ are increased, therefore sufficiently high N and ṽ are required for
an accurate stability boundary. In panels C) and D) of Figure 10, the SLDs were computed
using the SE method. There are two approximation parameters in the SE method: order N
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Figure 10: Stability lobes diagrams for down-milling operations with active damper using
system parameters given in Table 3 and control parameters v = 1, kP = 0.2, kD = 0.2,
δt = 0.5. In panels A) and B) stability boundaries are shown for the PT method with fixed
resolution ṽ and order N of polynomial approximation, respectively. In panels C) and D)
stability boundaries are shown for the SE method with fixed element number E and order N
of polynomial approximation, respectively.

of polynomial approximation and element number E, which is the number of elements within
one dimensionless tooth passing period τd. The stability boundary converges if either N or E
is increased, therefore sufficiently high N or E are required for an accurate stability boundary.
Note that the difficulty of the SLD calculation is given by the change in the tooth passing period
τd = 2π/Ωd along the axis Ωd. Since dimensionless actuation period δT is fixed, this results
in different Tp = δTσ = τdρ principal periods for each point along the axis Ωd. Therefore the
distribution of grid points along Ωd is not uniform, because σ, ρ ∈ Z+ has to hold while the
dimensionless spindle speed is computed as Ωd = 2πρ/(δTσ).
Figure 12 shows the convergence of stability boundaries for fixed order N of polynomial ap-
proximation and increasing ṽ of actuation period resolution. It can be inferred from panel B)
in Figure 10 and from Figure 12, that the higher the ratio δt/τd of sampling period and time
period of periodic coefficients, the higher resolution ṽ is necessary for sufficiently converged
stability boundaries.
Similarly as in Section 4.1, in addition to the convergence of stability boundaries, the con-
vergence of dominant multipliers is also investigated. In Figure 11, the normalized error (61)
of dominant multipliers µk with respect to the accurate dominant multiplier µ∗ is plotted in
terms of approximation parameter k in 6 points of the (Ωd, Hd) parameter plane. The coor-
dinates of these points, marked in Figure 10, are given in Table 4, where the absolute values
of the accurate dominant multipliers employed for the construction of Figure 11 is shown as
well. Due to that no exact solution can be determined for the monodromy operator and its
dominant characteristic multiplier, the accurate dominant multipliers were computed using the
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Figure 11: Convergence diagrams corresponding to the respective panels of Figure 10. Diagrams
show the normalized error en of the dominant characteristic multiplier for system parameters
given in Table 3 and control parameters v = 1, kP = 0.2, kD = 0.2, δt = 0.5. In panels A) and
B) the normalized error is visualized for the PT method in terms of polynomial order N and
actuation period resolution ṽ, respectively. In panels C) and D) the normalized error is shown
for the SE method in terms of polynomial order N and element number E, respectively. In
each diagram, the normalized error is visualized for 6 points of the parameter plane (Ωd, Hd),
given in Table 4 and marked in Figure 10.
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Figure 12: Stability lobes diagrams, computed by the PT method, for down-milling operations
with active damper using system parameters given in Table 3 and control parameters v = 1,
kP = 0.2, kD = 0.2. In panels A) and B) stability boundaries are shown for two different δt
sampling times, with fixed order N of polynomial approximation and increasing resolution ṽ.

23



0.5 1 1.5 2 2.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5

0

0.5

1

1.5

Figure 13: Stability lobes diagrams, computed by the PT method for down-milling operations
with active damper using system parameters given in Table 3. The stability boundaries were
computed using order N = 18 of polynomial approximation and, for non-zero δt, resolution
ṽ = 5. Panels A)–D) show stability boundaries for different (kP , kD) control gain combinations
with v = 1 and increasing δt sampling times.

numerical schemes presented in Section 3. Similarly as in Section 4.1, the accurate dominant
multiplier µ∗PT for the PT method was computed using N = 80 and ṽ = 40, while for the
SE method the accurate dominant multiplier µ∗SE was computed using N = 80 and E = 1.
As Table 4 and Figure 5 show, the absolute values of dominant multipliers computed by the
PT and SE methods converge to the same values in all investigated points of the (Ωd, Hd)
parameter plane with a normalized error less than 0.2%. In conclusion, similarly as in Section
4.1, it seems likely that the presented methods give results convergent to the exact stability
boundaries and dominant characteristic multipliers of (71). This convergence property might
hold for arbitrary control and system parameters as well. However, this conjecture can only be
verified by a precise theoretical convergence analysis which is out of the scope of this paper.
Nevertheless, the above numerical study can serve as a good starting point for such an analysis.

As Section 3 shows, the hybrid terms in DDEs impose additional difficulty for stability com-
putations. It is, therefore, reasonable to ask: whether in real applications of milling processes
the inclusion of the hybrid nature of control terms is of significance? In order to answer this
question, the boundary of stability was calculated for different control parameter combinations
with increasing δt sampling time. The results are shown in Figure 13. It can be seen that as
the dimensionless sampling time δt = ωn∆t increases, the difference in the stability boundary
also increases with respect to the case δt = 0. Note that in machining centers, the dominant
natural angular frequency ωn of the tool is usually high in order to keep the amplitude of the
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forced vibrations small. This results that the frequency of actuation must be high-enough, in
order to neglect the effect of the hybrid terms. On the other hand, it is important to highlight
that the hybrid terms in (1) assume that after the arrival of new data, the control force is
updated in zero time. In other words, it is assumed that there are no transients in the control
force, the response of the actuator is infinitely fast. This can be a reasonable assumption as
long as the transients are short compared to the actuation period. However, as the actuation
period is decreased, the significance of the transient behavior of the actuator becomes more
essential. In conclusion, the hybrid nature of control terms in the governing equations affects
stability properties if the lowest dimensionless sampling time is large.

5 Conclusions

The spectral element method and pseudospectral tau method has been extended to the stabil-
ity analysis of a class of time-periodic hybrid time-delay systems involving delayed terms with
both continuous and piecewise constant arguments (that is involving continuous and discrete
delay terms simultaneously). Both methods give a finite dimensional approximation for the
monodromy operator whose dominant characteristic exponent uniquely determines stability.
The numerical methods have been applied to two engineering applications: to a coupled haptic
system and to a milling process subjected to active vibration suppression via digital feedback
control. In these applications both continuous and discrete delay terms have been considered
simultaneously. Numerical convergence analysis was carried out and stability boundaries were
computed in the plane of control and system parameters, furthermore the convergence of domi-
nant characteristic multipliers was investigated in 6 parameter points of the stability diagrams.
When exact results were available, both methods converged to the exact stability boundaries
in all investigated cases. Furthermore, when no exact stability boundaries and dominant char-
acteristic multipliers could be computed, the results of both numerical methods converged in
all investigated cases to the same stability boundaries and dominant characteristic multipliers.
Since the approximation concept of the monodromy operator is fundamentally different for the
two numerical methods, it is likely that both methods provide convergent results to the exact
boundary of stability and dominant characteristic multipliers. Although only numerical case
studies were presented for convergence analysis, these results can give a good starting point
for a future theoretical convergence analysis. In addition to the numerical convergence analysis
of approximation schemes, the computed results showed that in both engineering applications
neglecting the discrete nature in the control terms can lead to significant differences in sta-
bility properties. In particular, it was shown for milling processes with active damping that
the higher the dimensionless sampling time (normalized by the natural angular frequency of
the tool) the more stability boundaries are altered by the discrete nature of the controller.
The computed stability diagrams can provide a useful tool in tuning the parameters of hybrid
time-delay systems, for example, in the adjustment of control parameters of haptic devices and
in the selection of machining parameters of milling processes subjected to active damping.
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Appendices

Appendix A Lagrange base polynomials

The barycentric form of Lagrange polynomials is

φk(ζ) =

$k

ζ − ζk∑n+1
l=1

$l

ζ − ζl

,

where the barycentric weights are

$k =
1

ω′ (ζk)
, ω(ζ) =

n+1∏
k=1

(ζ − ζk) .

The derivative of Lagrange base polynomials at the points of interpolation is given by

φ′k (ζl) =


$k/$l

ζl − ζk
k 6= l,

−
∑n+1

q=1
q 6=k

$q/$k

ζk − ζq
k = l.

Appendix B Chebyshev points of second kind

The Chebyshev points of second kind are

ζk = cos
(

(k−1)π
n

)
, k = 1, 2, . . . , n+ 1.

Appendix C Legendre-Gauss-Lobatto points and weights

The Legendre-Gauss-Lobatto points ηq are the roots of (1− ζ2)ψ′n+1(ζ), that is −1, 1 and the
roots of the first derivative of the Legendre polynomial of order n, defined in Appendix D. The
quadrature weights are given by

wq =


2

n(n+ 1)
q = 1, n+ 1;

2

n(n+ 1)ψ2
n+1(ηq)

q = 2, 3, . . . , n.

Appendix D Legendre polynomials

According to Bonnet’s recursion formula, the Legendre polynomials up to order n are

ψ1(ζ) = 1,

ψ2(ζ) = ζ,

ψi(ζ) = 2i−3
i−1

ζ ψi−1(ζ)− i−2
i−1

ψi−2(ζ), i = 3, 4, . . . , n+ 1.
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