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Abstract

Simon’s congruence, denoted by ∼k, relates the words having the same
subwords of length at most k. In this paper a normal form is presented
for the equivalence classes of ∼k. The length of this normal form is the
shortest possible. Moreover, a canonical solution of the equation pwq ∼k r
is also shown (the words p, q, r are parameters), which can be viewed as a
generalization of giving a normal form for ∼k. In this paper, there can be
found an algorithm with which the canonical solution can be determined in
O((L+ n)nk) time, where L denotes the length of the word pqr and n is the
size of the alphabet.

Key words and phrases: combinatorics of words, normal form, piecewise testable

languages

1. Introduction

A large class of languages is the family of piecewise testable languages, which has

been deeply studied in formal language theory, see for example, [8] or [?]. Formally,

a language L is k-piecewise testable if x ∈ L and x ∼k y implies that y ∈ L, where

x ∼k y if and only if x and y have the same scattered subwords of length at most k.

It is easy to see that∼k is a congruence, the so-called Simon’s congruence, with finite

index. Some estimations of this index can be found in [3] and [4]. Furthermore,

in [4] the word problem for the syntactic monoids of the varieties of k-piecewise

testable languages are analyzed and a normal form of the words is presented for

k = 2 and k = 3. In [6] a normal form was given when k = 4. The new idea was

to investigate a more general question, namely, to determine a canonical solution

of the equation pwq ∼k r. Here the words p, q, r are parameters and our aim is

to solve the equation for the variable w (which is also a word). With the help of

a canonical solution for the equations of the form pwq ∼2 r a normal form was

shown for ∼4. More generally, it has been proved that if a canonical solution of

the equations of the form pwq ∼k r can be defined for some k, then a normal form

can be defined for k+ 2. In this paper our goal is to define a canonical solution for
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the equations pwq ∼k r for arbitrary k. Furthermore, we are going to show that

the canonical solution is a solution having minimal length. The special case, when

p = q = empty word gives a normal form for the word r. Moreover, in the last

section an algorithm is presented for finding the canonical solution. It is also shown

that the canonical solution can be found in O((L+n)nk) deterministic time, where

L is the length of pqr and n is the size of the alphabet.

2. Preliminaries

At first, some basic notions and definitions are going to be introduced. The word u

is a subword of w if u is a sequence of not necessarily consecutive letters taken from

w. If u is a subword of w, then we are going to write u ≤ w. Given an integer k > 0,

let u ∼k v if and only if the words u and v have the same set of subwords of length

at most k. A language L over an alphabet X is k-piecewise testable if and only if L

is a union of classes of the equivalence relation ∼k. Another characterization says

that a language L over an alphabet X is k-piecewise testable if and only if it is a

finite boolean combination of languages of the form

X∗x1X
∗x2X

∗ . . . X∗xlX
∗, where x1, . . . , xl ∈ X, 0 ≤ l ≤ k.

A language is piecewise testable if there exists a natural number k such that the

language is k-piecewise testable.

Simon [8] found a basis of identities for k-piecewise testable languages if k = 1, 2.

Moreover, Blanchet-Sadri [1, 2] gave a basis of identities for k = 3, and proved that

there is no finite basis of identities for k > 3. See Pin’s textbook [7] for further

details.

In this paper the alphabet X is going to be an n-element set (for some n ∈ N).

For a word w let |w| denote its length. For a word w let us denote the set of its

subwords of length at most k by (w)k:

(w)k = {u : u ≤ w and |u| ≤ k}.

This way w1 ∼k w2 holds if and only if (w1)k = (w2)k, thus we can refer to the

∼k-equivalence class of a word w by (w)k. The set of the 1-element subwords of w

is the content of w, let us denote it by c(w). Clearly, (w)k determines c(w) for any

k ≥ 1. Let w′ denote the word in which only the first and final occurences of the

letters of w are kept, and the others are deleted. (Specially, if a letter occurs only

once, we keep it.) Note that the word w′ has length at most 2n and (w)2 = (w′)2.

In Corollary 13, Proposition 14 and Section 4 we are going to use the O,Ω,Θ

notions. For functions f(k, n), g(k, n) : N× N→ R+ we write

• f(k, n) = Ok (g(k, n)) if for every k there exists some constant dk such that
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f(k, n) ≤ dkg(k, n) for every sufficiently large n (if dk does not depend on k

we simply write O),

• f(k, n) = Ωk (g(k, n)) if for every k there exists some constant ck > 0 such

that f(k, n) ≥ ckg(k, n) for every sufficiently large n (if ck does not depend

on k we simply write Ω),

• f(k, n) = Θk (g(k, n)) if for every k there exists some constants 0 < ck, dk
such that ckg(k, n) ≤ f(k, n) ≤ dkg(k, n) for every sufficiently large n (if ck
and dk do not depend on k we simply write Θ).

3. Solving the equation pwq ∼k r

In this section our aim is to give a well-defined (canonical) solution of the equation

pwq ∼k r, or equivalently (pwq)k = (r)k if a solution exists. Here the words p, q, r

are parameters, and we would like to solve the equation for w. The solution should

only depend on the equivalence classes of the words p, q, r, that is, on (p)k, (q)k and

(r)k. The canonical solution that we define is going to be denoted by w = w(p,q,r).

This approach is a generalization of finding a normal form for the words under ∼k,

since if p and q are the empty word, then the canonical solution of the equation

w ∼k r is a normal form for the word r. Furthermore, this problem can be viewed

as finding a canonical form for the word r in such a way that it begins with p and

ends with q.

At first assume that k = 1. The equation pwq ∼1 r holds if and only if c(pwq) =

c(r), hence w is a solution if and only if c(r) \ (c(p) ∪ c(r)) ⊆ c(w) ⊆ c(r). Let w =

w(p,q,r) be the word obtained by writing the elements of c(r) \ (c(p) ∪ c(q)) ⊆ c(w)

in alphabetical order after each other. Then w solves the equation and its length is

the shortest possible.

From now, assume that k ≥ 2. We are looking for a word w for which (pwq)k =

(r)k. At first we are going to find a possible choice for the word (pwq)′ = y =

y1y2 . . . yt. (Here t ≤ 2n.) Note that, even if pwq ∼k r, it is possible that (pwq)′ 6= r′

and it is also possible that there are more than one possibilities for y = (pwq)′.

(Since different solutions in w can result in different y’s.)

Let us write pwq as pwq = y1u1y2u2 . . . yt. After finding an appropriate y,

the words u1, u2, . . . , ut−1 are going to be defined in such a way that the word

y1u1y2u2 . . . yt begins with p, ends with q (these parts do not overlap) and in the

middle the solution w could be found.

It can easily be seen that y and the ∼k−2 equivalence classes of the words

u1, u2, . . . , ut−1 together determine (pwq)k.

Proposition 1. If (y1u1y2u2 . . . yt)
′ = y1y2 . . . yt = y, then (y1u1y2 . . . yt)k is de-

termined by y and (u1)k−2, . . . , (ut)k−2. (Note that here y contains the first and last
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(or unique) appearances of the letters. So each letter can appear at most twice in y.

If a letter appears just once, then it can’t appear elsewhere. If a letter appears twice

in y, say at positions yi, yj (with i < j), then it can appear in ui, ui+1, . . . , uj−1,

but can’t appear anywhere else.)

We give a proof of this statement in the spirit of [5].

Proof. Let us suppose that z = z1z2z3 is a word of length at most k, where the first

letter of z is z1, the last letter of z is z3 (and z2 is a word of length at most k− 2).

Let yα be the first appearance of the letter z1 in y and yβ the last appearance

of the letter z3 in y. Clearly, z ∈ (y1u2y2u2 . . . yt)k if and only if α < β and

z2 ∈ (uαyα+1 . . . uβ−1)k−2. Therefore, the set of the at most k-letter subwords of

y1u1y2u2 . . . yt is determined by y and (u1)k−2, . . . , (ut)k−2.

Now we concentrate on y = (pwq)′. The word y is going to be defined with the

help of the equation pwq ∼k r. At first we are going to characterize the possible s′

words if s ∼k r.
For a ∈ c(r) let

R(a) = Rk−1r (a) = a−1(r)k = {w | aw ≤ r and |w| ≤ k − 1}

and

L(a) = Lk−1r (a) = (r)ka
−1 = {w |wa ≤ r and |w| ≤ k − 1}.

The sets Rk−1r (a) and Lk−1r (a) are determined by (r)k. Since, the set Rk−1r (a) can

be obtained by taking all the words in (r)k starting with the letter a and deleting

their first letter, namely, a. Similarly, Lk−1r (a) can be obtained by taking all the

words in (r)k ending with letter a and deleting their last letter, namely, a.

A letter a occurs exactly once in r, or equivalently in r′, if and only if aa is not

a subword of r. Let a ≈ b, if Rk−1r (a) = Rk−1r (b) for a, b ∈ c(r) which occur at

least twice in w. Clearly, ≈ is an equivalence relation on a subset of the set c(r).

For a letter a ∈ c(r) which occurs at least twice in r the ≈ class of a is called the

R-block of a. The L-blocks are defined dually. If a ∈ c(r) occurs exactly once in

r, then {a} is called a U -block. The R-blocks, the L-blocks and the U -blocks are

called blocks. The set of the blocks of r′ depends only on (r)k. Moreover, it is

going to be shown that the elements of each block are consecutive letters in r′ and

the order of the blocks in r′ is determined by (r)k, as well. Therefore, the word

r′ is determined by (r)k up to the order of the letters within the R-blocks and the

L-blocks. Accordingly, for each 1 ≤ i ≤ t the block of the letter yi is determined.

Proposition 2. The first (last) appearences of the letters of an R-block (or L-block)

are consecutive letters of r′. The order of the blocks in r′ is uniquely determined by

(r)k.
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Proof. This proposition is a straightforward consequence of the following observa-

tions:

(i) For a, b ∈ c(r) let yi be the first appearance of the letter a in r′ and yj the

last appearance of the letter b in r′. Then i < j if and only if ab ∈ (r)k,

(ii) For a, b ∈ c(r) let yi be the first appearance of the letter a in r′ and yj the

first appearance of the letter b in r′. If Rk−1r (b) ( Rk−1r (a), then i < j.

(iii) For a, b ∈ c(r) let yi be the last appearance of the letter a in r′ and yj the

last appearance of the letter b in r′. If Lk−1r (a) ( Lk−1r (b), then i < j.

Therefore, the length of the word (pwq)′ = y = y1y2 . . . yt, the block of each

yi and its type (R-, L- or U -block) are determined by (r)k. Moreover, each block

contains consecutive letters of y, so up to the orders of the letters within the blocks

the word y is determined. Now, our aim is to find which part of y = (pwq)′ belongs

to p, w, q, respectively. In order to do this the content of w is investigated.

Clearly, c(w) ⊆ c(r). Let C contain those letters a for which there exists a

subword v1av2 of r of length at most k such that v1a 6≤ p and av2 6≤ q. We claim

that for any solution w we have C ⊆ c(w). Furthermore, by keeping only such

letters of a solution w that are in C we still obtain a solution.

Proposition 3. Let

C = {a | ∃v1, v2 : v1av2 ≤ r, |v1av2| ≤ k, v1a 6≤ p, av2 6≤ q}.

If pwq ∼k r, then C ⊆ c(w). Moreover, if the word wC is obtained from w by

keeping only the letters of C, then pwCq ∼k r.

Proof. Let us assume that a ∈ C. Then there exist words v1, v2 such that v1av2 ∈
(r)k = (pwq)k and v1a 6≤ p, av2 6≤ q. Let us choose a certain occurence of v1av2
in the word pwq. The letter a in the middle of v1av2 can not belong to p, since

it would mean that v1a ≤ p. Similarly, the letter a can not belong to q, neither.

Therefore, a ∈ c(w), thus C ⊆ c(w) is proved.

To prove that wC solves the equation it is enough to show that if pwq ∼k r and

a ∈ c(w) \ C, then by deleting one appearance of a from w we still obtain a word

w∗ satisfying pw∗q ∼k r. By this, the appearances of the letters in c(r) \ C can be

deleted from w one by one. Clearly, (pw∗q)k ⊆ (pwq)k = (r)k, so it suffices to prove

that all subwords of (r)k = (pwq)k are subwords of pw∗q, as well. So let us assume

that v ≤ r for a word v of length at most k. Only a single letter (a) was deleted

from w, hence v can be written as v = v1av2 and w can be written as w = w1aw2

such that v1 ≤ pw1 and v2 ≤ w2q. As a /∈ C either v1a ≤ p or av2 ≤ q. We may

assume that v1a ≤ p, the other case can be handled similarly. Now, v1a ≤ p and

v2 ≤ w2q, therefore v = v1av2 ≤ pw1w2q = pw∗q.
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It is obtained that each element of C must appear in each solution w of the

equation pwq ∼k r. Moreover, any letter not contained in C can be deleted from

any solution w, and we still obtain a solution. As a consequence, from now on, it is

assumed that c(w) = C. If pwq ∼k r is solvable (in w), then there is a solution for

which c(w) = C holds, as well.

Now, we are able to decide which part of (pwq)′ = y1y2 . . . yt belongs to p, w, q,

respectively. Firstly, if a = yi is a unique appearance in r, then we can mark it in

p or q (if a ∈ c(p) or a ∈ c(q)), otherwise (that is, if a /∈ c(p) ∪ c(q)) it belongs to

c(w). As the order of the blocks is determined, the index i is also determined by

the letter a. Secondly, suppose that a = yi is a first appearance. If a ∈ c(p), then

we can mark it in p: It is the first appearance of the letter a in p. If a /∈ c(p), but

a ∈ C, then the first appearance of a belongs to w. Finally, if a ∈ c(r) \ (c(p) ∪C),

then the first appearance of a belongs to q, and we can find it in q: It is the first

appearance of the letter a in q. When a = yi is a final appearance, then the place

of yi can be found in pwq dually to the previously observed case.

Therefore, for each letter it is determined which part of pwq contains the first and

final appearance of it. As p and q are given words, these appearances can be marked

in them, and consequently the order of the letters of y = (pwq)′ is determined in

these two parts. We also know which part of y belongs to w, but here – up to now

– only the order of the blocks is known. Let y1y2 . . . yi be the part contained in p,

yi+1yi+2 . . . yj be the part contained in w and yj+1yj+2 . . . yt be the part contained

in q. The letters of (pwq)′ = y divide the words p and q into several parts:

p = y1u1y2 . . . yiui,1

q = uj,2yj+1uj+1yj+2 . . . yt

Here, all words are determined by now, and we are looking for w in the following

form:

w = ui,2yi+1ui+1 . . . yjuj,1.

With these notions, pwq = y1u1y2u2 . . . yt, where ui = ui,1ui,2 and uj = uj,1uj,2.

However, in w only the blocks of yi+1, . . . , yj are determined yet. At first an appro-

priate choice for the order of these letters is going to be given, and after that the

gaps between them are going to be filled in, appropriate ul words are going to be

found.

Let us summarize the steps that we have done until now:

Step 1. Find the blocks of (r)k. Determine the order of the blocks in y. Determine C

and which part of y is contained in p, w, q, respectively.

Now we continue with finding a good ordering of the letters for each block. Let

B = {b1, b2, . . . , bv} be a block. If it is a U -block, then its size is 1 and there is

only one ordering. Let us assume that B is an R-block. (The dual case when B
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is an L-block can be handled similarly.) In this case Rk−1r (b1) = Rk−1r (b2) = · · · =
Rk−1r (bv) =: R. If the block B has no elements in w, then the order of the elements

of this block is determined by p and q. So it can be assumed that at least one

element of B is contained in w. There are four cases:

(i) The whole block B belongs to w.

(ii) Some part of B belongs to p and some part of it to w.

(iii) Some part of B belongs to w and some part of it to q.

(iv) B has elements in p, w and q, as well.

We deal with these four cases simultaneously. The letters of B are consecutive

letters in y = y1y2 . . . yt. Let us assume that for a solution w the order of the

elements of B in the R-block contained in y is b1, b2, . . . , bv. Note that this order is

not necessarily uniquely determiend by (p)k, (q)k and (r)k. Our aim is to find an

appropriate ordering in a canonical way.

Let us write pwq as

pwq = z0b1z1b2z2 . . . zv−1bvzv,

where the indicated appearances of b1, b2, . . . , bv are all first (that is, left-most)

appearances. Let us assume that b1, b2, . . . , bα−1 belong to p and bα, bα+1, . . . , bβ
belong to w, finally bβ+1, . . . , bv belong to q. In cases (i) and (iii), we have α =

1; and in cases (i) and (ii), β = v holds. Here p = z0b1z1 . . . bα−1zα−1,1, w =

zα−1,2bαzα . . . bβzβ,1 and q = zβ,2bβ+1zβ+1 . . . bvzv, where zα−1,1zα−1,2 = zα−1 and

zβ,1zβ,2 = zβ .

As the next step we prove that if w is a solution, then by replacing zα−1,2, zα, zα+1, . . . , zβ−1, zβ,1
by the empty word, the obtained word wB still satisfies pwBq ∼k r. Let us use the

notions zBl = zl if l ∈ {1, 2, . . . , α−2, β+1, β+2, . . . , v−1} and zBα = zBα+1 = · · · =
zBβ−1 = empty word and zBα−1 = zα−1,1, zBβ = zβ,2.

Proposition 4. Let us assume that B is an R-block and pwq ∼k r. Let wB be the

word obtained from w in such a way that every letter between two first appearances

from the block B belonging to w, are deleted. Then pwBq ∼k r.

Proof. We use the previously introduced notions. Clearly, pwBq can be written as

pwBq = z0b1z
B
1 . . . z

B
v−1bvzv, where for each 1 ≤ l ≤ v−1 we have zBl ≤ zl. As pwBq

is obtained from pwq by deleting some letters, (pwBq)k ⊆ (pwq)k. Now we show

that (pwBq)k ⊇ (pwq)k also holds. Let u ∈ (pwq)k and let us write u as u = u1u2,

where u1 is the first letter of u, and consequently the length of u2 is at most k− 1.

The word u might appear more than once in pwq, let us choose a certain occurence

of it. It can be supposed that the first letter of u, that is, u1 is a first appearance

in pwq. If this preceeds the first appearances of the letters from B, then in pwq
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the part z1b2 . . . zv−1bvzv contains at most k − 1 letters of u. B is an R-block, so

(z1b2 . . . zv−1bvzv)k−1 = R(b1) = R(bv) = (zv)k−1, so this part is contained in zv in

pwBq, as well. Since z0b1 has not changed, we obtained that u ∈ (pwBq)k holds. If

u1 is in B, then u2 ∈ (z1b2 . . . bvzv)k−1 = R(b1) = R(bv) = (zv)k−1. Since zv is at

the end of pwBq, again we have u ∈ (pwBq)k. Finally, if u1 is a first appearance

after the R-block B, then u ≤ zv, so u ∈ (pwBq)k. Therefore, we proved that

pwBq ∼k pwq.

So we can suppose that those elements of B that belong to w are consecutive

letters in w. Now, let us determine which permutations of bα, bα+1, . . . , bβ give a

solution, that is, which choice of

pwπq = z0b1z
B
1 b2z

B
2 . . . bα−1z

B
α−1bπ(α)bπ(α+1) . . . bπ(β)z

B
β bβ+1 . . . z

B
v−1bvzv

we have

pwπq ∼k∼k pwBq(∼k r).
For the simplicity of the notions let us extend π to a permutation of the numbers

{1, 2, . . . , v} in such a way that 1, 2, . . . , α−1, β+ 1, . . . , v are all fixed points of the

extended permutation, which is also denoted by π.

Let us call a permutation π good if the rearranged word wπ still solves the equa-

tion. We are going to show that there are two cases: either every π is good, or π is

good if and only if b1 = bπ(1).

Lemma 5. We claim that a permutation π is good if and only if

(zB1 bπ(2)z
B
2 . . . bπ(α−1)z

B
α−1bπ(α)bπ(α+1) . . . bπ(β)z

B
β bπ(β+1) . . . z

B
v−1bπ(v)zv)k−1 =

= (zv)k−1.

Proof. If π is good, then Rk−1
pwBq

(bπ(1)) = Rk−1
pwBq

(bπ(v)), so the condition is necessary.

To prove that it is sufficient we have to show that

(z0b1z
B
1 b2 . . . z

B
v−1bvzv)k = (z0bπ(1)z

B
1 bπ(2) . . . z

B
v−1bπ(v)zv)k.

Clearly, it is enough to prove that

(b1z
B
1 b2 . . . z

B
v−1bvzv)k = (bπ(1)z

B
1 bπ(2) . . . z

B
v−1bπ(v)zv)k.

Let u be a word of length at most k. Let u = u1u2, where u1 is the first let-

ter of u, and consequently the length of the word u2 is at most k − 1. At first

assume that u1 ∈ c(zB1 z
B
2 . . . z

B
v−1) ∪ B. If u ≤ b1z

B
1 b2 . . . z

B
v−1bvzv, then u2 ∈

(zB1 b2 . . . z
B
v−1bvzv)k−1 = R(b1) = (zv)k−1. If u ≤ bπ(1)z

B
1 bπ(2) . . . z

B
v−1bπ(v)zv, then

u2 ∈ (zB1 bπ(2)z
B
2 . . . z

B
v−1bπ(v)zv)k−1 = (zv)k−1. Conversely, if u2 ∈ (zv)k−1, then

clearly u ≤ b1zB1 b2 . . . zBv−1bvzv and u ≤ bπ(1)zB1 bπ(2) . . . zBv−1bπ(v)zv. Therefore,

u = u1u2 ≤ b1zB1 b2 . . . zBv−1bvzv ⇐⇒ u2 ≤ zv ⇐⇒
⇐⇒ u = u1u2 ≤ bπ(1)zB1 bπ(2) . . . zBv−1bπ(v)zv,
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so in this case the statement is true. Finally, if u1 /∈ c(zB1 z
B
2 . . . z

B
v−1) ∪ B, then

clearly

u ≤ b1zB1 b2 . . . zBv−1bvzv ⇐⇒ u ≤ zv ⇐⇒ u ≤ bπ(1)zB1 bπ(2) . . . zBv−1bπ(v)zv.

So, it has been shown that π is good if and only if

(zB1 bπ(2)z
B
2 . . . z

B
v−1bπ(v)zv)k−1 = (zv)k−1.

Now we prove that only π(1) determines whether π is good, or not:

Lemma 6. If π(1) = 1, then π is good.

Proof. Let us suppose that

u = u1u2 . . . uk−1 ≤ zB1 bπ(2)zB2 . . . zBv−1bπ(v)zv.

It can be supposed that u1 is a first appearance (in this word) and uk−1 is a final

(or unique) appearance. As B is an R-block, B ⊆ c(zv). Moreover, since the letters

of B are consecutive in y = (pwq)′, there are no final (or unique) appearances in

zB1 , z
B
2 , . . . , z

B
v−1, that is, all of the letters in them appear in zv, as well. Hence,

uk−1 ≤ zv. Let i be minimal such that ui . . . uk−1 ≤ zv. If i > 1, then ui−1 ∈
c(zB1 bπ(2) . . . z

B
v−1bπ(v)) ⊆ c(zB1 b2 . . . z

B
v−1bv), so ui−1ui . . . uk−1 ∈ R(b1) = R(bv) =

(zv)k−1, which contradicts the minimality of i. Hence, i = 1 and u ≤ zv holds.

Therefore, Lemma 5 implies that π is good.

We obtained that if b1, b2, . . . , bv is a good ordering of the elements of the block

B, then all of the orderings where π(1) = 1 are also good. With other words, only

the first letter of the block plays a role. If b1 belongs to p, all choices for π are

appropriate, since if the equation pwq ∼k r is solvable, then there exists at least

one good choice. Therefore, for instance, π can be the lexicographical order on

{α, α + 1, . . . , β}. From now on assume that B has no elements in p, that is, we

deal with the case (i) or (iii).

Lemma 7. If not all permutations π are good, then there is only one choice for

bπ(1) with which π is good. This unique good choice for bπ(1) is the letter from B

which first appearance is the latest in the ∼k−1 normal form of zv.

Proof. Since the equation pwq ∼k r is solvable, there exists at least one good choice

for the first element of the block B: b1. Now suppose that π is not good, that is,

the value of π(1) is not appropriate. According to Lemma 5 there exists a word

u = u1u2 . . . uk−1 ≤ zB1 bπ(2)z
B
2 . . . z

B
v−1bπ(v)zv for which u 6≤ zv. Let i be minimal

such that ui . . . uk−1 ≤ zv. If ui−1 ∈ c(zB1 b2 . . . z
B
v−1bv), then ui−1ui . . . uk−1 ∈



10

R(b1) = R = (zv)k−1, which is a contradiction. Therefore, ui−1 = b1. If there would

be another good starting element in B (other than b1), then with a similar reasoning

it would yield that ui−1 would have to be that element, which is also a contradiction.

Hence, if not all starting elements are good, then there is only one good starting

element, which is now b1. Our aim is to find a good ordering in the case when

there is only one appropriate starting letter. Using the previous notions, it follows

that b1ui . . . uk−1 6≤ zv, but clearly b2ui . . . uk−1, b3ui . . . uk−1, . . . , bvui . . . uk−1 ∈
R = (zv)k−1, therefore in zv the first appearance of the letter b1 is after the first

appearances of b2, b3, . . . , bv. Hence, the unique appropriate choice bl for the starting

element bπ(1) can be obtained in the following way:

• Take the ∼k−1 normal form of zv.

• Find the first appearances of the letters in B within this normal form.

• Then bl is the one which has the latest (that is, the right-most) first appear-

ance.

Hence, we can set bπ(1) := bl if bl does not belong to q. Note that (zv)k−1 = R is

determined by p, q, r, so we managed to find a canonical starting letter of the block

B. The order of the other elements of B is arbitrary, for instance, take the lexico-

graphical order. If bl belongs to q, then bπ(1) 6= bl, meaning that all permutations

π are good, so we can take the lexicographical order on {α, α+ 1, . . . , β}.
Hereafter, for finding a canonical solution for the equation pwq ∼k r the next

step is the following:

Step 2. For every block B determine a good ordering π of the elements of B in y =

(pwq)′.

Example 8. We illustrate with an example that it can indeed happen that within a

block B there is just one good choice for bπ(1). Let k = 3 and w = abcbcbca, then

a, b, c are within the same R-block, since

R(a) = R(b) = R(c) = {empty word , a, b, c, ba, bb, bc, ca, cb, cc}.

Lemma 7 claims that to determine the starting element of this R-block we have to:

• take the ∼2 normal form of bcbca, which is bcbca,

• find the first appearances of a, b, c: bcbca (marked bold),

• then the unique appropriate starting letter is the one which has the latest (that

is, the right-most) first appearance, that is: a.
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If one would try to find another word in the ∼k equivalence class of w in which the

starting letter of this R-block is b (or c), then it would imply that aa ∈ R(b) (or

aa ∈ R(c)), leading to a contradiction.

Therefore, a well-defined y = (pwq)′ is obtained and in

w = ui,2yi+1ui+1 . . . yjuj,1

all the letters yi+1, yi+2, . . . , yj are chosen in an appropriate way. It only remains

to find appropriate ui,2, ui+1, . . . , uj,1 subwords. Note that for k = 2 this last part

is not needed, since pwq ∼2 (pwq)′.

Now we know that y = y1y2 . . . yt satisfies that w can be chosen in such a way

that

pwq = y1u1y2u2 . . . yt ∼k r,

and here in p = y1u1y2 . . . yiui,1 and q = uj,2yj+1uj+1yj+2 . . . yt every ul subword

is known, so the words that should be defined are all in

w = ui,2yi+1ui+1 . . . yjuj,1,

namely, ui,2, ui+1, . . . uj−1, uj,1. (Clearly, ui = ui,1ui,2 and uj = uj,1uj,2.)

According to Proposition 1 the words y = (pwq)′ and (u1)k−2, . . . , (ut−1)k−2
together determine (pwq)k, and our aim is to define u1, . . . , ut−1 in such a way that

for every first appearance ya and last appearance yb (where a < b) the following

holds (note that we know that an appropriate choice exists):

(uaya+1 . . . ub−1)k−2 = {m : yamyb ∈ (r)k} =: Mya,yb(r). (1)

Let r0 be the subword of r containing every letter of r between the first appearance

of ya and the last appearance of yb (the first ya and the last yb is not included).

Then (r0)k−2 = Mya,yb(r).

At first we determine an order in which the words (ul)k−2 are going to be defined.

For 1 ≤ l ≤ t − 1 let nl be the total number of first appearances in {yl+1, . . . , yt}
and last appearances in {y1, . . . , yl}. We define the ul words in increasing order

according to nl. Suppose that for some l the words um for which nm < nl are

already defined. We show that now ul is definable, as well. Let α ≤ l be maximal

such that yα is a first appearance and l+1 ≤ β be minimal such that yβ is a last ap-

pearance. Since yα+1, yα+2, . . . , yl are all last appearances and yl+1, yl+2, . . . , yβ−1
are all first appearances, max(nα, nα+1, . . . , nl−1, nl+1, nl+2, . . . , nβ−1) < nl, so

uα, uα+1, . . . , ul−1, ul+1, ul+2, . . . , uβ−1 are already defined (in an appropriate way).

Let p0 = uαyα+1uα+1 . . . yl, q0 = yl+1ul+1 . . . uβ−1 and (r0)k−2 = Myα,yβ =

{m | yαmyβ ∈ (r)k}. The word ul has to satisfy the equation (p0ulq0)k−2 =

(r0)k−2, so let us choose ul as the canonically defined solution of this equation:

ul := ul = u
(p0,q0,r0)
l . Now, we show that for any appropriate choice of the words
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um, that is, for any choice for which all the equations of the form (1) hold if we

replace ul by the previously defined ul, they will still hold. It means that by setting

ul to be ul we can not make a ”mistake”.

When we check the equation Mya,yb = (uaya+1 . . . ub−1)k−2 for some first appear-

ance ya and last appearance yb (satisfying a < b), then the choice of ul only plays a

role if a ≤ l < b. This yields a ≤ α and β ≤ b. In the special case when a = α and

l = β, according to the definition of ul, we have (uαyα+1 . . . uβ−1)k−2 = Myα,yβ .

Here, Myα,yβ is determined by (pwq)k = (r)k, therefore (uαyα+1 . . . uβ−1)k−2 is also

determined by (r)k. Using this observation we obtain that for arbitrary a ≤ α and

β ≤ b the right hand side of

(uaya+1 . . . ub−1)k−2 = (uaya+1 . . . yα)k−2(uαyα+1 . . . uβ−1)k−2(yβuβ . . . ub−1)k−2,

does not depend on the choice of ul, the only restriction for ul is that it has to

satisfy (uαyα+1 . . . uβ−1)k−2 = Myα,yβ . Hence, we can set ul := ul.

There are two special cases: l = i and l = j. When l = i, then a slight modifica-

tion is needed in the definition of p0: In this case p0 = uαyα+1uα+1 . . . yiui,1, that

is, a word ui,1 (the beginning of ui) has to be written at the end of p0, since ui,1 is

determined by p. Similarly, when l = j, the definition of q0 should be modified in

the following way: q0 = uj,2yj+1uj+1 . . . uβ−1. With these modifications the above

arguments are valid in these two special cases, as well.

Therefore, one by one the words ul can be defined with the help of a canonical

form of a solution of the equations of the form (p0uq0)k−2 = (r0)k−2, and finally

the normal form w = y1u1y2u2 . . . ut−1yt is obtained.

Thus we arrived at the final step:

Step 3. Find appropriate ul words.

We summarize the results of this section in the following proposition:

Proposition 9. Let k ∈ N. Let p, q, r, p′, q′, r′ be words and suppose that the

equation pwq ∼k r has a solution. Then pw(p,q,r)q ∼k r. If p ∼k p′, q ∼k q′, r ∼k r′,
then w(p,q,r) = w(p′,q′,r′). Hence, w(p,q,r) is a canonical form of a solution for the

equation pwq ∼k r.

Note that w 6∼k w(p,q,r) is possible even if pwq ∼k r; and that the latter condition

implies pwq ∼k pw(p,q,r)q.

As a corollary a normal form is obtained for ∼k. Let r̂ be the canonical solution

of the equation w ∼k r, that is, when p and q are the empty word. Then r̂ is a

normal form for r.

Corollary 10. Let k ∈ N. Let r and s be two words. Then r ∼k r̂, moreover r ∼k s
yields that r̂ = ŝ. Hence, r̂ is a normal form of r.

Finally, it is going to be shown that the length of this normal form is the least

possible.
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Theorem 11. Let k ∈ N. The length of the canonical solution w = wp,q,r of the

equation pwq ∼k r is minimal.

Proof. We prove the statement by induction on k. For k = 1 the length of w = wp,q,r

is the cardinality of the set c(r) \ (c(p) ∪ c(q)). Moreover, a word w is a solution of

the equation pwq ∼1 r if and only if c(r) \ (c(p) ∪ c(q)) ⊆ c(w) ⊆ c(r). Therefore,

the length of w is minimal.

For k = 2 let w∗ be a solution of pwq ∼2 r having minimal length. According to

Proposition 3, C ⊆ c(w∗), furthermore w∗C is also a solution, so by the minimality

of |w∗| and w∗C ≤ w∗ it follows that c(w∗) = C = c(w). It has been also shown

that if w is a solution of pwq ∼2 r, then the content of w determines which part of

(pwq)′ belongs to p, w, q, respectively. Hence, if from the word y = (pwq)′ exactly

yi+1yi+2 . . . yj is the part which is contained in w, then for the word y∗ = (pw∗q)′

it also holds that exactly the part y∗i+1y
∗
i+2 . . . y

∗
j is contained in w∗. The length of

w is j − i and the length of w∗ is at least j − i, so w has minimal length.

Now assume that k ≥ 3 and that the statement is proved up to k − 1. Let w∗

be a solution of pwq ∼k r of minimal length. As pw∗q ∼k pwq ∼k r, the length

of the words y = (pwq)′ and y∗ = pw∗q is the same, moreover the multiset of the

letters of y and y∗, the blocks and the order of the blocks is the same, as well.

According to Proposition 3, c(w) = C ⊆ c(w∗), moreover pw∗Cq ∼k r also holds

for the word w∗C ≤ w∗, so the minimality of |w∗| implies that w∗C = w∗, that is,

c(w∗) = C = c(w). Since c(w∗) determines which part of (pw∗q)′ = y∗ belongs to

p, w∗, q respectively, the multiset of the letters of y contained in w and the letters

of y∗ contained in w∗ is the same. Therefore, w and w∗ can be written as

w = ui,2yi+1ui+1 . . . yjuj,1,

w∗ = u∗i,2y
∗
i+1u

∗
i+1 . . . y

∗
ju
∗
j,1.

Let i + 1 ≤ l ≤ j − 1 be arbitrary, it is going to be shown that |u∗l | ≥ |ul|. Let us

recall that ul satisfies the equation p0ulq0 ∼k−2 r0, where

p0 = uαyα+1uα+1 . . . yl,

q0 = yl+1ul+1 . . . uβ−1

and

(r0)k−2 = Myα,yβ = {m | yαmyβ ∈ (r)k}.

If we manage to show that (p0)k−2, (q0)k−2, (r0)k−2 are determined by p, q, r, then

by the induction hypothesis applied for k − 2 it follows that |ul| ≤ |u∗l |, since

p0 ∼k−2 p∗0, q0 ∼k−2 q∗0 , r0 ∼k−2 r∗0 . At first we show that if a = yγ is a first

(or unique) appearance and b = yδ is a final (or unique) appearance, then Mab =



14

Myγyδ = {m | amb ∈ (r)k} is determined by the R-block (or U -block) of yγ = a

and the L-block (or U -block) of yδ = b. From the equations

{m | mb ∈ Rk−1r (a)} = Mab = {m | am ∈ Lk−1r (b)},

it follows that Mab is determined by b and the R-block of a, moreover, by a

and the L-block of b, as well. Hence, Mab depends only on the R-block of a

and the L-block of b. Therefore, (r0)k−2 is determined, furthermore, Myαyl =

(uαyα+1uα+1 . . . ul−1)k−2 =: (p1)k−2 andMyl+1yβ = (ul+1yl+2 . . . uβ−1)k−2 =: (q1)k−2
are determined, as well. With the help of the words p1 and q1 the words p0, q0 can

be expressed in the following way: p0 = p1yl and q0 = yl+1q1. Note that if yl+1

is a final (or unique) appearance, then q0 is the empty word. Let us assume that

yl+1 is a first appearance. If yl+1 is not determined uniquely, then the size of its

R-block is at least 2, and either yl+1 is not the first element of this block or yl+1

is the first element of this block, but for this block any permutation π is appropri-

ate. If yl+1 is not the first element of this block, then yl is in the same R-block,

therefore ul = ∅, so |ul| ≤ |u∗l |. Finally, assume that yl+1 is the first element from

its R-block, but any π is appropriate for this block. We claim that in this case

q0 = yl+1q1 ∼k−2 q1, so (q0)k−2 is determined, as well. Clearly, (q1)k−2 ⊆ (q0)k−2.

Assume that z = z1z2 ∈ (q0)k−2, where z1 is the first letter of z. If z1 6= yl+1,

then z ∈ (q1)k−2 trivially holds. Assume that z1 = yl+1. Clearly, z2 ∈ (q1)k−3.

As yβ is a final (or unique) appearance, the whole R-block of yl+1 is contained

in the set yl+1, yl+2, . . . , yβ−1. For any y in the R-block of yl+1, we have that

z2yβ ∈ R(y). If yκ is the last letter from the R-block of yl+1, then z2yβ ∈ R(yκ).

Then for any y 6= yl+1 in the R-block of yl+1 we have yz2yβ ∈ R(yl+1). But we

know that in this block every ordering of the block-elements would be appropri-

ate, so yl+1z2yβ ∈ R(yl+1) also holds. As yβ is a final appearance, it follows that

z = yl+1z2 ∈ (q1)k−2. The dual case of p0 can be done similarly. Hence, we obtained

that |ul| ≤ |u∗l |, since ul is a shortest solution of p0ulq0 ∼ r0 by induction. There

are two special cases: l = i and l = j. In these two special cases the definition

of p0 and q0 is slightly different from the previous definition, but ui,1 and uj,2 are

determined (by p, q and r), so this does not make any difference.

Remark 12. Note that the normal form wp,q,r is in fact short-lex assuming that

we always take the lexicographical order in Step 2 when we are looking for a good

permutation π within a block (of course, possibly with the exception of the first

element of the block – that is determined with the help of Lemma 7). With this

choice, the ”block-part” of w (that is, y) is short-lex and for the inner words ul we

might apply induction to see that these are also short-lex.

As a consequence, the length of the ∼k normal form is also minimal for any k

and any word.
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Corollary 13. Let k ∈ N. For any word r, the length of the ∼k normal form of r,

denoted by r̂, has minimal length.

Now an upper bound will be given for the maximal possible length of the canon-

ical (so shortest) solution of the equation pwq ∼k r. This will also provide us an

upper bound for the index of ∼k.

Proposition 14. Let k ∈ N. Let lk(n) be the maximal possible length of a canonical

solution w = w(p,q,r) if |c(r)| ≤ n. Then lk(n) = Θk(ndk/2e). Moreover, max{|r̂| :

|c(r)| ≤ n} = Θk(ndk/2e).

Proof. The statement is going to be proved by induction on k. Clearly, l1(n) = n

and l2(n) = 2n. Let k ≥ 3 and assume that the statement is proved up to k − 1.

According to the definition of w, we have that |w| ≤ 2n + (2n − 1)lk−2, since

|y| = t ≤ 2n, and u1, u2, . . . , ut−1 have length at most lk−2(n). By the induction

hypothesis lk = Ok(ndk/2e).

Now, a construction is going to be presented to show that the length of r̂ can

be Ωk(ndk/2e). This construction completes the proof. Let n0 = [n/2]. Let u be a

word such that c(u) ⊆ {x1, x2, . . . , xn0
} and |û| = Ωk−2(n

d(k−2)/2e
0 ). (According to

the induction such u exists.) Let

r = xn0+1uxn0+1xn0+2uxn0+2 . . . xnuxn.

Clearly, |c(r)| ≤ n and xn0+1xn0+1xn0+2xn0+2 . . . xnxn ≤ (r̂)′. For n0 + 1 ≤ i ≤ n

let wi be the word formed by the letters between the first and last appearance of xi
in r̂. As wi ∼k−2 u, the length of the word wi is at least |u|. Therefore, |r̂| ≥ n0|u|,
so |r̂| = Ωk(ndk/2e).

As a corollary, we also get an upper bound for the number of ∼k equivalence

classes, which is denoted by fk(n) (where n is the size of the alphabet). If each

equivalence class contains a word of length at most Ok(ndk/2e), then the number of

equivalence classes is at most nOk(n
dk/2e). Hence, log fk(n) = Ok((ndk/2e) log n). In

[4] we proved that log fk(n) = Θk(n
k+1
2 ) if k is odd and log fk(n) = Θk(n

k
2 log n)

if k is even. So if k is even the obtained upper bound for log fk(n) is tight up to a

constant factor. If k is odd, then we have an additional log n factor, meaning that

the shortest representation of some words are log n times bigger than expected to

be based on only the number of different equivalence classes.

4. Algorithm

In this section an algorithm is presented for finding the canonical solution w of the

equation pwq ∼k r. Let us introduce the notion L for the length of pqr, that is,
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L = |pqr|, and let n be the size of the alphabet. The input consists of p, q, r and

k, while the output is the normal form wp,q,r. For simplicity we assume that it is

possible to read and compare two letters in O(1) steps. The running time of the

algorithm will be Ok((L + n)nk). For each step of the method described in the

previous section we are going to present an algorithm with which that step can be

done.

If k = 1, then w is the word containing the letters from the set C = c(r) \ (c(p)∪
c(q)) exactly once in alpabetical order. The set C can be obtained in O(L) time,

and with bin sort the alphabetical order can be determined in O(L+ n) time.

Let k ≥ 2 and assume that the algorithm with the desired running time has been

found up to k − 1.

We start with Step 1. (See Section 3.) The content c(r) can be determined in

O(|r|) time. Moreover, it can be also checked which letters appear at least twice,

so the multiset {y1, y2, . . . , yt} of the letters of y is determined, and also the U -

blocks are found. For each letter a which appears at least twice in r, let ra be the

word obtained from r by deleting all the letters preceeding the first appearance of

a in r and the first a. Clearly, a1 and a2 are in the same R-block if and only if

ra1 ∼k−1 ra2 , which can be checked with the help of the ∼k−1 normal form of the

words ra1 and ra2 :

a1 and a2 are in the same R-block ⇐⇒ r̂(k−1)a1 = r̂(k−1)a2

This way the R-blocks are determined, for instance the R-block of a contains the

letters b for which r̂a = r̂b. The L-blocks can be determined dually. By induction,

for a letter a the word r̂a can be determined in O((L+ n)nk−1) time, therefore the

running time of determining all the blocks is O((L+ n)nk).

By Proposition 2, the elements of each block are consecutive letters in y, and the

order of the blocks is determined by r. The order can be obtained by marking the

first and last appearances of the letters in r, and taking the corresponding order in

y. The running time of this is O(|r|). Now, the blocks and the order of them is

determined. We continue with finding C, the content of w.

The set C was defined as

C = {a | ∃v1, v2 : v1av2 ≤ r, |v1av2| ≤ k, v1a 6≤ p, av2 6≤ q}.

For each letter a ∈ c(r) we have to decide whether there exist words v1 and v2
having total length at most k − 1 such that v1a 6≤ p and av2 6≤ q, but v1av2 ≤ r.

In order to do this, we check for all words w of length at most k, whether they can

be written as w = v1av2 in such a way that the above conditions hold. Similarly

as before, let qa be the word obtained from q by deleting all the letters preceeding

the first appearance of a in q including the first a. Moreover, dually, let pa be the

word obtained from p by deleting all the letters after the last appearance of a in p

including the last a. Note that qa and pa can be determined in O(|p| + |q|) time.
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Clearly, v1a 6≤ p if and only if v1 6≤ pa, furthermore, av2 6≤ q if and only if v2 6≤ qa.

Now, our goal is to decide for all words v of length at most k− 1 whether they can

be split into two parts: v = v1v2 in such a way that v1av2 ≤ r, but v1a 6≤ p and

av2 6≤ q. Let v = w1w2 . . . wr, where |w| = r ≤ k − 1. In O(|p| + |q|) time we can

determine the smallest index α for which w1w2 . . . wα 6≤ pa and the largest index β

for which wβ . . . wr 6≤ qa.

Let r = r1r2 . . . r|r|. Let us mark the first appearance of w1 in r (from the left),

then after this letter the first appearance of w2 and so on. For every 1 ≤ i ≤ |r| let

κ(i) denote the number of marked letters in r1r2 . . . ri−1. With other words, κ(i)

is the unique index for which w1w2 . . . wκ(i) ≤ r1r2 . . . ri−1, but w1w2 . . . wκ(i)+1 6≤
r1r2 . . . ri−1. Dually, let us mark the last appearance of wr in r, then preceeding

this letter the last appearance of wr−1, and so on. Let λ(i) denote the number of

marked letters after in ri+1 . . . r|r|. There exist words v1 and v2 such that

v = v1v2, v1a 6≤ p, av2 6≤ q, v1av2 ≤ r

if and only if there exists an index 1 ≤ i ≤ |r| such that

ri = a, κ(i) ≥ α, λ(i) ≥ r − (β − 1), κ(i) + λ(i) ≥ r.

For a fixed letter a and a word v of length at most k − 1 this condition can be

checked in O(L + n) time. Hence, the set C can be determined in O((L + n)nk)

time, since there are n choices for a and O(nk−1) choices for v.

After finding C, deciding which part of y belongs to p, w and r is straightforward.

At Step 2 and 3 two cases are distinguished: k = 2 and k ≥ 3. We start with

the case k = 2. In Step 2 an appropriate ordering was defined for each block B.

If B is a U -block, then it has only one element, and we are done. If between two

first appearances there is no final (or unique) appearance, then they are in the

same R-block. So the consecutive first appearances form R-blocks and clearly the

lexicographical order is appropriate. The L-blocks can be found similarly, and the

lexicographical order is also appropriate. Moreover, Step 3 is not needed when

k = 2, since (pwq)′ ∼2 pwq. Hence, in the case k = 2 the overall running time is

O((L+ n)n).

Now, let k ≥ 3. We start with Step 2. In this step an appropriate ordering was

found for the elements of block B. If B is a U -block, then it has only one element,

and we are done. Let us assume that B is an R-block. (The dual case, when B

is an L-block can be handled similarly.) The order for B was determined with the

help of (zv)k−1, where (zv)k−1 = (rb)k−1 (here b ∈ B is arbitrary). Therefore, by

taking the ∼k−1 normal form of at most 2n words determined by r, the order for

all of the blocks is determined. The running time of this is O((L+ n)nk).

Finally, in Step 3 we have to solve at most 2n − 1 equations over ∼k−2. By

induction the running time of this is at most 2n− 1 times O((L+ n)nk−2).

Therefore, the overall running time is at most Ok((L+ n)nk).
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Most probably this algorithm can be fastened. However, the (worst-case) running

time of such an algorithm is Ω(L + ndk/2e), since we have to read the words p, q, r

and the length of the solution is possibly Ω(ndk/2e).
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