NORMAL FORMS UNDER SIMON’S CONGRUENCE

Péter P4l Pach!

Abstract

Simon’s congruence, denoted by ~y, relates the words having the same
subwords of length at most k. In this paper a normal form is presented
for the equivalence classes of ~y. The length of this normal form is the
shortest possible. Moreover, a canonical solution of the equation pwq ~g r
is also shown (the words p,q,r are parameters), which can be viewed as a
generalization of giving a normal form for ~. In this paper, there can be
found an algorithm with which the canonical solution can be determined in
O((L + n)n*) time, where L denotes the length of the word pgr and n is the
size of the alphabet.

Key words and phrases: combinatorics of words, normal form, piecewise testable
languages

1. Introduction

A large class of languages is the family of piecewise testable languages, which has
been deeply studied in formal language theory, see for example, [8] or [?]. Formally,
a language L is k-piecewise testable if x € L and x ~j y implies that y € L, where
x ~y y if and only if x and y have the same scattered subwords of length at most k.
It is easy to see that ~ is a congruence, the so-called Simon’s congruence, with finite
index. Some estimations of this index can be found in [3] and [4]. Furthermore,
in [4] the word problem for the syntactic monoids of the varieties of k-piecewise
testable languages are analyzed and a normal form of the words is presented for
k =2 and k = 3. In [6] a normal form was given when k = 4. The new idea was
to investigate a more general question, namely, to determine a canonical solution
of the equation pwq ~j r. Here the words p,q,r are parameters and our aim is
to solve the equation for the variable w (which is also a word). With the help of
a canonical solution for the equations of the form pwq ~5 r a normal form was
shown for ~4. More generally, it has been proved that if a canonical solution of
the equations of the form pwq ~j r can be defined for some k, then a normal form
can be defined for k 4+ 2. In this paper our goal is to define a canonical solution for
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the equations pwq ~yj r for arbitrary k. Furthermore, we are going to show that
the canonical solution is a solution having minimal length. The special case, when
p = q = empty word gives a normal form for the word r. Moreover, in the last
section an algorithm is presented for finding the canonical solution. It is also shown
that the canonical solution can be found in O((L +n)n*) deterministic time, where
L is the length of pgr and n is the size of the alphabet.

2. Preliminaries

At first, some basic notions and definitions are going to be introduced. The word u
is a subword of w if w is a sequence of not necessarily consecutive letters taken from
w. If u is a subword of w, then we are going to write u < w. Given an integer k > 0,
let u ~ v if and only if the words u and v have the same set of subwords of length
at most k. A language L over an alphabet X is k-piecewise testable if and only if L
is a union of classes of the equivalence relation ~j. Another characterization says
that a language L over an alphabet X is k-piecewise testable if and only if it is a
finite boolean combination of languages of the form

X' X 2 X" .. X 0 X", wherex1,...,01€ X, 0< 1<k

A language is piecewise testable if there exists a natural number k such that the
language is k-piecewise testable.

Simon [8] found a basis of identities for k-piecewise testable languages if k = 1, 2.
Moreover, Blanchet-Sadri [1, 2] gave a basis of identities for £k = 3, and proved that
there is no finite basis of identities for £ > 3. See Pin’s textbook [7] for further
details.

In this paper the alphabet X is going to be an n-element set (for some n € N).
For a word w let |w| denote its length. For a word w let us denote the set of its
subwords of length at most k by (w)y:

(W) ={u: u<w and |u| < k}.

This way w; ~j we holds if and only if (wq)r = (w2)k, thus we can refer to the
~p-equivalence class of a word w by (w)g. The set of the 1-element subwords of w
is the content of w, let us denote it by c(w). Clearly, (w); determines ¢(w) for any
k > 1. Let w’ denote the word in which only the first and final occurences of the
letters of w are kept, and the others are deleted. (Specially, if a letter occurs only
once, we keep it.) Note that the word w’ has length at most 2n and (w)s = (w')s.

In Corollary 13, Proposition 14 and Section 4 we are going to use the O, 2,0
notions. For functions f(k,n),g(k,n): N x N — R, we write

o f(k,n) = Ok (g(k,n)) if for every k there exists some constant dj such that



f(k,n) < drg(k,n) for every sufficiently large n (if dj does not depend on k
we simply write O),

o f(k,n) = Qi (g(k,n)) if for every k there exists some constant ¢, > 0 such
that f(k,n) > crg(k,n) for every sufficiently large n (if ¢x does not depend
on k we simply write 2),

o f(k,n) = O (g(k,n)) if for every k there exists some constants 0 < ¢y, dj
such that cxg(k,n) < f(k,n) < drg(k,n) for every sufficiently large n (if ¢
and dj do not depend on k we simply write ©).

3. Solving the equation pwq ~p r

In this section our aim is to give a well-defined (canonical) solution of the equation
pwq ~y r, or equivalently (pwq)r = (r)k if a solution exists. Here the words p, g, r
are parameters, and we would like to solve the equation for w. The solution should
only depend on the equivalence classes of the words p, ¢, r, that is, on (p)k, (¢)r and
(7). The canonical solution that we define is going to be denoted by w = wP %",
This approach is a generalization of finding a normal form for the words under ~y,
since if p and ¢ are the empty word, then the canonical solution of the equation
w ~p, T is a normal form for the word r. Furthermore, this problem can be viewed
as finding a canonical form for the word r in such a way that it begins with p and
ends with q.

At first assume that k = 1. The equation pwgq ~1 r holds if and only if ¢(pwq) =
¢(r), hence w is a solution if and only if ¢(r) \ (e(p) Uc(r)) C e(w) C ¢(r). Let w =
W P27 be the word obtained by writing the elements of ¢(r) \ (c(p) U c(q)) C c(w)
in alphabetical order after each other. Then w solves the equation and its length is
the shortest possible.

From now, assume that k > 2. We are looking for a word w for which (pwq), =
(r)k. At first we are going to find a possible choice for the word (pwq) =y =
y1y2 ... yr. (Heret < 2n.) Note that, even if pwq ~y, 7, it is possible that (pwq)’ # r

/

~

and it is also possible that there are more than one possibilities for y = (pwq)’.
(Since different solutions in w can result in different y’s.)

Let us write pwqg as pwq = y1ui1ysus...y;. After finding an appropriate vy,
the words wi,us,...,u;_1 are going to be defined in such a way that the word
Y1U1Y2Us - . . y¢ begins with p, ends with ¢ (these parts do not overlap) and in the
middle the solution w could be found.

It can easily be seen that y and the ~j_o equivalence classes of the words
Uy, Uz, ..., u—1 together determine (pwq)g.

Proposition 1. If (yiuiysus ... y:) = y1y2... Y+ = y, then (yruiya ... y)x is de-
termined by y and (u1)g—2, - .., (ut)g—2. (Note that here y contains the first and last



(or unique) appearances of the letters. So each letter can appear at most twice in y.
If a letter appears just once, then it can’t appear elsewhere. If a letter appears twice
n Yy, say at positions y;,y; (with i < j), then it can appear in w;, Uit1, . .. yUj—1,
but can’t appear anywhere else.)

We give a proof of this statement in the spirit of [5].

Proof. Let us suppose that z = 212023 is a word of length at most k, where the first
letter of z is z1, the last letter of z is z3 (and z2 is a word of length at most k — 2).
Let y, be the first appearance of the letter z; in y and yg the last appearance
of the letter z3 in y. Clearly, z € (yruayaus...y)r if and only if @ < S and
z2 € (UaYat1---Us—1)k—2. Therefore, the set of the at most k-letter subwords of
Y1U1Yausg - . . Y is determined by y and (u1)g—2, ..., (Ut)k—2- O

Now we concentrate on y = (pwq)’. The word y is going to be defined with the
help of the equation pwq ~y, r. At first we are going to characterize the possible s’
words if s ~y, 7.

For a € ¢(r) let

R(a) = R’j_l(a) = a_l(r)k ={w|aw <r and |w| <k -1}

and
L(a) = LF"Ya) = (rra ™ = {w|wa < 7 and |w| < k — 1}.

The sets RE=1(a) and L¥~1(a) are determined by (7). Since, the set R¥~1(a) can
be obtained by taking all the words in (r); starting with the letter a and deleting
their first letter, namely, a. Similarly, L¥~!(a) can be obtained by taking all the
words in () ending with letter a and deleting their last letter, namely, a.

A letter a occurs exactly once in r, or equivalently in 7/, if and only if aa is not
a subword of . Let a = b, if RF™1(a) = RF1(b) for a,b € ¢(r) which occur at
least twice in w. Clearly, ~ is an equivalence relation on a subset of the set ¢(r).
For a letter a € ¢(r) which occurs at least twice in r the ~ class of a is called the
R-block of a. The L-blocks are defined dually. If a € ¢(r) occurs exactly once in
r, then {a} is called a U-block. The R-blocks, the L-blocks and the U-blocks are
called blocks. The set of the blocks of 7' depends only on (r);. Moreover, it is
going to be shown that the elements of each block are consecutive letters in r’ and
the order of the blocks in r’ is determined by (r), as well. Therefore, the word
r’ is determined by (r); up to the order of the letters within the R-blocks and the
L-blocks. Accordingly, for each 1 < ¢ <t the block of the letter y; is determined.

Proposition 2. The first (last) appearences of the letters of an R-block (or L-block)
are consecutive letters of . The order of the blocks in v’ is uniquely determined by

(7)k-



Proof. This proposition is a straightforward consequence of the following observa-
tions:

(i) For a,b € c(r) let y; be the first appearance of the letter ¢ in v’ and y; the
last appearance of the letter b in 7/. Then i < j if and only if ab € (),

(ii) For a,b € ¢(r) let y; be the first appearance of the letter a in 7’ and y; the
first appearance of the letter b in r’. If RF=1(b) C RF~1(a), then i < j.

(iii) For a,b € ¢(r) let y; be the last appearance of the letter a in 7’ and y; the
last appearance of the letter b in 7. If LE=1(a) C L*~1(b), then i < j.

O

Therefore, the length of the word (pwq)’ = y = y1y2...y:, the block of each
y; and its type (R-, L- or U-block) are determined by (r);. Moreover, each block
contains consecutive letters of y, so up to the orders of the letters within the blocks
the word y is determined. Now, our aim is to find which part of y = (pwq)’ belongs
to p, w, g, respectively. In order to do this the content of w is investigated.

Clearly, c¢(w) C ¢(r). Let C contain those letters a for which there exists a
subword viavs of 7 of length at most £ such that via £ p and avy £ q. We claim
that for any solution w we have C' C ¢(w). Furthermore, by keeping only such
letters of a solution w that are in C' we still obtain a solution.

Proposition 3. Let
C ={a | v, vz : viavy <1, |viavs| < k,via £ p,avs £ g}

If pwq ~y r, then C C c(w). Moreover, if the word we is obtained from w by
keeping only the letters of C, then pwcoq ~g 7.

Proof. Let us assume that a € C. Then there exist words vy, vy such that viave €
(r)k = (pwq)x and via £ p, ave £ q. Let us choose a certain occurence of viavy
in the word pwq. The letter a in the middle of vyavy can not belong to p, since
it would mean that via < p. Similarly, the letter a can not belong to ¢, neither.
Therefore, a € ¢(w), thus C' C ¢(w) is proved.

To prove that we solves the equation it is enough to show that if pwq ~p r and
a € c¢(w) \ C, then by deleting one appearance of a from w we still obtain a word
w* satisfying pw*q ~ r. By this, the appearances of the letters in ¢(r) \ C can be
deleted from w one by one. Clearly, (pw*q); C (pwq)r = (r)k, so it suffices to prove
that all subwords of (r); = (pwq)i are subwords of pw*q, as well. So let us assume
that v < r for a word v of length at most k. Only a single letter (a) was deleted
from w, hence v can be written as v = viavy and w can be written as w = wiaw-
such that v; < pw; and vy < weq. As a ¢ C either via < p or avy < g. We may
assume that via < p, the other case can be handled similarly. Now, via < p and
vg < waq, therefore v = viavy < pwiweq = pw*q. O



It is obtained that each element of C' must appear in each solution w of the
equation pwq ~j r. Moreover, any letter not contained in C can be deleted from
any solution w, and we still obtain a solution. As a consequence, from now on, it is
assumed that c(w) = C. If pwq ~y, r is solvable (in w), then there is a solution for
which ¢(w) = C holds, as well.

Now, we are able to decide which part of (pwq)’ = y192 - . . y+ belongs to p,w, g,
respectively. Firstly, if a = y; is a unique appearance in r, then we can mark it in
porq (if a € ¢(p) or a € ¢(q)), otherwise (that is, if a ¢ ¢(p) U ¢(q)) it belongs to
c(w). As the order of the blocks is determined, the index i is also determined by
the letter a. Secondly, suppose that a = y; is a first appearance. If a € ¢(p), then
we can mark it in p: It is the first appearance of the letter a in p. If a ¢ ¢(p), but
a € C, then the first appearance of a belongs to w. Finally, if a € ¢(r) \ (¢(p) U C),
then the first appearance of a belongs to ¢, and we can find it in ¢: It is the first
appearance of the letter a in q. When a = y; is a final appearance, then the place
of y; can be found in pwq dually to the previously observed case.

Therefore, for each letter it is determined which part of pwq contains the first and
final appearance of it. As p and ¢ are given words, these appearances can be marked
in them, and consequently the order of the letters of y = (pwq)’ is determined in
these two parts. We also know which part of y belongs to w, but here — up to now
— only the order of the blocks is known. Let y1ys ...y; be the part contained in p,
Yi+1Yit2 - - - Y; be the part contained in w and y;1y;42 ... y: be the part contained
in g. The letters of (pwq)’ = y divide the words p and ¢ into several parts:

P =Y1u1yz2 ... Y1

q = Uj2Yj+1Uj+1Yj+2 - - - Yt
Here, all words are determined by now, and we are looking for w in the following
form:

W = Ui 2Yi+1Ui41 - - - YjUj1-
With these notions, pwq = y1u1y2us . . . ¢, Where u; = u; 1u;2 and u; = uj 1 2.
However, in w only the blocks of y;11,...,y; are determined yet. At first an appro-
priate choice for the order of these letters is going to be given, and after that the
gaps between them are going to be filled in, appropriate u; words are going to be
found.

Let us summarize the steps that we have done until now:

Step 1. Find the blocks of (7). Determine the order of the blocks in y. Determine C
and which part of y is contained in p,w, q, respectively.

Now we continue with finding a good ordering of the letters for each block. Let
B = {b1,ba,...,b,} be a block. If it is a U-block, then its size is 1 and there is
only one ordering. Let us assume that B is an R-block. (The dual case when B



is an L-block can be handled similarly.) In this case RF=1(by) = RF1(by) = -+ =
RE=1(b,) =: R. If the block B has no elements in w, then the order of the elements
of this block is determined by p and ¢. So it can be assumed that at least one
element of B is contained in w. There are four cases:

(i) The whole block B belongs to w.

)
(ii) Some part of B belongs to p and some part of it to w.
(iii) Some part of B belongs to w and some part of it to g.
(iv) B has elements in p,w and ¢, as well.

We deal with these four cases simultaneously. The letters of B are consecutive
letters in ¥y = y1y2...y:. Let us assume that for a solution w the order of the
elements of B in the R-block contained in y is by, bs, ..., b,. Note that this order is
not necessarily uniquely determiend by (p)g, (¢)r and (r)g. Our aim is to find an
appropriate ordering in a canonical way.

Let us write pwq as

pwq = zgb121baza . .. 2y _1by 2y,

where the indicated appearances of bq,bs,...,b, are all first (that is, left-most)
appearances. Let us assume that by, b2,...,b4—1 belong to p and bq,bat1,---,b3
belong to w, finally bgi1,...,b, belong to ¢. In cases (i) and (iii), we have o =

1; and in cases (i) and (ii), § = v holds. Here p = zpb121...ba—12a-11, W =
Za—1,2b0%0 ... bgzs1 and q = 23208412841 - . - by2y, Where 24112412 = 2q—1 and
ZB8,12B8,2 = Z3-
As the next step we prove that if w is a solution, then by replacing 2412, 2oy Za+1, - - -, 28-1, 28,1
by the empty word, the obtained word w? still satisfies pwPq ~, . Let us use the
notions 2P = 2 ifl € {1,2,...,a—2,8+1,8+2,...,v—1} and 22 = 25+1 ==
zg_l = empty word and 28 | = 2, 1 1, ZBB = 23,2.

Proposition 4. Let us assume that B is an R-block and pwq ~y r. Let w® be the
word obtained from w in such a way that every letter between two first appearances
from the block B belonging to w, are deleted. Then pwBq ~y, 7.

Proof. We use the previously introduced notions. Clearly, pw®q can be written as
pwBq = 20b128 ... 2B |b,2,, where for each 1 <[ < v—1 we have le < 2. Aspw¥Byq
is obtained from pwq by deleting some letters, (pw®q), C (pwq)x. Now we show
that (pwPq), 2 (pwq)r also holds. Let u € (pwq)x and let us write u as u = ujus,
where u; is the first letter of u, and consequently the length of usy is at most k — 1.
The word u might appear more than once in pwg, let us choose a certain occurence
of it. It can be supposed that the first letter of u, that is, u; is a first appearance
in pwq. If this preceeds the first appearances of the letters from B, then in pwq



the part z1bs...z,_1b,2z, contains at most k — 1 letters of u. B is an R-block, so
(z1bg ... zy—1by2zy)k—1 = R(b1) = R(by) = (2y)k—1, so this part is contained in z, in
pwPq, as well. Since zob; has not changed, we obtained that u € (pw?q), holds. If
wp is in B, then us € (z1ba...by2y)k—1 = R(b1) = R(b,) = (24)k—1. Since z, is at
the end of pw®q, again we have u € (pw®q). Finally, if u; is a first appearance
after the R-block B, then u < z,, so u € (prq)k. Therefore, we proved that
pwBq ~p pwg. O

So we can suppose that those elements of B that belong to w are consecutive
letters in w. Now, let us determine which permutations of by, bay1,...,bg give a
solution, that is, which choice of

pw™q = 2ob1 20228 ... ba_lzf_lbﬁ(a)bﬂ(aﬂ) . bﬁ(ﬁ)ngﬁﬂ e zf_lbvzv

we have
pw™q ~peer pwP (g 7).

For the simplicity of the notions let us extend 7 to a permutation of the numbers
{1,2,...,v} in such a way that 1,2,...,a—1,5+1,...,v are all fixed points of the
extended permutation, which is also denoted by .

Let us call a permutation 7 good if the rearranged word w™ still solves the equa-
tion. We are going to show that there are two cases: either every = is good, or 7 is
good if and only if by = by (y).

Lemma 5. We claim that a permutation 7 is good if and only if

(Z{Bbﬂ.(z)zf ce bw(a—1)25_1bn(a)bw(a+1) cee bw(B)Zngr(,H—i-l) ce ZUB—lbﬂ(’U)Z'I})k’—l =
= (Zv)k—1~
Proof. If 7 is good, then Rﬁ;}gq(bﬁ(l)) = Rg,;éq(b,,(v)), so the condition is necessary.
To prove that it is sufficient we have to show that
(200128 ba ... 25 1byz)k = (20br(1) 20 br(2) - - - 22 1br(0) 20 k-
Clearly, it is enough to prove that
(bllebz e zf_lb@zv)k = (bﬂ(l)leb,T(g) . -25—1b7r(v)zv)k-

Let u be a word of length at most k. Let u = wjus, where uy is the first let-
ter of u, and consequently the length of the word us is at most k& — 1. At first
assume that u; € c(2P28...28 YU B. If u < b12Pby... 28 |byz,, then uy €
(28ba ... 28 1byzo)k—1 = R(b1) = (20)k—1- If u < br(1)2Pbr() - .. 251 br(v) 20, then
Uy € (lebﬁ(g)ZQB...zfﬁlbﬂ(v)zv)k,l = (2p)r—1. Conversely, if ug € (zy)r—1, then
clearly u < blZleQ o zf_lbvzv and u < bﬂ(l)lebﬂ(g) .. zf_lbﬂ(v)zv. Therefore,

U= Uiy < bllebg e zf_lbvzv < up < z,

< u=ujuz < bﬂ.(l)Zleﬂ.(g) . zf_lbﬂ(v)zq,,



so in this case the statement is true. Finally, if u1 ¢ (2828 ...25 ) U B, then
clearly

u < blzfgbg . zf_lbvzv < u<z, <= u< bﬂ(l)leb,r(g) - zf_lbﬂ(v)zv.
So, it has been shown that 7 is good if and only if

(ZleTr(2)ZQB s Z’UBflbﬂ'(U)Z’U)kfl = (Zv)kfb

Now we prove that only 7(1) determines whether 7 is good, or not:
Lemma 6. If w(1) =1, then 7 is good.
Proof. Let us suppose that
U= UL ... U1 < z{gbﬂ(g)zQB ... zf_lbﬁ(v)zv.

It can be supposed that u; is a first appearance (in this word) and ug_; is a final
(or unique) appearance. As B is an R-block, B C ¢(z,). Moreover, since the letters
of B are consecutive in y = (pwgq)’, there are no final (or unique) appearances in
2B 2B ... 2B |, that is, all of the letters in them appear in z,, as well. Hence,
Up—1 < 2,. Let i be minimal such that u;...up_1 < z,. If i > 1, then u;_1 €
c(2Pbr(a) . 28 b)) C c(2Pba ... 2B 1by), s0 wi—yu; .. up—1 € R(b1) = R(by) =
(2y)k—1, which contradicts the minimality of ¢. Hence, i = 1 and u < z, holds.
Therefore, Lemma 5 implies that 7 is good. O

We obtained that if b1, bs,..., b, is a good ordering of the elements of the block
B, then all of the orderings where 7(1) = 1 are also good. With other words, only
the first letter of the block plays a role. If b; belongs to p, all choices for w are
appropriate, since if the equation pwq ~j r is solvable, then there exists at least
one good choice. Therefore, for instance, m can be the lexicographical order on
{a,a+1,...,8}. From now on assume that B has no elements in p, that is, we
deal with the case (i) or (iii).

Lemma 7. If not all permutations m are good, then there is only one choice for
b1y with which 7 is good. This unique good choice for by is the letter from B
which first appearance is the latest in the ~p_1 normal form of z,.

Proof. Since the equation pwq ~y r is solvable, there exists at least one good choice
for the first element of the block B: b;. Now suppose that 7 is not good, that is,
the value of 7(1) is not appropriate. According to Lemma 5 there exists a word
U= UUz ... Up—1 < leb,r@)zQB . zf_lbﬂ(v)zv for which u € z,. Let ¢ be minimal
such that w;...up_1 < 2z,. If uj_y € c(2Pby...28 |b,), then w;_ju;...up_q €
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R(b1) = R = (zy)k—1, which is a contradiction. Therefore, u;—1 = by. If there would
be another good starting element in B (other than b, ), then with a similar reasoning
it would yield that u;_; would have to be that element, which is also a contradiction.
Hence, if not all starting elements are good, then there is only one good starting
element, which is now b;. Our aim is to find a good ordering in the case when
there is only one appropriate starting letter. Using the previous notions, it follows

that byu;...ux—1 £ zy, but clearly bow; ... ug_1,b3U; ... Ug_1,...,bpU;i.. . Up_1 €
R = (zy)k—1, therefore in z, the first appearance of the letter by is after the first
appearances of by, b3, . .., b,. Hence, the unique appropriate choice b; for the starting

element b (1) can be obtained in the following way:
e Take the ~j_1 normal form of z,.
e Find the first appearances of the letters in B within this normal form.

e Then b; is the one which has the latest (that is, the right-most) first appear-
ance.

O

Hence, we can set by (1) := b if b; does not belong to ¢g. Note that (z,)r—1 = R is
determined by p, ¢, r, so we managed to find a canonical starting letter of the block
B. The order of the other elements of B is arbitrary, for instance, take the lexico-
graphical order. If b; belongs to g, then by (1) # b;, meaning that all permutations
7 are good, so we can take the lexicographical order on {a, 4+ 1,...,5}.

Hereafter, for finding a canonical solution for the equation pwq ~j r the next
step is the following:

Step 2. For every block B determine a good ordering m of the elements of B in y =
(pwq)".

Example 8. We illustrate with an example that it can indeed happen that within a
block B there is just one good choice for br1y. Let k = 3 and w = abcbcbea, then
a, b, c are within the same R-block, since

R(a) = R(b) = R(c) = {empty word, a,b,c,ba,bb,bc, ca, cb, cc}.
Lemma 7 claims that to determine the starting element of this R-block we have to:
e take the ~o normal form of bcbea, which is bebea,

e find the first appearances of a,b,c: bebea (marked bold),

e then the unique appropriate starting letter is the one which has the latest (that
is, the right-most) first appearance, that is: a.
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If one would try to find another word in the ~ equivalence class of w in which the
starting letter of this R-block is b (or c), then it would imply that aa € R(b) (or
aa € R(c)), leading to a contradiction.

Therefore, a well-defined y = (pwq)’ is obtained and in

W= Ui 2Yi+1Ui41 - - - YjU5 1

all the letters y;11,¥i42,...,y; are chosen in an appropriate way. It only remains
to find appropriate u; 2, Uit1, ..., u;,1 subwords. Note that for £ = 2 this last part
is not needed, since pwq ~3 (pwq)’.

Now we know that y = y1y2...y: satisfies that w can be chosen in such a way
that

pWq = YyrurYy2uUz ... Y¢ ~p Ty

and here in p = y1u1y2 ... Yiu;,1 and ¢ = U 2Yj+1Uj41Yj+2 - - - Y every u; subword
is known, so the words that should be defined are all in

W = Ui 2Yi41Ui41 - - - Y U5 1,

namely, U3, 2y Uid1y - Uj—1,Uj1- (Clearly, Ui = Ui 1U;5.2 and U; = Uj,luj'g.)

According to Proposition 1 the words y = (pwq)’ and (u1)k—2,. .., (us—1)kr—2
together determine (pwq)y, and our aim is to define uy, ..., u;—1 in such a way that
for every first appearance y, and last appearance y, (where a < b) the following
holds (note that we know that an appropriate choice exists):

(WaWYat1 - --Up—1)k—2 = {m : Yamyp € (1)} =2 My, 4, (7). (1)

Let rg be the subword of r containing every letter of r» between the first appearance
of y, and the last appearance of y, (the first y, and the last y; is not included).
Then (ro)r—2 = My, 4, (7).

At first we determine an order in which the words (u;)r_2 are going to be defined.
For 1 <1 <t—1 let n; be the total number of first appearances in {y;11,...,9:}
and last appearances in {y1,...,y;}. We define the u; words in increasing order
according to n;. Suppose that for some [ the words u,, for which n,, < n; are
already defined. We show that now w; is definable, as well. Let o < [ be maximal
such that y, is a first appearance and [4+1 <  be minimal such that yz is a last ap-

pearance. Since Ya+1,Ya+2,- -,y are all last appearances and yi41, Yi+2, - - -, Ys—1
are all first appearances, max(na, Mat1s---, =1, Mit1, Rit2;s---,NG—1) < Ny, SO
Ugy Uat1s -y Ul—1, Ui+1, Ul+2, - - -, ug—1 are already defined (in an appropriate way).
Let Po = UaYa+1Ua+1---YI, G0 = Yi41U4+1---UB—1 and (To)k_g = Mymyﬂ =

{m | yamys € (r)r}. The word u; has to satisfy the equation (pouigo)r—2 =

(ro)k—2, so let us choose u; as the canonically defined solution of this equation:

—(po,q0,70)
l

u =U =T . Now, we show that for any appropriate choice of the words
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Um, that is, for any choice for which all the equations of the form (1) hold if we
replace u; by the previously defined %;, they will still hold. It means that by setting
u; to be u; we can not make a ”mistake”.

When we check the equation My, ,, = (UeYat1 - - - Up—1)k—2 for some first appear-
ance y, and last appearance y, (satisfying a < b), then the choice of u; only plays a
role if @ <1 < b. This yields a < « and 8 < b. In the special case when a = o and
I = B, according to the definition of &, we have (UaYat1 .. Us—1)k—2 = My, y,-
Here, My, ,, is determined by (pwq)r = (r)x, therefore (uaYat1 ... us—1)x—2 is also
determined by (r)g. Using this observation we obtain that for arbitrary a < « and
B < b the right hand side of

(Uaya+1 cee Ub—l)k—z = (Uaya+1 cee yoz)k72(uaya+l cee Uﬁfl)k72(yﬁuﬁ cee Ub71)k72,

does not depend on the choice of wu;, the only restriction for wu; is that it has to
satisfy (UaYot1 .- Us—1)k—2 = M,, ;- Hence, we can set u; := uy.

There are two special cases: [ =4 and [ = j. When [ = 7, then a slight modifica-
tion is needed in the definition of py: In this case pg = UaYa+1Ua+1 - - - Yiti,1, that
is, a word u, 1 (the beginning of ;) has to be written at the end of py, since ;1 is
determined by p. Similarly, when [ = j, the definition of gy should be modified in
the following way: qo = u;2yj+1Uj+1 - .- ug—1. With these modifications the above
arguments are valid in these two special cases, as well.

Therefore, one by one the words u; can be defined with the help of a canonical
form of a solution of the equations of the form (pouqo)x—2 = (ro)k—2, and finally
the normal form w = y1Uy2Us . . . Up_1%¢ iS obtained.

Thus we arrived at the final step:

Step 3. Find appropriate u; words.
We summarize the results of this section in the following proposition:

Proposition 9. Let k € N. Let p,q,7,p',¢,v" be words and suppose that the
equation pwq ~y, r has a solution. Then pw P9 q ~op r. If p ~op ', q ~p ¢ 17 ~p 77,
then wP-ar) = p#"d"r") Hence, w'"%") is a canonical form of a solution for the
equation pwq ~g T.

Note that w o4, W97 is possible even if pwq ~, 7; and that the latter condition
implies pwq ~j pwP97)q.

As a corollary a normal form is obtained for ~. Let 7 be the canonical solution
of the equation w ~yp r, that is, when p and ¢ are the empty word. Then 7 is a
normal form for r.

Corollary 10. Let k € N. Letr and s be two words. Then r ~y, 7, moreover r ~y s
yields that 7 = §. Hence, 7 is a normal form of r.

Finally, it is going to be shown that the length of this normal form is the least
possible.
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Theorem 11. Let k € N. The length of the canonical solution w = wP9" of the
equation pwq ~ T is minimal.

Proof. We prove the statement by induction on k. For k = 1 the length of w = wP%"
is the cardinality of the set ¢(r) \ (¢(p) Uc(q)). Moreover, a word w is a solution of
the equation pwq ~; r if and only if ¢(r) \ (e(p) Uc(q)) C ¢(w) C ¢(r). Therefore,
the length of w is minimal.

For k = 2 let w* be a solution of pwq ~5 r having minimal length. According to
Proposition 3, C' C c(w*), furthermore w¢, is also a solution, so by the minimality
of |[w*| and w} < w* it follows that c(w*) = C = c¢(w). It has been also shown
that if w is a solution of pwq ~5 7, then the content of w determines which part of
(pwq)’ belongs to p,w, q, respectively. Hence, if from the word y = (pwq)’ exactly
Yi+1Yi+2 - - - y; is the part which is contained in w, then for the word y* = (pw*q)’
it also holds that exactly the part y7\ ;7o ...y; is contained in w*. The length of
w is j — i and the length of w* is at least j — ¢, so w has minimal length.

Now assume that & > 3 and that the statement is proved up to k — 1. Let w*
be a solution of pwq ~j r of minimal length. As pw*q ~p pwq ~p r, the length
of the words y = (pwq)’ and y* = pw*q is the same, moreover the multiset of the
letters of y and y*, the blocks and the order of the blocks is the same, as well.
According to Proposition 3, ¢(w) = C C c¢(w*), moreover pwgg ~p, r also holds
for the word w} < w*, so the minimality of |w*| implies that w§ = w*, that is,
c(w*) = C = c¢(w). Since c(w*) determines which part of (pw*q)’ = y* belongs to
p,w*, q respectively, the multiset of the letters of y contained in w and the letters
of y* contained in w* is the same. Therefore, w and w* can be written as

W = Ui 2Yit1Uit1 - - - YjU5 1,

k% ok * * ok
W = Ui oYip1 Uity Y;Uj -

Let i+ 1 <1 < j —1 be arbitrary, it is going to be shown that |u;| > |u;|. Let us
recall that wu; satisfies the equation pou;qg ~r_o ro, Where

Po = UaYa+1Ua+1 - - - Yis

q0 = Yi41Ui41 - - - UB—1

and
(T0)k—2 = My, 4, = {m | yamys € (1)1}

If we manage to show that (pg)x—2, (q0)k—2, (ro)k—2 are determined by p, ¢, 7, then
by the induction hypothesis applied for k — 2 it follows that |u;| < |uf]|, since
Do ~k—2 D3>0 ~k—2 40sT0 ~k—2 T3. At first we show that if a = y, is a first
(or unique) appearance and b = ys is a final (or unique) appearance, then M,, =
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My ys; = {m | amb € ()i} is determined by the R-block (or U-block) of y, = a
and the L-block (or U-block) of y5 = b. From the equations

{m | mbe RS (a)} = My = {m | am € LE (0),

it follows that Mg, is determined by b and the R-block of a, moreover, by a
and the L-block of b, as well. Hence, M,, depends only on the R-block of a
and the L-block of b. Therefore, (r9)r—2 is determined, furthermore, M, ,, =
(UaYatr1Uatl - Ui—1)k—2 = (P1)k—2and My, ., = (w1yi42 - ug—1)k—2 = (q1)r—2
are determined, as well. With the help of the words p; and ¢; the words pg, gy can
be expressed in the following way: po = p1y; and qo = yi+1q1- Note that if y;41
is a final (or unique) appearance, then ¢q is the empty word. Let us assume that
Yi+1 is a first appearance. If y; 41 is not determined uniquely, then the size of its
R-block is at least 2, and either y;41 is not the first element of this block or y;41
is the first element of this block, but for this block any permutation 7 is appropri-
ate. If y;41 is not the first element of this block, then y; is in the same R-block,
therefore u; = 0, so |u;| < |uf|. Finally, assume that ;41 is the first element from
its R-block, but any 7 is appropriate for this block. We claim that in this case
40 = Yi1+1¢1 ~k—2 q1, SO (qo)k—2 is determined, as well. Clearly, (¢1)r—2 € (qo)k—2-
Assume that z = 2120 € (go)r—2, where 27 is the first letter of z. If z; # yi41,
then z € (q1)k—2 trivially holds. Assume that z; = y;1. Clearly, 2o € (¢1)k—3-
As yg is a final (or unique) appearance, the whole R-block of y;41 is contained
in the set yi4+1,%i42,...,yYs—1. For any y in the R-block of y;41, we have that
zoys € R(y). If y, is the last letter from the R-block of y; 41, then zoys € R(yx).
Then for any y # y41 in the R-block of y;11 we have yzoys € R(yi+1). But we
know that in this block every ordering of the block-elements would be appropri-
ate, S0 Y4122y € R(yi+1) also holds. As yg is a final appearance, it follows that
2z =1Y1+122 € (q1)k—2. The dual case of py can be done similarly. Hence, we obtained
that |w;| < |uj|, since u; is a shortest solution of pou;qo ~ 7 by induction. There
are two special cases: [ = ¢ and [ = j. In these two special cases the definition
of pp and g is slightly different from the previous definition, but ;1 and u;o are
determined (by p, ¢ and r), so this does not make any difference. O]

Remark 12. Note that the normal form WP ®" is in fact short-lex assuming that
we always take the lexicographical order in Step 2 when we are looking for a good
permutation m within a block (of course, possibly with the exception of the first
element of the block — that is determined with the help of Lemma 7). With this
choice, the ”block-part” of w (that is, y) is short-lex and for the inner words u; we
might apply induction to see that these are also short-lex.

As a consequence, the length of the ~j normal form is also minimal for any k
and any word.
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Corollary 13. Let k € N. For any word r, the length of the ~ normal form of r,
denoted by 7, has minimal length.

Now an upper bound will be given for the maximal possible length of the canon-
ical (so shortest) solution of the equation pwq ~j, r. This will also provide us an
upper bound for the index of ~y.

Proposition 14. Let k € N. Let l;(n) be the mazimal possible length of a canonical
solution @ = WP if |c(r)| < n. Then l(n) = O (n!*/?1). Moreover, max{|r| :
le(r)] < n} = Ox(nlF/21).

Proof. The statement is going to be proved by induction on k. Clearly, l;(n) = n
and ly(n) = 2n. Let k > 3 and assume that the statement is proved up to k — 1.
According to the definition of w, we have that |w| < 2n + (2n — 1)l;_q, since
ly| =t < 2n, and uy,ug, ..., us—1 have length at most lx_o(n). By the induction
hypothesis I, = Oy (nl*/21).

Now, a construction is going to be presented to show that the length of 7 can
be Q(n/*/21). This construction completes the proof. Let ng = [n/2]. Let u be a
word such that c¢(u) C {z1,22,...,2Zn,} and |G| = Qk_g(ng(kfz)/ﬂ). (According to
the induction such u exists.) Let

T = Tnog4+1UTno4+1Tng+2UTne42 -+ - TnUTp .

Clearly, |c(r)| < n and Zpy41%Tng+1Tng+2Tng42 - - - TnZn < (7). Forng+1<i<n
let w; be the word formed by the letters between the first and last appearance of x;
in 7. As w; ~p_o u, the length of the word w; is at least |u|. Therefore, || > ng|ul,
so |7 = Qp(nl*/21).

O]

As a corollary, we also get an upper bound for the number of ~j equivalence
classes, which is denoted by fx(n) (where n is the size of the alphabet). If each
equivalence class contains a word of length at most Oy (n!*/21), then the number of
equivalence classes is at most n?®*"*") Hence, log fi(n) = Ox((n*/?1)logn). In
[4] we proved that log fr(n) = @k(n%) if k is odd and log f,(n) = ©x(n? logn)
if k is even. So if k is even the obtained upper bound for log f(n) is tight up to a
constant factor. If k is odd, then we have an additional logn factor, meaning that
the shortest representation of some words are logn times bigger than expected to
be based on only the number of different equivalence classes.

4. Algorithm

In this section an algorithm is presented for finding the canonical solution w of the
equation pwq ~p r. Let us introduce the notion L for the length of pgr, that is,
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L = |pgr|, and let n be the size of the alphabet. The input consists of p,q,r and
k, while the output is the normal form w?%". For simplicity we assume that it is
possible to read and compare two letters in O(1) steps. The running time of the
algorithm will be Ox((L + n)n*). For each step of the method described in the
previous section we are going to present an algorithm with which that step can be
done.

If k = 1, then @ is the word containing the letters from the set C' = ¢(r) \ (¢(p) U
¢(q)) exactly once in alpabetical order. The set C' can be obtained in O(L) time,
and with bin sort the alphabetical order can be determined in O(L + n) time.

Let £ > 2 and assume that the algorithm with the desired running time has been
found up to k — 1.

We start with Step 1. (See Section 3.) The content ¢(r) can be determined in
O(|r|) time. Moreover, it can be also checked which letters appear at least twice,
so the multiset {y1,¥y2,...,y:} of the letters of y is determined, and also the U-
blocks are found. For each letter a which appears at least twice in r, let r, be the
word obtained from 7 by deleting all the letters preceeding the first appearance of
a in r and the first a. Clearly, a; and ay are in the same R-block if and only if
Tay ~k—1 Tay, Which can be checked with the help of the ~;_; normal form of the
words 74, and rg,:

a1 and az are in the same R-block <= ffjj*” = ffj;*l)

This way the R-blocks are determined, for instance the R-block of a contains the
letters b for which 7, = 7. The L-blocks can be determined dually. By induction,
for a letter a the word 7, can be determined in O((L +n)n*~!) time, therefore the
running time of determining all the blocks is O((L + n)n*).

By Proposition 2, the elements of each block are consecutive letters in y, and the
order of the blocks is determined by r. The order can be obtained by marking the
first and last appearances of the letters in r, and taking the corresponding order in
y. The running time of this is O(|r|). Now, the blocks and the order of them is
determined. We continue with finding C, the content of .

The set C' was defined as

C ={a | Fvy,ve : viavy < 1, |viavs| < kyvia £ p,avy £ q}.

For each letter a € ¢(r) we have to decide whether there exist words v; and v9
having total length at most k£ — 1 such that via £ p and ave £ ¢, but viave < r.
In order to do this, we check for all words w of length at most k, whether they can
be written as w = viavs in such a way that the above conditions hold. Similarly
as before, let g, be the word obtained from ¢ by deleting all the letters preceeding
the first appearance of a in ¢ including the first a. Moreover, dually, let p® be the
word obtained from p by deleting all the letters after the last appearance of a in p
including the last a. Note that g, and p® can be determined in O(|p| + |q|) time.
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Clearly, via £ p if and only if v; £ p*, furthermore, ave £ ¢ if and only if vo £ q,.
Now, our goal is to decide for all words v of length at most k£ — 1 whether they can
be split into two parts: v = vyvs in such a way that viave < 7, but via £ p and
avy £ q. Let v = wiwy ... w,, where |w| =7 <k —1. In O(|p| + |g|) time we can
determine the smallest index o for which wiws ... ws £ p® and the largest index
for which wg ... w, £ qq.

Let r = rira... 7). Let us mark the first appearance of w; in r (from the left),
then after this letter the first appearance of wy and so on. For every 1 <i < |r| let
k(i) denote the number of marked letters in r17o...7;—1. With other words, r(7)
is the unique index for which wyws ... weiy < rire... 71, but wiws ... we)41 £
7179 ...7;—1. Dually, let us mark the last appearance of w, in r, then preceeding
this letter the last appearance of w,_1, and so on. Let A(¢) denote the number of
marked letters after in r;4q ... Tlr|- There exist words v; and vy such that

v =vivg, via £ p, avy £ q, viavy <7
if and only if there exists an index 1 < ¢ < |r| such that
ri=a, k(1) >a, Ni)>r—(8-1), k(i) + A@@) >

For a fixed letter ¢ and a word v of length at most k& — 1 this condition can be
checked in O(L + n) time. Hence, the set C' can be determined in O((L + n)n¥)
time, since there are n choices for a and O(n*~1) choices for v.

After finding C, deciding which part of y belongs to p, w and r is straightforward.

At Step 2 and 3 two cases are distinguished: k£ = 2 and k£ > 3. We start with
the case K = 2. In Step 2 an appropriate ordering was defined for each block B.
If B is a U-block, then it has only one element, and we are done. If between two
first appearances there is no final (or unique) appearance, then they are in the
same R-block. So the consecutive first appearances form R-blocks and clearly the
lexicographical order is appropriate. The L-blocks can be found similarly, and the
lexicographical order is also appropriate. Moreover, Step 3 is not needed when
k = 2, since (pwq)’ ~2 pwq. Hence, in the case k = 2 the overall running time is
O((L + n)n).

Now, let k£ > 3. We start with Step 2. In this step an appropriate ordering was
found for the elements of block B. If B is a U-block, then it has only one element,
and we are done. Let us assume that B is an R-block. (The dual case, when B
is an L-block can be handled similarly.) The order for B was determined with the
help of (zy)g—1, where (2,)g—1 = (r5)x—1 (here b € B is arbitrary). Therefore, by
taking the ~;_; normal form of at most 2n words determined by r, the order for
all of the blocks is determined. The running time of this is O((L + n)n*).

Finally, in Step 3 we have to solve at most 2n — 1 equations over ~j_5. By
induction the running time of this is at most 2n — 1 times O((L + n)n¥=2).

Therefore, the overall running time is at most O ((L + n)n*).
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Most probably this algorithm can be fastened. However, the (worst-case) running
time of such an algorithm is Q(L + n[k/ﬂ), since we have to read the words p, q,r
and the length of the solution is possibly Q(nrk/ﬂ ).
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