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Introduction

Braun-Blanquet is acknowledged as the father of vegeta-
tion science (Podani 2006). His most important work (Braun-
Blanquet 1932) has had lasting influence in the field work 
and the scientific thinking of the majority of the vegetation 
scientists all over the world. An enormous amount of vegeta-
tion data (see, e.g. Chytrý et al. 2016) has been collected ac-
cording to his protocols. Yet, the method has been criticized 
(Camiz 1993, Podani 2006), in particular for what concerns 
the phytosociological sampling, the coding, and the way data 
are being analysed in practice. Indeed, Braun-Blanquet pro-
tocols were conceived when the principles of statistics were 
neither sufficiently developed nor used in vegetation yet. 
At these times, multidimensional analysis methods were in 
theoretical development, with very limited applications due 
to technical difficulties resulting by non-automatic computa-
tions. Only starting the 1960’, the development of vegetation 
data analysis improved paralleling that of the available multi-
dimensional analysis programs.

A vegetation data table is basically a list of plant species 
observed in a series of plots, the relevés, with an estimation 
of both species abundance/cover and of sociability in the rel-
evé. The recording of abundance/cover is based on 7 ordered 
symbols (the Braun-Blanquet coding, in the following BBc), 

ranging from rare to 75-100% cover (see the first two col-
umns of Table 1), and the sociability is recorded according 
to a 5-level nominal scale. We focus on the first index, as the 
second received little attention so far.  Born when no idea 
of numerical automatic treatment existed, the problem of its 
transformation into measures was raised and several recoding 
schemes were suggested to fit the requirements of quantita-
tive treatment (see van der Maarel 1979, for a list): among 
the various, class midpoint, the van der Maarel (1966)’s abun-
dance/cover, and presence/absence (Table 1) will be consid-
ered in this work. In addition, data transformation was ap-
plied in a style analogous to that so diffused in biostatistics 
that the Koordinaten-Schweinerei appeared in Bräuer (1982) 
to denunciate this exaggeration. It deserves being observed 
that all recoding is based on researcher’s estimate of BBc, 
thus all suffer from its intrinsic limitation, its approximate 
estimation.

Braun-Blanquet’s protocols generated a large database 
of vegetation plots, an invaluable knowledge base that may 
not be neglected. Thus, the identification of the most suitable 
methodology to analyse these data is welcome. We remind 
here that the phytosociological sampling, as it is essentially 
descriptive of the different syntaxa, is not random: thus, it 
prevents any statistical inference. On the other side, his cov-
er-abundance scale has been used not only for phytosocio-
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logical purposes but also for the description of both randomly 
and systematically selected plots. Here we concentrate on it 
and the suitable data analysis methods, including its recoding. 
As it is conceived, the BBc is a scale character, because it is 
based on a rough estimate of a species cover percentage, with 
no constant difference between levels. Podani (2006) states 
very clearly that both this and its van der Maarel (1966) re-
coding are not measures but merely orders; thus, he argues 
that they deserve being treated by specific methods and he 
(Podani 2005) suggests an association coefficient (Podani 
1997) to be used with Non-Metric Multidimensional Scaling 
(commonly abbreviated as NMMDS: note that for brevity 
sake in the following, we shall write it as MDS). MDS was 
first introduced by Kruskal (1964a,b) as a tool to reduce di-
mensionality while minimizing the deviation from the origi-
nal order. 

This argument contrasts with the currently used multidi-
mensional analysis methods, such as Principal Component 
and Correspondence Analyses (in the following, PCA and 
CA, respectively, Benzécri 1982, Orlóci 1978, Legendre and 
Legendre 2012), which may use either quantitative data or 
frequencies. Indeed, MDS has been suggested long time ago 
in the literature (Orlóci 1978, Kenkel and Orlóci 1986) as bet-
ter performing with respect to the other methods, but these 
keep several advantages, such as i) they are easier to be found 
and used; ii) they do not need a pre-fixed dimension solu-
tion; and iii) they deal simultaneously with both species and 
relevés. In fact, in these methods based on eigenanalysis, the 
so-called transition formulas (Lebart et al. 1984, 2006) allow 
to deal with relevés and species at the same time, since the 
same meaning may be attributed to the factors influencing 
relevés and species, a property that does not exist in MDS, 
whose independent results for the two sets of objects are non-
comparable.

To understand the matter, we briefly remind here that spe-
cies and relevés may be represented in two separate geometri-
cal spaces. Both PCA and CA may deal simultaneously with 
both of them, but MDS may treat a set at a time. On the op-
posite, MDS may deal with any kind of data, provided a suit-
able association index is chosen, whereas PCA and CA may 

only deal with measures and frequencies, respectively, with 
presence/absence as a possible alternative for both and the 
Spearman’s rank correlation coefficient as an alternative for 
PCA in place of Pearson’s correlation. Based on this scheme, 
Podani (2006) severely criticized the application of both PCA 
or CA to BBc-based data, too often done without considering 
the caveats imposed by their nature. Such a criticism strongly 
contrasts with the fifty years and more of practice, in which 
attention of vegetation scientists was driven more to a good 
estimate of the position of both relevés and species on a sup-
posed environmental gradient revealed by the methods, than 
to observe the methods’ mode d’emploi and their limits.

It must be emphasized that this estimation is impossible 
through the use of these methods, since they belong to the 
exploratory analysis methods sensu Tukey (1977). In this 
framework estimations are impossible because no model is 
built and consequently neither errors nor their distributions 
may be obtained. Nevertheless, Detrended Correspondence 
Analysis (DCA, Hill and Gauch 1980) was introduced aiming 
at better estimating the main ecological gradient underlying 
a vegetation table. The method is still largely used, notwith-
standing its poor consistence: indeed, its artificial de-trend-
ing by blocks does not affect the first principal component, 
that is expected to be identical to that issued by CA, up to a 
rescaling of the extremes, but heavily biases the second one 
that this way loses any meaning (Camiz 2005). Strong inertia 
against the quest for alternative more suitable methods is still 
present: neither criticism (Camiz 1991, 1993, 1994, 2005) 
nor alternative methods based on more consistent rationale 
received due attention in literature. Yet, they do exist, both 
based on Gaussian distributions: Ihm and van Groenewoud 
(1975, 1984) propose an eigenvalues method to study seri-
ations, whereas Johnson and Goodall (1980) and Goodall 
and Johnson (1982) propose a maximum likelihood one for 
dealing with vegetation data, including the distribution of ab-
sences too.

Due to our aim, to concentrate the attention to the use of 
BBc and its transformations, in this paper we limit attention 
to the exploratory methods. They are the most used and best 

Table 1. The Braun-Blanquet (1932) abundance/cover coding, its meaning, the mean values, the van der Maarel (1966) recoding, the 
8- and 3-level ordinal scales, and presence/absence coding, considered in this paper.

Braun-Blanquet cover mean van der Maarel 8-level 3-level presence
coding meaning value recoding scale scale absence

void (0) absent 0 0 1 1 0

R (+) rare 0.01 1 2 2 1

+ <1% 0.1 2 3 2 1

1 1-5% 2.5 3 4 2 1

2 5-25% 17.5 5 5 2 1

3 25-50% 37.5 7 6 3 1

4 50-75% 62.5 8 7 3 1

5 75-100% 87.5 9 8 3 1
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known in the vegetation environment and thus it is in this 
framework that our examination will take place.

As expected, the Podani (2005, 2006) statements raised 
strong reactions, in particular from Ricotta and Avena (2006) 
who quoted some “topological distance”: a mathematical 
nonsense. Yet, they defend the current practice, because its re-
sults seem to correspond to the vegetation scientist’s thought. 
A better argument might be that the coding is a rough trans-
formation of a measure, say a way of conventionally measur-
ing species cover. This argument may be contrasted by the 
too high uncontrolled error introduced by the transformation, 
including the one due to the researcher’s error in the estima-
tion. As an alternative, a recent study by Wilson (2012) dis-
cusses the advantages to limit attention to presence/absence 
with respect to quantitative coding, an issue already proposed 
by Camiz (1994, 2002). Wilson claims that presence/absence 
is “quicker to collect, sufficient and may better represent the 
communities of the area”, and his practical and theoretical 
conclusions are in favour of its use.

Our present aim is to discuss how the BBc data tables 
may be analysed at their best, according to the limits set by 
the combination of coding, transformations, and exploratory 
ordination methods in search of a suitable way to unravel the 
intricacies between their uncontrolled use. In particular, we 
tried to understand how these different combinations may af-
fect the results, in order to check to what extent the discussion 
that took place among Podani (2006) and Ricotta and Avena 
(2006) may be solved. Eventually, we would aim at finding 
a univocal combination of recoding and scaling methods to 
suggest for a general use, at least as the first step of a study.

To understand the influence of data recoding and data 
analysis methods, we set in an exploratory framework; we 
dealt with two simulated and one real data tables - with one 
and two independent gradients and a real transect, respec-
tively - that we transformed to get 5 different recoding, and 
we ran five different methods: we considered metric meth-
ods, such as Principal Components, Simple and Multiple 
Correspondence Analyses (PCA, CA, and MCA, respectively, 
Benzécri 1982, Orlóci 1978, Lebart et al. 1984, Legendre and 
Legendre 2012), Detrended Correspondence Analysis (DCA, 
Hill and Gauch 1980), and Non-Metric Multidimensional 
Scaling (MDS, Kruskal 1964a,b, Orlóci 1978, Legendre and 
Legendre 2012), the latter through different association in-
dexes. PCA and CA are the methods most used by vegetation 
scientists - the latter through its variant DCA - while MDS 
was proved to give better results by Kenkel and Orlóci (1986) 
and was suggested by Podani (2005) to be used with a coef-
ficient suitable for scale data. We added MCA as a possible 
alternative to explore: in vegetation science it has been used 
only once by Romane (1972) and it might be suitable to deal 
with scale data. Indeed, in MCA the order is not taken into 
account, but its relation with the factors may be graphically 
inspected, and, in addition, the concurrent analysis of the so-
ciability coding is possible.

As our aim is to identify the main gradients underlying 
the vegetation table, we remind that they may correspond to 
either the factors themselves or the curvilinear pattern found 

on the factor spaces (the Guttman effect, arch, horseshoe, see 
Guttman 1953, Camiz 2005). In the following these methods 
are described and the comparison of the results obtained by 
the various combinations of coding and method are reported.

Materials and methods

2.1 The data

As said, in this work we dealt with two sets of simulated 
and one of real data. The simulated data were generated ac-
cording to Minchin (1987). The abundance y of a species in 
a given community unit according to an ecological gradient 
was modelled through the beta function

in which y depends on the position x of the unit on the 
gradient, normalized to range in the interval (0,1), and 
the two parameters α and γ control the shape of the func-
tion. Minchin (1987) generalizes the beta function to adapt 
it to the simulation of unimodal species response over any 
range of x along an environmental gradient in terms of abun-
dance y. This is based on α and γ, on the position x of each 
community, the position m where the species has its mode 
or maximum M, and the range r (niche breath) on the gra-
dient within which the abundance is larger than zero. In 
this generalized formulation, the abundance becomes:  

where the two parameters b and d depend only on α and γ as         

To simulate noise, random numbers were added to the 
so computed abundances y. For this task negative binomial 
distribution was adopted. It is widely used to model species 
abundances (White and Bennetts 1996, O’Hara and Kotze 
2010, Pillar 2013), because it generates data more similar to 
real community data, with a large number of zeroes (absenc-
es) when the expected abundances y are low. Considering a 
number ỹ of successes in independent trials with fixed prob-
ability of success p, a random value was extracted from the 
negative binomial distribution with a number of successes n 
= ỹ*p/(1–p). Both generalized beta function and negative bi-
nomial random extraction were coded in C++. The compiled 
versions of the programs are available at http://ecoqua.ecolo-
gia.ufrgs.br/arquivos/Software/DataSimulation.

The analysed data sets are the following:
1) A simulated coenocline. It is a table with the abundance of 
60 taxa in 30 simulated communities, based on one environ-
mental gradient. The position on the gradient of each commu-
nity xi , i = 1, . . . , 30, was a random number between 1 and 
100. For each species, the modal abundance M was a random 
number between zero and 80, the modal position m was a 
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is widely used to model species abundances (White and Bennetts, 1996;
O’Hara and Kotze, 2010; Pillar, 2013), because it generates data more

24/12/2017 Vegetation˙13.tex 5 / 33

Coding and analysis of vegetation data

(DCA, Hill and Gauch, 1980), and Non-Metric Multidimensional Scaling
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random number between zero and 100, the range was a ran-
dom number between 20 and 60, and the α and γ parameters 
were random numbers between 0.1 and 4. All these random 
numbers were extracted from the uniform distribution. To add 
noise, the probability p = 0.8 of success was considered in 
the procedure. The abundance functions yj, i = 1, . . . , 60 of 
the simulated taxa and the positions xi, i = 1, . . . , 30 of the 
simulated communities along the coenocline without noise 
are represented in Figure 1.
2)  A simulated coenoplane. It is a table with the abundance of 
60 taxa in 30 simulated communities, based on two environ-
mental gradients. All parameters were generated as before, 
separately for each gradient, and 30 simulated communities 
were built, by randomly pairing the values of both coeno-
clines. The position of the relevés on the coenoplane before 
the introduction of noise is reported in Figure 2.

3) A real data table with 27 relevés and 65 species of the 
vegetation observed in a study area situated in the valley of 
Saladillo river, around 10 km South of Sandford and Chabás, 
district of Caseros, in the Argentinian province of Santa Fe. 
Close to the river a Stipa hyalina Nees grassland is found (the 
so-called fl echillar), then high Spartina densifl ora Brongon 
pasturelands (espartillar), and further from the river, differ-
ent types of halophylous grasslands (Carnevale et al. 1987, 
Carnevale and Torres 1990). Along a transect perpendicular 
to the river, a quadrat of 4 sq.m. was delimited every 25 m. 
and all species present into the quadrat were identifi ed to-
gether with an estimate of cover/abundance of each according 
to BBc. Thus, we suppose that the sequential numbering of 
the relevés along the transect may be an reasonable approxi-
mation of both the hypothesized gradient and the rank. All 
original data tables are reported in Electronic Appendix A1.

2.2 The recoding

The simulated data (FR), that represent abundances, were 
recoded according to the rules described in Table 1. To trans-
form them to cover percentages, we divided each one by their 
sum in each relevé. The obtained relative abundance of each 
species was coded according to the corresponding interval of 
the Braun-Blanquet scale. Thus, the different adopted coding 
schemes are the following:
- FR: the abundances, resulting as above;
- BB: the midpoint of each Braun-Blanquet class;
- VDM: the van der Maarel (1966)’s recoding;
- N8: an 8-levels scale, identical to van der Maarel (1966)’s 
recoding, but in which, for technical reasons, the scale levels 
are relabeled from 1 = void(0) to 8 = 75 − 100%;
- N3: a 3-levels scale, obtained by aggregating the levels of 
N8, corresponding to 1 = void(0), 2 = rare to 25% (from 1 to 
5), 3 > 25% (from 6 to 8);
- PA: the presence/absence.

Figure 1. The abundance functions of the 60 taxa simulated along one gradient prior the introduction of noise and the position along 
the gradient of the 30 randomly simulated communities.

Figure 2. The position of the 30 relevés on the coenoplane issued 
by the two simulated gradients.
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Note that, as the real transect was originally sampled accord-
ing to Braun-Blanquet coding, no abundance data could be 
used in this case.

2.3 The ordination methods

Here we sketch briefly the main features of the consid-
ered exploratory methods.

Principal Component Analysis is the most known metric 
multidimensional scaling technique, based on both Singular 
Value Decomposition (SVD, Abdi 2007, Greenacre 2007) and 
Eckart and Young (1936) theorems; the principal components 
are orthogonal directions, linear combinations of the original 
characters, along which the inertia (that is, the sum of squared 
distances of units to their centroid, in our case the scatter-
ing of relevés) is maximum. As mean and variance are basic 
concepts to compute PCA, it may be applied only to quantita-
tive (measure or frequency) data, but is currently accepted for 
presence/absence data, by giving sense to a weighed average 
between 0 and 1, which is actually a proportion of presences. 
In our case, it may be applied safely only to the mean values 
of the code levels and on presence/absence. To apply it cor-
rectly to van der Maarel (1966)’s coding, one might consider 
it a conventional measure, thus accepting implicitly interme-
diate, continuous values. Note that, when PCA is applied on 
ranks, its results are identical to those obtained by performing 
PCA on the Spearman correlation matrix (Lebart et al. 1984, 
2006). Thus, as an alternative, the rank variant (in the follow-
ing indicated SPE-PCA) may be safely considered, with the 
drawback that the simultaneous treatment of the species is 
not possible.

Simple Correspondence Analysis may be defined as a 
generalized SVD of the ratios of the squared differences be-
tween observed and predicted values of a contingency data 
table and the predicted ones, under independence hypothesis 
(Benzécri 1982, Lebart et al. 1984, 2006, Greenacre 2007). It 
is suitable for frequencies so that, if one deals with the num-
ber of plants of a species present in a relevé, CA is the method 
to use. In practice, it is admitted for transformations of counts 
and for this reason it proved effective for both van der Maarel 
(1966) recoded (a rough transformation of frequencies) and 
presence/absence data.

Detrended Correspondence Analysis is an artificial ad-
justment of CA that aims at fixing the Guttman effect by re-
moving piecewise the arch effect from the second axis and 
by rescaling the extreme values (Oksanen et al. 2017). This 
way the interpretation is limited to the first dimension: for this 
reason the method is really inconsistent (Camiz 2005) and no 
more informative than CA. We included it in this study due to 
its large use in literature.

Multiple Correspondence Analysis (Benzécri 1982, 
Lebart et al. 1984, 2006, Greenacre 2007) is a generalization 
of CA to a set of nominal data. It consists in applying CA to 
an indicator table. It may be applied also to ordinal data, but 
the algorithm ignores the scale nature, that may be recovered 
the same in the graphics by joining the increasing levels posi-
tions with lines. In our case, it may be used for both 8- and 

3-levels scales and it may constitute an interesting alternative 
application, in particular because the sociability index might 
be taken into account in the same study, though it will not be 
considered in this one.

Non-Metric MultiDimensional Scaling (Kruskal 1964a,b) 
is a method aiming at reproducing at the best dissimilarities 
between items as Euclidean distances between points in a 
small predefined-dimensional space. Unlike the other methods 
that provide a global solution through SVD, MDS is based on 
the minimization of the stress (Kruskal and Carmone 1971) 
or any quadratic measure of the deviation from the expected 
distances of those measured on the space of representation. 
It is an iterative converging process that only drives to local 
optima, depending on both the starting configuration and the 
chosen dimension of the space of representation. In addition, 
the different dimensional solutions are not encapsulated nor 
the found coordinates have a specific meaning, so that they 
may be rotated at wish. MDS may be applied to any kind of 
data, but depends heavily on the dissimilarity chosen. It is 
sometimes preferred to eigenanalysis based methods for its 
robustness with respect to the Guttman effect (Kenkel and 
Orlóci 1986): unlike them, the lack of transition formulas pre-
vents the corresponding construction of the species pattern, 
that must be performed independently, with non-comparable 
results. For this reason, no relation exists between the analy-
ses carried out on species and relevés, not even they may be 
simultaneously used for the interpretation of the factors.

2.4 Data analyses

The association between coding and analysis applied is 
shown on Table 2. Note that MDS was used on frequencies 
according to:

1) Euclidean distance (EU-MDS): 

2) Chord distance (CH-MDS) (Orlóci 1978, Legendre and 
Legendre 2012),

Table 2.  The pairing of the methods (by rows) and the coding 
(by column) used for the experimentation: *  means that the pair-
ing was applied to all data tables, the × refers only to the simulat-
ed data. The corresponding acronym results by joining the label 
of the coding with that of the method.

  FR BB VDM PA
PCA × * * *
SPE-PCA * *
CA × * * *
DCA × * * *
MCA *
MDS ×   *  
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Table 2: The pairing of the methods (by rows) and the coding (by column) used
for the experimentation: the ∗ means that the pairing was applied to all data
tables, the × means only to the simulated data. The corresponding acronym
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1. Euclidean distance d(xi, xj) =
√∑

k(xik − yjk)2 (EU-MDS ),

2. Chord distance c(xi, xj) =

√
2

(
1−

∑
k xikyik√∑

k x2
ik

∑
k y2

jk

)
(CH-MDS)

(Orlóci, 1978; Legendre and Legendre, 2012),

and on van der Maarel recoding, using the three coefficients discussed
by (Podani, 1997):

3. Kendall (1938)’s tau index adjusted by Diday and Simon (1976)
(KE-MDS ):

KE =
2(a− b)√

(p(p− 1)− 2tj)(p(p− 1)− 2tk)
;

4. Goodman and Kruskal (1954)’s gamma index (GK-MDS ):

GK =
a− b

a+ b
;

5. Podani (1997)’s discordance index (PO-MDS ):

PO = 1− 2(a− b+ tjk − tj − tk)

p(p− 1)
.

in which

n = number of variables,
a = number of pairs of variables equally ordered by the objects j and k,
b = number of pairs of variables inversely ordered by j and k,
tj = number of ties in j,
tk = number of ties in k,
tjk = number of ties in both j and k;

Remind that, due to the BBc coding of the real data, to them the analyses
on frequencies could not be applied. Thus, 20 different analyses resulted
for the simulated data, by combining coding and methods, and only 15
for the real data.
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and on van der Maarel recoding, using the three coefficients 
discussed by Podani (1997):
3) Kendall (1938)’s tau index adjusted by Diday and Simon 
(1976):

4) Goodman and Kruskal (1954)’s gamma index:

5) Podani (1997)’s discordance index:

in which
p = number of variables,  
a = number of pairs of variables equally ordered by the ob-
jects j and k,
b = number of pairs of variables inversely ordered by j and k,
in KE, tj = number of pairs of variables that are tied for j, and  
tk = number of pairs of variables that are tied for k, 
in PO, tj + tk  = number of pairs of variables that are tied for j, 
k,or both such that one, two or three scores are 0, these indi-
cate contradiction of j and k; and tjk = number of ties in both 
j and k corresponding to mutual presence or mutual absence, 
these indicate agreement of j and k 

Remember that, due to the BBc coding of the real data, to 
them the analyses on frequencies could not be applied. Thus, 
20 different analyses resulted for the simulated data, by com-
bining coding and methods, and only 15 for the real data.

2.5 Comparison of results

In this study, we may recognize two main targets: i) to 
measure the ability of methods to identify the gradients un-
derlying the data, and ii) to check the coherence of the dif-
ferent methods, concerning both the ordinations and the cor-
responding ranks. The comparison has been limited to the 
first two coordinates of the relevés issued by each method, 
because: i) as one or two gradients were expected, no further 
dimension was of interest; ii) in the case of one gradient only, 
the Guttman effect ensures on one side the existence of such 
gradient, but on the other one it influences the pattern of the 
following dimensions, whose interest may be reduced; and 
iii) we did not think that the exam of the results concerning 
the species could carry other relevant elements to the discus-
sion, unless to distinguish between methods in which they 
are directly available too: however, some results concerning 
the species will be reported in the discussion, just to put in 
evidence the advantages of a joint treatment. In order to study 
both the large and the small variations, we considered both i) 
the vectors of coordinates issued by each method, that may 
inform on the large variations, and ii) the corresponding vec-

tors of ranks that may better inform on the small ones. Then, 
to compare the methods we ran the following analyses:
1. Generalized Procrustes Analysis (GPA, Gower 1975, 
Gower and Dijksterhuis 2004, Camiz and Denimal 2011, 
Legendre and Legendre 2012, Lisboa et al. 2014). GPA was 
used to check the homogeneity of the methods’ results. It is 
essentially the generalization to more configurations of the 
Procrustes Analysis. Given two clouds of pairwise corre-
sponding points, the aim of Procrustes Analysis is to find the 
best Euclidean transformation (translation, scaling, mirror 
reflection, and rotation) of either cloud to match at the best 
the other, thus minimizing the sum of their pairwise distanc-
es. Generalizing to many clouds, an iterative process is set 
that converges to a consensus, that is a kind of average cloud 
that best approximates all others. This allows to graphically 
compare the various clouds to the consensus. From GPA the 
Procrustes pairwise correlation matrix results: the Procrustes 
correlation is an index of multidimensional matching of two 
clouds. It ranges within the interval [0, 1] with the same 
meaning of the common correlation and allows a numerical 
comparison of the patterns of the relevés issued by the dif-
ferent analyses. Note that, as GPA could reflect and/or rotate 
some cloud to optimize the fit, we applied reflections and/or 
rotations where GPA did, to get more consistent the visual 
comparison of the results.
2. Pearson’s correlation matrix of the corresponding first and 
(in the coenoplane case) second coordinates of the different 
analyses. This was used to find the best methods, as those 
giving coordinates most correlated with the original data, thus 
informing on the agreement with respect to the large scale 
variation. Indeed, GPA may inform specifically on the coher-
ence between methods but not appropriately with the original 
gradients, that in two cases are uni-dimensional.
3. Spearman’s correlation matrix. It is a rank correlation that 
we used to fine tune the information provided by the Pearson’s 
one. Indeed, the Pearson’s correlation is not very sensitive to 
exchanges in the order of units nearby, while Spearman’s in-
forms on the small scale variation, thus contributing to better 
understand what happens when units are somehow originally 
clustered.
4. Principal Component Analysis. For sake of a graphical 
synthesis only, we ran PCA on all built correlation matrices: 
Procrustes’, Pearson’s, and Spearman’s. This allows to easily 
visualize and understand the most relevant aspects, in particu-
lar the coherence of the methods between them and with the 
original gradient. Indeed, the coherence among methods may 
be measured by the first eigenvalue of these PCAs, whose 
proportion to the total inertia indicates the methods’ coher-
ence: the largest is such proportion the most coherent the 
methods are.

The computations of the association matrices to be 
used in MDS were done with the SYN-TAX 2000 program 
(Podani 2001); all other methods were run with R (R Core 
Team 2015), most through the Vegan package (Dixon 2003, 
Oksanen et al. 2017), but CA, MCA, and GPA, which were 
run through the FactoMineR function of R (Husson et al. 
2017).
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;
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.

in which

n = number of variables,
a = number of pairs of variables equally ordered by the objects j and k,
b = number of pairs of variables inversely ordered by j and k,
tj = number of ties in j,
tk = number of ties in k,
tjk = number of ties in both j and k;

Remind that, due to the BBc coding of the real data, to them the analyses
on frequencies could not be applied. Thus, 20 different analyses resulted
for the simulated data, by combining coding and methods, and only 15
for the real data.
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(Orlóci, 1978; Legendre and Legendre, 2012),

and on van der Maarel recoding, using the three coefficients discussed
by (Podani, 1997):

3. Kendall (1938)’s tau index adjusted by Diday and Simon (1976)
(KE-MDS ):

KE =
2(a− b)√

(p(p− 1)− 2tj)(p(p− 1)− 2tk)
;

4. Goodman and Kruskal (1954)’s gamma index (GK-MDS ):

GK =
a− b

a+ b
;

5. Podani (1997)’s discordance index (PO-MDS ):

PO = 1− 2(a− b+ tjk − tj − tk)

p(p− 1)
.

in which

n = number of variables,
a = number of pairs of variables equally ordered by the objects j and k,
b = number of pairs of variables inversely ordered by j and k,
tj = number of ties in j,
tk = number of ties in k,
tjk = number of ties in both j and k;

Remind that, due to the BBc coding of the real data, to them the analyses
on frequencies could not be applied. Thus, 20 different analyses resulted
for the simulated data, by combining coding and methods, and only 15
for the real data.

24/12/2017 Vegetation˙13.tex 10 / 33



266        Camiz et al. 

3. Results

The essential results, that is the correlations (according 
to Procrustes, Pearson, and Spearman) between all methods 
with the original data, are reported in Table 3. All other cor-
relations are reported in the Electronic Appendix.

3.1 First simulated coenocline

In Figure 3, the patterns of the 30 simulated communities 
are shown on the plane spanned by the two main dimensions 
of the considered analyses. Note that, according to GPA, in 
order to get the patterns as much alike as possible, the sign 

Figure 3. First simulated coenocline: representation of the 30 simulated communities on the plane spanned by the fi rst two dimensions 
of the considered scaling methods. In the titles, the fi rst part represents the coding and the second the used method.
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of coordinates of some axes have been toggled (without any 
loss, as it is well known that in all scaling methods the sign 
of the coordinates is arbitrary), whereas for all MDS but CH-
MDS the two axes had to be exchanged: once again, this is 
not relevant, since the MDS solutions are not encapsulated 
and are invariant under orthogonal transformation.

The fi rst evidence is that most methods show a horseshoe 
effect, with some variations. This was expected, observed 
fi rst by Guttman (1953) and continuously commented since 
then, in particular with the aspect of a horseshoe in PCA and 
of an arch in CA. Keep in mind that the position of the relevés 
in respect with the arch’s width in CA informs about their 
richness in species with differently centred and/or larger/
more narrow niches along the gradient (Camiz 2005).

Observing carefully Figure 3, one may note that the meth-
ods’ pattern is not really infl uenced by the data recoding: the 
horseshoes of PCAs (top row of the fi gure) are rather confused, 
in particular towards both gradient’s ends: the four different 
coding behave alike, with the presence/absence more regular 
than the others; the arches of CA (second row) have really 
minor variations within them; the two MCA coding (fi rst two 
on the fourth row) are similar and repeat somehow the PCA 
patterns; the two MDS methods applied on abundance data 
(second two of the fourth row) do not show any effect, but a 
complicated pattern along the second axis: indeed, it must be 
emphasized that in CH-MDS the variation along this axis is 
very limited, in agreement with the unidimensional gradient. 
Thus, in this case, the second axis does not result of interest. 
An analogous pattern results from DCA methods, due to the 
removal of the arch from the CA solution, so that the second 
axis loses any meaning, due to the piecewise detrending. On 
the opposite, both PCA on Spearman’s index and the MDSs on 
ordinal indexes (last row) show again horseshoes, much more 
regular than the ones issued from PCAs. Summarizing, three 
different patterns resulted from the methods: a horse-shoe, an 
arch, and a linear pattern. Note that, in the DCA case, variations 
along the second axis have no interpretable meaning.

To compare the obtained results, in Figure 4a the meth-
ods are represented on the circle of correlation issued by 
the PCA performed on the matrix of the Procrustes correla-
tions between the two-dimensional solutions of the different 
methods, including the specifi ed coordinates of the simulated 
communities on the gradient (labelled Original in the graph-
ics). It is evident the agreement between methods, with the 
exception of both the original data, the four DCAs and CH-
MDS due to the fact that the original data are limited to one 
coordinate only (thus, the second was set to zero in this com-
parison), the DCAs second axes are random in practice, and 
CH-MDS’s second coordinate is always very small. Note also 
the worst performance of EU-MDS. In Figure 4b the pattern 
of each relevé as seen from each method is shown around 
the compromise position found by Procrustes method. Note 
that nearly all large differences with the consensus are with 
points close to the fi rst axis, corresponding to the original 
data, the DCAs, and CH-MDS coordinates, as expected. To 
have a reason of these results one may observe the Procrustes 
correlation matrix in Electronic Appendix A2. It appears 
that correlations are really very strong within each group of 
method: within PCAs the minimum is 0.984, within CAs it is 
0.9774, within DCAs it is 0.9885, within MCAs it is 0.9904, 
and within the MDS on scales it is 0.9899. An independent 
behaviour have the other two MDSs, but CH-MDS is most 
correlated, 0.9825, with the specifi ed coenocline coordinates 
(without noise), a really relevant result, as the four DCAs (all 
over 0.9895) whereas the best other method is PA-CA with 
a correlation of 0.8265. Thus, we may appreciate the DCAs 
and CH-MDS for their outstanding performance and PA-CA, 
much simpler, that produces the highest result among the oth-
ers. Indeed, all methods are well correlated within each other, 
with very few correlations lower than 0.70, all referring to 
either FR-PCA or EU-MDS, this latter the worst performing.

To better appreciate the methods, both Pearson’s and 
Spearman’s correlations between the fi rst coordinates or 
ranks, respectively, have been computed. Both are reported 

Figure 4. First simulated coenocline: circle of correlation issued by the PCA on the Procrustes correlation matrix (a) and the pattern of 
the samples seen by each method around each compromise (b). PCA inertia explained (a): Dim 1 = 87.8%, Dim 2 = 9.7%.

along the second axis have no interpretable meaning. ranks, respectively, have been computed. Both are reported 

 First simulated coenocline: circle of correlation issued by the PCA on the Procrustes correlation matrix ( ) and the pattern of 
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in Electronic Appendix A2. To visualize the correlations pat-
tern, the methods are represented on the circle of correlations 
issued by the PCA performed on the fi rst coordinates of each 
method (Fig. 5a). Note that the fi rst principal component is 
accounted for 94.5% of total inertia, without any relevance of 
the second. Here, the original data appear strongly correlated 
with all methods but EU-MDS, with preference for the meth-
ods already quoted above. It must be noted that in this case, 
a distinction may be observed between the methods with the 
horseshoe, that are oriented below the fi rst axis, and those 
with either arch or no effect, including the original data, ori-
ented above it. Once again it may be noted that EU-MDS per-
forms worse than all others, which keep rather well correlated 
between each other, in particular between the different coding 
dealt with the same method. Considering the Pearson’s cor-
relations between the fi rst coordinates (or the second for four 
out of fi ve MDSs, according to Procrustes results), we fi nd 
that all methods but FR-PCA and EU-MDS have correlation 
with the specifi ed coordinates not lower than 0.90, with the 
fi rst coordinate of both CAs and DCAs always nearly totally 
correlated with the original data, ranging within 0.9885 and 
0.9998, and also that of CH-MDS, whose correlation with the 
original data is 0.9974.

Very different values result for the ranks. The Spearman’s 
correlations are much worst than the Pearson’s, probably due 
to the folding of most methods at the extremes of the fi rst 
axes or some exchanges among units. Note that the PCA of 
the Spearman correlation matrix gives up to three signifi cant 
dimensions according to the Brokenstick method (Frontier 
1976), that are accounted for 39.2, 23.4, and 11.3% of total 
inertia, respectively. In Figure 5b the ranks are plotted on the 
circle of correlations on the axes 1 and 2, summarizing 62.6% 
of total inertia. It is evident the apparent independence of all 
CAs, DCAs, and CH-MDS, the most correlated with the orig-

inal order, from the others, more oriented towards the second 
axis. It is not a surprise that both CAs and DCAs perform 
much better than the others, since by projecting vertically the 
nearly-aligned plots onto the horizontal axis, the order may 
not change. In this case, FR-CA and BB-CA perform pretty 
well (0.84 and 0.74, respectively) and a little better do the 
corresponding DCAs (0.91 and 0.79, respectively, but not the 
others). Note also the very good performance of CH-MDS 
(0.77), the medium of PA-CA (0.56), probably due to the loss 
of fi ne information given by the different cover values, and 
the worst of VDM-CA.

3.2 Second simulated coenoplane

In Figure 6, the patterns of the 30 relevés issued by the 20 
methods are represented on their fi rst factor plane. In some 
cases, according to the GPA results, the two axes and/or their 
signs are exchanged to appreciate their agreement with the 
original pattern of the coenocline (Fig. 2). This may be due 
to the independence between the original gradients (correla-
tion = –0.099) with equal inertia. Here, the fi rst evidence is 
that most patterns are very different from the original one, 
in particular those issued by all PCAs, CAs, and DCAs with 
the exception of PA-CA and PA-DCA. Note that the patterns 
of CAs, except PA-CA, are very similar to an arch, thus in 
this case highly misleading, and the corresponding DCAs do 
not improve the representation. This ought to be expected, 
since the detrending destroys the ordination along the second 
axis. Thus, from simple inspection it is not really easy to ap-
preciate the relations between methods and with the original 
pattern. Indeed, some analogy may be seen among all PCAs 
and MCAs, some among CAs and some among the last three 
MDSs on rank measures, but to check them out it is better to 
apply to the analyses results. 

Figure 5. First simulated coenocline: circle of correlation issued by the PCA on the fi rst coordinate of each method (a) and on the fi rst 
corresponding rank (b). PCA inertia explained; (a): Dim 1 = 94.5%, Dim 2 = 3.3%, (b): Dim 1 = 39.2%, Dim 2 = 23.4%.
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In Figure 7a, the pattern of the methods is represented 
on the circle of correlations issued from PCA run on the 
Procrustes correlation matrix between the methods (together 
with the other matrices in Electronic Appendix A3). This time 
the fi rst axis is accounted for 82% of total inertia with 8.3% 
attributed to the second one. Once again, the same methods 

result close, though not as in the single gradient case, thus 
the coding does not have a strong infl uence on the results. 
This is not true for MDS, since the used indices are different. 
Indeed, GK-MDS, KE-MDS, VDM-CA, and PA-CA are the 
most correlated with the original data, whereas a certain scat-
tering is visible along the second dimension. This is due to the 

Figure 6. Second simulated coenoplane: representation of the 30 simulated communities on the plane spanned by the fi rst two dimen-
sions of the considered scaling methods. In the titles, the fi rst part represents the coding and the second the used method; the bottom left 
graphics refers to the position of the simulated communities on the two coenoclines.
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bad performance of the other methods, that are opposed to the 
best ones (that include all CA-based methods). Note that in 
this case DCAs perform in a contradictory way, since VDM-
DCA improves the CA performance, but PA-DCA performs 
worst than PA-CA and BB-DCA is really bad. In Figure 7b, 
the pattern of each relevé as seen from each method is shown 
around the compromise position found by GPA: unlike the 
fi rst coenocline, here only few partial points are very distant 
from the consensus.

Looking at the Procrustes correlation matrix (in Electronic 
Appendix A3), within PCA correlations are higher than 0.79, 
within CA higher than 0.91, the DCAs, as said, are contra-

dictory, the two MCAs have Procrustes correlation 0.97, and 
the MDSs highly various. The correlation with the original 
confi guration ranges from 0.51 (BB-DCA) to pretty high: it 
is noteworthy the very good value of CA on both presence/
absence and VDM (0.96 and 0.93, respectively) and of MDSs 
on both Kendall and Goodman-Kruskal (0.99 and 0.98, re-
spectively). Indeed, the latter two scatter diagrams are pretty 
similar to the original confi guration, whereas the PA-CA one 
does not seem, at least at fi rst sight, really alike. 

GPA was run also on the ranks corresponding to the 
fi rst two coordinate sets of all methods and compared with 
the original ones. In Figure 8a, the methods are represent-

Figure 7. Second simulated coenoplane: circle of correlation issued by the PCA on the Procrustes correlation matrix (a) and the pattern 
of the samples seen by each method around each compromise (b). PCA inertia explained (a): Dim 1 = 82.0%, Dim 2 = 8.3%.

Figure 8. Second simulated coenoplane: circle of correlation issued by the PCA on the Procrustes correlation matrix computed on 
ranks (a) and the pattern of the consensus confi guration on the common space of representation (b). PCA inertia explained (a): Dim 1 
= 28.5%, Dim 2 = 9.2%.

a b

a b
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ed on the circle of correlation issued from the PCA run on 
the Procrustes correlations matrix computed on ranks and 
in Figure 8b the compromise position of the relevés is rep-
resented in the corresponding 2-dimensional space of rep-
resentation. Note that in this case the representation of the 
partial positions of the samples was too confuse to be read-

able - and consequently interpretable - and thus we dropped 
it. This PCA resulted with only one signifi cant dimension, al-
beit summarizing only 28.5% of the total inertia. This means 
that the ranks are not really coherent. Indeed, the Procrustes 
correlations with the original pair of ranks are not very high, 
the highest being 0.36 and 0.30 for BB-CA and FR-CA, re-

Figure 9. The real transect: representation of the relevés on the plane spanned by the fi rst two axes issued from the 15 used methods.
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spectively, followed by PA-CA with 0.22 and both GK-MDS 
and KE-MDS with 0.21. As usual, some larger correlations 
result between different coding within the same methods, but 
not really relevant. Note also that DCAs this time perform 
systematically worst than the corresponding CAs.

The examination of the correlations between original and 
corresponding coordinates shows the highest values of both 
GK-MDS (both over 0.99) and KE-MDS (0.95 and 0.93), 
with PA-CA performing very well too, with correlation of 
0.91 for the fi rst and 0.86 for the second coordinate. As for the 
ranks, the Spearman correlations are very low and in general 
not signifi cant: no method approaches both original orders, 
thus, we thought irrelevant to deepen this study.

3.3 The real transect

As the Argentinean transect consisted of a systematic 
survey of relevés taken at regular 25 m intervals, we could 
consider the relevés’ sequence as a proxy for the gradient we 
were trying to reveal. As such, it could be used to compare the 
several gradients found in the different analyses. Note also 
that, as the species abundance was recorded with the Braun-
Blanquet (1932) coding, the frequencies were not available 
and the corresponding analyses could not be done.

In Figure 9 the pattern of the relevés on the fi rst factor 
plane issued by the 15 used methods is represented. Again, 
the usual toggle of sign and coordinates have been done ac-
cording to GPA results. Unlike the other cases, this time the 

Figure 10. Analyses of the real transect: the original order and the 15 methods on the circle of correlations issued by PCA of the matrix 
of Procrustes correlations between methods (a) and the pattern of the samples seen by each method around each compromise (b). Dim 1 
= 75.3%, Dim 2 = 7.0%. 

Figure 11. Analyses of the real transect: circles of correlation issued by the PCAs run on the fi rst coordinates (a) and on the fi rst ranks 
(b) of each method. PCA inertia explained: (a): Dim 1 = 84.8%, Dim 2 = 8.0%; (b): Dim1 = 66.7, Dim 2 = 8.3.

ba
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variations depending on the three coding (the abundance was 
not available in this case) within the same methods appear 
more different, nor a clear arch pattern appears, at least with 
the regularity seen in the first coenocline.

In Figure 10a the results of GPA are summarized by the 
representation of the methods on the first circle of correlation 
of the PCA of the Procrustes correlation matrix. Note that the 
first axis is accounted for 75.3% of total variance, with the 
second limited to nearly 7.0%. Unlike the previous studies, 
now the best performing methods appear to be N3-MCA and 
BB-PCA but it must be noted that the estimated original coor-
dinates are not very well represented on the circle of correla-
tions. This depends on the fact that only one set of original co-
ordinates could be estimated. This may be confirmed looking 
at the Procrustes correlation matrix (in Electronic Appendix 
A4): it results that the average correlation between all meth-
ods is 0.80, with minimum 0.54. Once again it is confirmed 
the similar behaviour of all methods. On the opposite, the 
Procrustes correlation of the methods with the original gradi-
ent ranges within 0.69 of SPE-PCA and 0.67 of N3-MCA on 
one side and 0.43 of BB-DCA on the other, with an average 
of 0.64. Here, the DCAs perform a little better than the cor-
responding CAs, but in the case of BB-DCA. Indeed, PCA 
on Procrustes correlation matrix shows better the agreement 
within methods than the relation with the original data, as 
said due to the fact that only one gradient was considered as 
the original reference.

Some irregular pattern of vegetation along the transect 
may be the cause of this irregularity: this is put in evidence 
by the distribution of relevés on the common reference space 
issued by GPA, shown in Figure 10b, in which all the meth-
ods’ partial representations are shown too. It is evident the 
gathering of the relevés in three well separated homogene-
ous groups, with the exception of 18, 19, and 20 that are far 
apart from the others, in some intermediate position. Within 
each group, no agreement with the original order appears, 
whereas the sequence of the three vegetation types in a kind 
of horseshoe form is visible as a whole. As in the case of the 
first coenocline, a better information may result by checking 
both Pearson’s and Spearman’s correlations limited to only 
one dimension: they too are reported in Electronic Appendix 
A4. Once again, exchanges of signs and coordinates result 
from GPA.

In Figure 11 the circles of correlations issued from the 
PCAs on these correlation matrices are represented. In both 
cases, the matrices are uni-dimensional, the following axes 
being accounted for little inertia, not significant in compari-
son with the brokenstick statistics. Looking at Figure 11a 
the pattern of methods in the Pearson’s correlation is shown. 
Here the first factor is accounted for nearly 85% of the total 
inertia, whereas the second (non-significant) explains only 
nearly 8.0%. The axis is not really well correlated with the 
original sequence (only 0.83) and worse only with BB-CA 
and BB-DCA, whereas with all other methods the correla-
tions range within 0.89 and 0.96. This result confirms the 
high homogeneity of the first factors of the different analyses. 
Along the second factor, five groups are visible: BB-CA, the 
most correlated (0.87) with the original transect that is aside, 

then a group composed by all PCAs and all MCAs, whose 
correlation with the original gradient ranges between 0.85 
and 0.72 but whose inner correlation is always over 0.93, then 
most others, less correlated with the original, yet highly cor-
related between them, but GK-MDS, the less correlated with 
all others, and eventually BB-DCA alone. Note that in this 
case PA-CA belongs to the group of the poorly correlated, but 
its correlation with the transect is worth 0.79, the fourth best 
value. Once again, DCAs perform worst than CAs.

In Figure 11b, the pattern of methods in the Spearman’s 
correlation is shown. Here the first factor is accounted for 
nearly 67% of the total inertia, whereas the second (non-
significant) explains only 8.3%. Thus, the one-dimension-
ality is less marked than in the previous case: the methods 
are more scattered along the second axis, depending on their 
inner correlation: here, five groups are visible, progressively 
with decreasing correlation with the original order. Looking 
at the Spearman correlation matrix (in Electronic Appendix 
A4), it results that the most correlated with the original order 
are SPE-PCA, BB-PCA, and BB-CA (0.86, 0.85 and 0.84, 
respectively), whereas the worst are the three DCAs and the 
three MDS. This time the correlation of PA-CA is only 0.72, 
in a medium position.

4. Discussion

In Table 3, the correlations between the first coordinates 
issued by the methods and the original ones (two coordinates 
in the case of the coenoplane, one for the others) are reported: 
in the first three columns are found the Procrustes’, Pearson’s, 
and Spearman’s correlations in the case of the first simulat-
ed coenocline; in the following six, the Procrustes’ and two 
Pearson’s referring to the coordinates of the second coeno-
cline, then the Procrustes’ and two Spearman’s according to 
their ranks; in the last three the Procrustes’, Pearson’s, and 
Spearman’s correlations referring to the third real transect. To 
summarize the results, we may observe the following:
First coenocline. Three main patterns are recognized with 
minor differences within them: the horseshoe, the arch, and 
the linear one. The methods showing the latter result better 
according to Procrustes correlation, due to their linear main 
structure. As for Pearson’s, the best performing methods are 
PA-CA and CH-MDS based on the frequencies, followed by 
all other correspondence analyses, then all other methods, 
with EU-MDS by far the worst performing. Note that here 
the DCAs give their best, but not significantly better than the 
corresponding CAs. Considering ranks, FR-DCA and FR-CA 
are the best performing, followed by CH-MDS and the other 
CAs, with PA-CA in a medium position. Apart from these, 
only KE-MDS is correlated with the original order, while the 
others are in practice independent.
Second coenoplane. The original pattern is difficult to be rec-
ognized but from GK-MDS and KE-MDS, that are the best 
performing. The only other method that approaches them is 
PA-CA, but only numerically, since the configuration does 
not seem alike on visual inspection. The DCAs perform in 
a contradictory way: it was expected, due to the manipula-
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tion of the second coordinate. All others perform worst. 
Considering ranks, the best performing were FR-CA and BB-
CA, both with Procrustes correlation little above 0.30, while 
all others performed really poorly and without any apparent 
relation between them. Indeed, considering the two ordina-
tions separately, no method resulted able to approximate 
both. Nevertheless, we may quote both FR-CA and BB-CA 
with a reasonable correlation at least for the fi rst coordinate. 
The best pair of rank correlations is that of BB-DCA, which 
on the opposite returns a fi rst coordinate with nearly zero cor-
relation with the original fi rst one.
Real transect. The patterns are really various and it is diffi cult 
to visually detect similarities among them. Nevertheless, there 
is a high Procrustes correlation between the same methods 
applied to the different coding. On the opposite the Pearson’s 
correlations of methods with the original transect are within 
0.69 of SPE-PCA and 0.60, with only BB-CA and BB-DCA 
lower (0.56 and 0.43, respectively). Higher Pearson’s correla-
tions result between the fi rst coordinates, ranging within 0.87 
of BB-CA and 0.65 of GK-MDS, with only BB-DCA worst 
(0.43); as for Spearman’s, they range within 0.86 and 0.52 of 
the same methods. In both cases PA-CA performs reasonably 
well (0.79 and 0.72, respectively). Note that in this case PO-
MDS performs better than GK-MDS.

All methods, applied to the different coding, provided 
similar results: in particular, all PCAs, all CAs, and all MCAs 
resulted highly coherent in all data sets with respect to the 
coordinates; larger differences result when dealing with the 
ranks. Note in this case that some PCAs' and DCAs' high-
est rank correlations with the two original coenoplane co-
ordinates refer to the fi rst found axis only. For this reason, 
the two independent gradients may not be detected by these 
methods. Among PCAs, the better performing resulted that 
on Spearman’s correlation: a pity that it does not allow the si-
multaneous analysis of the species. The other coding perform 
alternatively, so that no true best method results. Among mul-
tiple correspondence analyses, N3-MCA performs systemati-
cally better than N8-MCA, showing a pattern very similar to 
PCA, with the advantage to represent the variation of species’ 
densities along the gradient.

In what concerns the ordinations, CA, that shows an arch 
effect when dealing with one gradient, performs much better 
than all others which show a horseshoe: this was expected for 
PCA but not for MCA and MDS on ordinal data.

On the opposite, DCA results really poor: it equals and 
little overcomes CA on the simulated coenocline, but per-
forms much worst on both the coenoplane and the transect. 
This was expected: considering the loss of meaning of the 

Figure 12. Analyses of the real transect: relevant species on the fi rst factor plane issued by PA-PCA (a), PA-CA (b), PA-DCA (c), and 
N3-MCA (d).

a

c

b

d
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second component, it is obvious that a coenoplane may not 
be well represented through DCA, not even a real data set 
in which some minor gradients may appear, even if we did 
not consider them here. In our comparison, the better perfor-
mance of the first coordinate with respect to CA, according 
to both data and ranks, should depend essentially on the res-
caling at the extreme of the first axis, since theoretically their 
first set of coordinates ought to be identical. Note that the loss 
of meaning of the second dimension does not improve the 
interpretation of the first dimension in the corresponding CA, 
but rather prevents the identification of a second gradient, if 
any. In addition, the loss of information about species’ both 
diversity and range within the relevés (provided in CA by the 
second component, see Camiz 2005) suggests to avoid the 
use of DCA.

As for MDS, CH-MDS performs pretty well on the simu-
lated coenocline only, but the best performing on the coeno-
plane are GK-MDS and KE-MDS (showing a horseshoe on 
the coenocline) and none is outstanding in the case of real 
data. Considering also the lack of simultaneous treatment of 
the species in these analyses, one may really question the op-
portunity to adopt them in place of CA. Indeed, this is a major 
point that deserves a reflection: PCA, CA, and MCA provide 
graphics of species whose factors are interpreted together 
with those of the relevés, thanks to the transition formulas. 
This does not exist in MDS, whereas in DCA the manual de-
struction of the second axis may seriously compromise the 
interpretation.

In Figure 12 are reported the graphics concerning the 
species pattern issued by PA-PCA, PA-CA, PA-DCA, and 
N3-MCA when run on the real transect data. In each graph-
ics, from left to right, the salt grassland is found first, rep-
resented by the most abundant species Paspalum vaginatum 
Sw. (in the graphics pava) and Distichlis spicata (L.) Greene 
(disp), together with Ranunculus cymbalaria Pursh (racy), 
Chaetotropis chilensis Kunth (chch), and Apium sellow-
ianum H.Wolff (apse). The center of the transect is occupied 
by the espartillar, whose dominant species is Spartina den-
siflora Brogn. (spde) and where Rumex pulcher L. (rupu), 
Heliotropium curassavicum L. (hecu), and Petunia parviflora 
Juss. (pepa) may be found albeit less abundant. Eventually, 
on the right the flecillar species are found at the end of the 
transect, close to the stream, where its dominant species are 
found: Phyla canescens (Kunth) Greene (phca), Stypa hya-
lina Nees (sthy), and Paspalum dilatatum Poir. (padi). This 
pattern is clearly visible in the two graphics issued by both 
PA-PCA and PA-CA in which either the horseshoe or the arc 
lead the reader through the curvilinear pattern. Note also the 
different position of Paspalum vaginatum and Heliotropium 
curassavicum, probably more spread along the transect, in re-
spect with Ranunculus cymbalaria and Rumex pulcher, prob-
ably more concentrated in the respective communities: this 
may be inferred, since the first are closer to the centre and the 
second at the extreme of the arch thickness.

Unlike those, in the graphics issued by PA-DCA this 
pattern is lost: the disappearing of the curve and the lack of 
meaning of the second axis cause a confusion in the interme-
diate positions. As a consequence, both Paspalum vaginatum 

and Distichlis spicata (belonging to the salt grassland) now 
follow Spartina densiflora, Rumex pulcher, Heliotropium cu-
rassavicum, and Petunia parviflora, all species belonging to 
the espartillar. Thus, along the first axis, the species belong-
ing to either communities are mixed without the possibility 
to tell them apart.

As for the N3-MCA, the curvilinear pattern is analogous 
to PCA, but here the different species densities are represent-
ed: thus, Ranunculus cymbalaria appears exclusively into 
the salt grassland, Paspalum vaginatum is present there with 
high density, but with low density in the other communities 
too, Phyla canescens and Stypa hyalina, absent in the salt 
grassland, are little present in the espartillar and highly pre-
sent in the flechillar. Indeed, this information in both PA-PCA 
and PA-CA is missing, whereas it may be of high interest for 
the study of vegetation distribution along gradients.

5. Conclusions

The original aim of this paper was to check to what ex-
tent different recoding of the Braun-Blanquet codes could af-
fect the multidimensional analyses: the answer given by this 
experimentation is very little and the corresponding debate 
seems very little grounded too. In fact, this was confirmed by 
the high correlations found within the same methods between 
the coding. Thus, presence/absence might be preferred, this 
way avoiding all cover estimation errors: it may be wrong 
only if the researcher did not identify correctly a species, 
but it is not affected by the estimate error. Thus, our results 
and interpretations are in agreement with the conclusions of 
Wilson (2012) that state the better performance of presence/
absence.

Should one wish to get small scale information concern-
ing the relevés ordering, then the use of frequencies (even 
approximated by the Braun-Blanquet’s classes mean values) 
may be worth. Note that this result may also prevent the idea 
of applying transformations to the abundances: their use aims 
at producing better results, but instead introduces arbitrary 
bias in the data.

Concerning the methods, once again differences are not 
really substantial for an experienced user, but their specific 
features lead the same to a choice. CA proved once again to 
be the best method to use: it is advantageous in respect with 
PCA, thanks to the arch pattern instead of the horseshoe: 
indeed, this allows to consider the component representing 
the arch length (usually the first) as a reasonable approxima-
tion of the underlying gradient, that in PCA is folded at the 
extremes. In addition, the transversal position of the relevés 
with respect to the arch mid-line may be interpreted as higher/
lower diversity for the relevés and larger/thicker range for the 
species (Camiz 2005): a feature difficult to find in the other 
representations.

This argument leads to a reject of all DCA methods: they 
do not carry any new information in respect with CA, be-
cause the first component is only partially (and arbitrarily) 
rescaled, but instead they destroy the information carried by 
the transversal position, only visible in the factor plane. This 
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may create problems in the interpretation of the communities, 
in particular when ubiquitous species exist (located close to 
the centroid), that will be mixed together with those in the 
intermediate communities (in CA located at the extreme of 
the second axis, but here flattened on the first one).

The behaviour of MDS does not really overcome that of 
CA, unless by using ordinal indices. The drawbacks are the 
loss of the correspondent ordination of the species and the 
finding of the horseshoe once again, unless a strong second 
gradient exists.

A particular remark deserves MCA: considering its abil-
ity to represent the different levels of species, it may be help-
ful to understand their pattern of distribution better than CA. 
Indeed, MCA performs in practice just as PCA, with the same 
horseshoe effect, but with the extra ability to represent the 
various levels of species density and to deal simultaneously 
with the sociability code. Thus, its experimentation may be 
an effective alternative to PCA, and it may be preferred if 
one wishes to study the structure of communities rather than 
gradients. Thus, this method certainly deserves being studied 
in deeper detail, maybe including the sociability index. The 
found results suggest to prefer the N3 coding instead of the 
VDM-like N8.

The argument concerning the use of order-based rather 
than measure-based methods remains partially open: theo-
retically order-based statistics ought to be used, unless deal-
ing with abundances or presence/absence. Indeed, the best 
response of SPE-PCA and the good performances of both 
Goodman-Kruskal and Kendall MDSs on simulated data may 
encourage their use, but it is surprising that the theoretically 
very well grounded statement of Podani (2006)’s index, in our 
experimentation resulted in line with the other order based in-
dices. A hypothesis may be that the large amount of noise in 
ecological data (Gauch 1982) may prevent the relevance of 
such an adjustment. However, both the presence of horseshoe 
and the lack of a corresponding representation of the species 
might discourage the use of the order based indices, at least 
as a first exploratory tool. We must admit that this result was 
far from our  expectations.

Summarizing, we may state that Correspondence 
Analysis with presence/absence data is the best tool for a 
general purpose work, with some advantage of CA on fre-
quencies or Braun-Blanquet’s averages of classes, should 
one wish to have better information about low level order-
ing. Should one be interested in classification and species dis-
tribution, MCA limited to three classes of abundance (none, 
little, much), might be considered. Indeed, Noy-Meir (1971) 
already commented in favour of PCA, should one be interest-
ed in detecting communities structure: now, MCA provides 
results very close to PCA (including the horseshoe in place 
of the arch) for what concerns relevés, but, even with a very 
reduced number of levels, adds to the usual identification of 
the association species-relevés some elements of distribution 
that may contribute to a better understanding of the structure 
of the studied communities.

Note that the representation of species, even more than 
that of relevés, shows that dealing with the Guttman effect 

and following the pattern issued by the analyses is much 
more fruitful than arbitrarily flattening it, because this way 
relevant information provided by the first factor plane as a 
whole is lost. Camiz (2005) discusses the problem and sug-
gests a simple redressing method that does not destroy the 
original pattern.

We remind here that we worked in an exploratory frame-
work, without any aim to identify exactly the gradients’ 
values in our data, a purpose that none of the experimented 
methods may fulfill. For this, some kind of modelling by tak-
ing into account the form of the species distribution might 
be much more appropriate: as a starting point, a serious ex-
perimentation on Ihm (Ihm and van Groenewoud 1975, 1984) 
and Goodall’s models (Johnson and Goodall 1980, Goodall 
and Johnson 1982) would be a really interesting complement 
to our study.
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Electronic Appendix

A1. Data files 

Table A1.1. First coenocline data.

Table A1.2. Second coenoplane data.

Table A1.3. Real transect data.

A2. First coenocline matrices

Table A2.1. First coenocline: Procrustes correlation matrix 
resulting from the first two coordinates issued by the used 
methods.

Table A2.2. First coenocline: Pearson’s correlations between 
the first coordinates issued by the used methods.

Table A2.3. First coenocline: Spearman’s correlations be-
tween the ranks of the first coordinates issued by the used 
methods.

A3. Second coenoplane matrices
Table A3.1. Second coenoplane: Procrustes correlation based 
on the first two coordinates issued by the used methods.
Table A3.2. Second coenoplane: Procrustes correlation based 
on the ranks of the first two coordinates issued by the used 
methods.
A4. Real transect matrices.
Table A4.1. Real transect data: Procrustes correlation based 
on the first two coordinates issued by the used methods.
Table 4.2. Real transect data: Pearson’s correlation based on 
the first coordinates issued by the used methods.
Table A4.3. Real transect data: Spearman’s correlations 
based on the ranks of the first coordinates issued by the used 
methods.
The Appendix may be downloaded from www.akademiai.
com. 

 


