
Novel strategy to implement active-space coupled-cluster methods
Zoltán Rolik, and Mihály Kállay

Citation: The Journal of Chemical Physics 148, 124108 (2018); doi: 10.1063/1.5004971
View online: https://doi.org/10.1063/1.5004971
View Table of Contents: http://aip.scitation.org/toc/jcp/148/12
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/56140772/x01/AIP-PT/JCP_ArticleDL_110117/AIP-3075_JCP_Perspective_Generic_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Rolik%2C+Zolt%C3%A1n
http://aip.scitation.org/author/K%C3%A1llay%2C+Mih%C3%A1ly
/loi/jcp
https://doi.org/10.1063/1.5004971
http://aip.scitation.org/toc/jcp/148/12
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 148, 124108 (2018)

Novel strategy to implement active-space coupled-cluster methods
Zoltán Rolik and Mihály Kállay
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A new approach is presented for the efficient implementation of coupled-cluster (CC) methods includ-
ing higher excitations based on a molecular orbital space partitioned into active and inactive orbitals.
In the new framework, the string representation of amplitudes and intermediates is used as long as it is
beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique,
the CC equations are represented in a compact form due to the string notations we introduced. As
an application of these ideas, a new automated implementation of the single-reference-based multi-
reference CC equations is presented for arbitrary excitation levels. The new program can be considered
as an improvement over the previous implementations in many respects; e.g., diagram contributions
are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete
active-space problems are presented. As an application of the new code, the weak interactions in the
Be dimer were studied. Published by AIP Publishing. https://doi.org/10.1063/1.5004971

I. INTRODUCTION

Since the coupled-cluster (CC) method was first applied
in quantum chemistry in the pioneering work of Čı́žek,1,2 it
has become the principal tool for electron correlation calcula-
tions. After the implementation and the initial applications of
the CC with singles and doubles (CCSD)3 method, the impor-
tance of higher excitations became clear soon and the CC with
singles, doubles, and triples (CCSDT)4,5 and with quadruples
(CCSDTQ)6–8 methods were formulated and implemented.

Although the higher-order CC corrections are able to
describe molecular systems with multi-reference (MR) char-
acter, for efficient description, usually MRCC methods are
needed. In spite of the many attempts, the proper low-cost
generalization of the single-reference CC (SRCC) models to
the MR case is still an open problem.

Most of the MRCC studies published recently focus
on state-selective approaches due to the ability to avoid the
intruder state problem. Some of these methods are based on
the Jeziorski–Monkhorst ansatz9 (JM), where a set of clus-
ter amplitudes is assigned to each model space determinant.
Typical examples for the JM-based MRCC methods are the
Brillouin–Wigner CC theory, the MRexpT, or Mukherjee’s
state-specific MRCC (SSMRCC) theory, where the first is not
extensive, the second is only core-extensive, and the third is
inaccurate and suffers from numerical instability. Recently, the
most actively developed branch of the MRCC models is the
internally contracted MRCC methods,10–18 where the interact-
ing subspace is defined by excitation operators with respect to
the contracted MR reference function. Naturally, the resulting
functions are not orthogonal and generally form a redun-
dant basis set. This difficulty is the source of the complexity
of these approaches, which leads to theories where the effi-
cient implementation is hard, the working equations must be
truncated after a certain power (second or third) of cluster

operators, and due to the numerical elimination of redun-
dancies, the calculated potential energy surfaces (PESs) may
contain discontinuities.

For us the most important class of the MRCC approaches
is that of the active-space CC models, where the application of
restricted higher-order cluster amplitudes is the characteristic
feature. These models use a CAS space to select the orbitals
essential to describe the MR attribute of the wave function.
The prototype of such methods is the single-reference-based
multi-reference coupled-cluster method (SRMRCC), which
was originally proposed by Oliphant and Adamowicz,8 fur-
ther developed by Piecuch et al.,19 and fully implemented
by us.20 As it is well-known, there are two drawbacks of
the SRMRCC method which restricts its applicability. First,
the SRMRCC energy depends on the choice of the reference
determinant. For those cases where the leading determinant
of the wave function is changing, one gets discontinuity on
the PES. Alternatively, smooth PES’s can be obtained using
a spin and symmetry breaking principal determinant, where,
however, the slow convergence of the CC equations can cause
additional difficulty. Second, it is computationally demand-
ing due to the high excitation levels in the cluster operator.
We addressed the first problem in a previous paper,21 where
a quasi-particle-based formalism was presented (QMRCC).
This approach reduces the problem as the reference function
is a multi-reference CAS space function, but the definition of
the excitation space still remains reference function depen-
dent. In this paper, we address the second problem and a novel
implementation of the SRMRCC method is presented. The
motivation behind the new implementation is partly to test
the new diagrammatic approach presented in this paper and
also to develop a proper bases which will be suitable for the
implementation of the quasiparticle-based MRCC model. In
addition, utilizing the new framework a novel implementation
of high-order CC methods is also considered.
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Due to the highly-excited cluster amplitudes of the active-
space approaches, the efficient implementation of these meth-
ods is challenging. The arising problems are common in many
points with that of the high-order SRCC22–25 implementations,
but in some respect—because of the heterogeneous nature of
tensor indices—they are more severe. The common points are
the application of tensors with high ranks, the difficult opti-
mization and implementation of equations due to the large
number of terms, the index reordering steps needed for the
efficient calculation of the contractions, etc. To tackle with
the large number of terms, automated derivation of working
equations26,27 and code generation28–33 have become a stan-
dard tool of quantum chemistry for a long time ago.34 From
our point of view, the work of Engels-Putzka and Hanrath25

is especially significant, who presented an antisymmetric ten-
sor contraction engine where the diagram contractions were
converted into matrix products, and it was applied to the
implementation of general-order SRCC methods. They also
introduced a cost minimal factorization algorithm35 for the
derivation of the CC equations at arbitrary excitation level.
We should also mention the Tensor Contraction Engine sym-
bolic computing system (TCE) of Hirata, which automates
both the equation derivation and the efficient implementation
of high-order CC methods and many other models.36–39 A
determinant-based implementation of the general CC equa-
tions was also published by Olsen,22 which could not achieve
the correct scaling of the computation time with the sys-
tem size. This implementation was applied to test the gen-
eral active-space (GAS) CC method. Later Sørensen et al.
published an optimal scaling general-order CC implemen-
tation,40,41 which is also applicable in the four-component
relativistic framework and with the GAS CC concept. This
implementation used a commutator-based algorithm for the
evaluation of the Baker-Cambell-Hausdorff expansion of the
CC equations. Lyakh et al. also published a diagram-based
SRMRCC implementation,42 where both the derivation of
the equations and the code generation is automated. This
code was used for demonstrative purposes and not fully
optimized.

For the efficient evaluation of the CC diagrams, sophis-
ticated tensor contraction routines are needed. In the recent
years, significant progress has been made to develop general-
order efficient tensor contraction libraries,36,43–48 which are
suitable for the implementation of the post-Hartree-Fock meth-
ods. We have already mentioned the TCE and Hanrath’s imple-
mentations, but other highly efficient general purpose tensor
contraction libraries have been also published, such as the
libtensor tensor algebra library,43 which have been designed
for shared-memory systems, the TiledArray block-sparse
tensor framework,44 and the Cyclops Tensor Framework,45

which support general tensor sparsity and distributed-memory
systems.

The SRMRCC program, implemented previously by one
of us,20 was developed using the string-based general-order
CC technique.24 The basic elements of the implementation
are the strings, that is, ordered lists of one-particle indices,
which can be used to address the independent elements of a
high-rank antisymmetric tensor in a compact form. As the con-
traction of arbitrary antisymmetric tensors can be formulated

in the string framework, it provides a proper background for
the implementation of the CC equations for general excitation
levels.

Although the novel implementation of SRMRCC pre-
sented here varies from the previous one20 (here and after
called previous MRCC49 code) at several points, it keeps the
string representation of operators and amplitudes where it is
practical. Derivation of equations was based on a diagram-
matic approach24,26—as in the previous version—rather than
an algebraic derivation using the second-quantized formal-
ism.25,36 The main difference is that in the new approach, the
strings are used to describe the active fixed indices only, but
the contraction lines and the inactive open lines are labeled
by one-particle indices. This allows us to formulate the tensor
contractions in a vectorized form and perform the contractions
more efficiently using the elements of the Basic Linear Algebra
Subprograms (BLAS) package, as it was found advantageous
in previous high-order CC implementations.25,36,41 The CC
equations are formulated in a compact form, which enables
the use of a dedicated subroutine for each contraction pattern
instead of using a general one. This supports a more effi-
cient implementation, as subroutines can be independently
improved. Due to this relative compactness, the SRMRCC
equations are also hard-coded for arbitrary excitation levels
using a code generator computer program.

To illustrate the applicability of the new code, we used
it to study the weak interaction of two Be atoms. It has been
shown for a long time ago50–52 that, for the correct description
of this system, application of large basis sets and the proper
description of the dynamical electron correlation are essential.
As it is demonstrated in this paper, the PES of Be2 can be cor-
rectly described by active-space CC methods, and an accurate
estimate for the correlation contribution of the core electrons
to the dissociation energy is also presented.

The paper is organized as follows. After the theory of
active-space CC models is briefly summarized in Sec. II, a
proper ordering of amplitude and operator indices is intro-
duced, and the corresponding diagram representation is pre-
sented in Sec. III A. These diagrams have string lines, and
for the proper algebraic interpretation the diagram rules need
some extension, which is presented in Sec. III B. The deriva-
tion of the corresponding equations, the implementation of the
subroutines for the evaluation of the tensor contractions, and
the main elements and the loop structures of the new code are
shown in Secs. III C, III D, and III E. In Sec. IV, timings for
test calculations are presented, and the performance is com-
pared with that of the previous implementation. In Sec. V, the
results for the Be dimer are reported. The paper is closed by
the summary in Sec. VI.

II. ACTIVE-SPACE CC THEORIES

The qualitatively accurate description of a molecular sys-
tem with MR character is most commonly obtained from a
CAS reference. At the singles and doubles truncation level,
highly excited amplitudes can appear in the active-space
CC methods where—in addition to the at most two inactive
occupied and virtual indices—the amplitudes can hold labels
restricted to the active orbitals. In the SRMRCC theory, the
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number of active indices is limited only by the number of
active orbitals. To significantly reduce the calculation cost,
approximate methods were developed, such as the CCSD with
active triples53 (CCSDt) and CCSD with active triples and
quadruples (CCSDtq) methods,54,55 where the overall excita-
tion level is restricted to three and four, respectively. For these
methods, the completely renormalized (CR) CC methods were
generalized56–58 providing corrections for the original theory;
e.g., in the CR-CC(t,3) approach, the contribution of the triple
excitations missing from the CCSDt is approximated using the
method of moments.59 To increase the flexibility of the active-
space CC methods, the general active-space-concept-based
MRCC methods were also introduced22,60 and implemented
for arbitrary excitation levels for relativistic calculations.40,41

We can also mention the SSMRCC with active triples and
quadruples (SSMRCCSDtq)61 developed in our group, where
the restricted higher-order amplitudes are used to increase
the accuracy of the original SSMRCCSD theory. Finally, the
quasiparticle-based MRCC model21 developed by us is also
an active-space CC theory, where the reference function is a
CAS state represented by a determinant of the quasiparticles,
and the Hamiltonian has more-than-two-body terms. Various
applications of the active-space methods were also published
previously,62–65 including applications to excited states60,66,67

and relativistic calculations.41

The common points of the active-space CC methods are
the special parametrization of the cluster amplitudes and the
relatively complex structure of the connected terms of the
Hamiltonian and the amplitudes. In this section, we con-
fine ourselves to the brief description of the SRMRCC the-
ory, as it is a simple representative of the active-space CC
theories.

The definition of SRMRCC theory, as its name suggests, is
closely related to the SRCC formalism, as the cluster expansion
of the wave function ansatz starts with a single determinant |0〉.
It is also supposed that this function, the so-called principal
determinant, is an element of a CAS. The wave function is
parameterized in the usual fashion as

|Ψ
〉
= eT̂ |0

〉
, (1)

where operator T̂ is the cluster operator containing the wave
function parameters as coefficients of the allowed excitation
operators. Without restrictions on T̂ , it is an exact parameter-
ization of the wave function in the given one-electron basis.
To reduce the computational costs, the excitation levels are
usually restricted leading, e.g., to the CCSD method. The
multi-reference nature of SRMRCC and other active-space CC
approaches comes from the special constrains on the cluster
operator, which is parametrized as

T̂ =
1

p!q!r!s!

∑
t
a1,...,ap,A1,...,Aq

i1,...,ir ,I1,...,Is

× {â+
1 . . . â

+
p Â+

1 . . . Â
+
q Î−s . . . Î

−
1 î−r , . . . î−1 }, p ≤ 2, r ≤ 2,

(2)

at the singles and doubles level of theory where, from now
on, ap, bp, etc., are inactive virtual orbitals and ir , jr , etc., are
inactive occupied orbitals, Is, Js, etc., and Aq, Bq, etc., are
active occupied and virtual orbitals, respectively, and only the

number of inactive operators is restricted. Where T̂ acts on the
reference determinant, all the singly and doubly excited deter-
minants appear with respect to the CAS determinants. These
determinants are used to obtain equations for the cluster ampli-
tudes by projecting the stationary Schrödinger equation with
the above CC ansatz onto these determinants, i.e., the first-
order interacting subspace. If determinant ��0

a1,...,ap,A1,...,Aq

i1,...,ir ,I1,...,Is

〉
with the p ≤ 2, r ≤ 2 restrictions is an element of this subspace,
the projected equations,

〈0
a1,...,ap,A1,...,Aq

i1,...,ir ,I1,...,Is
|

(
ĤN eT̂

)
c
|0〉 = 0, (3)

are called the CC or residual equations, and

〈0|
(
ĤN eT̂

)
c
|0〉 = E (4)

is the CC energy. In the aforementioned relations, ĤN is the
normal-ordered Hamiltonian and the c symbol in the sub-
scripts indicates that just the connected part of the ĤN eT̂

product should be taken into account. As it will be frequently
used, please keep in mind that the one-particle indices label-
ing the projecting determinant Eq. (3) are called the fixed
indices.

For the derivation of the CC equations, the contracted
terms in Eq. (3) should be evaluated. To increase the computa-
tional efficiency, equivalent contributions should be gathered,
which can be done in a transparent way using the diagram
technique. In this paper, we will use the Goldstone-type anti-
symmetrized diagram notations as the starting point. Adapting
the diagram technique, the task is to draw each and every
independent connected diagram of the Hamiltonian and the
amplitudes to build the residuals and the energy contributions.
In the discussions of Sec. III, lines playing various roles in
the diagrams are classified as contraction lines, free lines, or
fixed lines. A contraction line connects the interaction and
the amplitudes. Lines of diagrams belonging to an integral
or an intermediate vertex which can be later connected to an
amplitude vertex are called free lines. These are the lines of
interaction vertices which are below the vertex. Lines above
the vertices starting from either an interaction or an amplitude
vertex of a residual diagram and not involved in contractions
are called fixed lines.

Note that, although in Sec. III the discussion is mainly
restricted to the SRMRCC theory, with slight modifications
the presented approach can be used with the other active-space
methods as well.

III. THE NEW APPROACH
A. Representation of amplitudes and intermediates

As in the SRMRCC theory there is no restriction on the
number of active creation and annihilation operators, highly-
excited cluster amplitudes easily appear. For example, for a
4 × 4 CAS problem, six-fold excitations have to be treated.
Increasing the CAS size, the number of amplitude diagrams
and the terms in the CC equations also increase. One can sim-
plify the complexity of the equations by recognizing that the
equivalent fixed diagram lines (lines starting from either an
interaction or an amplitude vertex of a residual diagram and
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not involved in contractions) can be represented by a single
symbol. An example for such a compact notation is shown in
Fig. 1, where the fixed lines of CCSD diagrams are replaced
by string lines leading to a compact diagrammatic descrip-
tion. One can also notice that with the string-based diagrams
the CC equations can be represented in a uniform manner for
every excitation levels. This idea can be slightly altered to fit
better to the active-space CC methods, where the fixed and con-
traction lines (lines connecting two vertices) can be restricted
according to their active or inactive nature. In this subsection,
this approach will be presented in more detail. First, a set of
algebraic notations will be introduced, which will be handy
in the discussion of the computational algorithm, and then the
graphical representation will be also shown.

In the case of the active-space CC theories, the occu-
pied and virtual lines can be further classified as active and
inactive lines. For our purpose, it is convenient to introduce

multiindices for the active fixed lines. These lines are labeled
by integers, and the increasingly ordered lists of these numbers
form strings. Following the convention of Ref. 20, accord-
ing to the occupied or virtual nature of these strings, the I,
J or A, B notations will be used, respectively, which can be
extended by a subscript referring to the length of the string
and a spin index whenever it is needed. For a string Ap

= {A1A2. . .Ap}, an operator Â
+
p = Â+

1 . . . Â
+
p and its adjoint

operator Â
−

p are also defined. The A ∗ A′ notation will be
used for a string obtained by merging string A and string
A′. To help the readability of many index quantities, inac-
tive multiindices are also introduced in a similar fashion, e.g.,
iq = {i1i2. . .iq} and î

+
q = î+

1 î+
2 . . . î

+
q . Finally, ī, j̄, . . . (ā, b̄, . . .)

are arbitrary (active or inactive) occupied (virtual) orbitals.
Using these notations, a general intermediate appearing

in our discussion reads as

S
ī1...īma1...anA1...Ap

b̄1...b̄r j1...jqI1...Is
{ˆ̄i+

1 . . .
ˆ̄i+
mâ+

1 . . . â
+
n . . . Â

+
1 . . . Â

+
p Î−s . . . Î

−
1 ĵ−q . . . ĵ

−
1

ˆ̄b−r . . .
ˆ̄b−1 }

= S ī1...īma1...an

b̄1...b̄r j1...jq

(
Ap, Is

)
{ˆ̄i+

1 . . .
ˆ̄i+
mâ+

1 . . . â
+
n Â

+
p Î
−

s ĵ−q . . . ĵ
−
1

ˆ̄b−r . . .
ˆ̄b−1 }

= S īman

b̄r jq

(
Ap, Is

)
{ˆ̄i+mâ+

nÂ
+
p Î
−

s ĵ
−

q
ˆ̄b
−

r }, (5)

where with the notation we emphasize the special role of the
active fixed strings by putting them into parentheses. With the
above form it is also indicated how these quantities are treated
in the computation, namely, partly by one-particle indices and
partly by string indices. For the sake of brevity, these notations
are further simplified by introducing a single symbol Y for the
set {im, an, br , jq}, i.e., S(Y, Ap, Is) = S ī1...īma1...an

b̄1...b̄r j1...jq

(
Ap, Is

)
, or

using a more compact notation, S(Y, X), where X and Y refer
to the whole set of active fixed indices and to the remaining
indices, respectively.

Similar notations will be used for the cluster amplitudes,
i.e.,

T
a1...anA1...Ap

j1...jqI1...Is
{â+

1 . . . â
+
n Â+

1 . . . Â
+
p Î−s . . . Î

−
1 ĵ−q . . . ĵ

−
1 }

= Ta1...an
j1...jq

(
Ap, Is

)
{â+

1 . . . â
+
nÂ

+
p Î
−

r ĵ−q . . . ĵ
−
1 } (6)

and T (Y, X) = Ta1...an
j1...jq

(
Ap, Is

)
. Again, our aim with the sep-

aration of active fixed indices is to achieve a representation
where the active fixed indices can be treated with a string-based
algorithm.

In our approach the active indices of amplitudes are orga-
nized to be either contraction indices and labeled by one-
particle labels or to be fixed indices and described by a string.
The active fixed indices of the interaction or intermediate ver-
tices are always treated by strings. When the contraction of an
intermediate and an amplitude is processed, the active part of
the resulting diagram is the union of the active fixed strings of
the connected vertices.

To implement the contractions, our first step is to pre-
pare an index ordering for the amplitudes, which fits for
the evaluation of contractions. Due to the definition of clus-
ter amplitudes in the active-space CC theories, the diagrams
including an amplitude vertex connected to an intermedi-
ate can be characterized by the restrictions on contractions.
For a class of such diagrams, the contractions are either
occupied or virtual contractions without further restrictions,
e.g., ∑

āī

S īc
ākT ābC

ījK
. (7)

Restrictions on contractions appear where the amplitude ver-
tices have more than two one-particle indexed occupied or
virtual lines. Following our convention, the fixed one-particle
lines must be inactive lines. As an example, consider a diagram
where an amplitude has three one-particle virtual indices. At
least one of them is a fixed index which must be labeled by
inactive indices. In this example, the amplitude cannot connect
to the intermediate by more than one inactive virtual index. If
there is a second virtual contraction, it is restricted to the active
virtual orbitals, e.g., ∑

Ab̄ī

S īA2

b̄AI1
T b̄aA

īJ2
. (8)

In this sense, to get a compact set of diagrams for the
active-space CC problems, one can classify the amplitude-
intermediate composite diagrams by the number of the
restricted active occupied and virtual contraction lines.
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FIG. 1. Compressed diagram notation for diagrams
which are different in the fixed indices. The group of
fixed indices are signed by double lines; numbers in cir-
cles indicate the number of represented lines (m = 0,1;
m′ = 0,1; m′′ = 0,1).

Accordingly, two representations of the amplitudes will be
used here. The first one is written as

T
ā1...āq

ī1...īl
(As, In) , q ≤ 2, l ≤ 2, (9)

which suits for the situations exemplified by Eq. (7), where the
number of virtual contraction and fixed inactive lines together
are no more than two, and the same holds for the occupied
orbitals. The second representation is useful when the number
of virtual (or occupied) contraction and fixed inactive lines
together is more than two as, e.g., in Eq. (8). The most general
form can be written as

T
a1...apb̄1...b̄qA1...Ar

i1...ik j̄1...j̄lI1...Im
(As, In) , p + q ≤ 2, k + l ≤ 2. (10)

As in our approach the CC diagrams contain no active fixed
orbitals as one-particle index, in each diagram where the above
amplitudes appear the active one-particle indices must be con-
traction indices. For the representation in Eq. (10), the restric-
tion p + q + r > 2 or/and k + l + m > 2 is also used, otherwise
Eq. (10) would become a subset of Eq. (9).

The elementary step of the diagram generation is to form
a composite diagram from an intermediate (or an interaction)
vertex and an amplitude vertex. As the next step, the role of
active fixed strings will be investigated. Using the notations
introduced earlier, a particular composite diagram obtained
from an elementary intermediate and amplitude diagram can
be written as

S īa
b̄j

(A, I) T b̄′a′B′

ī′j′J′
(
A′, I′

)
{{ˆ̄i

+
â+Â

+
Î
−

ĵ
− ˆ̄b
−

}{
ˆ̄b′

+
â′

+
B̂′

+
Â′

+
Î′
−

Ĵ′
−

ĵ′
− ˆ̄i′
−

}}
{ ˆ̄k

+
ĉ+Â

+
Â′

+
Î′
−

Î
−

l̂
− ˆ̄d
−

}

= S̄k̄c
d̄l

(
A ∗ A′, I ∗ I′

)
{ ˆ̄k

+
ĉ+Â

+
Â′

+
Î′
−

Î
−

l̂
− ˆ̄d
−

},
(11)

where the Einstein convention is used; i.e., a summation is
supposed for repeated indices. The subscript in the above
relation indicates that only those contractions should be

evaluated which produce { ˆ̄k
+
ĉ+Â

+
Â′

+
Î′
−

Î
−

l̂
− ˆ̄d
−

} apart from
a sign factor. Of course, one can replace the A ∗ A′ (I ∗ I′)
symbol with a single string, let us say A′′ (I′′), and perform the
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summation for A′′. Keeping the independent summation for
A and A′ (I and I′) transparently shows that one can detach
the active fixed strings from both sides of the equation, and—
apart from a sign factor (see Sec. III B)—Eq. (11) can be
implemented without the explicit knowledge of the active fixed
strings using subroutines where the inputs are the S īa

b̄j
and

T b̄′a′B′

ī′j′J′
quantities depending on A, I and A′, I′, respectively,

while the output is S̄k̄c
d̄l

labeled by the A′′, I′′ strings. It means
that such an implementation is excitation level independent.
Note that at the rhs of Eq. (11) there is no active fixed index
outside the parenthesis.

To illustrate how this idea works, consider the example
where a composite diagram is obtained by formally contract-
ing A and A′, ī and ī′, and finally the b̄ and b̄′ index pairs
as

S ī
b̄A

(A2, I1) T b̄′a′A′

ī′
(
A′0, I′2

)
× {{ˆ̄i

+
Â

+
2 Î
−

1 Â− ˆ̄b−}{ ˆ̄b′+â′+Â′+Î
′−

2
ˆ̄i′−}}

{â′+Â
+
2 Î′
−

2 Î
−

1 }

= S̄a′
(
A2, I1 ∗ I′2

)
{â′+Â

+
2 Î′
−

2 Î
−

1 }. (12)

Instead of the algorithm suggested by the above relation, i.e.,
to perform all the contractions with the result indicated in the
subscript, we follow another route, where first the explicit form
of operators belonging to active fixed indices is eliminated
from the relation and for the other operators the contractions
are evaluated using the conventional diagram rules. That is,

intermediate

¯̄Sa′ = −
∑

ibA S ī
b̄A

(A2, I1) T b̄a′A
ī

(
A′0, I′2

)
(13)

is introduced, where the sign from the diagram rules is consid-
ered (two loops and one hole contraction result in a minus sign),
and then the calculated ¯̄Sa′ is corrected by another sign fac-
tor obtained as the contributions of the eliminated active fixed
operators, S̄a′ (A2, I1 ∗ I′2

)
= ± ¯̄Sa′ (see Sec. III B). Note that

when the active fixed operators are formally eliminated, we
still keep in mind that each index in the tensor part of Eq. (12)
has a vertical pair68 even if its index value is not given explic-
itly. It is an important point when the correct index order of
the composite intermediate is determined.

This concept can be introduced from another point of view
using the graphical form of diagrams. Diagrams where the
active fixed strings are detached can be represented by the
graphs presented in Fig. 2. In these diagrams the double lines
with circles are the active fixed labels. Upgoing arrows rep-
resent virtual, downgoing arrows represent occupied indices,
single arrows are inactive indices, double arrows are active
indices, and the lines having no active/inactive restriction hold
both a single and a double arrow.

As it is discussed, in the SRMRCC theory two types of
diagram contraction appear, namely, restricted to active indices
or not restricted at all. To compute those diagrams where none
of the contractions are restricted, the amplitudes without active
and inactive restrictions can be used [e.g., (a1), (a2), (b1),
etc.], while for diagrams with restricted contraction indices,
amplitudes such as (a3), (b2), and (f1) are used, where the

FIG. 2. Examples for amplitude diagrams. The upgoing
active fixed lines are described by a string index, the rest
of the lines are labeled by one-particle indices. Single,
double, and single plus double arrows are used to indicate
the lines with inactive, active, and arbitrarily active or
inactive indices, respectively.
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purely active indices are always contraction indices, while the
purely inactive indices are never contraction indices. Note that
formally particular lines of diagrams in Fig. 2 have no pairs. In
fact, the pairs of these lines are included into the active fixed
strings, and when diagrams with single lines are processed
using the diagram rules, these lines should be considered as a
part of a loop.

The separate treatment of active fixed strings goes in a
similar way for the integrals and intermediates. A couple of
examples for these diagrams can be found in Fig. 3. The lines
at the top of these diagrams are either restricted to inactive
orbitals or included into the active fixed strings. It is important
to note that there is no need to use intermediates with more
than four inactive indices.

Diagrams in Figs. 2 and 3 are our elementary objects.
Using these building blocks, all diagrams of the SRMRCC the-
ory can be constructed. The number of the elementary ampli-
tude diagrams considering the spin is 350—most of them have
active contraction indices—which is much larger than that in
the ordinary diagram representation of the SRMRCC theory.
Even though the number of various intermediate diagrams is
also larger in our case (due to the diagrams with one and three
inactive labels), a relative compactness partly comes from the
diagram contraction rules, namely, from the fact that the active
one-particle indices of amplitudes must be contracted. One can
also notice that the diagram representation does not depend

on the excitation level of the theory. Increasing the excitation
level increases the number of strings but not the number of the
string-labeled diagrams. As another source of compactness,
we should also mention that in the new approach, where it is
possible, the contraction lines are not restricted to the active or
inactive indices, while in the previous20 implementation each
contraction line was restricted to either the active or the inac-
tive orbitals, which is also a small improvement with respect
to our previous MRCC implementation.

The important point is that for the implementation of these
diagrams, there is no need to explicitly know the form of the
active fixed strings.

B. Diagram rules

One of the advantages of our diagram representation is
that the topological information is enough to evaluate the
diagram contributions. As in our case, the diagram represen-
tation is slightly modified by introducing strings; the diagram
rules must be updated accordingly. The original CC diagram
rules68 are not repeated here; only the differences will be
highlighted.

Each of our diagrams can contain one-particle lines and
active fixed strings, where the active strings are never involved
in diagram contractions. The diagrams should be evaluated for
all those string combinations which are compatible with the

FIG. 3. Examples for the representation of integrals
and intermediates. The upgoing active fixed lines are
described by a string index; the rest of the lines are
labeled by one-particle indices. Single, double, and sin-
gle plus double arrows are used to indicate the lines with
inactive, active, and arbitrarily active or inactive indices,
respectively.
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rest of the diagram. To indicate these stipulations in the nota-
tion, namely, the allowed number of lines in the fixed strings,
a number in a circle is used (see Figs. 2 and 3). The string part
of the composite objects is obtained by merging the strings
appearing on the vertices of the corresponding amplitude
and interaction. According to the diagram rules, all permu-
tations of the non-equivalent fixed lines should be taken into
account with the proper sign. This condition for the active fixed
lines is automatically satisfied due to the anti-symmetry of
strings.

Classically the sign of diagrams is calculated from the
number of loops (l) and the number of hole lines (h) by the
(�1)l+h factor. As a consequence of the additional string lines,
it has to be extended by two new sign factors. First, when a
composite diagram is constructed from elementary interme-
diates and amplitudes, the resultant diagram should keep the
canonical order of indices as shown in Eq. (5). For this rea-
son, the active fixed strings of the connected vertices should
be merged leading to an additional sign factor to be taken
into account. At the construction of the merged string, we
start with the string of the intermediate (A and I) and add the
string of the amplitude from the right (A′ and I′). The sign
is calculated from the number of required index interchanges,
PAA′ , as

(−1)
(
PAαA′α +PAβA′β +PIα I′α +PIβ I′β

)
. (14)

Second, to get the correct sign a further contribution is
needed. Figure 4 helps to understand its source, where the
contraction of an intermediate and an amplitude is drawn. The
diagram contains paired lines68 [lines with labels vertically
paired in Eq. (5)]. A couple of these paired lines are homoge-
neously labeled by the active fixed labels, but others start from
an active fixed line and end in an inactive line (hereafter called
inhomogeneous pairs). Using the ordinary diagram rules, the
sign of the composite diagram corresponding to intermediate
S̄aiAkA′l

I′iIkI′l
can be correctly determined for the given index order.

As in this example, when string I′ (= I′i ∗I′l) is longer than A′,
indices of string I′i appear in the inhomogeneous pairs and I′i is
separated from the rest of the fixed occupied active indices (I′l)
of the amplitude. Before merging the active fixed occupied and

FIG. 4. Illustration for the sign rules. A composite diagram is plotted where
both the amplitude and the initial intermediate contribute to the active strings of
the composite intermediate. Writing strings I′i and I′l next to each other form
the string of the amplitude. Additional sign factor, (�1)i∗ k , comes when the

fixed occupied active indices of the composite diagram S̄
aiAk A′l
I′iIk I′l

are rearranged

to get the (−1)i∗k S̄
aiAk A′l
Ik I′iI′l

form. Note that merging Ik , I′i, and I′l and merging

Ak and A′l provides further sign factors. See text for more details.

virtual strings, in our example, I′i and I′l should be reunited.
In the presented example, it needs (LI′ − LA′)LI index inter-
changes leading to an additional sign factor of (−1)(LI′−LA′ )LI ,
where L is the length of the strings. We obtain a similar factor
if the length of A′ is longer than that of I′. Note that these
sign factors must be calculated independently for the alpha
and beta parts of the diagrams. The sign factor of this kind
reads, in general, as

(−1)

*...
,

∑
σ=α,β

max
(
0, LIσ

′ −LAσ′

)
LIσ +max

(
0, LAσ′ −LIσ

′

)
LAσ

+///
-.

(15)
Finally, in the original CC diagram representation, the

equivalent amplitudes result in a factor of half. In the original
theory, those amplitudes are considered equivalent, which are
connected to the Hamiltonian by identical lines and have iden-
tical fixed lines as well. As our diagrams are formally evaluated
for every string combination, amplitudes with identical con-
traction lines and identical fixed inactive lines should be con-
sidered equivalent, and such a diagrams should be multiplied
by 1

2 .

C. Derivation of the SRMRCC equations

The derivation of the SRMRCC equations presented here
is based on our diagram representation and diagram rules. To
tackle the large number of terms in the SRMRCC formalism,
it is performed using a computer code.

For a given element of the residual vector (or for the
energy), many diagrams give contribution. Calculation of
these diagrams one by one is inefficient; therefore, a proper
factorization of diagram contributions is needed, and where
possible, reusable intermediate quantities should be intro-
duced. As a first step, each elementary diagram (containing
a single Hamiltonian vertex) is constructed in as many ways
as it is possible from the given number of amplitude ver-
tices. For each contraction route, the computation expenses
are estimated calculating the required number of multiplica-
tions (with hypothetical dimensions: 200 virtual orbitals, 20
electrons, 4 × 4 CAS problem). Here we supposed that the
number of active strings is small with respect to the number
of inactive orbitals, and the length of the strings is not con-
sidered in the cost calculations. In this way, we got system
independent equations, which may not be optimal for large
CAS problems. This might be seen as a strong restriction,
but considering that the SRMRCC method is not the method
of choice for large CAS problems, this can be a reasonable
compromise.

After determining the computation prices for each cal-
culation route, the elementary diagrams with four amplitudes
(a single Hamiltonian connected to four T ’s) are investigated
and separated into a single T and an intermediate with three
T ’s (hereafter shortly referred to as the three-T intermedi-
ates) choosing the cheapest option. This process starts from
the most expensive four-T diagram and proceeds in the direc-
tion of the cheapest one. Once an intermediate is chosen, it
will be calculated and available for the computation of a sub-
sequent four-T diagram; thus, its computation price will be
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set to zero thereafter. At the next step the elementary three-
T contributions to the residual and the three-T intermediates
chosen earlier are investigated in a similar fashion. Follow-
ing this strategy, elementary intermediates with one, two, and
three amplitude vertices are defined. At the last step, where it
is possible, the topologically equivalent elementary interme-
diates are summed up to form the final form of intermediate
quantities.

The equation derivation routine applied here keeps the
drawback of our previous approach,20 where for each diagram
the factorization is defined first, then the intermediates are
defined. It is clearly not the most cost-efficient procedure for
the evaluation of the equations. A more sophisticated algorithm
can be found in Ref. 35.

The system independent code was generated in the FOR-
TRAN programming language.

D. Computation of contractions

The core of the CC code is a set of tensor contraction sub-
routines (TCS’s). Each topologically different diagram with
a particular combination of spin and active/inactive labels
appearing in the SRMRCC equations is handled by a sepa-
rate TCS. The TCS’s work with the one-particle index part
of the operators; the only contribution from the active fixed
strings is the sign factor considered earlier (see Sec. III B).
For the SRMRCC method, the number of the independent
TCS’s is 3062. This number slightly depends on the param-
eters (i.e., the CAS size, the number of occupied and virtual
orbitals) of the program deriving the CC equations but does not
depend on the dimensions or the excitation level of the actual
calculation. Because the number of TCS’s is large, we are
bound to use a computer code to generate these subroutines as
well.

Each of these subroutines contains an implementation of
the given diagram based on the dgemm routine, a very efficient
component of the BLAS library, to evaluate matrix products.
For cases when small matrix products have to be evaluated, an
implementation based on the ordinary loop structures is also
generated.

As it is discussed in Ref. 25 in more detail, to be able to use
the dgemm routine, the tensor contractions should be converted
into matrix products. In some cases, the amplitude and inter-
mediate index orders fit to this requirement, and then the matrix
product can be performed directly. In other cases, indices of
these tensors must be reorganized. Reducing the potential cost
of index reordering, the first indices of intermediate arrays are
free virtual indices (virtual indices of an intermediate vertex
which can be connected to an amplitude vertex) followed by
the free occupied, fixed virtual, and fixed occupied indices. As
there is no index order convention which is suitable for every
diagram, the reordering of indices is frequently unavoidable.
For that purpose, a general index reordering routine is also
implemented, which also handles the various index restric-
tions. These index restrictions have two sources, namely, in
our approach the fixed one-particle lines are always inactive
indices, and due to the diagram rules we can utilize the q1

< q2 type of constraint for equivalent contraction and equiva-
lent fixed index pairs.

As it is discussed earlier, particular amplitudes have active
lines which are always contraction lines. For the efficient com-
putation of their diagrams, these indices (occupied and virtual
with alpha or beta spin) are addressed by a single string index.
This string index is always the leading index of these ampli-
tudes (in FORTRAN the leading index is the fastest one). When
such contraction is performed, the indices of the intermedi-
ate are ordered and constrained to fit to the ordering and the
index restrictions of the string index. This compact treatment of
active contraction strings allows a more economical memory
usage as well, which is important, as couple of the diagrams
have eight lines (see, for instance, diagram a3 in Fig. 2).

Apart from the contraction of tensors, the permutation of
non-equivalent inactive indices is also performed here using a
loop structure-based implementation.

At this point, we should also discuss the possible form
of the parallel implementation of the TCS’s introduced ear-
lier. Due to the strategy based on the string description of
the fixed indices, the tensors appearing in the TCS are rel-
atively low dimensional quantities. The number of inactive
indices is at most four, which can be extended in the case of
amplitudes by a single string index of the active contraction
indices. Most of these diagrams easily fit into the memory
for the accessible basis set sizes. It is not necessarily the case
for diagrams having three or four virtual indices. These dia-
grams are treated specially by slicing them up along an inactive
fixed index (as it is discussed in Sec. III E) to obtain suffi-
ciently small arrays. Another important characteristic of the
program is the large number of terms needed to be processed,
of which even the most expensive ones have only a few per-
cent contribution to the calculation time (see Sec. IV). It seems
that the main bottleneck of the code is rather the CPU time
than the memory. Under these circumstances, the most prac-
tical approach for the parallelization is to use the OpenMP
technology to improve the efficiency of the TCS’s while the
Message Passing Interface (MPI) can be used to distribute the
processing of diagrams among the available nodes. The latter is
discussed in more detail in Sec. III E. In the recent implemen-
tation, the diagram contractions are automatically parallelized
through the dgemm routines. The OpenMP implementation of
the index reordering routine remains an important task for the
future.

E. Algorithmic details

The basic idea behind the code structure was to perform
the contraction of one-particle labels in the innermost part of
the loop structures in a highly efficient way, while the slower
string manipulations are carried out outside.

It is supposed that the whole set of amplitudes, the residual
vectors, and the integrals with less than three inactive virtual
indices can be kept in the memory. As some of the one-particle
labels of amplitudes in Fig. 2 are not restricted to the inactive
labels, the representation shown in Fig. 2 is strongly redun-
dant, and for larger basis sets or CAS spaces, keeping all of
them in memory would strongly limit the applicability of the
code; thus, a less redundant form of the amplitudes is stored
in the memory. These are shown in Fig. 5. The active fixed
strings are characterized by a string index, and the inactive
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FIG. 5. Compact representation of amplitudes. The
active fixed lines are described by a string index; inactive
indices are labeled by one-particle indices.

part, by ordinary one-particle indices. Where the less com-
pact form (amplitudes in Fig. 2) is needed, it is constructed
on the fly. This step is referred to as the amplitude gathering.
Though the scaling of this step is low, the amplitude gathering
is still a relatively expensive transformation, as it is difficult
to perform it in a vectorized manner. In the design of the loop
structure, this point is kept in mind, and we minimized the
number of amplitude gatherings as much as possible. For this
reason the gathered amplitudes are stored in the memory as
long as there is available free space and reused when it is
needed.

The size of the intermediate quantities is also worth con-
sidering. As the one-T intermediates, where it is possible,
contain one or two virtual contraction lines and where there is a
single remaining free virtual index of a one-T intermediate it is
contracted with a second amplitude, there is no two-T interme-
diate with more than two inactive virtual lines. Therefore, we
can expect that the size of the intermediates containing two
amplitude vertices is smaller. As we have roughly 600 one-
T intermediates (without exploiting the spin symmetry) and
just slightly more, 700 two-T intermediates, we can suppose
that the full memory requirement of the one-T intermediates is
significantly larger. Accordingly, these intermediates are never
stored on the hard drive but used on the fly.

The diagrams of the interaction and the intermediates with
at least three virtual lines may be too large to be kept in mem-
ory. To tackle this problem, these are separately treated in
an integral driven approach, which allows us to slice up the
large integral arrays into blocks of acceptable size. Each large

interaction diagram is divided into blocks according to an
inactive virtual fixed index, and the resultant blocks are labeled
by a fragment index. Note that all the one-T intermediates with
three inactive virtual indices originate from the integral driven
block of the code and can be also treated in a fragmented
form. Figure 6 shows the recent realization of this part of the
code.

The outermost loops of the integral driven algorithm run
over diagram fragment index M. Loop at lines 2 and 3 together
run through the active fixed strings of the first amplitude to be
attached to the interaction diagram. After initializing the one-T
intermediates and residuals for a given active fixed string X,
the diagram contractions are performed using the TCS’s. Here,
H(Y′′, M) refers to the interaction diagram defined by Y′′, M
in the arguments of S1(Y, X, M) and H(Y′′, M) symbolizes the
index restrictions, and the {H(Y′′, M)T (Y′, X)}Y refers to the
diagram contractions of H(Y′′, M) and T (Y′, X) producing
S1(Y, X, M). The required amplitudes which are not available
in the memory are gathered at line 6 and, if it is possible, kept
in the memory. The computed intermediates are used on the
fly. Loops at lines 9 and 10 run over the active fixed strings
X̄ of the second amplitudes. Amplitudes needed for the two-T
diagrams and not stored in memory are gathered at line 12.
Two-T residuals and intermediates are computed at lines 13
and 15. If the given two-T intermediates are evaluated previ-
ously, these are read from disk and updated at line 14 using
the TCS’s.

For those diagrams where the integrals can be kept in
memory, a different strategy—a one-T intermediate driven
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FIG. 6. Loop structure of the integral driven algorithm. It
is used for diagrams where the Hamiltonian has more than
two virtual lines. Notation {H(Y′′, M)T (Y′, X)}Y indi-
cates those diagrams of H(Y′′, M) and T (Y′, X) where
the contractions of Y′′ and Y′ produce Y. See text for
more details.

algorithm—can be advantageous. As the number and the
memory requirement of the one-T intermediates are large, it
is worth constructing them one by one, and instead of stor-
ing them on the hard drive, they are used to calculate the new
intermediates and residuals on the fly.

The loop structure of the one-T intermediate driven algo-
rithm is briefly presented in Fig. 7. The loops at lines 1 and
2 define the active fixed lines of the one-T intermediates.
Between lines 4 and 9, those integral and amplitude elements
are collected, which together hold the specified active fixed
line string X. At lines 7 and 8, diagrams with string X are
evaluated. Once these are ready, the indices of a next set of
amplitudes are defined by the loops at lines 11 and 12, and
the two-T energy and residual contributions are updated for
string X ∗ X̄, then the two-T intermediates are calculated for
the given string.

The implementation of the three-T and four-T diagrams
follows a similar philosophy. The next part of the code is a two-
T driven algorithm. The two-T intermediates are read from the
disk once, and we calculate their contributions for all the three-
T intermediates and the residuals. The three-T intermediates
are stored on disk and read when needed. At the last step,
the three-T intermediates are read from disk, and the residual
contributions are calculated.

We should also mention that the most I/O demanding oper-
ations are the read and write operations at lines 13 and 18 in
Fig. 7, where the two-T intermediates are updated. As the
number of these update operations depends on the length of
the strings, these steps can be expensive for large CAS spaces.
There is a similar I/O step in the integral driven algorithm in
Fig. 6, but only a few two-T intermediates are treated there,
which has negligible cost.

FIG. 7. Loop structure of the one-T intermediates driven
algorithm. It is used for diagrams where the Hamiltonian
has no more than two virtual lines. See the text and the
caption of Fig. 6 for more details.
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Finally, the parallelization of the above code structure
should also be considered. Both the integral driven and the
one-T intermediate driven algorithm can be easily split up into
independent pieces which could be efficiently evaluated using
MPI. In the case of the integral driven algorithm of Fig. 6, an
interval of fragment index M values can be assigned to each
node to compute. The contributions to the residual calculated
on the nodes can be supposed to have manageable size and can
be gathered by the master node. The size of the computed two-
T intermediates obtained from the integral driven algorithm is
also limited and can be also gathered. The size of the inter-
mediates of the one-T intermediate driven algorithm strongly
depends on the size of the active space. If the active space is
small, the outermost loop at Fig. 7 can be parallelized, and the
residuals and the two-T intermediates can be easily gathered.
In this case, the master handles all the two-T intermediates. At
the next step, the three-T and four-T diagrams are calculated
in a two-T driven algorithm, which can be easily distributed
among the nodes. The bottleneck of this approach is the gath-
ering step of the two-T intermediates, where data proportional
to the number of nodes times the size of the two-T intermedi-
ates information is communicated to the master. For large CAS
problems, it is preferable to keep the two-T intermediates at
the local nodes, process them on the spot, and copy only the
contributions to residual back to the master. It means that the
same three-T and four-T diagrams are processed by each node
using the locally calculated two-T intermediate contributions.
In this solution, a limited amount of CPU time is sacrificed, as
the computation of the three-T and four-T diagrams is ineffi-
cient, but considering that the contribution of the three-T and

four-T diagrams for the complete calculation time is relatively
small (less than 15% for the investigated systems), such an
approach can be still justifiable.

IV. TEST RESULTS

A 2 × 2, a 4 × 4, and a 6 × 6 CAS problem with various
basis sets69,70 were chosen to investigate how these ideas work
in practice. For the 2 × 2 problem, the HF molecule is used
correlating eight electrons, the 4 × 4 CAS example is the H2O
molecule with 8 electrons, and the 6 × 6 model system is the
N2 molecule correlating 10 electrons.

The calculations were performed using the new program
and the previous SRMRCC code which is the part of the Mrcc
program package.49 The comparison of the measured timings
can be found in Table I. The calculations were performed on
a single thread of a 3.5 GHz Intel Xeon E5-1650 processor
with 125 Gbyte memory. In the presented calculations the wall
clock and CPU times were close to each other. For this rea-
son, where it is not indicated otherwise, wall clock times are
presented.

For the 2 × 2 and the 4 × 4 systems, we found consid-
erable speedup with respect to the original code already with
moderate sized basis sets. For example, using the Mrcc code
one iteration step for the HF model took 546 s with the aug-
cc-pVQZ basis set, while the new code completed the task in
13 s. In the measured interval the speedup for the H2O system
is smaller. Using the cc-pV5Z basis set, which was the largest
investigated one for H2O, Mrcc needed 9924 s, while the new
code required 772 s for a single iteration step.

TABLE I. Wall clock times (in seconds) for a single iteration step are presented for the HF, H2O, and N2 molecules
with various basis sets. The number of basis functions (Nb), the timings for the previous and the new code, and
the speedups are presented together with the contributions of the amplitude sorting (AS) and tensor contraction
subroutines (TCS’s) to the CPU time with respect to the entire CPU time. The ratio of CPU times belonging to the
dgemm-based and loop-based TCS’s is also reported where the CPU time of the index reordering is also included
into the CPU time of the dgemm-based TCS’s.

Prev. New CPU(AS)/ CPU(TCS)/ CPU(dgemm)/
Nb code code Speedup CPU(full) CPU(full) CPU(loop)

HF (0 × 0 CAS)
aug-cc-pVQZ 125 83 7.4 11 0 0.27 0.22
cc-pV5Z 145 144 9.5 15 0 0.27 0.22
aug-cc-pV5Z 206 740 28.0 26 0 0.27 0.24

HF (2 × 2 CAS)
cc-pVQZ 84 112 4 28 <0.01 0.71 0.31
aug-cc-pVQZ 125 546 13 42 <0.01 0.71 0.29
cc-pV5Z 145 963 23 42 <0.01 0.71 0.29
aug-cc-pV5Z 206 3 946 84 47 <0.01 0.71 0.29

H2O (4 × 4 CAS)
cc-pVTZ 57 135 20 6.8 <0.01 0.59 0.38
cc-pVQZ 114 1 327 127 10.4 <0.01 0.73 0.29
aug-cc-pVQZ 171 5 273 467 11.3 <0.01 0.81 0.27
cc-pV5Z 200 9 924 772 12.9 <0.01 0.83 0.27

N2 (6 × 6 CAS)
cc-pVTZ 58 2 114 1 216 1.7 0.02 0.41 0.47
cc-pVQZ 108 11 207 5 555 2.0 0.16 0.46 0.34
aug-cc-pVQZ 158 36 411 16 331 2.2 0.19 0.53 0.31
cc-pV5Z 180 55 476 23 307 2.4 0.21 0.54 0.30
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We could not achieve such relatively large speedups for
the N2 molecule. Moving from the cc-pVTZ to the cc-pV5Z
basis set, the achieved speedup increases from the value of 1.7
to 2.4. As the timings in Table I clearly indicate the measured
speedups increase with the basis set size for all the investigated
CAS problems and for a given basis set size, the speedup is
smaller with increasing CAS dimensions. The scaling with the
number of occupied orbitals has been also investigated using
the 2 × 2, 4 × 4, and 6 × 6 CAS reference spaces. For the 2 × 2
and 4 × 4 cases, 150 virtual functions, while for the 6 × 6 CAS
calculations 53 virtual functions were used, respectively, and
the number of occupied orbitals was increased from the value
of 8. As the results presented in Fig. 8 show that, even if the
iteration time of the previous SRMRCC code rises steeper with
the increasing electron number than that for the new code, for
the investigated interval the speedup values slightly decrease.
The reason behind this phenomenon is the offset in the com-
putation time of the previous code caused by the overhead of
the integer operations related to the string manipulations. As
it can be seen in Fig. 8, the achieved speedups for the 2 × 2
and 4 × 4 problems are still significant.

The zero CAS limit, i.e., CCSD, for the HF molecule
is also compared. To that end, the new SRMRCC code was
used without further optimization. The results presented in
Table I reveal that the obtained speedups are rather large but
still smaller than those in the 2 × 2 CAS case. Note that for
the CCSD case, due to the lack of active orbitals, there is no
need for the amplitude gathering.

The most important contribution to the computation time
comes from the TCS’s and, for the large CAS problems, from

the amplitude gathering. In Table I we presented the ratio of the
CPU time spent in the TCS’s and the amplitude gathering with
respect to the full CPU time. For the tested model systems,
in the larger basis sets, roughly 20%-30% of the CPU time is
consumed by the collection of intermediates, array initializa-
tion, and other data processing tasks, which are not detailed in
Table I. For the 2 × 2 and 4 × 4 test systems, the cost of the
amplitude gathering is negligible, and the computation time is
dominated by the work performed by the TCS’s. In the case
of the 4 × 4 and 6 × 6 CAS calculations, the CPU times are
sensitive to the basis set size and increase with the number of
virtual orbitals. The most remarkable observation is the rela-
tively small portion of the CPU time spent in the TCS’s for
N2, where, for example, it is only 41% for the cc-pVTZ and
54% for the largest investigated cc-pV5Z basis set. Besides
the time consuming work of the TCS’s, the amplitude gather-
ing has also significant contribution to the computation time
for the N2 calculations (see Table I). These two components
together cover more than 75% of the CPU time in the large
basis set limit.

An important point of the new implementation is the use of
the dgemm routine to perform the diagram contractions. For the
calculations presented earlier, the dgemm-based algorithm was
used in all the TCS’s instead of the loop structure-based one.
As, in general, the application of the dgemm routine requires
the index reordering of the amplitude and intermediate indices,
it is not obvious whether the use of the dgemm routine is eco-
nomical or not. To investigate this crucial point, calculations
were performed for the test systems with the loop-based imple-
mentation as well. According to the results in the last column

FIG. 8. Running time of the SRMRCC calculations with
the previous and the new code as a function of the number
of electrons. For the 2 × 2 and 4 × 4 CAS-based calcula-
tions 150 virtual functions, while for the 6 × 6 problem
53 virtual functions were used. See text for more details.
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of Table I, the use of dgemm together with the data reorgani-
zation step is roughly three times faster than the loop-based
approach, and the speedup factor increases with the size of the
basis set.

Though the use of dgemm-based TCS’s instead of the
loop-based ones is obviously beneficial, for some TCS’s the
loop-based routines are faster. For the N2 molecule in the cc-
pVQZ basis, we also compared term by term the execution
times of the dgemm- and loop-based calculations for the TCS’s
and compiled the source code with the faster option for each
subroutine. With this optimized version, the CPU time could
be reduced by 5%. As it is not obvious when the loop-based
implementation would improve the performance in general,
the use of the dgemm-based implementation in all the TCS’s
seems to be reasonable.

Finally, we investigated the scaling of the new code. The
theoretical scaling of computation time with the number of
virtual (nv) and occupied (no) orbitals is Nactn4

vn
2
o, where Nact

is the number of active determinants in the CAS space, and
we suppose that the computation time is dominated by the
calculation of the ladder diagrams. To check this assumption,
we measured the contribution of the ladder diagrams to the
full CPU time and found that only 21.1%, 17.6%, and 4.2%
of the CPU time were spent to calculate these most expensive
diagrams for the HF, H2O, and N2 systems, respectively, for the
largest investigated basis sets (see Table I). Though for HF with
the studied basis sets the ladder diagrams still do not dominate
the computation time, we found that the main contributions
come from the diagrams scaling as n4

v as it is presented in
Fig. 9. Here the computation times divided by Nactn4

vn
2
o were

plotted against the number of basis functions. As one can see,
the lines for the HF models are roughly horizontal, while for
the H2O and the N2 calculations it has a 1

x -like character, which
indicates that the large number of diagrams scaling as n3

v (or
even n2

v) have a strong contribution to the calculation time. This
non-linearity is more pronounced for the N2 calculations and
observable with the previous and the new code as well. It seems
that for the large CAS space limit, below a certain number of
virtual orbitals not the few diagrams with the highest scaling

FIG. 9. Running time of the SRMRCC calculations with the previous and the
new code divided by Nactn4

vn2
o. The result is expected to be a horizontal line

in the large basis set limit. See text for more details.

but the large number of lower-order terms becomes the main
obstacle.

It seems that for N2 with the investigated basis set sizes
we are still below this level, which can be a reason behind
the low speedup obtained for this system. The relatively large
CPU requirement of the amplitude gathering is also partly
responsible for the lower speedups, and of course, the derived
SRMRCC equations are not necessarily optimal for large CAS
problems (see Sec. III C), and probably it has its own negative
effect.

V. APPLICATION: WEAK INTERACTIONS
OF TWO BERYLLIUM ATOMS

As a demonstration of the applicability of the SRMRCC
method and our new code, we investigated the weak interaction
of two beryllium atoms. Though the beryllium dimer is a small
system, it is surprisingly difficult to describe its properties
using theoretical methods due to the weak interaction and the
MR nature of the equilibrium state. Although it is extensively
studied by various methods50–52,71–76—to our knowledge—
no previous SRMRCC study has been published for this
system.

For the qualitatively correct description of the beryllium
dimer, at least triple-ζ basis sets and the consideration of the
dynamic electron correlation are needed.52 In the previous
studies to obtain accurate dissociation energy, basis sets with
at least g function were also included.52,71

The latest experimental data were published by
Merritt et al.,77 who reported 929.7 cm�1 for the dissociation
energy. Using these experimental data, Meshkov et al.78 esti-
mated the dissociation energy as 934.9 cm�1 from a direct
potential fit. Most of the published theoretical data were
calculated using MR configuration interaction (MRCI), size-
consistency corrected MRCI, and frozen-core full configura-
tion interaction (FCI) methods. Among the many theoretical
studies performed on Be2, we should mention the study of
Gdanitz,73 who used a large 19s 11p 6d 4f 3g 2h basis set and
a valence-CAS reference space for the explicitly correlated
averaged coupled pair functional (r12-MR-ACPF) calculations
correlating all electrons and obtained 898 cm�1 for the disso-
ciation energy. Large basis MRCI results were published by
Mitin,74 who obtained 822 cm�1 using the t-aug-cc-pV7Z basis
set. More recently, Kalemos79 published MRCI results for Be2

using a large active space (2s, 2p, 3s, 3p, and 3d orbitals were
involved) and the aug-cc-pVQZ basis and found 804 cm�1 for
the dissociation energy. We should also mention the study of
Füsti-Molnár and Szalay, who reported an accurate all electron
MR averaged quadratic coupled-cluster (MR-AQCC) study,
where a modified WMR basis set80 extended by g functions
was used. Since in the dissociation limit the 2p orbitals need to
be equally treated, the active space should contain the 2s and all
the 2p orbitals as well, i.e., a 8× 4 CAS should be used. In their
study Füsti-Molnár and Szalay71 found that applying the MR-
AQCC method with a symmetry breaking 4 × 4 CAS, where
the active space contained the symmetric and anti-symmetric
combination of the 2s and the 2pz atomic orbitals, provides
an accurate description of the Be2 system. They estimated the
dissociation energy by the 864 cm�1 value. A more extensive
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review of the previous results can be found in Ref. 76 and the
references therein.

Applying the frozen core approximation, where the appli-
cation of large basis sets is possible, the Be dimer can be the
target of FCI calculations.50–52 The highest level of frozen core
FCI calculation available for the Be dimer was published by
Helal et al.,76 who reported FCI results for the lowest singlet
and triplet states using the cc-pV6Z basis set.

For our study, we chose the cc-pCVQZ basis set to
describe the Be2 dimer with the all electron SRMRCC cal-
culations. Following the observation of Füsti-Molnár and Sza-
lay, the first SRMRCC calculations were performed using the
above 4 × 4 CAS reference space obtained from an MCSCF
calculation. Though the PES is described qualitatively well
at the CCSDtqph level, the obtained dissociation energy is
poor, 572 cm�1, being far too low compared with the experi-
mental 929.7 (934.9) cm�1 value.77,78 Test calculations using
the cc-pCVTZ basis set indicated that the large discrepancy
comes from the symmetry breaking description of the disso-
ciated system. To describe the 2p orbitals on an equal footing,
the 2px and 2py orbitals were also correlated in the CAS
space. As the determinant with the symmetric and antisym-
metric combinations of the 1s and 2s atomic orbitals has the
largest contribution to the wave function everywhere along the
PES, this determinant was a convenient choice for the Fermi-
vacuum. To keep the computation price at a moderate level
with the 8× 4 CAS reference space, the restricted pentuple and
hextuple cluster amplitudes were eliminated, i.e., the CCSDtq
approximation were used.

The potential surface is plotted in Fig. 10. The calculated
bond distance is 2.46 Å, which is in a good agreement with the
experimental value (2.45 Å),77 and the dissociation energy is
828.3 cm�1 containing the Boys–Bernardi counterpoise (CP)
correction81 (�3.0 cm�1).

As the results show that the CCSDtq method with the
cc-pCVQZ basis set provides a good approximation to the
dissociation energy. Some of the missing contributions can
be estimated using the cc-pCVTZ basis set. To estimate the
effect of neglecting the restricted pentuple and hextuple ampli-
tudes, we compared the dissociation energy at the CCSDtq and
CCSDtqph levels of theory and found that eliminating the

FIG. 10. Potential energy surface of Be2 obtained from 8 × 4 MCSCF and
CCSDtq calculations using the cc-pCVQZ basis set.

“small” p and h amplitudes lowers the dissociation energy
by 0.8 cm�1. Using the smaller basis set we also computed
the difference of the dissociation energies obtained from the
CCSDTQ and the CCSDtq calculations, which can be used
as an approximation of the correlation energy not included at
the CCSDtq level. Its value is 21.7 cm�1. Including these cor-
rections the best approximation to the dissociation energy is
850.8 cm�1. In the cc-pCVQZ basis set, this value should be
close to the FCI limit. Probably the main source of the remain-
ing error with respect to the FCI is the effect of the three-
and four-fold cluster amplitudes not included in CCSDtq and
estimated with the cc-pCVTZ basis set. As the restricted pen-
tuple and hextuple excitations have little contributions to the
dissociation energy in the cc-pCVTZ basis, we expect that the
excitations above the quadruples altogether have a small effect.

We can also use these results to estimate the contribution
of the core electrons to the dissociation energy. To that end
the MCSCF core orbitals were frozen in the cc-pCVQZ basis
set, and the dissociation energy was recomputed using the cal-
culated equilibrium distance. The previously published values
for the core correlation contribution are in the 65-89 cm�1

interval (see Ref. 76). The evaluated core correlation con-
tribution (calculated as the difference of the CP corrected
all electron and frozen core calculations) is 70.4 cm�1 using
the cc-pCVQZ basis set, which is in a good agreement with
the value of 70 cm�1 obtained by Schmidt et al.75 from an
MR-CISDTQ calculation using the similar cc-pwCVQZ basis
set.

Applying the cc-pV6Z basis set and an extrapolation
of frozen-core FCI results to the infinite basis set limit,
Helal et al.76 estimated the dissociation energy as 850.4 cm�1.
Adding our core correlation contribution to Helal’s result,
we end up with 922.9 cm�1, which is quite close to the
experimental value [929.7 (934.9) cm�1].

In conclusion, we have been able to use the CCSDtq
method to describe the PES of the Be2. We could also compute
the core correlation contribution to the dissociation energy,
which together with Helal’s frozen-core FCI result accurately
estimates the experimental result.

VI. SUMMARY AND OUTLOOK

A new diagrammatic approach suitable for the efficient
implementation of high-order CC methods and its initial appli-
cation are presented. For the development of the approach,
diagrams with string lines were introduced, and the diagram
rules were derived for these objects. The new representa-
tion provides a compact form of the CC equations, and on
this basis, excitation level independent active-space CC codes
can be written. Using the new approach, we implemented the
SRMRCC method where we could demonstrate that the new
concept significantly increases the applicability of the active-
space MRCC methods. Due to the applied simplifications, the
new SRMRCC code is optimal for small CAS problems, while
for larger CAS spaces the improvement is moderate. Accord-
ingly, as the test results show, the new code is currently rather
efficient for small, 2 × 2 and 4 × 4 CAS problems but not sig-
nificantly better than the previous implementation for larger
CAS calculations.
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Though the active-space CC methods have obvious lim-
itations due to the high computational price, for small CAS
problems these methods can be considered as useful alterna-
tives of the MRCI methods. To demonstrate it, a brief study
of the Be dimer is also presented, where it is shown that
the PES of Be2 can be accurately described by the CCSDtq
method.

Finally, considering the perspectives of our partly string-
based approach, we believe that it has the potential to be
applicable for the higher-order SRCC calculations as well.
Although the new CC code presented is able to perform SRCC
calculations at arbitrary excitation levels supposing that each
orbital is active, in its recent form it is inefficient. In the current
implementation, we supposed that the number of strings is rel-
atively short, which can be reasonable in active-space MRCC
applications, but for the efficient application of the new frame-
work for the high-order SRCC case this condition needs to be
relaxed. To that end the presented algorithm should be modi-
fied at two points, namely, at the derivation of the CC equations
the length of the strings should be taken into account and the
recent form of I/O operations belonging to the two-T interme-
diates should be optimized. More details will be presented in
a forthcoming paper.
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16W. Liu, M. Hanauer, and A. Köhn, Chem. Phys. Lett. 565, 122 (2012).
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