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We propose a discrete time probabilistic model of depositor behavior which takes into account the information flow among
depositors. In each time period each depositors’ current state is determined in a stochastic way, based on their previous state,
the state of other connected depositors, and the strategy of the bank. The bank offers payment to impatient depositors (those who
want to withdraw their funds) who accept or decline themwith certain probability, depending on the offered amount. Our principal
aim is to see what are the optimal offers of the bank if it wants to keep the expected chance of a bank run under a certain level and
minimize its expected payments, while taking into account the connection structure of the depositors. We show that in the case of
the proposed model this question results in a nonlinear optimization problem with nonlinear constraints and that the method is
capable of accounting for time-varying resource limits of the bank. Optimal offers increase (a) in the degree of the depositor, (b) in
the probability of being hit by a liquidity shock, and (c) in the effect of a neighboring impatient depositor.

1. Introduction

Banks and other financial intermediaries convert short-term
liabilities into long-term and often illiquid assets, a process
called maturity transformation. Liquidating the assets is gen-
erally costly; hence if many depositors or investors attempt to
withdraw their funds from the bank or from other forms of
financial intermediation, then liquidity problems may arise
that may spark a bank run and result in solvency problems
through fire sales. If depositors anticipate such potential
problems, then it may in turn make them more prone to
withdraw. Moreover, during financial crisis it is even more
likely that depositors are concerned about the liquidity and
solvency of their bank,making bank runsmore probable also.

In traditional bank run models [1, 2] banks are supposed
to determine payment to those who withdraw as a result of
a maximization problem. The bank maximizes the overall
expected utility of its depositors. Depending on the specified
environment, these models either allow a bank run outcome
[1] or do not [2]. In this paper we take a different approach.

In times of crises, it makes sense to assume that the most
important objective of the bank is to survive. More precisely,
it wants to keep the probability of a potentially devastating
bank run very low at a minimum cost. The bank’s intention
to minimize the cost (in our case the payments to depositors)
in times of financial distress is due to the uncertainty about
the duration of the crisis and unforeseeable contingencies.
Hence, the bank wants to keep as much funds available
as possible to be prepared for future potential difficulties.
However, it aims also to pay to those who withdraw smoothly
so that rumours about problems of receiving a payment from
the bank do not set off a bank run.

Our main aim is to understand the optimal payments of
the bank during crises when the bank wants to minimize
payments but also maintain sufficiently low the probability
of bank runs given the connections between depositors.
Unlike in other models, depositors’ decision is assumed to
be determined in the following way. Each bank customer
starts as a depositor without urgent liquidity needs (i.e., they
are patient in bank run parlance). However, in any period
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each depositor may be hit by a liquidity shock, turning a
patient depositor into an impatient one. Impatient depositors
have immediate liquidity needs so they withdraw money
from the bank as soon as they can. When they contact the
bank to withdraw money, the bank makes them an offer
that they can accept or reject. The probability of accepting
the offer depends on the amount that is being offered. The
larger the amount, the more likely that the depositor accepts
it. Accepting or not does not only affect the bank and the
depositor in question, but may have an additional effect.
Depositors are connected by an underlying social network
and if a patient depositor is connected to an impatient
depositor, then the probability to become impatient increases.
A possible explanation is that if a depositor notes that the
number of those who want to withdraw from the bank
increases, then she may interpret it as people trying to get
out their funds due to some problem with the bank. In such
a case it may be optimal to withdraw as well, because if a
depositor waits too long while the rest withdraws, then she
may have problems to recover her funds. Once an impatient
depositor accepts the offer from the bank, she ceases to be
impatient and her effect on other depositors disappears as
well. We define a bank run as a situation in which there is no
more patient depositor because everybodywants to withdraw
or has done so already. We compute how the payments to
depositors whowant to withdraw should be so as tominimize
these payments, but also to keep the probability of a bank
run low, taking into account how depositors affect each other
through the underlying social network.

Even though bank run models differ in important points
(e.g., whether there is aggregate uncertainty about the liq-
uidity needs), almost all models have multiple equilibria,
one of which involves bank runs. This paper also admits
bank runs as the bank sets payments in a way that the
probability of runs is reduced but need not be zero. However,
we do not have equilibria as depositors do not make strategic
decisions. Depositors in our model react as an automaton
to what happens around them, in a nonstrategic way. Our
focus is on how banks determine payment optimally in
such an environment. We show that the problem can be
neatly formalized as an optimization problem. However, the
general formulation is too complex to be analyzed. Hence,
we focus in detail on a small, tractable problem. We find
that depositors with more connections receive larger optimal
offers from the bank, ceteris paribus, reflecting the idea that
the bank attempts to avoid that these depositors increase the
probability that the depositors they are connected to become
also impatient. We also find that the lower is the probability
of bank runs that a bank tolerates, the larger is the optimal
offer, all other things held constant. It is intuitive because
through larger offers the bank reduces the probability of
rejected offers that may lead to a bank run. As expected,
the optimal payment to impatient depositors increases as the
probability of liquidity shocks increases. In our examples, the
optimal offers are almost linear in the probability of being hit
by the liquidity shock, but the expected cost increases often
nonlinearly in the same parameter. We show also through
our example that the larger is the effect that an impatient
depositor exerts on her neighbors, the larger is the optimal

offer, ceteris paribus. We find also that the sparser is the
connection structure between depositors, the less they affect
each other; hence the optimal offers from the bank are also
smaller. We show also that the same analysis can be carried
out in more complicated models that take into account
feasibility constraints and allow for time-varying offers. Most
importantly, even in these more intricate setups we find that
more connected depositors receive larger offers from the
bank.

There are several institutions and policies that are
designed to handle problems that may arise during crises.
The most prominent is deposit insurance that guarantees
the recovery of deposits in case the bank has liquidity or
other problems. There are several issues that make deposit
insurance an imperfect solution. It entails moral hazard since
the insurance of deposits may motivate banks to take on
excessive risks. The coverage is limited both in size and
scope, so depositors with a large deposit and investors with
uninsured investments still remain a concern for the bank.
For these reasons other ways of coping with financial distress
have been used also.Themost frequent alternative is liquidity
suspension and rescheduling of payments. Our paper can
be viewed as an attempt to formalize how this rescheduling
should be if connections between depositors matter and the
bank aims at minimizing payments to depositors but also
wants to keep the probability of bank runs low. In many
instances, the renegotiation of payments is done by the
banking authority. Ennis and Keister [3] have examples of
how such rescheduling occurred in some countries.

Note that many nonbank institutions (like mutual funds)
engage also in maturity transformation and in their case
short-term liabilities also retain a debt-like structure. Gener-
ally, the investments these institutions have are susceptible to
investor run as well. In general, consider any firm or financial
institution that owes to investors and negotiates with them
about the terms of repayment, knowing that those investors
may be connected. Our analysis applies to them as well. A
further motivating example may be countries that struggle to
pay their sovereign debt. Consider for instanceArgentina that
restructured its debt several times in the last decade. During
this process the affected bondholders are offered payments
(often in form of longer term bonds) that are lower than
the original bonds promised. Obviously, the country that is
dealing with the bondholders tries to minimize the payments
but wants the bondholders to accept the offers it makes.
If a bondholder accepts an offer, then it may influence the
willingness of other bondholders to accept the offer as well
[4].

Next we show that that depositors react to the decisions
of other depositors that they observe and then discuss issues
related to the importance of setting the right payment to
depositors.

In our model, depositors react to other depositors’
observed decisions. More precisely, we assume that the
chance that a depositor becomes impatient is growing in
the number of impatient depositors that she is linked to.
Empirical studies support this idea. Kelly and O’Grada [5]
investigate a bank run episode in New York in the 19th
century and show that themost important factor determining
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whether an individual panicked or not was her county
of origin in Ireland. Immigrants from the same country
clustered in the same neighborhood and observed each other,
so if a depositor saw a large number of individuals trying
to withdraw, then she was more likely to do so as well. Iyer
and Puri [6] study a bank run that occurred in India in
2001 and demonstrate that observing withdrawals in one’s
social network increases the probability that the depositor in
question follows suit. Starr and Yilmaz [7] show that, during
a bank run incident in 2001 that occurred in Turkey, small
and medium-sized depositors of an Islamic bank seemed to
observe withdrawals of their peers and the larger the mass
that withdrew, themore depositors did the same the next day.
Experimental evidence also suggests that observability plays
an important role in the emergence of bank runs (see, e.g., [8–
11]). A common finding of these experimental studies is that
if previous withdrawals are observed, then they induce fur-
ther withdrawals. These empirical and experimental findings
make it clear that depositors are affected by the withdrawal
decision of depositors they are connected to. That is why we
consider it important to introduce this feature into ourmodel.

In the theoretical literature banks are supposed to act in
the interest of the depositors and hence they set payments
in a way that maximizes the overall utility of depositors.
Important for our study, Green and Lin [2] find that the
optimal payment depends on the self-reported type of the
depositors and their position in the sequence of decision. As
a consequence, depositors who withdraw early may end up
with quite different payments. Our model has that feature as
well, although in our case differences in payments are due
to the connection structure between depositors. Ennis and
Keister [3] use a Diamond and Dybvig [1] model and show
that if the bank realizes that a bank run is underway, then
it reoptimizes the payments to the subsequent depositors.
Our idea is similar in the sense that the bank adapts to hard
times, but the optimization problem in our model is very
different. Unlike [3], we do not maximize the utility of the
remaining depositors but minimize the payments to them
so that they accept it with sufficiently large probability and
do not ignite a bank run. Considering that reactions to the
first withdrawal may appear within days (or even hours), this
seems to be a plausible scenario. According to this, the most
straightforward interpretation for the discrete time periods of
our model is the scale of days.

Note that as the depositors in our model are automatons
that do not decide in a strategic way to maximize their own
utilities and neither does the bank set payments in order to
maximize the overall utility of the depositors, this study is
clearly not a strictly neoclassical economic model for bank
runs.

We are aware of only one paper that uses Markov chains
to study bank runs. Temzelides [12] studies how depositors
are affected by the number of withdrawals from their and
other banks in the previous period. He investigates myopic
best response in an evolutionary banking setup. In his model
there is no underlying social network that determines who
affects whom, but each depositor observes other depositors’
past action. Neither does he study the optimal payment, so
our approaches are quite different.

2. Materials and Methods

Assume that there are 𝑛 depositors that are located at the
nodes of a network and connections enable observability.
Hence, a link connecting two depositors implies that they can
observe each other’s action.

To define a Markov chain model, we have to specify the
possible states of the model and the state transition matrix𝑄 which contains the state transition probabilities. Since the
connections of a certain depositor to another ones matter, we
will distinguish them. This means that the set of the possible
states of the model (S) can be determined as the Descartes
product over the set of possible states of the depositors (𝑆).
To keep the model as simple as possible, we will assume three
possible state for each depositor:

(i) Patient (𝑃): this is the basic state of each depositor and
following the literature a patient depositor does not
have urgent liquidity need.

(ii) Impatient (𝐼): if a liquidity shock hits a depositor,
her state changes from 𝑃 to 𝐼, meaning that she is
demanding money from the bank. Furthermore, if
two depositors are connected and one is impatient,
she increases the probability of the other one becom-
ing impatient. We assume that this effect is additive,
so two impatient acquaintances double the chance of
a 𝑃 → 𝐼 transition.

(iii) Out (𝑂): we assume that the bank offers a certain
amount of money to impatient depositors, who may
accept or reject the offer. We suppose that the chance
that the impatient depositor accepts the offered quan-
tity increases with the offered sum. If the depositor
accepts the offered amount of money, her state will
turn from 𝐼 to 𝑂 and ceases to affect her neighbors
thereafter. If she rejects, then she stays in state 𝐼 for
the next step.

Hence, 𝑆 = {𝑃, 𝐼, 𝑂}. Note that all depositors start
being patient and then may turn impatient. Those impatient
depositors who accept the offer of the bank enter state 𝑂. It
is not possible to go directly from 𝑃 to 𝑂 and any move in
the reverse direction (for example from 𝐼 to 𝑃) is disregarded
also. Given this setup, the total number of states of the system
will be 3𝑛 where 𝑛 is the number of depositors. For the sake
of tractability we use the following assumptions:

(i) Connection structure: the structure of the links con-
necting the depositors may be described by a simple
undirected graph, whose adjacency matrix is 𝐴 (a
straightforward generalization of the model could be
where we assume asymmetric information, and thus
a directed A). Take any two depositors. If they are
linked, then the corresponding entry in the adjacency
matrix is 1. If one of them is impatient, while the other
one is patient, then the former affects the latter one
by increasing the probability that it turns impatient
as well. Following the standard language of network
analysis, if twodepositors are connected, then they are
neighbors, and the number of connections a depositor
has is called degree. Hereafter, we assume that the
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bank knows the connection structure. We admit that
this is a strong assumption, but banksmayhave a lot of
information about depositors including information
about connections between them. Based on [5, 6],
depositors living in the same neighborhood are likely
to observe each other. Starr and Yilmaz [7] suggest
that deposit size also may be a determinant of which
depositor observes which other depositors. Banks
may take into account such information.

(ii) Homogeneity: depositors are homogeneous in the
following senses: (i) the chance of being hit by the
liquidity shock is the same for all patient depositors
(and independent of the degree); (ii) when offered
a certain amount by the bank, the probability of
accepting that amount (and hence change into the
state 𝑂) is also the same for all impatient depositors
(and again independent of the degree).

(iii) Degree-dependent payments: let 𝑜𝑖,deg(𝑖)(𝑡) be the sum
offered to depositor 𝑖 at time 𝑡 where deg(𝑖) is the
number of neighbors of 𝑖. The bank distinguishes
depositors based only on their degree. In other words,
assuming time-independent payments, two deposi-
tors with the same degree receive always the same
offer from the bank if in any given state and time.
Since 𝑜𝑖,deg(𝑖)(𝑡) = 𝑜𝑗,deg(𝑗)(𝑡) if deg(𝑖) = deg(𝑗),
hereafter we use 𝑜deg(𝑖)(𝑡).

Note that the assumptions on the connection structure
and homogeneity imply that depositors in the model differ
only in their degree. As a consequence, there are 2𝑛−1 possible
connection structures.

2.1. State Transition Probabilities. Now we are ready to define
the state transition probabilities. Any state 𝜎 in S can be
composed as 𝑠1𝑠2 ⋅ ⋅ ⋅ 𝑠𝑛 where 𝑠𝑖 ∈ 𝑆 = {𝑃, 𝐼, 𝑂}. Let us
furthermore use the following notation convention: 𝜎(𝑡, 𝑖)
denotes 𝑠𝑖(𝑡), the state of depositor 𝑖 at time 𝑡.

Within a given time period, we assume that the following
events take place simultaneously:

(i) Patient depositors turn impatientwith some probabil-
ity (that is determined by the probability of being hit
by the liquidity shock and the number of impatient
neighbors).

(ii) Impatient depositors decide if they accept or reject the
offers by the bank.

We assume that transition events of the depositors in
one step are independent, so the transition probability from
state 𝜎(1) = 𝑠1(1)𝑠2(1) ⋅ ⋅ ⋅ 𝑠𝑛(1) at 𝑡 = 1 to 𝜎(2) =𝑠1(2)𝑠2(2) ⋅ ⋅ ⋅ 𝑠𝑛(2) at 𝑡 = 2 can be written as

𝑝 (𝜎 (1) → 𝜎 (2)) = 𝑛∏
𝑖=1

𝑝 (𝑠𝑖 (1) → 𝑠𝑖 (2)) , (1)

where 𝑝(𝑠𝑖(1) → 𝑠𝑖(2)) denotes the probability that depositor𝑖 changes her state from 𝑠𝑖(1) to 𝑠𝑖(2) where 𝑠𝑖(1), 𝑠𝑖(2) ∈ 𝑆.
Next, we determine the single transition probabilities.

(i) The chance of a liquidity shock hitting each patient
depositor at each time period is denoted by 𝑝𝑠. We
assume that impatient depositors affect the behavior
of patient neighbors and may induce 𝑃 → 𝐼 transi-
tions: 𝛿 denotes the level of how much an impatient
depositor connected to a patient one increases the𝑃 → 𝐼 transition. This way the patient-impatient
transition at time 𝑡 for patient depositor 𝑖 may be
calculated as 𝑝𝑠 + 𝑘𝐼𝑖 (𝑡) 𝛿, (2)

where 𝑘𝐼𝑖 (𝑡) is the number of impatient depositors
connected to 𝑖 at time 𝑡 (in general we do not assume
the connection structure to change, but the model
framework is capable of handling such cases). The
chance of staying in the 𝑃 state is 1 − 𝑝(𝑃 → 𝐼).

(ii) The chance that an impatient depositor 𝑖 accepts the
offered money at time 𝑡 is denoted by 𝑓(𝑜deg(𝑖)(𝑡))
where 𝑓 is a monotone increasing function, assumed
to be the same for each depositor. The chance of
staying in the 𝐼 state is 1 − 𝑝(𝐼 → 𝑂).

To characterize the evolution of the system we introduce
a lexicographic ordering of the states (e.g., 𝑃𝑃𝑃 ⋅ ⋅ ⋅ 𝑃𝑃 = 𝜎1;𝑃𝑃𝑃 ⋅ ⋅ ⋅ 𝑃𝐼 = 𝜎2; e.g., see Appendix A). Furthermore, we
define the state transition matrix 𝑄 ∈ R3

𝑛×3𝑛 . 𝑄𝑖,𝑗 is equal
to the probability of the transition from state 𝜎𝑖 to 𝜎𝑗. The
probability of state 𝑖 at time 𝑡 is given by the 𝑖th element of
the vector 𝑝(𝑡) ∈ R3

𝑛

. We will denote the probability of state𝑗 (𝜎 = 𝜎𝑗) at time 𝑡 shortly with 𝑝𝑡𝑗 (𝑝𝑡𝑗 equals the 𝑗th element
of 𝑝(𝑡)). Therefore,

𝑝 (𝑡) = (𝑄𝑇)𝑡 𝑝 (0) , (3)

where 𝑝(0) ∈ R3
𝑛

is a vector describing the initial state
of the system. Thus, 𝑝(0) = (1, 0, 0, . . . , 0) denotes that the
probability of the initial state (in our lexicographic ordering𝜎1 = 𝑃𝑃𝑃 ⋅ ⋅ ⋅ 𝑃) is 1.

Let us define the cost of a given state 𝜎 at time 𝑡 as the
sum of offers accepted in the last time period (corresponding
to 𝐼 → 𝑂 transitions from 𝑡 − 1 to 𝑡)𝑐 (𝜎 (𝑡)) = ∑

𝑗:𝜎(𝑡,𝑗)=𝑂,𝜎(𝑡−1,𝑗)=𝐼

𝑜deg(𝑗) (𝑡 − 1) . (4)

That is, the sum of offers that have been accepted at time
period 𝑡 (but not before) by depositors with degree 𝑗 that
ranges from 0 to 𝑛 − 1. The total (or cumulated) cost (𝐶) of𝜎(𝑡)may be defined as

𝐶 (𝜎 (𝑡)) = 𝑡∑
𝑘=2

𝑐 (𝜎𝑖 (𝑘)) . (5)

As already pointed out, it is plausible to believe that in
turbulent times banks attempt to minimize the payments to
depositors who want to withdraw, but at the same time the
bank tries to keep the probability of a bank run at a low level.
As we will show, with the proposed formalized model we are
able to exactly grasp this intuition.
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3. Results and Discussion

3.1. Optimization with No Offer Constraints and Time-Inde-
pendent Offers. In this section we assume that the offers
are time-independent, which means that a depositor with a
certain number of neighbors receives the same offer in each
time period if in impatient state (and sowe omit the argument𝑡 in 𝑜deg(𝑖)(𝑡)).

Let 𝐸[𝐶(𝑡)] denote the expected payments to depositors
at time 𝑡. In general,

𝐸 [𝐶 (𝑡)] = ∑
𝑖

𝐶 (𝜎𝑖 (𝑡)) 𝑝𝑖 (𝑡) , (6)

where 𝑝𝑖(𝑡) is the probability of state 𝜎𝑖 at time 𝑡, which may
be calculated from 𝑥(𝑡). However, since the offers are time-
independent, we may write

𝐸 [𝐶 (𝑡)] = ∑
𝑗:𝑂∈𝜎𝑗

𝑜deg(𝑗)𝑝𝑖 (𝑡) , (7)

so we omit the argument 𝑡 in 𝑜deg(𝑖)(𝑡).
Assuming time-independent offers, the expected cost of

the bank 𝐸[𝐶(𝑡)] depends on the probability of those states at
time 𝑡, which have at least one𝑂, and the position of those𝑂-
s in 𝜎. The position determines the degree which determines
the payment (since payments only depend on the depositors’
degree) to those depositors that were impatient and accepted
the offer.

Actual payments aremade only to those impatient depos-
itors who accept the offer. Since offers are assumed to be time-
independent, in this case it does not matter when the given
state changed from 𝐼 to 𝑂 (in other words, when the offer
was accepted), since amounts offered for a certain (impatient)
node are time-independent.

To formulate the optimization problem, we also need to
define what we consider a bank run.

Definition 1. Any statewhere nopatient depositor is present is
considered as a bank run event.The probability of a bank run
event at time 𝑡 is denoted by 𝑃BR(𝑡) (note the irreversibility:
since there is no 𝑂 → 𝐼 , 𝑂 → 𝑃 , or 𝐼 → 𝑃 transition, once
the system is in a state of bank run event, all following states
will be bank run events).

The precise interpretation of the above event is that for
a time instance 𝑡 a bank run is present at time 𝑡 or it has
already occurred before. Intuitively, we assume that the bank
run itself means that active depositors are present, who are
all impatient. Since the state where all depositors are in the
state 𝑂 also fulfills the definition, it is contra-intuitive in the
sense that at that time the bank run is already over. However
if all depositors are in the state 𝑂, it is sure that a bank run
has already occurred.

The optimization problem of the bank is the following at
time 𝑡 and given a connection structure 𝐴:

min
𝑜1 ,...,𝑜𝑑

𝐸 [𝐶 (𝑡)]
subject to 𝑃BR (𝑡) < 𝑃BR, (8)

1

2 3

Figure 1: Topology 1: connection of the depositors in the case of
Example 1.

where 𝑑 is the maximal degree in the connection structure,
and 𝑃BR (𝑡) = ∑

𝑖:𝑃∉𝜎𝑖

𝑝𝑖 (𝑡) , (9)

where 𝑃 ∉ 𝜎𝑖 refers to those states which do not include
patient (𝑃) depositors. 𝑃BR(𝑡) < 𝑃BR denotes that we want
to keep the probability of bank run event below some given
threshold.

While this is a general optimization, it is too complex
to be analyzed. The size of the state transition matrix grows
exponentially with the number of the modelled depositors,
and the complexity of the resulting expressions may be very
high even in the case of quite simple examples that we show
next. One may partially overcome this problem by merging
states or doing simplifications regarding the Markov chain
model. Moreover, nonlinear optimization problems with
nonlinear constraints such as, for example, (8), are not easy to
handle, and the solversmay run into local extrema (Bertsekas
1999). Furthermore, the needed computing capacity may be
also significant due to the complexity of the functions. For
these reasons, in the rest of the paper we limit ourselves to
small examples to gain insight into how the optimal payments
and expected costs vary as the environment changes.

In this sectionwe assume that the quantities offered by the
bank to the impatient depositors are not constrained by any
consideration regarding their upper bound. In other words,
the bank may offer arbitrarily high sums in order to control
the expected chance of a bank run event; there is no feasibility
constraint.

3.1.1. Example 1. Consider an example with three depositors.
We fix the connection structure as depicted in Figure 1.

Furthermore, we assume the most simple possible case
regarding the function 𝑓 that determines the probability of
accepting an offer, namely, 𝑓(𝑜deg(𝑖)) = 𝑜deg(𝑖). This implies
that we assume 𝑜𝑛 ∈ [0, 1) ∀𝑛. We use a lexicographic
ordering of the states described in Appendix A.

We are interested in the bank’s optimal strategy. Con-
cretely, let us determine which offers should the bank make
to impatient depositors, if the initial state of the system (e.g.,𝑃𝑃𝑃) is known, and the bank wants to keep the chance of a
bank run event (𝑃BR) under a certain probability level while
also aiming to minimize the expected cost.

At 𝑡 = 1 the probability of a bank run event is independent
of the offered sums and is equal to𝑃BR(1) = 𝑝3𝑠 . Regarding 𝑡 =2, 𝑃BR(2) is equal to 𝑝8(2) + 𝑝15(2) + 𝑝16(2) + 𝑝17(2) + 𝑝18(2)
+ 𝑝19(2) + 𝑝20(2) + 𝑝21(2), which can be calculated from
(3), assuming 𝑥0 = [1 0 0 ⋅ ⋅ ⋅ 0]𝑇 (i.e., at the beginning
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each depositor is patient). Note that in Appendix A we define
all potential states that may arise with three depositors, and
states 8, 15, 16, 17, 18, 19, 20, and 21 are those that do not
contain any patient depositor. In Appendix A, we develop the
probabilities for all the possible 27 states and it yields that at𝑡 = 2 the probability of bank run event is

𝑃BR (2) = 𝛿2𝑝3𝑠 − 2𝛿2𝑝2𝑠 + 𝛿2𝑝𝑠 + 4𝛿𝑝4𝑠 − 12𝛿𝑝3𝑠+ 8𝛿𝑝2𝑠 − 𝑝6𝑠 + 6𝑝5𝑠 − 12𝑝4𝑠 + 8𝑝3𝑠 , (10)

which is also independent of the offers.This is not surprising.
If a depositor becomes impatient at 𝑡 = 1, with the offer we
may influence the probability that she changes to 𝑂 at 𝑡 = 2.
However, regarding patient depositors (on whom the bank
run event definition is based on), the important thing is how
long their impatient neighbors remain in the 𝐼 state.

Consider the following example. At 𝑡 = 1 the state𝐼𝑃𝑃 appears. With the offer at 𝑡 = 1 we may affect the
probability of, for example, 𝐼𝑃𝑃 and 𝑂𝑃𝑃 at 𝑡 = 2, but it
makes no difference in terms of whether the next state will
be considered as a bank run event or not. Recall the bank
run event definition according towhich, for example, 𝐼𝑃𝑃 and𝑂𝑃𝑃 are regarded as the same. Depositors 2 and 3 are affected
by the 𝐼 state of player 1 at the transition from 𝑡 = 1 to 𝑡 = 2,
irrespective of the offer to depositor 1 at 𝑡 = 1. On the other
hand, at 𝑡 = 3 it matters whether depositor 1 remained in state𝐼 at 𝑡 = 2 as well or not (which in turn already depends on the
offer).

As expected, the offers first appear in the probability of
bank run at 𝑡 = 3 (𝑃BR(3)):𝑃BR (3) = 36𝛿𝑝2𝑠 + 7𝛿2𝑝𝑠 − 120𝛿𝑝3𝑠 − 4𝛿3𝑝𝑠 + 156𝛿𝑝4𝑠+ 𝛿4𝑝𝑠 − 100𝛿𝑝5𝑠 + 32𝛿𝑝6𝑠 − 4𝛿𝑝7𝑠 + 27𝑝3𝑠− 81𝑝4𝑠 + 108𝑝5𝑠 − 81𝑝6𝑠 + 36𝑝7𝑠 − 9𝑝8𝑠 + 𝑝9𝑠− 43𝛿2𝑝2𝑠 + 70𝛿2𝑝3𝑠 + 12𝛿3𝑝2𝑠 − 46𝛿2𝑝4𝑠− 12𝛿3𝑝3𝑠 − 2𝛿4𝑝2𝑠 + 13𝛿2𝑝5𝑠 + 4𝛿3𝑝4𝑠+ 𝛿4𝑝3𝑠 − 𝛿2𝑝6𝑠 − 6𝛿𝑝2𝑠 𝑜1 − 6𝛿𝑝2𝑠 𝑜2+ 18𝛿𝑝3𝑠 𝑜1 − 3𝛿2𝑝𝑠𝑜2 + 18𝛿𝑝3𝑠 𝑜2 − 20𝛿𝑝4𝑠 𝑜1+ 4𝛿3𝑝𝑠𝑜2 − 20𝛿𝑝4𝑠 𝑜2 + 10𝛿𝑝5𝑠 𝑜1 − 𝛿4𝑝𝑠𝑜2+ 10𝛿𝑝5𝑠 𝑜2 − 2𝛿𝑝6𝑠 𝑜1 − 2𝛿𝑝6𝑠 𝑜2 + 8𝛿2𝑝2𝑠 𝑜1+ 18𝛿2𝑝2𝑠 𝑜2 − 14𝛿2𝑝3𝑠 𝑜1 − 30𝛿2𝑝3𝑠 𝑜2+ 8𝛿2𝑝4𝑠 𝑜1 − 12𝛿3𝑝2𝑠 𝑜2 + 20𝛿2𝑝4𝑠 𝑜2− 2𝛿2𝑝5𝑠 𝑜1 + 12𝛿3𝑝3𝑠 𝑜2 + 2𝛿4𝑝2𝑠 𝑜2− 5𝛿2𝑝5𝑠 𝑜2 − 4𝛿3𝑝4𝑠 𝑜2 − 𝛿4𝑝3𝑠 𝑜2.

(11)

Since there are significantlymore possible ways for a bank
run event to format 𝑡 = 3 than at 𝑡 = 2, this expression ismore
complex than the one in (10).
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Figure 2: 𝑃BR(3) as function of the offer.The blue line illustrates the
effect when the offer to the degree 1 depositor is increased while the
offer to the degree 2 depositor is kept constant at 0.1, while the red
line illustrates the dual case.

In our case the expected costs are as follows:

𝐸 [𝐶 (3)] = 𝑝𝑠 (3𝑜22 − 2𝑜31 + 6𝑜21 − 𝑜32 + 2𝑜21𝛿 + 2𝑜22𝛿
− 2𝑜21𝑝𝑠 − 𝑜22𝑝𝑠 − 2𝑜21𝛿𝑝𝑠 − 2𝑜22𝛿𝑝𝑠) . (12)

To fix ideas, we compute the probability of bank run event
and the expected costs at 𝑡 = 3. Without loss of generality,
assume that the probability of being hit by a liquidity shock is
7% and having an impatient neighbor increases by 2.5% the
chances that a patient depositor turns impatient as well (𝑝𝑠 =0.07, 𝛿 = 0.025) and suppose that 𝑓(𝑜deg(𝑖)) = 𝑜deg(𝑖).

Given the payments to depositors with different degree,
the probability of bank run event is depicted in Figure 2.

As expected, an increase of the offers implies the decrease
of the chance of a bank run event. Second, by increasing the
offer to the depositor with the higher degree is more effi-
cient. This highlights how important may be to differentiate
between depositors regarding the offers.

To determine the optimal strategy of the bank at 𝑡 = 3, we
have to solve the following nonlinear optimization problem
with nonlinear inequality constraints:

min
𝑜1 ,𝑜2

𝐸 [𝐶 (3)]
subject to 𝑃BR (3) < 𝑃BR. (13)

Regarding the above problem, the NLOPT function [13]
of the MATLAB OPTI toolbox was used [14] with the
algorithm LDSLSQP. NLOPT was chosen based on its ability
of handling nonlinear objective function and constraints, on
its numerical stability, and on its advantageous convergence
properties. Considering 𝛿 = 0.08, the following figures show
how the optimal payments and expected cost depend on
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Figure 3: The dependence of optimal offers 𝑜opt1 and 𝑜opt2 on 𝑝𝑠 at various levels of 𝑃BR.

the model parameters. In these figures we see that if the
chance of a liquidity shock (𝑝𝑠) is low enough, the probability
of a bank run event remains under the defined threshold
even if we offer 0 return to impatient depositors. However,
as the probability of becoming impatient (𝑝𝑠) increases, the
importance of these offers becomes significant. Furthermore,
if we observe the 𝑦-axis in the graphs of Figure 3, we see
that the optimal offer to a depositor connected to two other
depositors is larger, as expected. We defined the function
of accepting offer (𝑓) as the identity function, and thus the
offered sum is equal to the acceptance probability, so we
restrict our analysis to the range where 𝑜1, 𝑜2 < 1.

Figure 3 shows that the optimal offers to depositors with
one and two connected depositors (𝑜opt1 and 𝑜opt2 ) increase
as the probability of being hit by a liquidity shock (𝑝𝑠) is
increased (as expected) and also shows how the maximum
probability of bank run events that the bank admits (𝑃BR)
modulates this increase. The larger is the acceptable proba-
bility of bank runs, the lower is the offer, ceteris paribus.

Figure 4 shows how the expected cost changes in function
of the probability of a liquidity shock (𝑝𝑠) and the acceptable
probability of bank run events (𝑃BR). Note that while optimal
offers are often almost linear in𝑝𝑠, the expected cost increases
nonlinearly in 𝑝𝑠.
Finding 1. Anything else held constant, optimal offers
increase in the probability of a liquidity shock and in the
number of connections. The larger is the probability of bank
run event that a bank tolerates, the lower are the optimal
offers and hence the expected costs, ceteris paribus.

Figures 5 and 6 show how the sensitivity to neighbor
depositors who are impatient (𝛿) affects the dependence of
the optimal offers (𝑜opt1 , 𝑜opt2 ) and the expected cost (𝐸[𝐶(3)])
on the probability of being hit by a liquidity shock (𝑝𝑠). We
assume 𝑃BR = 0.02 in these cases. As expected, the more
an impatient depositor increases the probability of turning
impatient of her neighbor(s) (𝛿), the larger is the optimal offer
to her so that the probability of bank run event can be kept at
the desired level. Note also that the expected cost increases
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Figure 4:The dependence of 𝐸[𝐶(3)] on 𝑝𝑠 at various levels of 𝑃BR.

nonlinearly in 𝛿 as the probability of being hit by a liquidity
shock (𝑝𝑠) grows beyond a certain threshold (in our example
it is around 0.07).

The interpretation of the bank run event definition may
be subject to different considerations. Here we applied a
simple approach; however one may define more complex
scenarios (e.g., we may consider a state as a bank run if less
than half of the depositors is in𝑃 state). Such alternative bank
run definitions may be easily interpreted in the proposed
framework.

The Role of Connections. To get an impression how the
connections of the depositors affects the results, we modify
the connection structure of Example 1. Now, as depicted in
Figure 7, depositor 1 is not connected to depositor 2.

In this case we obtain that

𝑃BR (2) = 𝑝2𝑠 (2 − 𝑝𝑠) (2𝛿 + 4𝑝𝑠 − 2𝛿𝑝𝑠 − 4𝑝2𝑠 + 𝑝3𝑠 ) , (14)
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Figure 6: The dependence of 𝐸[𝐶(3)] on 𝑝𝑠 at various levels of the
parameter 𝛿, describing the strength of the connections.

𝑃BR (3) = 𝑝2𝑠 (𝑝2𝑠 − 3𝑝𝑠 + 3) (6𝛿 + 9𝑝𝑠 − 14𝛿𝑝𝑠 − 2𝛿𝑜1
+ 10𝛿𝑝2𝑠 + 2𝛿2𝑝𝑠 − 2𝛿𝑝3𝑠 + 2𝛿2𝑜1 − 2𝛿2 − 18𝑝2𝑠+ 15𝑝3𝑠 − 6𝑝4𝑠 + 𝑝5𝑠 − 2𝛿𝑝2𝑠 𝑜1 − 2𝛿2𝑝𝑠𝑜1 + 4𝛿𝑝𝑠𝑜1) .

(15)

Moreover,𝐸 [𝐶 (3)] = 𝑝𝑠 (6𝑜21 − 𝑜30 + 3𝑜20 − 2𝑜31 + 2𝑜21𝛿 − 𝑜20𝑝𝑠
− 2𝑜21𝑝𝑠 − 2𝑜21𝛿𝑝𝑠) . (16)

Now we have only depositors with zero or one neighbor.
Note that offer to depositorswithout any connection (𝑜0) does

1

2 3

Figure 7: Topology 2: Connection of the depositors in the case of
example 2.
not appear in (14) and (15) since an isolated depositor does
not affect anybody else. The offer 𝑜0 does not influence the
probability of an isolated depositor changing to 𝐼. Once an
isolated depositor is in state 𝐼, we may enhance her transition
to 𝑂 with a larger 𝑜0, but this does not affect the probability
of a bank run event. This is the case because an isolated
depositor in state 𝐼 does not influence anybody else, so from
the perspective of bank run it does not matter if she is in state𝐼 or𝑂. Trivially, if we want to minimize the expected cost, we
choose 𝑜0 to be zero.

Without loss of generality, we consider the following
parameters: 𝛿 = 0.025, 𝑃BR = 0.02. We determine now
the optimal offer to depositors with one connection (𝑜1). In
Figure 8 we see that, in the case of less connections (i.e.,
compared to topology 1), a larger 𝑝𝑠 value is required to
trigger the role of the offers (about 0.08 instead of about 0.07).
The connection parameter 𝛿 modulates the results similarly
to the previous case depicted in Figure 5. As expected, if the
connection structure is sparser (topology 2), the depositors
influence each other less, so the expected cost to prevent a
bank run is always lower. It reflects the intuitive idea that less
connection implies fewer channels to affect other depositors,
so the peril of contagion between depositors is more limited.

When there is no connection between depositors, the
optimal offer to depositors is zero as we explained before.
In the case when all depositors are connected to each other
(topology 3),
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Figure 8: The dependence of 𝑜opt1 and 𝐸[𝐶(3)] on 𝑝𝑠 and 𝛿, in the case of topology 2.

𝑃BR (3) = 54𝛿𝑝2𝑠 + 21𝛿2𝑝𝑠 − 180𝛿𝑝3𝑠 − 18𝛿3𝑝𝑠
+ 234𝛿𝑝4𝑠 + 3𝛿4𝑝𝑠 − 150𝛿𝑝5𝑠 + 48𝛿𝑝6𝑠
− 6𝛿𝑝7𝑠 + 27𝑝3𝑠 − 81𝑝4𝑠 + 108𝑝5𝑠 − 81𝑝6𝑠
+ 36𝑝7𝑠 − 9𝑝8𝑠 + 𝑝9𝑠 − 111𝛿2𝑝2𝑠+ 174𝛿2𝑝3𝑠 + 48𝛿3𝑝2𝑠 − 114𝛿2𝑝4𝑠
− 42𝛿3𝑝3𝑠 − 6𝛿4𝑝2𝑠 + 33𝛿2𝑝5𝑠 + 12𝛿3𝑝4𝑠
+ 3𝛿4𝑝3𝑠 − 3𝛿2𝑝6𝑠 − 18𝛿𝑝2𝑠 𝑜2 − 9𝛿2𝑝𝑠𝑜2
+ 54𝛿𝑝3𝑠 𝑜2 + 12𝛿3𝑝𝑠𝑜2 − 60𝛿𝑝4𝑠 𝑜2
− 3𝛿4𝑝𝑠𝑜2 + 30𝛿𝑝5𝑠 𝑜2 − 6𝛿𝑝6𝑠 𝑜2
+ 60𝛿2𝑝2𝑠 𝑜2 − 96𝛿2𝑝3𝑠 𝑜2 − 36𝛿3𝑝2𝑠 𝑜2
+ 60𝛿2𝑝4𝑠 𝑜2 + 36𝛿3𝑝3𝑠 𝑜2 + 6𝛿4𝑝2𝑠 𝑜2− 15𝛿2𝑝5𝑠 𝑜2 − 12𝛿3𝑝4𝑠 𝑜2 − 3𝛿4𝑝3𝑠 𝑜2,

(17)

𝐸 [𝐶 (3)] = 3𝑜2𝑝𝑠 (3 − 𝑝𝑠 + 2𝛿 − 𝑜2 − 2𝛿𝑝𝑠) . (18)

In Figure 9 we see that, in the case of full connectedness,
a lower 𝑝𝑠 value, compared to the previous cases, is required
to trigger the role of the offers (about 0.05), and the expected
cost is also higher even in the case of relatively low 𝑝𝑠 values
(compared to Figure 6).

Finding 2. The connection structure between depositors
matters. The more connections there are between depositors,
the larger are the optimal offers and the expected cost of the
bank, ceteris paribus.

3.2. Optimization Problem with Offer Constraints and Time-
Dependent Offers. It is a natural to extend the model in a
direction which takes into account the bank’s investments,
returns, and liquidity, which affects the possible offers.
Moreover, in this section we also allow for the case that the
offer changes in time. This is consonant with some papers
that we cited before, as, for instance, [2, 3] also show that
banks adjust the payments to the new situations. However,
we assume that the bank does not reevaluate the situation
between time periods (in this case the realized states could
be taken into account as certain starting state of the model,
and the optimization could be performed according to this),
all offers are determined prior. While these features make
the model more realistic, they make it more complicated
also. Hence, in this section we focus on the example that we
introduced in the last section.

Consider again the topology depicted in Figure 1 and a
time horizon of 4 periods. The state transition matrix 𝑄 will
be time-dependent, since the offers at 𝑡 = 1 and 𝑡 = 2 may
differ. We denote the offer to a depositor with 𝑛 neighbors at
time 𝑡 as 𝑜𝑛(𝑡).

Since the offers (𝑜𝑛) are time-dependent, the resulting
values of the acceptance functions (𝑓(𝑜𝑛(𝑡))) are also time
dependent. We assume that they are the same for all deposi-
tors with the same degree.

Since the main risk is to leave depositors too long in the
impatient state, we expect that earlier offers should be larger.
On the other hand early offers are limited by early returns. In
the optimization problem below we take this consideration
into account.

In this case the probability of bank run event at 𝑡 = 3 is
𝑃BR (3) = 36𝛿𝑝2𝑠 + 7𝛿2𝑝𝑠 − 120𝛿𝑝3𝑠 − 4𝛿3𝑝𝑠 + 156𝛿𝑝4𝑠+ 𝛿4𝑝𝑠 − 100𝛿𝑝5𝑠 + 32𝛿𝑝6𝑠 − 4𝛿𝑝7𝑠 + 27𝑝3𝑠
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Figure 9: The dependence of 𝑜opt2 and 𝐸[𝐶(3)] on 𝑝𝑠 and 𝛿, in the case of topology 3 (full connectedness).
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(19)

the above expression (19) is a slight modification of (11).𝑃BR(4), which depends also on𝑓(𝑜1(2)) and𝑓(𝑜2(2)), can
be similarly derived; however the expression is too long to be
detailed here.

Regarding the expected cost, the derivation is not as
simple as in Section 3.1, since if a state ends up in 𝑂, it does
matter when did it change from 𝐼 to 𝑂. As detailed earlier,
the offers in 𝑡 = 3 do not affect the probability of the bank
run event at 𝑡 = 4, so it is enough to derive the expected costs
of the states at 𝑡 = 3.Consider a simple example.The expected
cost of the state 𝑃𝑂𝑂 at time 𝑡 = 3may be calculated as

𝑝12 (3) (𝑝5 (2) (2𝑜1 (2)) + 𝑝22 (2) (𝑜1 (1) + 𝑜1 (2))+ 𝑝23 (2) (𝑜1 (1) + 𝑜1 (2)) + 𝑝12 (2) (2𝑜1 (1))) , (20)

where 𝑝12(3) is the probability of state 12 at time 𝑡 = 3 and
so on. Let us discuss this expression a bit more in detail. The
expected cost of state 𝑃𝑂𝑂 at 𝑡 = 3 is proportional to its
probability 𝑝12(3). Furthermore there are 4 ways to get to𝑃𝑂𝑂 = 𝜎12:

(i) From 𝑃𝐼𝐼 = 𝜎5: in this case both depositor 2 and
depositor 3 (depositors with one neighbor) accept the
offer at 𝑡 = 2, so the relevant term is 𝑝5(2𝑜1(2))
(remember that 𝑜1(2) refers to offers with one neigh-
bor at time 𝑡 = 2).

(ii) From 𝑃𝐼𝑂 = 𝜎22: in this case depositor 3 accepted the
offer at 𝑡 = 1 (since he is already in 𝑂 state), while
depositor 2 accepted the offer at 𝑡 = 2 which implies𝑝22(𝑜1(1) + 𝑜1(2)).

(iii) From 𝑃𝑂𝐼 = 𝜎23: in this case depositor 3 accepted the
offer at 𝑡 = 2, while depositor 2 accepted the offer at𝑡 = 1 which implies 𝑝23(𝑜1(1) + 𝑜1(2)).

(iv) From 𝑃𝑂𝑂 = 𝜎12: in this case both depositors 2 and 3
accepted the offer at 𝑡 = 1: 𝑝12(2𝑜1(1)).

With the summation of all such expressions we can derive
the expression for the expected cost at 𝑡 = 3.
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Figure 10: 𝑓(𝑜𝑖): the function describing how the probability of
acceptance depends on the offered sum.

We assume the nonlinear offer-acceptance function

𝑓 (𝑜) = 1(1 + exp ((1.2 − 𝑜) /0.075)) (21)

depicted in Figure 10 for all depositors.
In this case, the resulting optimization problem is as

follows:

min
𝑜1(1),𝑜2(1),𝑜1(2),𝑜2(2)

𝐸 [𝐶 (3)]
s.t. 𝑜1 (1) , 𝑜2 (1) , 𝑜1 (2) , 𝑜2 (2) > 0. (22)

3.2.1. A Numerical Example with Time-Dependent Offers.
Consider the following numerical parameters:

𝑝𝑠 = 0.1,𝛿 = 0.02,
𝑃BR = 0.05.

(23)

The optimization process returns the solution[𝑜1(1) 𝑜2(1) 𝑜1(2) 𝑜2(2)] = [1.127 1.253 0.993 1.068].
In this case 𝐸[𝐶(3)] = 0.0216. As before, the depositor with
more connections receives a larger amount in both periods.
Moreover, the degree-dependent offers in period 1 are larger
than in period 2. This latter finding is intuitive because the
more periods lie ahead, themore risky is to have an impatient
depositor that may negatively affect other depositors.

3.2.2. A Numerical Example Including Offer Constraints. In
the previous example we assumed that the bank has with
certainty enough resources to carry out the payments to its
impatient customers. However, this need not be the case,
that is why we consider here an example where feasibility
constraints may bind.

Suppose that there are three depositors characterized by
the offer-acceptance function 𝑓(𝑜𝑖) depicted in Figure 10 and

1

2.2
2.6

4

5

t = 4t = 3t = 2t = 1t = 0

Figure 11: Own liquidity and investment return profile for the bank.

each of themplaces 1 unit ofmoney into the bank before 𝑡 = 0,
with an expected return of 1.6 at 𝑡 = 4. The bank has 1 unit of
own liquidity and invests the 3 units with an expected return
of 4 at 𝑡 = 4. The return profile however is incremental, but
nonlinear in time, as depicted in Figure 11. The bank receives
1.2 unit at 𝑡 = 1, an additional 0.4 at 𝑡 = 2, an additional1.4 at 𝑡 = 3, and finally one more unit at 𝑡 = 4. Once more,
considering the bank run event at 𝑡 = 4, the latest offers which
matter are given at 𝑡 = 2, since the critical issue is how long
impatient depositors stay in impatient state, and so offers at𝑡 = 3 do not count. The topology that we consider is as in
Figure 1.

If any of the depositors is hit by a liquidity shock, she may
withdraw from the bank. In this case the return profile affects
the possible offers. Naturally, each single offer is limited by
the actual liquidity (𝑜1(1) < 2.2; 𝑜2(1) < 2.2; 𝑜1(2) < 2.6;𝑜2(2) < 2.6).That is, the maximum payment to any depositor
is constrained by the available amount in the given period.
On the other hand, the following feasibility constraints are to
be considered in the case of multiple offers:

(i) 𝑜1(1) + 𝑜2(1) < 2.2, 2𝑜1(1) < 2.2.
(ii) 𝑜1(1)+𝑜1(2) < 2.6, 𝑜2(1)+𝑜1(2) < 2.6, 𝑜1(1)+𝑜2(2) <2.6.
(iii) 𝑜1(2) + 𝑜2(2) < 2.6, 2𝑜1(2) < 2.6.
The first point is clear: if two offers are made at 𝑡 = 1,

and both are accepted, the potential payment is limited by
the liquidity available for the bank at 𝑡 = 1. The second point
refers to the case if one offer is accepted at 𝑡 = 1 and another at𝑡 = 2. In this case the first offer is constrained by 2.2, but in the
second step, the bankmay onlymake offer from its remaining
liquidity. If the offer(s) in the first step is (are) rejected or
there is no need for offers at 𝑡 = 1 (because), and in the
second step two offers have to be made, the constraints cor-
responding to the third point describe the effects of limited
liquidity.
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We do not consider the case when in either 𝑡 = 1 or 𝑡 = 2
three offers are to be made, or when at 𝑡 = 2 one (two) offer is
made after two (one) accepted offers, since this would mean
that the system is already at a bank run.

If we consider these offer constraints the resulting opti-
mization problem will take the following form:

min
𝑜1(1),𝑜2(1),𝑜1(2),𝑜2(2)

𝐸 [𝐶 (3)]
subject to 𝑃BR (4) < 𝑃BR𝑜1 (1) + 𝑜2 (1) < 2.22𝑜1 (1) < 2.2𝑜1 (1) + 𝑜1 (2) < 2.6𝑜2 (1) + 𝑜1 (2) < 2.6𝑜1 (1) + 𝑜2 (2) < 2.6𝑜1 (2) + 𝑜2 (2) < 2.62𝑜1 (2) < 2.6.

(24)

Considering 𝑝𝑠 = 0.1 𝛿 = 0.02 𝑃BR = 0.05, this results
in [𝑜1(1) 𝑜2(1) 𝑜1(2) 𝑜2(2)] = [1.067 1.133 1.083 1.184]
with 𝐸[𝐶(3)] = 0.027. Similarly to previous results, in
each period the depositor with more connections receives
a larger offer from the bank. On the other hand, offers at𝑡 = 1 are limited by liquidity constraints, and note that
now the expected cost is higher than in the previous example
(Section 3.2.1) if the objective is to keep the bank run event
probability under 5% chance. The reason for this is that the
offers cannot be efficiently distributed because of the liquidity
constraints. Note that although we considered examples with
some parameters, the optimization problem can handle any
meaningful parameter constellation.

Finding 3. When allowing for time-dependent offers and
feasibility constraints on offers we find that connections
matter. The more connections a depositor has, the larger is
the optimal offer from the bank.

4. Conclusions

We set up a model that studies the optimal offer from a
bank to a withdrawing depositor if we assume that the bank
attempts to minimize the payments, but also the probability
of a bank run event that is affected by connections between
depositors. More concretely, we assume that a depositor who
does not receive an offer that she acceptsmakes her neighbors
more prone to withdraw. We claim that our assumptions
and setup capture important features on payment decisions
during crises. We show that the optimization problem can
be formulated neatly in spite of nonlinearities. However, due
to the very high number of potential connection structures
between depositors finding a general solution proved elusive.
Therefore, we use three variants of a simple example to gain
some insight into the role of connections. An overarching

Table 1

State Notation
PPP 𝜎1
PPI 𝜎2
PIP 𝜎3
IPP 𝜎4
PII 𝜎5
IPI 𝜎6
IIP 𝜎7
PPO 𝜎9
POP 𝜎10
OPP 𝜎11
POO 𝜎12
OPO 𝜎13
OOP 𝜎14
OOO 𝜎15
IIO 𝜎16
IOI 𝜎17
OII 𝜎18
IOO 𝜎19
OIO 𝜎20
OOI 𝜎21
III 𝜎8
PIO 𝜎22
POI 𝜎23
IPO 𝜎24
IOP 𝜎25
OPI 𝜎26
OIP 𝜎27
finding in these examples is that connections matter. The
more connections a depositor has, the larger is the optimal
offer from the bank. Consequently, the denser is the connec-
tion structure, the larger is the expected payment of the bank
to the depositors.

One clear limitation of the applicability of the described
model corresponds to the number of depositors taken into
account. The size of the state transition matrix and so the
complexity of probability formulas used in the calculation
grow exponentially with the number of depositors. A possible
approach to overcome this problem is the application of
epidemicmodels (see [15]) to describe the spreading of impa-
tience among depositors. A somewhat similar methodology
in the case of financial contagion has been described in [16].
On the one hand, these methods represent a natural possi-
bility of describing larger networks; on the other hand we
see that the approach presented in this paper has its benefits
as well. As we distinguish between depositors, individual
characteristics (e.g., individual deposit size and individual
risk aversion measures corresponding to the function 𝑓)
and thus more detailed knowledge about depositors may be
taken into account. The homogeneity assumption described
in Section 2 can be relaxed, and the necessary equations may
be similarly derived.
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Furthermore, although we have shown small examples
with a limited number of depositors, such an analysis may
make sense. As already mentioned, Starr and Yilmaz [7]
study a bank run episode in Turkey. They group depositors
according to the size of their deposits (small, medium-size,
and large) and analyze how they reacted to each other’s
decision. For instance, did small depositors withdraw more
after observing a surge in withdrawals by large depositors?
They find that while large depositors observe small and
medium-size depositors, the latter do not seem to observe the
former ones. This suggests an intricate connection structure
between these groups (a directed graph may capture the idea
that one group observes another one but observability in

general is unilateral). If we interpret depositors as represent-
ing groups, then our model may help to understand this kind
of situations.

Appendix

A. Notation of the States Used in the Model

We use notation for the states of Example as shown in Table 1.

B. Analytical Form of the State
Probability Vector

The state probability vector of Example 1 at 𝑡 = 2 is as follows:

((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
(

(𝑝𝑠 − 1)6−𝑝𝑠 (𝑝𝑠 − 1)5 − 𝑝𝑠 (𝑝𝑠 − 1)3 (𝑜1 − 1) (𝛿 + 𝑝𝑠 − 1)−𝑝𝑠 (𝑝𝑠 − 1)5 − 𝑝𝑠 (𝑝𝑠 − 1)3 (𝑜1 − 1) (𝛿 + 𝑝𝑠 − 1)−𝑝𝑠 (𝑝𝑠 − 1)5 − 𝑝𝑠 (𝑝𝑠 − 1)2 (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1)2𝑝2𝑠 (𝑝𝑠 − 1)4 + 2𝑝2𝑠 (𝑝𝑠 − 1)2 (𝑜1 − 1) (𝛿 + 𝑝𝑠 − 1) + 𝑝2𝑠 (𝑝𝑠 − 1) (𝑜1 − 1)2 (2𝛿 + 𝑝𝑠 − 1)𝑝2𝑠 (𝑝𝑠 − 1)4 + 𝑝𝑠 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)3 (𝑜1 − 1) + 𝑝𝑠 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1) + 𝑝2𝑠 (𝑝𝑠 − 1) (𝑜1 − 1) (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1)𝑝2𝑠 (𝑝𝑠 − 1)4 + 𝑝𝑠 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)3 (𝑜1 − 1) + 𝑝𝑠 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1) + 𝑝2𝑠 (𝑝𝑠 − 1) (𝑜1 − 1) (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1)−𝑝3𝑠 (𝑝𝑠 − 1)3 − 𝑝3𝑠 (𝑜1 − 1)2 (𝑜2 − 1) − 2𝑝2𝑠 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 (𝑜1 − 1) − 𝑝𝑠 (𝛿 + 𝑝𝑠)2 (𝑝𝑠 − 1)2 (𝑜2 − 1) − 𝑝2𝑠 (2𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜1 − 1)2 − 2𝑝2𝑠 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜1 − 1) (𝑜2 − 1)𝑝𝑠𝑜1 (𝑝𝑠 − 1)3 (𝛿 + 𝑝𝑠 − 1)𝑝𝑠𝑜1 (𝑝𝑠 − 1)3 (𝛿 + 𝑝𝑠 − 1)𝑝𝑠𝑜2 (𝑝𝑠 − 1)2 (𝛿 + 𝑝𝑠 − 1)2𝑝2𝑠 𝑜21 (𝑝𝑠 − 1) (2𝛿 + 𝑝𝑠 − 1)𝑝2𝑠 𝑜1𝑜2 (𝑝𝑠 − 1) (𝛿 + 𝑝𝑠 − 1)𝑝2𝑠 𝑜1𝑜2 (𝑝𝑠 − 1) (𝛿 + 𝑝𝑠 − 1)𝑝3𝑠 𝑜21𝑜2𝑝2𝑠 𝑜1 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 + 𝑝3𝑠 𝑜1 (𝑜1 − 1) (𝑜2 − 1) + 𝑝2𝑠 𝑜1 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜2 − 1) + 𝑝2𝑠 𝑜1 (2𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜1 − 1)𝑝2𝑠 𝑜1 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 + 𝑝3𝑠 𝑜1 (𝑜1 − 1) (𝑜2 − 1) + 𝑝2s 𝑜1 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜2 − 1) + 𝑝2𝑠 𝑜1 (2𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜1 − 1)𝑝3𝑠 𝑜2 (𝑜1 − 1)2 + 𝑝𝑠𝑜2 (𝛿 + 𝑝𝑠)2 (𝑝𝑠 − 1)2 + 2𝑝2𝑠 𝑜2 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1) (𝑜1 − 1)−𝑝3𝑠 𝑜21 (𝑜2 − 1) − 𝑝2𝑠 𝑜21 (2𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)−𝑝3𝑠 𝑜1𝑜2 (𝑜1 − 1) − 𝑝2𝑠 𝑜1𝑜2 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)−𝑝3𝑠 𝑜1𝑜2 (𝑜1 − 1) − 𝑝2𝑠 𝑜1𝑜2 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)−𝑝2𝑠 𝑜1 (𝑝𝑠 − 1)2 (𝛿 + 𝑝𝑠 − 1) − 𝑝2𝑠 𝑜1 (𝑝𝑠 − 1) (𝑜1 − 1) (2𝛿 + 𝑝𝑠 − 1)−𝑝2𝑠 𝑜1 (𝑝𝑠 − 1)2 (𝛿 + 𝑝𝑠 − 1) − 𝑝2𝑠 𝑜1 (𝑝𝑠 − 1) (𝑜1 − 1) (2𝛿 + 𝑝𝑠 − 1)−𝑝𝑠𝑜1 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)3 − 𝑝2𝑠 𝑜1 (𝑝𝑠 − 1) (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1)−𝑝𝑠𝑜1 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)3 − 𝑝2𝑠 𝑜1 (𝑝s − 1) (𝑜2 − 1) (𝛿 + 𝑝𝑠 − 1)−𝑝2𝑠 𝑜2 (𝑝𝑠 − 1) (𝑜1 − 1) (𝛿 + 𝑝𝑠 − 1) − 𝑝𝑠𝑜2 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 (𝛿 + 𝑝𝑠 − 1)−𝑝2𝑠 𝑜2 (𝑝𝑠 − 1) (𝑜1 − 1) (𝛿 + 𝑝𝑠 − 1) − 𝑝𝑠𝑜2 (𝛿 + 𝑝𝑠) (𝑝𝑠 − 1)2 (𝛿 + 𝑝𝑠 − 1)

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)

. (B.1)
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