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FUGLEDE’S CONJECTURE FAILS IN DIMENSION 4

MÁTÉ MATOLCSI

Abstract. In this note we give an example of a set Ω ⊂ R4 such
that L

2(Ω) admits an orthonormal basis of exponentials { 1

|Ω|1/2
e
2πi〈x,ξ〉}ξ∈Λ

for some set Λ ⊂ R4, but which does not tile R4 by translations.
This improves Tao’s recent 5-dimensional example, and shows that
one direction of Fuglede’s conjecture fails already in dimension 4.
Some common properties of translational tiles and spectral sets are
also proved.
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1. Introduction

Let Ω ⊂ R
d be a Lebesgue measureable set of finite non-zero mea-

sure. A set Λ ⊂ Rd is said to be a spectrum of Ω if the functions
{ 1
|Ω|1/2

e2πi〈x,ξ〉}ξ∈Λ form an orthonormal basis of L2(Ω) (here |Ω| de-

notes the Lebesgue measure of Ω). If such Λ exists, Ω is said to be
spectral. The set Ω is said to be a (translational) tile if it is possible
to tile Rd with a family of translates {t + Ω : t ∈ Σ} of Ω (ignoring
overlaps and gaps of measure zero).

Tiles and spectral sets are connected by Fuglede’s famous

Conjecture 1.1. [1]A set Ω ⊂ Rd of finite, non-zero Lebesgue measure
is a tile if and only if it is spectral.

Fuglede [1] proved the conjecture in the special case when the spec-
trum Λ or the translation set Σ is assumed to be a lattice. The general
case of the conjecture was open for nearly 30 years, until last year Tao
[13] showed an example to disprove one direction of the conjecture in
5 and higher dimensions. Namely, he gave an example of a spectral
set in R5 which is not a tile. The aim of this note is to modify Tao’s
example and prove that the conjecture fails already in dimension 4. We
emphasize that Propositions 2.1 and 2.5 are only new in the general-
ity formulated below, and credit should be given to [13], where special
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cases are proved with the same idea. The essentially new results of the
paper are contained in Propositions 2.2, 2.3 and Theorem 3.1.

We will restrict our attention to sets of the form of finite union of
unit cubes placed at points with integer coordinates, i.e.

(1) Ω = ∪t∈Γ{t + [0, 1)d},

where Γ ⊂ Zd is finite (this means, essentially, that we will be consid-
ering the tiling and spectral properties of sets in Z

d). Besides giving a
counterexample in dimension 4, we also prove some interesting proper-
ties that are shared by spectral sets and tiles of the form (1).

To asses our present knowledge concerning this topic it is interesting
to note that Fuglede’s conjecture was recently proved in 2 dimensions
for convex bodies in [5]. Even for finite union of intervals the conjecture
is still open in dimesion 1. Some partial results concerning this case
appeared in [10], [11]. In arbitirary dimensions certain classes of non-
tiling sets are already known to admit no spectrum, either. Results
in this direction are contained in [4], [7] and [8]. For further recent
results related to Fuglede’s conjecture see [3], [12] [2] and [6]. The
recent survey [9] gives an overview not only of the Fuglede conjecture
but also of some recent results in the theory of translational tilings.

Note, also, that one direction of the conjecture is still open in all
dimensions, namely we have no examples of tiles which do not admit
a spectrum.

2. Common properties of tiling and spectral sets

In this section we examine some natural properties of spectral sets
and tiles of the form (1).

We will need the following notations and definitions.
The family of spectral sets (resp. tiles) of the form (1) will be denoted

by Sd (resp. T d).
A k×k complex matrix H is called a Hadamard matrix if all entries of

H have absolute value 1, and HH∗ = kI (where I denotes the identity
matrix). This means that the rows (and also the columns) of H form
an orthogonal basis of Ck. A log-Hadamard matrix is any real square
matrix (hi,j)

k
i,j=1 such that the matrix (e2πihi,j )k

i,j=1 is Hadamard.

For a given finite set {t1, . . . tk} ⊂ Zd let T denote the d × k matrix
with jth column tj . (With a slight abuse of notation we will denote the
set itself by T as well.) The set T = {t1, . . . tk} is called spectral if there
exists a k×d real matrix L such that LT is log-Hadamard (in the usual
terminology of harmonic analysis it is also required that the entries of
L belong to the interval [0, 1) but the definition above will be more
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convenient for present purposes). The (rows of the) matrix L is the
(not necessarily unique) spectrum of T . The set T = {t1, . . . tk} ⊂ Zd

is called a tile if it is possible to tile Z
d with a family of translates of

T . The family of spectral sets (resp. tiles) of Zd will be denoted by Sd
0

(resp. T d
0 ).

The set T = {t1, . . . tk} ⊂ Zd is called m-spectral for some positive
integer m if it admits a spectrum L with all entries being multiples
of 1/m (which, essentially, means that T is spectral in the group Zd

m).
The set T is called an m-tile if it is possible to tile the cube [0, m)d

with translates of T mod m. (This means that T tiles the group Zd
m.)

The family of m-spectral sets (resp. m-tiles) of Zd will be denoted by
Sd

m (resp. T d
m).

It is obvious that Sd
m ⊂ Sd

0 and T d
m ⊂ T d

0 , and it is also clear that if
T ∈ T d

0 then T +[0, 1)d ∈ T d. It is also well-known that if T ∈ Sd
0 with

spectrum L = {l1, . . . lk} then Ω = T + [0, 1)d ∈ Sd with spectrum Λ =
L+Z

d (the orthogonality of the functions e2πi〈λ,x〉 is an easy calculation,
while the completeness can be seen by checking the Parseval identity
for functions of the form e2πi〈s,x〉 and noting that the linear span of
these functions is dense in L2(Ω)).

Tao’s example [13] shows that Sd
0 6= T d

0 and Sd 6= T d for d ≥ 5,
therefore Fuglede’s conjecture is false, in general. Nevertheless, it is
interesting to see that Sd

0 and T d
0 share certain properties. Namely, it

is reasonable to look for ’natural’ properties of T d
0 and check whether

the same holds for Sd
0 , and vica versa. The first result in this direction

establishes the ’composition property’ for Sd
0 and T d

0 . This property is
already used in Tao’s example (in less generality, but the idea is the
same).

Proposition 2.1. Assume that the set T = {t1, . . . tk} ⊂ Zd is an m-
tile (resp. m-spectral) and the set S = {s1, . . . sr} ⊂ Zd is an n-tile
(resp. n-spectral). Then the set Γ := T + mS is an mn-tile (resp.
mn-spectral).

Proof. This property is ’natural’ for tiles, therefore we prove only the
spectral part of the proposition.

Let L := { l1
m

, . . . lk
m
} be the spectrum of T , and Q := { q1

n
, . . . qr

n
} be

the spectrum of S. We claim that the spectrum of Γ is Λ = L + Q

m
.

The cardinality of Λ and Γ is the same (mn), therefore it is enough
to check orthogonality of the functions e2πi〈λ,x〉.

To see this write λi1 =
li1
m

+
qi1

nm
, λi2 =

li2
m

+
qi2

nm
, and
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(2)
∑

x∈Γ

e2πi〈λi1
−λi2

,x〉 =
∑

t∈T

∑

s∈S

e2πi〈
li1
−li2
m

+
qi1
−qi2

nm
,t+ms〉.

Notice that if qi1 6= qi2 then the second summation gives 0 for all
fixed t ∈ T (because of the spectral property of Q with respect to S),
therefore the whole sum is 0. On the other hand, if qi1 = qi2 then

the second summation gives re2πi〈
li1
−li2
m

,t〉, and the whole sum equals 0
because of the spectral property of L with respect to T . �

The next two propositions are not directly used in our 4-dimensional
counterexample below, but they are of independent interest. First we
examine a ’natural’ ascendence property of spectral sets.

Proposition 2.2. Assume that for a given set T = {t1, . . . tk} ⊂ Zd

there exists a d1×d matrix L1 with integer entries for which the columns
of L1T form a spectral (resp. m-spectral) set T1 in Zd1 . Then T itself
is spectral (resp. m-spectral).

Proof. If L denotes a spectrum of T1 then LL1 is clearly a spectrum of
T , because (LL1)T = L(L1T ).

�

It may be a little surprising that the same property holds also for
tiles.

Proposition 2.3. Assume that for a given set T = {t1, . . . tk} ⊂ Zd

there exists a d1×d matrix L1 with integer entries for which the columns
of L1T form a tile (resp. m-tile) T1 in Z

d1. Then T itself is a tile (resp.
m-tile).

Proof. We prove the statement for tiles, and remark that the case of
m-tiles is settled exactly the same way.

Note first that the elements of T1 must be different from each other
because of the tiling condition. Let Σ1 denote the translation set cor-
responding to T1, i.e. Σ1 + T1 = Zd1 . Define Σ := L−1

1 [Σ1] = {σ ∈ Zd :
L1σ ∈ Σ1}. We claim that Σ is a good translation set for T .

To see this, we check first that the translated copies of T are disjoint.
Assume therefore that σ1+ti = σ2+tj for some σ1, σ2 ∈ Σ and ti, tj ∈ T .
Applying the transformation L1 we get L1σ1 +L1ti = L1σ2 +L1tj , and
in view of the tiling condition on T1 we conclude that L1ti = L1tj . This
implies ti = tj , and hence σ1 = σ2.

Next we check that the translates of T cover the whole of Zd. Let
z ∈ Zd arbitrary, and let z1 = L1z ∈ Zd1 . Then, by assumption,
z1 = σ1 + t1 with some σ1 ∈ Σ1 and t1 ∈ T1. Take the inverse image
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of t1, i.e. the element ti ∈ T for which L1ti = t1. Then σ := z − ti is
contained in Σ because L1(z − ti) = z1 − t1 = σ1 ∈ Σ1. �

Let us mention an interesting consequence of this proposition.

Corollary 2.4. Let T = {t1, . . . tk} ⊂ Zd be a linearly independent set
of vectors (over R). Then T is a tile in Z

d.

Proof. By the assumption of linear independence we can delete d − k
rows of the matrix T , so that the remaining k-dimensional columns
PT = {Pt1, . . . P tk} span Rk. (The deletion of rows corresponds to
multiplication by a k × d matrix P with entries 1’s and 0’s.) In view
of Proposition 2.3, it is enough to show that PT is a tile in Zk.

Consider the column vectors k = (0, 1, . . . k − 1)∗ (the ∗ in the ex-
ponent denotes transposition) and j := (det PT ) · PT ∗−1k. Notice

that the matrix (det PT ) ·PT ∗−1 (and hence the vector j) has integer
entries, and the 1-dimensional set j∗ ·PT = (detPT ) k∗ obviously tiles

Z. Hence, Proposition 2.3 applies, and PT is a tile in Zk. �

Finally, we examine a property of ’non-tiling’ sets which played an
essential role in the counterexample of [13] (we give a slightly general-
ized version here).

Proposition 2.5. Assume that the set T = {t1, . . . tk} ⊂ [0, m)d is not
an m-tile. Then for large n the set Sn := T +

(

m · [0, n)d
)

is not a tile.

Proof. The proof proceeds along the same lines as in [13], and we in-
clude it only for completeness.

Assume, for contradiction, that Sn tiles Zd with some translation
set Σ. Take a cube Cl = [0, l)d, where l is much larger than n. Let
Σl := {σ ∈ Σ : (σ + Sn) ∩ Cl 6= ∅}. Note that #Sn = knd. We have

#Σl ≤ (l+2mn)d

knd , because all Σl-translates of Sn are contained in the

cube (−mn, l + mn)d.
Let A denote the annulus A := [−m, mn+m)d−[m, mn−m)d. Then

#A (≈ 4dm(mn)d−1) ≤ 5dm(mn)d−1, if n is large enough compared to
m. Hence, Σl + A cannot cover the cube Cl−m := [0, l − m)d because

(#Σl)(#A) ≤ (l + 2mn)d
(

5dm(mn)d−1

knd

)

< (l − m)d, if the numbers

n, l are chosen so that n is sufficiently large compared to m, and l is
sufficiently large compared to n.

Take a point x ∈ Cl−m not covered by Σl + A. Consider the cube
Cx

m := x+[0, m)d. This cube is fully inside Cl, therefore if any translate
σ + Sn intersects Cx

m then σ necessarliy belongs to Σl. The point x is
not covered by the annulus σ+A, therefore Cx

m is contained in the cube
σ+[0, mn)d. Let S denote the set T +m ·Zd. In view of what has been
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said, we have (σ+Sn)∩Cx
m = (σ+S)∩Cx

m = (x+[0, m)d)∩(σ+T+mZd).
The mod m reduction of this set is exactly the translate σ +T mod m.
Hence, the tiling of the cube Cx

m by Σ-translates of Sn contradicts the
assumption that T is not an m-tile. �

It would be interesting to see whether the corresponding result holds
also for spectral sets.

3. Counterexample in dimension 4

We can now show that one direction of Fuglede’s conjecture fails
already in dimension 4.

Theorem 3.1. For any d ≥ 4 there exists a finite union of unit cubes
Ω = ∪k

j=1{sj + [0, 1)d} in Rd, such that Ω is spectral but not a tile.

Proof. Take the matrix

K :=















0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 2 1
0 1 2 0 1 2
0 2 2 1 0 1
0 2 1 2 1 0















and observe that 1
3
K is log-Hadamard (and corresponds to the Hadamard

matrix H given in [13]).
Note that K is of rank 4 mod 3, therefore it is possible to make a

mod 3 decomposition K = L · T , where L is a 6 × 4 and T is a 4 × 6
matrix. We give a specific mod 3 decomposition for convenience:

L :=















0 0 0 0
0 1 1 2
1 0 2 2
1 2 0 1
2 2 1 0
2 1 2 1















and T :=









0 1 0 0 0 2
0 0 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 2









.

Note, however, that infinitely many decompositions exist, and each
decomposition corresponds to a counterexample as explained below.
(We also remark that the original example of [13], although not ex-
plicitely stated in the paper, corresponds to the decomposition K =
K · I, where I denotes the identity matrix.)

Forgetting about mod 3 calculations and regarding L and T as real
matrices we see that K ′ := 1

3
L ·T is a log-Hadamard matrix. Therefore
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the set T ∈ Z4 above is 3-spectral, but obviously not a 3-tile because
the number of elements of T (i.e. 6) does not divide 34. Therefore, for
large n, the set S := T + 3[0, n)4 is 3n-spectral, but not a tile in view
of Propositions 2.1 and 2.5.

This means that the set Ω := ∪s∈S{s+[0, 1)4} is spectral in R4 (this
fact was already mentioned in the discussion preceding Proposition
2.1). The fact that Ω does not tile R4 follows as in Proposition 2.5.
Namely, in a large cube Cl we find a point x which is not covered by any
translate of the annulus A, and note that any translate of Ω is either
disjoint from the cube x + [0, 3)4 or it covers exactly 6 unit volumes of
it. Therefore x + [0, 3)4 cannot be covered by translates of Ω because
of obvious divisibility reasons.

�
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