Skeletal muscle intermediate filaments form a stress-transmitting and stress- signaling network

Palmisano, M. G. and Bremner, S. N. and Hornberger, T. A. and Meyer, G. A. and Domenighetti, A. A. and Kiss, Balázs and Kellermayer, Miklós (2015) Skeletal muscle intermediate filaments form a stress-transmitting and stress- signaling network. JOURNAL OF CELL SCIENCE, 128 (2). pp. 219-224. ISSN 0021-9533


Download (2MB) | Preview


A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function since the major muscle specific IF, desmin, is expressed in high abundance and is highly organized. Here we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role.

Item Type: Article
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3011 Biochemistry / biokémia
Depositing User: MTMT SWORD
Date Deposited: 10 May 2018 14:40
Last Modified: 10 May 2018 14:42

Actions (login required)

Edit Item Edit Item