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Összefoglaló 

 
A kockázatfelosztási játékok olyan kooperatív játékok, amelyekkel fel lehet osztani egy 

pénzügyi vállalkozás kockázatát annak divíziói között. Ebben a tanulmányban kiterjesztjük a 

kockázatfelosztási játékok irodalmát azáltal, hogy figyelembe vesszük a likviditási 
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mivel a likviditási elvárás externáliákhoz vezet. Amellett érvelünk, hogy itt a szokásos 

„legrosszabb esetben” megközelítést nem kellene használni, ehelyett egy másik definíciót 

adunk. Belátjuk, hogy az így keletkezett átruházható hasznosságú játékosztály egybeesik a 

teljesen kiegyensúlyozott játékok osztályával. Eredményeinkből az következik, hogy akkor is 

lehetséges a stabil kockázatfelosztás, ha figyelembe vesszük a likviditási megfontolásokat. 
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1 Introduction

If a financial enterprise (bank, insurance company, investment fund, etc.) consists of several

divisions (individuals, products, subportfolios, risk factors, etc.), not only is it important

to measure the risk of the entire financial enterprise properly, but also to attribute this

risk to the divisions using a proper risk allocation method.

To measure risk appropriately, we apply coherent measures of risk (Artzner, Delbaen,

Eber, and Heath, 1999), which are defined by four axioms: monotonicity, subadditivity,

positive homogeneity, and translation invariance. Csóka, Herings, and Kóczy (2007) show

that these axioms are supported by a natural general equilibrium approach to measure risk.

Of these axioms, subadditivity is the most essential one, and captures the notion that the

risk of the financial enterprise is at most as large as the sum of the risks of the divisions.

Risk or capital allocation has many applications: the division of capital reserves among

business units by financial institutions; strategic decision making regarding new business

lines; product pricing; performance measurement; the formation of risk limits; see Denault

(2001), Kalkbrener (2005), Buch and Dorfleitner (2008), Homburg and Scherpereel (2008),

Kim and Hardy (2009), and Csóka, Herings, and Kóczy (2009).

The various applications have the following question in common: how to allocate the

risk of the financial enterprise over its constituents? A natural approach to answer this

question comes from cooperative game theory. First one defines a risk allocation game, the

cooperative game where a player is a portfolio and the payoffs of a coalition are negatively

related to the risk of the coalition’s portfolio. The risk of a portfolio is measured by a

coherent measure of risk. Next, one can use one of the point-valued solution concepts in

cooperative game theory like the Shapley value (Shapley, 1953) or the nucleolus (Schmei-

dler, 1969) to attribute risk to the players, or one of the set-valued solution concepts like

the core (Gillies, 1959) to determine stable allocations of risk.

Liquidity is a major concern in financial markets. The usual mark-to-market valuation

of assets does not take the assets’ liquidity into account. Acerbi and Scandolo (2008) extend

the axioms of coherent risk measures to incorporate two types of liquidity considerations.

First, requirements on the composition of the portfolio, captured by the so-called liquidity

policy and, second, the liquidity of asset markets as expressed by marginal demand curves,

corresponding to the order books of the assets at a given future point in time.

In this paper we extend the notion of risk allocation games to include liquidity consid-

erations. In doing so, the financial enterprise faces an externality problem, as any division

of the enterprise can liquidate some of its assets in order to satisfy the liquidity policy,

and the more assets one division liquidates, the less assets have to be liquidated by other

divisions. The standard approaches to define a game in characteristic function form in the

presence of externalities are α–effectiveness and β–effectiveness as suggested by Aumann
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(1961), thereby generalizing the two–player case treated by von Neumann and Morgenstern

(1944) to the case with an arbitrary number of players.

The notion of α–effectiveness defines the payoff of a coalition as the payoff it can achieve

irrespective of the actions taken by its complement. In a sense, the coalition acts first in

anticipation of the worst actions its complement can take. The notion of β–effectiveness

is less stringent and defines the payoff of a coalition as what it can achieve for sure given

the worst actions of its complement, so now the complementary coalition acts first. We

will argue that as soon as the liquidity considerations are non–trivial, the two standard

approaches should not be applied. We also argue that the approach where the portfolio of

the coalition’s complement is ignored, or equivalently, put equal to zero, is not satisfactory.

Rather than taking a worst–case approach for the behavior of the complementary coali-

tion, we will fix the portfolio holdings of the players outside the coalition to their initial

values, thereby placing the burden of satisfying the liquidity policy entirely on the coalition

itself, but not putting an extra burden because of adversary behavior of the coalition’s com-

plement. The resulting cooperative games with transferable utility are called risk allocation

games with liquidity constraints. Our main theorem claims that the class of risk allocation

games with liquidity constraints are totally balanced, thereby generalizing the result for

risk allocation games without liquidity constraints in Csóka, Herings, and Kóczy (2009).

A direct consequence of this result is that risk allocation games with liquidity constraints

have a non-empty core. Thus it follows that even when taking liquidity considerations into

account, there is always a stable way to allocate risk, meaning that no coalition of players

would object to it.

It has been shown in Csóka, Herings, and Kóczy (2009) that any totally balanced

game is generated by some risk allocation game without liquidity constraints. Since a risk

allocation game without liquidity considerations results as a special case when the liquidity

policy is trivial and assets are perfectly liquid, it holds that any totally balanced game is

generated by some risk allocation game with liquidity constraints. We therefore obtain an

equivalence between the class of risk allocation games with liquidity constraints and the

class of totally balanced games.

The structure of the paper is as follows. In Section 2 we set up risk environments with

liquidity considerations and in Section 3 we define risk allocation games with liquidity

constraints. Section 4 contains our main theorem and Section 5 concludes.

2 Risk Environments with Liquidity Considerations

Acerbi and Scandolo (2008) study coherent measures of risk in a framework where portfo-

lios are subject to liquidity considerations. Csóka, Herings, and Kóczy (2009) study risk
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allocation games that are generated by coherent measures of risk in a set-up where liq-

uidity considerations are absent. In this section we extend the analysis of Csóka, Herings,

and Kóczy (2009) and we define risk environments that take liquidity considerations into

account. We denote such risk environments by (N, J, S, π, θ,m, L, ρ).

The group of players in a risk environment is denoted by N, it consists of the n divisions

of a financial enterprise, and it is referred to as the firm. Each division holds cash as well

as assets belonging to a set J. The initial portfolio θi = (θi0, θ
i
J) ∈ R×RJ of division i ∈ N

shows the amounts of cash and assets held initially by division i. The initial porfolio of the

firm is given by the aggregate portfolio θ(N) =
∑

i∈N θ
i. We denote the space of portfolios

by P = R × RJ . Cash has a number of special properties which we explain in the sequel.

The addition of an amount of cash a ∈ R to a portfolio p ∈ P is denoted by p ⊕ a and

results in the portfolio q ∈ P defined by q0 = p0 + a and qj = pj, j ∈ J. The tuple of the

initial portfolios of the various divisions is denoted by θ = (θi)i∈N .

The future value of the initial portfolio is subject to uncertainty. One out of a set S of

possible states of nature materializes in the future, where state of nature s ∈ S occurs with

probability πs > 0. Clearly, it holds that
∑

s∈S πs = 1. The value of the initial portfolio

in state s depends on the order books for the various assets and the liquidity policy of

the firm, both of which are allowed to be state dependent. We follow Çetin, Jarrow and

Protter (2004) and Jarrow and Protter (2005) in modeling the order book for asset j in

state s by a marginal demand curve ms
j . A function is càdlàg if it is right continuous with

left limits and làdcàg if it is left continuous with right limits.

Definition 2.1. The marginal demand curve (MDC) for asset j ∈ J in state s ∈ S is

given by the map ms
j : R \ {0} 7→ R satisfying

(i) ms
j(x) ≥ ms

j(x
′) if x < x′;

(ii) ms
j is càdlàg at x < 0 and làdcàg at x > 0.

The amount ms
j(x) for x > 0 expresses the marginal bids that have been made to buy

an amount x of asset j. Similarly, ms
j(x) for x < 0 represents the marginal asks that have

been made for an amount x of asset j to be sold. We call ms(0+
j ) the best bid and ms(0−j )

the best ask price of asset j. Note that the MDC is not defined at zero.

So far the issue of liquidity has not been considered at all in risk allocation games.

Implicitly, it has been assumed that the MDCs are all flat, corresponding to perfectly

liquid asset markets.

Definition 2.2. Asset j ∈ J is perfectly liquid if for every s ∈ S, there is c ∈ R such that

for all x ∈ R \ {0}, ms
j(x) = c.

Since the constant c is allowed to depend on s, the price against which the asset can be

bought or sold is allowed to be stochastic, even when an asset market is perfectly liquid.
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The MDC can be used to calculate the liquidation value of a portfolio.

Definition 2.3. The liquidation mark-to-market value of a portfolio p ∈ P in state s ∈ S
is defined by

`s(p) = p0 +
∑
j∈J

∫ pj

0

ms
j(x)dx. (1)

The liquidation mark-to-market value of a portfolio equals the portfolio’s amount of

cash plus the proceeds of selling all long positions minus the payments needed to close

short positions. Acerbi and Scandolo (2008) prove the following result.

Proposition 2.4. For every s ∈ S, the function `s : P 7→ R is continuous and concave.

The set of portfolios attainable from some given portfolio p ∈ P in state s ∈ S is given

by

As(p) = {q ∈ P | q0 = `s(p0, pJ − qJ)}.

The portfolio q ∈ As(p) is obtained by liquidating the amounts pJ − qJ of assets in J and

adding the proceeds to p0.

Proposition 2.5. For every s ∈ S, for every p ∈ P, the set As(p) is closed.

Proof. Let (qr)r∈N be a sequence in As(p) with limit q̄ ∈ P. We have to show that

q̄ ∈ As(p). For every r ∈ N, it holds that qr0 = `s(p0, pJ − qrJ). By Proposition 2.4 it holds

that `s is continuous, so

q̄0 = `s(p0, pJ − q̄J).

It now follows from the definition that q̄ ∈ As(p). 2

The liquidity policy (Acerbi and Scandolo, 2008) incorporates the requirements imposed

by a regulator or the contractual obligations that have to be met, and specifies that the

portfolio of the firm should belong to the set Ls ⊂ P in state of nature s ∈ S. We denote

L = (Ls)s∈S. The state dependence of the liquidity policy enables us to model regulatory

risk as well as short sale constraints which depend on market conditions as expressed in

the prevailing MDC.

The literature on risk allocation games has so far ignored liquidity policies.

Definition 2.6. The liquidity policy is trivial if for every s ∈ S it holds that Ls = P.

Throughout the paper we make the following assumption on L.
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Assumption 2.7. For every s ∈ S, it holds that

(i) Ls is closed and convex;

(ii) for every p ∈ Ls, for every a > 0, p⊕ a ∈ Ls;
(iii) As(θ(N)) ∩ Ls 6= ∅.

The first two items in Assumption 2.7 are inherited from Acerbi and Scandolo (2008).

Closedness as required in Assumption 2.7.(i) is a standard technical assumption. Convexity

means that if two portfolios are acceptable, then so is their weighted average. Assump-

tion 2.7.(ii) implies that it is always acceptable to have more cash. Assumption 2.7.(iii)

guarantees that in every state there is a feasible choice to meet the requirements of the

liquidity policy. Assumption 2.7 is satisfied if the liquidity policy is trivial.

In case all assets are perfectly liquid, the liquidity policy is irrelevant. This is the case

which has been studied in the existing literature on risk allocation games. Even if the

liquidity policy is trivial, the liquidity of assets can matter if there is a bid-ask spread.

For a portfolio p ∈ P, we denote the assets hold long by J+(p) = {j ∈ J | pj > 0} and

the assets hold short by J−(p) = {j ∈ J | pj < 0}.

Definition 2.8. The uppermost mark-to-market value of a portfolio p ∈ P in state s ∈ S
is defined by

us(p) = p0 +
∑

j∈J+(p)

ms
j(0

+)pj +
∑

j∈J−(p)

ms
j(0
−)pj. (2)

The uppermost mark-to-market value of a portfolio can be interpreted as the value

of a portfolio in the long run. Long positions are valued using the best bid prices and

short positions using the best ask prices. In case all asset markets are perfectly liquid, the

uppermost mark-to-market value of a portfolio is equal to its liquidation mark-to-market

value. Acerbi and Scandolo (2008) prove the following result.

Proposition 2.9. For every s ∈ S, the function us : P 7→ R is continuous, concave, and

positive homogeneous of degree one.

Two portfolios p, q ∈ P are said to be concordant if pjqj ≥ 0 for all j ∈ J. Two portfolios

are concordant if there is no asset which is held long in one portfolio and short in the other.

It is easily verified that us is additive for concordant portfolios. The concavity and positive

homogeneity of us imply that us is superadditive on P, i.e. us(p) + us(q) ≤ us(p + q) for

all p, q ∈ P.

Corollary 2.10. For every s ∈ S, the function us is superadditive on P and additive for

concordant portfolios.
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Given some state s ∈ S, the firm might have to liquidate part of its assets to obtain

a portfolio in Ls. The initial portfolio’s value in state s is given by the highest attainable

uppermost mark-to-market value satisfying the liquidity policy. These considerations lead

us to the following definition.

Definition 2.11. The realization vector X(N) ∈ RS for the firm is equal to

Xs(N) = sup{us(q)|q ∈ As(θ(N)) ∩ Ls}, s ∈ S. (3)

Since As(θ(N))∩Ls 6= ∅ by Assumption 2.7, it follows that Xs(N) is not equal to −∞.

We will show in Proposition 3.5 that Xs(N) is bounded from above by us(θ(N)), so Xs(N)

is finite.

The following example shows why in Equation (3) we need a supremum rather than a

maximum.

Example 2.12. Consider the case where θ(N) = (θ0(N), θJ(N)) ∈ R3, so we have two

assets, called 1 and 2, and cash. There is no uncertainty, so the cardinality of S is one.

The liquidity policy L specifies that the asset portfolio qJ should satisfy qJ ≥ (−1,−1)

and (q1 + 1)(q2 + 1) ≥ 1. Moreover, for simplicity assume there are no constraints on cash

holdings. We assume the initial asset portfolio to be θ(N) = (0,−1,−1) and we assume

asset 2 to be perfectly liquid.

Trading in asset 1 involves liquidity costs. For instance, consider the case where there is

a simple bid-ask spread, so for some γ > 0, m1(x) = 1 + γ if x < 0 and m1(x) = 1 if x > 0.

Since we have to go to a portfolio of assets where holdings of both assets strictly exceed −1,

we would like to buy ε > 0 of asset 1, buy 1/ε of asset 2, and go short in cash, resulting in

a portfolio q(ε) = (−(1 + γ)ε−m2(0
−)/ε,−1 + ε,−1 + 1/ε). It is straightforward to verify

that u(q(ε)) = u(θ(N))− γε. The uppermost mark-to-market value would be maximized,

and liquidity costs would be minimized, by taking the smallest positive ε, something which

clearly does not exist, so we need a supremum rather than a maximum in Equation (3).

We will show in Proposition 3.6 that optimal portfolios exist under the mild and rea-

sonable additional assumption that going infinitely short or long involves liquidity costs.

Under such an additional assumption, one can use a maximum in Equation (3).

Artzner, Delbaen, Eber, and Heath (1999) have introduced coherent measures of risk.

A measure of risk is a function ρ : RS → R measuring the risk of a realization vector

from the perspective of the present. It corresponds to the minimal amount of cash the

regulated agent has to add to his portfolio, and to invest in a reference instrument today,

such that the risk involved in the portfolio is acceptable to the regulator. We assume that

the reference instrument has payoff 1 in each state of nature at t = 1, thus its realization

vector is 1S = (1, . . . , 1). It is most natural to think of it as a zero coupon bond. The price

of the reference instrument can be thought of as the discount factor and is denoted by δ.
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Definition 2.13. A function ρ : RS → R is a coherent measure of risk if it satisfies the

following axioms.

1. Monotonicity : for all X, Y ∈ RS such that Y ≥ X, we have ρ(Y ) ≤ ρ(X).

2. Subadditivity : for all X, Y ∈ RS, we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. Positive homogeneity : for all X ∈ RS and h ∈ R+, we have ρ(hX) = hρ(X).

4. Translation invariance: for all X ∈ RS and a ∈ R, we have ρ(X + a1S) = ρ(X)− δa.

This completes the definition of a risk environment with liquidity considerations

(N, J, S, π, θ,m, L, ρ).

3 Risk Allocation Games with Liquidity Constraints

A cooperative game with transferable utility consists of a set of players N and a value

function v : 2N → R, which assigns to every coalition C ∈ 2N of players a worth v(C) ∈ R.
By assumption it holds that v(∅) = 0. An allocation is a vector y ∈ Rn, where yi is the

payoff of player i ∈ N . An allocation y yields payoff y(C) =
∑

i∈C yi to the members of

coalition C. An allocation y ∈ Rn is called efficient if y(N) = v(N), individually rational

if yi ≥ v({i}) for all i ∈ N, and coalitionally rational if y(C) ≥ v(C) for all C ∈ 2N . The

core is the set of efficient and coalitionally rational allocations.

Denault (2001) introduces risk capital allocation problems. The question is how the risk

of the firm as measured by a coherent measure of risk has to be attributed to its divisions.

The risk allocated to a coalition of divisions C ∈ 2N should be stable, meaning that it does

not exceed the risk of the aggregate portfolio of coalition C.

Denault (2001) abstracts both from MDCs and liquidity policies, and thereby implicitly

assumes that all assets are perfectly liquid and the liquidity policy is trivial. Under perfect

liquidity of all assets and a trivial liquidity policy, we can define the realization vector

of division i ∈ N by Xs({i}) = us(θi), s ∈ S. A coalition of divisions C ∈ 2N has

the realization vector X(C) =
∑

i∈C X({i}). Finally, the worth of coalition C is defined

by v(C) = −ρ(X(C)). In this way we have obtained a cooperative game with transferable

utility (N, v). Standard solution concepts from cooperative game theory can now be applied

to (N, v) to solve the risk allocation problem. A stable risk allocation corresponds to a

core allocation.

When we incorporate liquidity constraints, we face an externality problem, as any

division of the firm can liquidate some of its assets in order to satisfy the liquidity policy,

and the more assets one division liquidates, the less assets have to be liquidated by other
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divisions. The standard approaches to define a game in characteristic function form in the

presence of externalities are α–effectiveness and β–effectiveness as suggested by Aumann

(1961), thereby generalizing the two–player case treated by von Neumann and Morgenstern

(1944) to the case with an arbitrary number of players. The notion of α–effectiveness defines

the payoff of a coalition as the payoff it can achieve irrespective of the actions taken by its

complement. The next example illustrates why α–effectiveness is not useful to study risk

allocation in the presence of liquidity constraints.

Example 3.1. Consider the case where we have one asset, J = {1}, and no uncertainty.

The liquidity policy L specifies that the firm’s portfolio q should satisfy q1 ≥ −1. The firm

has two divisions, N = {1, 2}, with identical initial portfolios given by θ1 = (1,−1) and

θ2 = (1,−1). Consider the case where there is a simple bid-ask spread, so for some γ > 0,

we have m1(x) = 1 + γ if x < 0 and m1(x) = 1 if x > 0. Under α–effectiveness, division 1’s

realization is equal to

X({1}) = sup{u ∈ R | ∃q1 ∈ A(θ1),∀q2 ∈ A(θ2), q1 + q2 ∈ L and u(q1) ≥ u}.

For i = 1, 2, we have that qi ∈ A(θi) if and only if

[qi1 ≥ −1 and qi0 = 1− (qi1 + 1)(1 + γ)] or [qi1 ≤ −1 and qi0 = −qi1].

Since for any choice of q1 ∈ A(θ1) there is q2 ∈ A(θ2) such that q1 + q2 6∈ L, in fact any

q2 such that q21 < −q11 − 1 would do, we find that X({1}) = −∞. Notice that the same

conclusion would follow even in the absence of a bid-ask spread.

The notion of β–effectiveness is less stringent and defines the payoff of a coalition

as what it can achieve for sure given the worst actions of its complement, so now the

complementary coalition acts first. We continue Example 3.1 by demonstrating that also

β–effectiveness leads to undesirable consequences.

Example 3.2. Consider the primitives of Example 3.1. Under β–effectiveness, division 1’s

realization is equal to

X({1}) = sup{u ∈ R | ∀q2 ∈ A(θ2),∃q1 ∈ A(θ1), q1 + q2 ∈ L and u(q1) ≥ u}.

Consider some q2 ∈ A(θ2) with q21 ≤ −1. To satisfy q1 + q2 ∈ L, it should hold that

q11 ≥ −q21 − 1 and therefore that q11 ≥ 0. It can easily be computed that

u(q1) = −γ − γq11 ≤ −γ + γ(q21 + 1) = γq21.

Since q21 can be chosen arbitrarily negative, we find that X({1}) = −∞.
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Both α-effectiveness and β-effectiveness lead to undesirable properties of the value

function, even in the simplest of examples. Both approaches share the feature that the

complement of a coalition C is supposed to take the worst possible action. Rather than

making such an extreme assumption, we will instead assume that the complement of coali-

tion C remains inactive, so the burden of satisfying the liquidity policy will be put entirely

on coalition C. The portfolios which are attainable for coalition C in state s ∈ S are given

by As(θ(C)), where θ(C) =
∑

i∈C θ
i. Inactivity of the complementary coalition means that

those divisions stick to their initial portfolio, which equals θ(N \ C) in the aggregate.

Definition 3.3. Given a risk environment with liquidity considerations (N, J, S, π, θ,m, L, ρ)

and a coalition of divisions C ∈ 2N , the realization vector X(C) of coalition C is defined

by

Xs(C) = sup{us(q)|q ∈ As(θ(C)) and q + θ(N \ C) ∈ Ls}, s ∈ S.

When calculating Xs(C), we take the portfolios of the divisions outside the coalition

as fixed, and liquidate the portfolios of the divisions in C in such a way that the resulting

portfolio of the firm is attainable and satisfies the liquidity policy. Applying Definition 3.3

for the grand coalition N results in

Xs(N) = sup{us(q) | q ∈ As(θ(N)) ∩ Ls},

which is in accordance with Equation (3).

The next result is useful in simplifying our expression for the realization vector of a

coalition.

Proposition 3.4. For every s ∈ S, for every C ∈ 2N , it holds that q ∈ As(θ(C)) if and

only if q + θ(N \ C) ∈ As(θ(N)).

Proof. The result follows from the observation that

q ∈ As(θ(C))

if and only if

q0 = `s(θ0(C), θJ(C)− qJ) = θ0(C) + `s(0, θJ(C)− qJ)

if and only if

q0 + θ0(N \ C) = θ0(C) + `s(0, θJ(C)− qJ) + θ0(N \ C)

= `s(θ0(N), θJ(N)− qJ − θJ(N \ C))

if and only if

q + θ(N \ C) ∈ As(θ(N)).

10



2

Proposition 3.4 shows that we can compute the realization vector of coalition C as

Xs(C) = sup{us(q)|q + θ(N \ C) ∈ As(θ(N)) ∩ Ls}, s ∈ S. (4)

The next result provides bounds on the value of Xs(C), implying that this value is not

equal to −∞ or +∞.

Proposition 3.5. For every s ∈ S, for every q ∈ As(θ(N)) ∩ Ls, it holds that

us(q − θ(N \ C)) ≤ Xs(C) ≤ us(θ(C)), C ∈ 2N .

Proof. Consider some q ∈ As(θ(N)) ∩ Ls, where the latter set is non-empty by Assump-

tion 2.7. Using (4), it follows that us(q − θ(N \ C)) ≤ Xs(C).

Next, consider some q ∈ As(θ(C)). It holds that

q0 = `s(θ0(C), θJ(C)− qJ) = θ0(C) +
∑
j∈J

∫ θj(C)−qj

0

ms
j(x)dx.

It follows that

us(q) = θ0(C) +
∑

j∈J
∫ θj(C)−qj
0

ms
j(x)dx+

∑
j∈J+(q)m

s
j(0

+)qj +
∑

j∈J−(q)m
s
j(0
−)qj

= θ0(C) +
∑

j∈J+(q)(
∫ θj(C)−qj
0

ms
j(x)dx+ms

j(0
+)qj)

+
∑

j∈J−(q)(
∫ θj(C)−qj
0

ms
j(x)dx+ms

j(0
−)qj).

Notice that irrespective of the sign of θj(C)− qj it holds that∫ θj(C)−qj

0

ms
j(x)dx ≤ ms

j(0
−)(θj(C)− qj) and

∫ θj(C)−qj

0

ms
j(x)dx ≤ ms

j(0
+)(θj(C)− qj).

Consider some j ∈ J+(q). If θj(C) > 0, then∫ θj(C)−qj

0

ms
j(x)dx+ms

j(0
+)qj ≤ ms

j(0
+)(θj(C)− qj) +ms

j(0
+)qj = ms

j(0
+)(θj(C)).

If θj(C) < 0, then∫ θj(C)−qj

0

ms
j(x)dx+ms

j(0
+)qj ≤ ms

j(0
−)(θj(C)− qj) +ms

j(0
−)qj = ms

j(0
−)(θj(C)).

Consider some j ∈ J−(q). If θj(C) > 0, then∫ θj(C)−qj

0

ms
j(x)dx+ms

j(0
−)qj ≤ ms

j(0
+)(θj(C)− qj) +ms

j(0
+)qj = ms

j(0
+)(θj(C)).

11



If θj(C) < 0, then∫ θj(C)−qj

0

ms
j(x)dx+ms

j(0
−)qj ≤ ms

j(0
−)(θj(C)− qj) +ms

j(0
−)qj = ms

j(0
−)(θj(C)).

We therefore find that

us(q) ≤ θ0(C) +
∑

j∈J+(θ(C))

ms
j(0

+)θj(C) +
∑

j∈J−(θ(C))

ms
j(0
−)θj(C) = us(θ(C)),

which completes the proof. 2

If the liquidity policy is trivial, then it holds that θ(N) ∈ As(θ(N)) ∩ Ls, so Proposi-

tion 3.5 gives Xs(C) = us(θ(C)). If, moreover, there are no bid-ask spreads, it holds that

Xs(C) =
∑

i∈C X
s({i}), the case which has been studied in the literature so far. In case the

liquidity policy is trivial, but assets are not perfectly liquid and there is a bid-ask spread,

it is still the case that the realization vector of division i ∈ N is given by Xs({i}) = us(θi),

s ∈ S, but it is no longer necessarily the case that the realization vector of a coalition of

divisions C ∈ 2N is given by X(C) =
∑

i∈C X({i}) as now coalitions can save on costs

related to bid-ask spreads by combining their portfolios.

We show next that the supremum in Equation (4) can be replaced by a maximum under

the mild condition that going infinitely short or long in an asset involves liquidity costs.

Proposition 3.6. Assume that for every s ∈ S, for every j ∈ J, there is x− such that

ms
j(x
−) > ms

j(0
+) and there is x+ such that ms

j(x
+) < ms

j(0
−). Then for every C ∈ 2N it

holds that

Xs(C) = max{us(q)|q + θ(N \ C) ∈ As(θ(N)) ∩ Ls}, s ∈ S.

Proof. Consider some s ∈ S and let (qr)r∈N be a sequence such that (qr)r∈N+θ(N\C) ∈
As(θ(N)) ∩ Ls and us(qr) converges to Xs(C).

Suppose there is an asset j′ ∈ J such that for some appropriately chosen subsequence,

limr→∞(qrj′)r∈N = −∞. We will derive a contradiction. By repeating the steps in the proof

of Proposition 3.5, we derive that

us(qr) ≤ θ0(C) +
∑

j∈J+(θ(C))m
s
j(0

+)θj(C) +
∑

j∈J−(θ(C))\{j′}m
s
j(0
−)θj(C)

+
∫ θj′ (C)−qr

j′
0 ms

j′(x)dx+ms
j′(0

−)qrj′

≤ θ0(C) +
∑

j∈J+(θ(C))m
s
j(0

+)θj(C) +
∑

j∈J−(θ(C))\{j′}m
s
j(0
−)θj(C)

+ms
j′(x

+)θj′(C) + (ms
j′(0

−)−ms
j′(x

+))qrj′ ,

where the right-hand side tends to −∞ if r →∞ since ms
j′(0

−) > ms
j′(x

+). This contradicts

the conclusion of Proposition 3.5, which establishes that Xs(C) is bounded from below.
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We have shown that for every j ∈ J there is no subsequence of (qr)r∈N such that

limr→∞(qrj )r∈N = −∞. By the straightforward analogous argument, we can show that for

every j ∈ J there is no subsequence of (qr)r∈N such that limr→∞(qrj )r∈N =∞. It follows that

the sequence (qrJ)r∈N is bounded. By continuity of `s on P as asserted in Proposition 2.4,

it follows that the sequence (qr0)r∈N is bounded. Without loss of generality, the sequence

(qr)r∈N can be assumed to converge to some q̄ ∈ P. The set As(θ(N)) ∩ Ls is closed as the

intersection of two sets which are closed by Proposition 2.5 and Assumption 2.7. It follows

that q̄ + θ(N \ C) ∈ As(θ(N)) ∩ Ls. By Proposition 2.9 it holds that us is continuous, so

Xs(C) = us(q̄). 2

Since the existing literature on risk allocation assumes perfect liquidity, and we would

like to incorporate perfect liquidity as a special case, we refrain from assumptions addi-

tional to Assumption 2.7, and continue with the formulation of Equation (4) involving a

supremum.

Definition 3.7. Given a risk environment with liquidity considerations (N, J, S, π, θ,m, L, ρ),

the risk allocation game with liquidity constraints is the game (N, v), where the value func-

tion v : 2N → R is defined by

v(C) = −ρ(X(C)), C ∈ 2N . (5)

Let Γrl denote the family of risk allocation games with liquidity constraints with set of

players N. In such a game, according to Equation (5), the larger the risk of any subset of

portfolios, the lower its worth.

Example 3.8. Consider a firm with n = 2 divisions, where each division has invested into

one asset and cash, J = {1}. The portfolios of the divisions are θ1 = (20,−6) and θ2 =

(26,−7), so both divisions have short positions in the risky asset. We assume S = {1, 2}
with both states having equal probability of occurrence.

In state 1 the MDC of the risky asset is given by

m1
1(x) =

5 if x < 0,

4 if x > 0.

In state 2 the MDC of the risky asset is given by

m2
1(x) =



10 if x < −2,

9 if −2 ≤ x < −1,

8 if −1 ≤ x < 0,

7 if 0 < x ≤ 1,

6 if 1 < x.
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We consider the deterministic liquidity policy specified by L1 = L2 = {p ∈ P | p1 ≥
−10}. In both states the liquidity policy of the firm does not allow to short the risky asset

by more than 10 units. According to the initial porfolios, the two divisions together are

6+7=13 units short in the risky asset. We set δ = 1 and take the maximum loss as the

coherent measure of risk, so ρ(X) = maxs∈S −Xs.

First, let us consider state 1. This element of the realization vector of division 1 is

calculated as follows. Looking at the MDC of the risky asset in state 1, we see that the

firm can buy the risky asset for a price of 5, and it can sell more risky assets for a price of 4.

Since currently the two divisions together are shorting 13 units from the risky asset and the

liquidity policy allows to short at most 10 units, at least 3 units should be bought. If 3 units

are bought for a price of 5×3 = 15, division 1 ends up with the portfolio q1({1}) = (5,−3)

in state 1 by trading t1({1}) = (−15, 3). The uppermost mark-to-market value of q1({1})
is u1(q1({1})) = 5− 3× 5 = −10. It is easy to check that we get the same value if division

1 buys anywhere between 3 to 6 units from the risky asset. Due to the bid-ask spread,

buying back more than 6 units would result in a loss of 1 for each additional unit, since long

positions would be valued at 4 per unit. It follows that the realization vector of division

1 in state 1 is X1({1}) = −10. Similarly, the realization vector of division 2 in state 1 is

X1({2}) = −9. For the firm itself, we have θ1 + θ2 = (46,−13), and an optimal portfolio

q1({1, 2}) satisfying the liquidity constraint is anywhere between (31,−10) and (−19, 0),

resulting in X1({1, 2}) = −19.

Next, let us analyze state 2. Again, division 1 should buy at least 3 units of the risky

asset to satisfy the liquidity policy. Buying 3 units and trading t2({1}) = (−27, 3) will

result in q2({1}) = (−7,−3) and u2(q2({1})) = −7 − 3 × 8 = −31. Buying more than 3

units would be costly. For instance, buying 4 units by trading t̄2({1}) = (−37, 4) would

result in q̄2({1}) = (−17,−2) and u2(q̄2({1})) = −17− 2× 8 = −33, hence division 1 will

only buy 3 units. The remaining short position will be valued at the best ask price, and

X2({2}) = −31. Similarly, the realization vector of division 2 in state 2 is X2({2}) = −33.

For the firm itself, since θ1 + θ2 = (46,−13), the optimal trade is t2({1, 2}) = (−27, 3),

leading to q2({1, 2}) = (19,−10) and X2({1, 2}) = u2(q2({1, 2})) = 19 − 10 × 8 = −61.

The calculations and the resulting cooperative game are summarized in Table 1.

Note that in state 1 the realization vector of coalition {1, 2} is additive over its members’

realization vectors, which is due to the flat MDCs and the concordant portfolios. In state

2 coalition {1, 2} gains since it only has to buy back once 3 units of the risky asset at

a higher price. Also note that if the original portfolio of the grand coalition satisfies the

liquidity policy and the portfolios of the divisions are concordant, then we get additivity

for the realization vector. On the other hand, if for the same asset with a positive bid-ask

spread some divisions have had long positions and some other divisions have had short

14



state/X(C) X({1}) X({2}) X({1, 2})
s = 1 −10 −9 −19

s = 2 −31 −33 −61

ρ(X(C)) 31 33 61

v(C) −31 −33 −61

Table 1: A risk allocation game with liquidity constraints.

positions, then we would get superadditivity.

For two-player games, most single-valued solution concepts, and in particular the Shap-

ley value and the nucleolus, would share the surplus of the grand coalition over the indi-

vidual worths equally over the players. In this example, this would result in the allocation

(−29.5,−31.5). The firms should add 61 units of cash to its portfolio to make it acceptable

to the regulator, and the risk allocation over the divisions corresponds to 29.5 units of cash

for division 1 and 31.5 units of cash for division 2.

Rather than assuming the worst-case for the behavior of the opponents, we have utilized

the fact that in a risk environment with liquidity considerations, divisions have initial

portfolios, which means that it is meaningful to speak about inaction of a division. We have

calculated the realization vector of a coalition by assuming inactivity of the complementary

coalition.

Another alternative which comes to mind when defining the realization vector of a

coalition, is to assume that the complementary coalition is going to hold the 0 portfolio.

Alternatively, one could think of this assumption as ignoring the complementary coalition.

It is not hard to see that this is not an attractive alternative. Consider for instance the

risk environment with liquidity considerations of Example 3.8. When the complementary

coalition holds the 0 portfolio, it is easy to calculate that v({1}) = −28, v({2}) = −30,

and v({1, 2}) = −61. The resulting risk allocation game with liquidity constraints is not

superadditive. The reason is that in this example, it is easier for a single division to satisfy

the short-sales constraint of 10 units than it is for the entire firm. Failure of superadditivity

is not natural for the problem under consideration, as the entire firm has more actions at

its disposal to satisfy the liquidity policy than a single division.

4 Total Balancedness

For each C ∈ 2N , let a(C) ∈ Rn be the membership vector, ai(C) = 1 for i ∈ C and

ai(C) = 0 otherwise.
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Definition 4.1. A balanced vector of weights is a vector (λC)C∈2N ∈ R2N

+ such that∑
C∈2N λ

Ca(C) = a(N). A game (N, v) is balanced if
∑

C∈2N λ
Cv(C) ≤ v(N) for all bal-

anced vectors of weights.

A well-known interpretation of balancedness is that the players can distribute one unit

of working time to any coalition and if each coalition is active during a fraction λC of a unit

of time, then the players cannot generate more value than v(N), the value of the grand

coalition. Balancedness is a necessary and sufficient condition for non-emptiness of the

core in a transferable utility game (Bondareva, 1963; Shapley, 1967). See Predtetchinski

and Herings (2004) for an extension of the concept of balancedness to be necessary and

sufficient for non-emptiness of the core in non-transferable utility games.

For a game (N, v) and a coalition C ∈ 2N , a subgame (C, vC) is obtained by restricting

v to subsets of C.

Definition 4.2. A game (N, v) is totally balanced if for every D ∈ 2N its subgame (D, vD)

is balanced, that is, if for all D ∈ 2N and for all vectors (λC)C∈2D ∈ R2D

+ satisfying∑
C∈2D λ

Ca(C) = a(D), we have
∑

C∈2D λ
Cv(C) ≤ v(D).

In a totally balanced game, every subgame has a non-empty core. Let Γtb denote the

family of totally balanced games with n players.

The next proposition claims that any risk allocation game with liquidity constraints is

totally balanced.

Proposition 4.3. All games (N, v) ∈ Γrl are totally balanced, Γrl ⊂ Γtb.

Proof. Consider a risk environment with liquidity considerations (N, J, S, π, θ,m, L, ρ)

inducing the risk allocation game (N, v). We show that for any non-empty D ∈ 2N , the

subgame (D, vD) is balanced. We define D = 2D \ {∅}. Take any (λC)C∈D ∈ RD+ such that∑
C∈D λ

Ca(C) = a(D).

Take ε > 0. For s ∈ S and C ∈ D, let qs(C) ∈ P be such that qs(C) + θ(N \ C) ∈
As(θ(N)) ∩ Ls and

us(qs(C)) ≥ Xs(C)− ε. (6)

The vector of actual trades is given by

ts(C) = qs(C)− θ(C). (7)

First, we present eight lines containing equalities and inequalities proving the proposi-

tion, then we explain why each step is true.
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It holds that∑
C∈D

λCvD(C) = −
∑
C∈D

λCρ(X(C)) (8)

= −
∑
C∈D

ρ(λCX(C)) (9)

≤ −ρ(
∑
C∈D

(λCX(C))) (10)

≤ −ρ(
∑
C∈D

(λC((us(qs(C)) + ε)s∈S))) (11)

≤ −ρ((us(
∑
C∈D

λCqs(C))s∈S) +
∑
C∈D

λCε1S) (12)

= −ρ((us(
∑
C∈D

λCqs(C))s∈S)) + δε
∑
C∈D

λC (13)

≤ −ρ(X(D) + δε
∑
C∈D

λC (14)

= vD(D) + δε
∑
C∈D

λC . (15)

Since
∑

C∈D λ
C ≤ n, we have that δε

∑
C∈D λ

C tends to zero as ε tends to zero. Therefore,

when taking the limit as ε ↓ 0, the chain of equalities and inequalities (8)–(15) imply that∑
C∈D

λCvD(C) ≤ vD(D),

so the game (D, vD) is balanced.

Equation (8) follows from Equation (5) and Equation (9) follows from the positive ho-

mogeneity of ρ. Inequality (10) is due to the subadditivity of ρ. Equation (11) plugs in

Equation (6). Inequality (12) is true because of the positive homogeneity and superad-

ditivity of u (following from Proposition 2.9), and the monotonicity of ρ. Equation (13)

makes use of the fact that ρ satisfies translation invariance. Due to the monotonicity of ρ,

Inequality (14) is true if we can prove that for each s ∈ S it holds that

us(
∑
C∈D

λCqs(C)) ≤ Xs(D). (16)

Consider any s ∈ S. Take any i ∈ D, define Ci = {C ∈ 2D | i ∈ C} and Di = D \ Ci.
We have that∑

C∈D λ
Cus(qs(C)) =

∑
C∈Ci λ

Sus(qs(C)) +
∑

C∈Di λCus(qs(C))

≤
∑

C∈Ci λ
Cus(qs(C)) +

∑
C∈Di λCus(θ(C))

≤ us(
∑

C∈Ci λ
Cqs(C) +

∑
C∈Di λCθ(C))

= us(
∑

C∈Ci λ
C(ts(C) + θ(C)) +

∑
C∈Di λCθ(C))

= us(θ(D) +
∑

C∈Ci λ
Cts(C))

= us(
∑

C∈Ci λ
C(θ(D) + ts(C))),
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where the first inequality follows from Proposition 3.5 and the second inequality from

Corollary 2.10.

We define ps(D) =
∑

C∈Ci λ
C(θ(D) + ts(C)) and show that ps(D) + θ(N \D) ∈ Ls. For

every C ∈ Ci it holds that qs(C) + θ(N \ C) ∈ Ls. Therefore, it holds that

θ(D) + ts(C) + θ(N \D) = qs(C) + θ(D \ C) + θ(N \D) = qs(C) + θ(N \ C) ∈ Ls.

Since
∑

C∈Ci λ
C = 1 and Ls is convex, we have that ps(D) + θ(N \D) ∈ Ls.

Finally, we define qs(D) ∈ P by qsJ(D) = psJ(D) and

qs0(D) = `s(θ0(D),
∑
C∈Ci

λCtsJ(C)).

Since `s is concave, we have

qs0(D) ≥
∑
C∈Ci

λC`s(θ0(D), tsJ(C)) = θ0(D)−
∑
C∈Ci

λCts0(C) = ps0(D),

so us(qs(D)) ≥ us(ps(D)). By definition, it holds that qs(D) ∈ As(θ(D)).Assumption 2.7.(ii)

implies that qs(D) + θ(N \D) ∈ Ls. It follows that∑
C∈D

λCus(qs(C)) ≤ us(ps(D)) ≤ us(qs(D)) ≤ Xs(D).

2

Note that all the axioms of coherent measures of risk were used in the proof of Propo-

sition 4.3.

Not only is it true that all risk allocation games with liquidity constraints are totally

balanced, but also any totally balanced game can be generated by a risk allocation game

with liquidity constraints, by simply taking one perfectly liquid asset with a trivial liquidity

policy and applying the construction of Csóka, Herings, and Kóczy (2009)[Proposition 3.2].

Thus we have the following theorem.

Theorem 4.4. The class of risk allocation games with liquidity constraints coincides with

the class of totally balanced games, Γrl = Γtb.

5 Conclusion

Liquidity is of crucial importance when assessing the risk involved in an asset portfolio.

Nevertheless, the literature on risk allocation games has so far ignored this important

aspect. When we add a liquidity policy to a risk environment, we obtain an environment
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that is characterized by pervasive externalities. Indeed, when attributing the risk of a firm

to its divisions, the question whether a single division satisfies the liquidity policy cannot be

answered without making assumptions about the behavior of the complementary divisions.

We argue that the standard ways to deal with externalities, α-effectiveness and β-

effectiveness are not appropriate here, and that it is also not possible to simply ignore

the complementary divisions. Since in our framework the property rights of divisions are

well-defined, it is meaningful to speak about inactivity of a coalition. We then say that

a coalition of divisions satisfies the liquidity policy if it does so when the complementary

coalition is inactive.

Our main result demonstrates that this approach leads to risk allocation games that

are totally balanced. It is therefore possible to attribute the risk of a firm to its divisions

in a stable way, since the core of a totally balanced game is evidently non-empty. In fact,

the core of any subgame of a totally balanced game is non-empty as well, so the risk of

any division can also be attributed in a stable way to its subdivisions too.
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