Copyright © 2007 Elsevier B.V. All rights reserved.
Károly Héberger, Quantitative structure - (chromatographic) retention relationships: QSRR [review] Journal of Chromatography A, 1158 /1-2/ 273-305 (2007),
https://doi.org/10.1016/j.chroma.2007.03.108

Quantitative structure - (chromatographic) retention relationships: QSRR

Károly Héberger
Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P. O. Box 17, Hungary

Abstract

Since the pioneering works of Kaliszan (R. Kaliszan, Quantitative StructureChromatographic Retention Relationships, Wiley, New York, 1987. and R. Kaliszan, Structure and Retention in Chromatography. A Chemometric Approach, Harwood Academic, Amsterdam, 1997) no comprehensive summary is available in the field. Present review covers the period 1996 - August 2006. The sources are grouped according to the special properties of kinds of chromatography: Quantitative structure - retention relationship in gas chromatography, in planar chromatography, in column liquid chromatography, in micellar liquid chromatography, affinity chromatography and quantitative structure enantioselective retention relationships. General tendencies, misleading practice and conclusions, validation of the models, suggestions for future works are summarized for each sub-field. Some straightforward applications are emphasized but standard ones. The sources are gathered in tables and the model compounds, descriptors, predicted retention data, modeling methods and indicators of their performance, validation of models, and stationary phases are collected in the tables. Some important conclusions are: Not all physicochemical descriptors correlate the retention data strongly; the heat of formation is not related to the chromatographic retention. It is not appropriate to give the errors of Kovats indices in percentages. The apparently low values (1-3 \%) can disorient the reviewers and readers. Contemporary mean interlaboratory reproducibility of Kovats indices are about 5-10 i.u. for standard non-polar phases and 10-25 i.u. for standard polar phases. The predictive performance of QSRR models deteriorates as the polarity of GC stationary phase increases. The correlation coefficient alone is not a particularly good indicator for the model performance. Residuals are more useful than plots of measured and calculated values. There is no need to give the retention data in a form of an equation if the numbers of compounds are small. The domain of model applicability of models should be given in all cases.

Contents

1. Introduction

2. Quantitative structure - retention relationships in gas chromatography
2.1 General tendencies
2.2 Validation of the models
2.3 Misleading practice and conclusions
2.4 Suggestions for future works
2.5 Summary of QSRR papers in gas chromatography
3. Quantitative structure - enantioselective retention relationships, QSERRs
3.1 General tendencies
3.2 Misleading practice and suggestions for future works
3.3 Summary of QSERR papers
4. Quantitative structure - retention relationships in planar chromatography
4.1 General tendencies
4.2 Misleading practice and conclusions
4.3 Suggestions for future works
4.4 Summary of QSRR papers in planar chromatography
5. Quantitative structure - retention relationships in column liquid chromatography
5.1 General tendencies
5.2 Misleading practice and conclusions
5.3 Suggestions for future work
5.4 Summary of QSRR papers in column liquid chromatography
6. Quantitative structure - retention relationships in micellar chromatography
6.1 General tendencies
6.2 Misleading practice and suggestions for future works
6.3 Summary of QSRR papers in micellar chromatography
7. Quantitative structure - retention relationships in affinity chromatography
7.4 General tendencies
7.5 Misleading practice and suggestions for future works
7.6 Summary of QSRR papers in affinity chromatography
8. Remaining quantitative structure - retention relationship studies
9. References

1. Introduction

Quantitative structure-retention relationships, QSRRs, represent a powerful tool in chromatography. What are QSRRs? The terminology is still used confusedly. Firstly 'R' may mean 'reactivity' and not retention; secondly Quantitative structure-property relationships (QSPRs) or Quantitative structure-activity relationships (QSAR) is often used instead: generally if the retention data are used as independent variables to predict properties of the molecules. Quantitative retention-activity relationship (QRAR) is also used instead of QSRR. The principal aim of QSRR is to predict retention data from the molecular structure. However, the same methodology can be used for prediction of physical properties e.g. for octanol/water partition coefficients ($\log P$-s) from retention data. The relationships are empirical, but a firm theoretical basis can be rendered to them using linear free energy relationships (LFERs), in these special cases linear solvation energy relationships (LSERs).

QSRR is a technique for relating the variations in one (or rarely several) response variables (\boldsymbol{Y}-variables) to the variations of several descriptors (\boldsymbol{X}-variables), with predictive or at least explanatory purposes. \boldsymbol{Y}-variables are often called dependent and \boldsymbol{X}-variables as independent variables. One of the \boldsymbol{Y} - or \boldsymbol{X}-variables should be related to (chromatographic) retention, the others should encode the molecular structure.

QSRRs allow the prediction of retention data of novel, not yet synthesized compounds, solely from their structural descriptors.

In many cases the precision and accuracy of the QSRR models are not sufficient for identification purposes; still the models are useful to elucidate retention mechanisms, to optimize the separation of complex mixtures or to prepare experimental designs.

One of the crucial problems is how to represent molecular structure for QSRR. Generally the descriptors encoding the molecular structure are classified as physicochemical, quantumchemical, topological, etc. descriptors. The advantage of physicochemical
descriptors is that they are generally strongly related to the retention; i.e. they correlate the retention data strongly. However, they are often not available or with relatively large errors only. The advantage of quantumchemical descriptors is that they provide insights into the mechanism of chromatographic retention on a molecular level. Their correlation is, however, weak only and their calculation is tedious and time consuming. Topological descriptors are easy to calculate with present computing facilities, but they are not necessarily related to the retention phenomena.

The second crucial problem is to select the most informative descriptors from among a large number of correlated descriptors. A lot of variable selection method has been elaborated and the proper feature selection is a key to build successful QSRR models.

Since the pioneering reviews [1,2] a lot of interesting paper appeared; new tendencies can be observed in the field. QSRR models can be used for successful classification of drugs of various compound classes and/or chromatographic columns (systems). Another interesting and increasing application of QSRRs is to test (compare) various chemometric methods. As the descriptors are highly correlated and numerous, to select the proper model building technique is not a trivial task. Moreover, many laboratories use QSRR models to demonstrate the usefulness and advantages of recently developed chemometric techniques. Similarly, QSRR models demonstrate the applicability of novel topological descriptors many times.

Although the basic book of chromatography devotes only several pages to QSRR [3], the field achieved its 'riped' phase. Figure 1 shows the steady and 'noisy' increase of papers dealing with QSRRs.

Figure 1

The search covers the period of 1996-2006 Aug with extensive usage of 'Web of Science' and 'Scopus' data bases. The increase is not continuous; random factors also influence the number of papers dealing with structure and retention correlations.

Figure 2 illustrates the dispersion law of spreading scientific information on this special example (QSRR). The distribution is much more peaked than the normal distribution. The core journals (disseminating 50% of scientific information) can be seen from the figure 2: J . Chromatogr. A, Chromatographia, J. Liq. Chromatogr. Rel. Technol., Anal. Chim. Acta, Anal. Chem. Chemometrics Intell. Lab. Syst., J. Chem, Inf. Modeling (earlier J. Chem. Inf. Comput. Sci.).

Figure 2
The review is divided into seven parts: QSRR in Gas chromatography, Quantitative Structure Enantiomer Retention Relationships, (QSERR), QSRR in Planar Chromatography, QSRR in column liquid chromatography, QSRR in micellar chromatography, QSRR in affinity chromatography and QSRR in remaining fields.

2. Quantitative structure - retention relationships in gas chromatography

2.1 General tendencies

Alkanes, alkenes, alkylbenzenes, alcohols, ketones, aldehydes, VOCs and compounds of environmental reverence (PCBs, PCDFs, PBDEs, etc.) have been often used as model compounds (explanations for abbreviations can be found in the footnotes of tables). The Kovats retention index (I) is the most popular dependent variable in QSRR studies because of its reproducibility and accuracy. Relative retention times (RRTs) are also applied many times. In some cases response factors are also predicted from molecular structure.

Best models can be built using physical properties. There is a common statement in gas chromatography that boiling point governs the retention. In fact, the volatility governs, but the vapor pressure is of exponential function of the column temperature. Hence, normal
boiling points are used as a well-defined and in many cases known quantity instead of vapor pressure. The retention index depends from the boiling points in a complicated nonlinear manner, which can be written in an exponential [4] or in a logarithmic form [5].

Multiple linear regression (MLR) is without doubt the most frequently applied technique in building QSRR models. The features and advantages of artificial neural networks (ANNs) fascinated numerous scientists. A lot of ANN study is fairly a description how to apply ANN for model building than an elaboration of a predictive model.

2.2 Validation of the models

Perhaps the most sensitive problem is the validation. Validation was not required in the first, exploratory phase of QSRR investigations, when the most important approach was to unravel the potential usefulness of the method. Later, the validation became crucial. As the physical background is not unambiguous, chance correlations have to be avoided. Therefore, efforts should be done to prove that the found QSRR relationships are not fortuitous but applicable for future predictions. If sufficient data are available to split the data into three sets is recommended: one is used for model selection, the second one for parameter estimation (calibration) and the third one for external validation (cross-validation is a poor alternative instead) [6].

The general practice is to split the data into training and testing sets. However, one single training set is not appropriate to make variable selection and parameter estimation (calibration) without bias. It is not (absolute) necessary to split the training set into two; resampling methods, cross-validation (CV) would also do. The cross-validation almost unbiasedly estimates the prediction error when no feature selection has been made [7], but it is heavily biased when a large amount of model selection is applied (i.e. sifting through
thousands of models). In the latter case, the indicators of the fit are deceptively overoptimistic (inflation of the cross-validated correlation coefficient) [8].

Independently from the fact, whether the training set is split into two sets or a CV has been made, the test set should be independent from the model building and parameter estimation. The process is called then as external validation [9].

An instinctive (naïve) way is to estimate the performance of a model using randomly generated variables. The same number of variables should be simulated as was calculated for prediction of retention data. The same steps should be carried out as in the real case: variable selection, parameter estimation, prediction for 'unknown' compounds. The performance indicators (correlation coefficient, prediction errors) should be compared with the same values of the real case. If the variables consisted of solely random numbers indicate approximately the same fit and prediction, the models are of little value even if physical significance can be found for its parameters.

Unfortunately, there is no agreed method how to split data set into training, calibration and test sets. Of course a lot of empirical experience was accumulated, but they are also contradictory. Some algorithms ensure that no outliers or extrapolated values are placed in the test set. However, it provides an overoptimistic performance for prediction if future samples will not be gathered according to such algorithm.

Examination of the residua is often missing from QSRR studies, i.e. nonlinear relationships are overlooked in many cases.

2.3 Misleading practice and conclusions

The role of temperature is sometimes described with descriptors from the molecular structure. However, the temperature dependence of retention data is determined by thermodynamic relationships and cannot be derived from structural descriptors. Similarly, the
polarity of stationary phases is related to the structure of stationary phase and not to that of solute molecules. The more polar a stationary phase the more difficult its characterization. As the polarity of stationary phase increases, the goodness of fit (the correlation) deteriorates.

The fact that ANN (or support vector machine, SVM) provides less residual error leads to the conclusion that ANN (or SVM) is better than MLR. However, less residual error can simply be the consequence of overfit. It is true; there are no accepted, correct, fair ways to compare various methods. The conclusions "Root mean square errors (RMSEs) shows the superiority of ANN over that of the MLR", or conversely "the results of MLR equation are better than the neural network ones" say not much about the power and usefulness of the methods. If the relation is nonlinear, ANN cannot be worse than MLR provided its proper usage. Even in the case of linear relationships ANN is at least as good as MLR. However, according to the principle of parsimony MLR models are recommended because of their simplicity and their physical relevance.

Considering variable selection an error is committed often in the literature. Namely, the variable selection is made linearly and then the linearly selected descriptors are used in a nonlinear model, i.e. for ANN. This is not simply an inconsequent but a malpractice. It has already been shown that it is expedient to use the same method (linear or nonlinear) for variable selection as for parameter estimation [10].

Some authors give errors in percentage for Kovats retention indices. The apparently low values (1-3\%) can disorient the reviewers and readers. The interlaboratory reproducibility for Kovats indices is about 5-10 i.u. for standard non-polar phases and 10-25 i.u. for standard polar phases i.e. $0.1-0.5 \%$ error should be achieved for a successful identification.

The domain of model applicability is rarely given for QSRR investigations though it would be essential, e.g. which boiling point range is covered, what is the retention time
domain, how far the models can be used for extrapolation, which compounds can be included and which ones should be excluded, etc.

Quantumchemical packages provide the calculations of standard heat of formation values. As a consequence many authors try to find correlations between retention and heat of formation. However, contrary to the heat of solution (heat of vaporization), the heat of formation is not related to (chromatographic) retention; at least not better than molecular mass, carbon atom numbers, chain lengths and alike. Another problem with quantumchemical packages is that they are steadily corrected and updated, reparameterized, i.e. without giving the exact version numbers the results are not reproducible.

Many authors discover fortuitous relationships again and again, e.g. slope-intercept relations or the notorious compensation effect. It is easy to prove that such a relation is a consequence of random errors unavoidably present in the measurement process. However, such a relation can be useful that a certain phenomenon belongs to the same process. Just the physical significance is questionable.

2.4 Suggestions for future works

Apolar or medium polar phases are recommended for further studies. Use the most persistent ones methyl- and phenylsilicones (OV-1, DB-5, etc.).

Alcohols are particularly recommended as model compounds because all major interactions can take place between alcohol molecules and molecules of the stationary phases. A possible association is concentration dependent. The alcohols participate in dispersive and polar (dipole) interactions and they exert to hydrogen bond donating and accepting abilities.

The correlation coefficient is not a particularly good indicator for the model performance. It should be emphasized that its value says nothing without the degrees of freedom ($\mathrm{r}=0.997$ is not significant at the 5% level if $\mathrm{n}=3$! On the other hand $\mathrm{r}=0.300$ is significant, i.e. the
correlation is not due to random effects, if $\mathrm{n}=100$.) Therefore, phrases as 'satisfactory' or even 'excellent' correlation should be avoided. The readers should evaluate the performance and not the authors themselves.

Generally, simpler models are better according to the principle of parsimony.
Way of giving correlation equations should contain the predictive equation and indicators for the model performance ($\mathrm{n}, \mathrm{R}, \mathrm{F}, \mathrm{S}$) both for training and external test sets. The indicators are n - number of solutes involved, R - multiple correlation coefficient, F - overall Fisher statistics, and S - the residual error. R and F are indeed linear indicators, but they can be calculated for the \boldsymbol{Y} (measured) vs. \boldsymbol{Y} (calculated) linear relationship even if the calculated \boldsymbol{Y} was derived from a nonlinear model (ANN, SVM, etc.) (\boldsymbol{Y} can be any form of retention data, response factor, etc.) Residual analysis, too, is strongly recommended; residual plots are more useful than plots of measured and calculated values. If curvature, trend can be seen in the residua (against \boldsymbol{Y} (calculated)) the model is not adequate. Either further, nonlinear descriptors should be involved or a nonlinear relationship.

The domain of application should be given within the models are able to predict properly (compound classes, congener series, limits, polarity of columns, etc.).

2.5 Summary of QSRR papers in gas chromatography

The QSRR papers in gas chromatography are gathered in table 1 covering the period of 1996-2006.

Table 1

"Isomer cluster[ing] phenomena" have been observed for a variety of monofunctional and some multi-functional compounds, i.e. isomers containing the same carbon numbers are always located on parallel lines (different numbers of methylene groups are found on
different lines) if the Kovats indices of homologous compounds are plotted on two stationary phases of different polarity [15].

Deviations from the linear boiling point correlations indicate host-guest interactions on cyclodextrin stationary phases [24,72]; e.g. bicyclic camphene is retained behind myrcene though its boiling point is appreciably smaller.

The elution orders and coelutions of all 209 PCB congeners can be predicted using a data base and structure retention correlations and congener substitution patterns [28].

Prediction of the retention indices of any organic compounds with known boiling points became possible using a three-parameter non-linear equation:

$$
\begin{equation*}
\log I=a \log T_{\mathrm{b}}+b\left(n_{1}+\Sigma k_{\mathrm{i}} n_{\mathrm{i}}\right)+c \tag{1}
\end{equation*}
$$

where n_{1} is the serial number of homologue within corresponding series and n_{1} is the number of other structural fragments in the molecules. The coefficients k_{i} in this equation reflect the relative alterations of molecular polarizabilities and may be estimated as ratios of refractions $k_{i}=R(D)(X) / R(D)\left(\mathrm{CH}_{2}\right),(X$ are variable structural fragments within a group of congeners, $\left.\mathrm{R}(\mathrm{D})\left(\mathrm{CH}_{2}\right)=4.647 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)[5]$.

Factor analysis (FA) was performed to interpret the meaning of the descriptors included in the models [26]. Hydrocarbons were successfully classified into paraffins (P), olefins (O), naphthenes (N) and aromatics (A) using FA [48]. Differentiation of ketones and aldehydes has been carried out by principal component analysis (PCA) [49]. PCA, a factorial design was applied for selecting 21 representative congeners, PBDEs. The spacing of these congeners in the physicochemical domain maximizes the coverage of key factors such as molecular size and substitution pattern [94].

Using the same QSRR methodology response factors can also be predicted [39].

Theoretical prediction of gas-chromatographic retention indices could be used as an additional method for the identification of organic substances during gas-chromatographic separation [40].

The thermodynamic interpretation were given to retention time- boiling point correlations using the Trouton's rule, i.e. physical significance can be attributed to empirical QSRR equations [32]. Later the physical significance could be extended using the Trouton-Hildebrand-Everett's (THE) rule [43]. Heats of vaporization, Gibbs free energies [33] and Gibbs free energy of vaporization of one methylene group $\left(\mathrm{CH}_{2}\right)$ of n-alkanes [46] can be calculated from QSRR equations (boiling point correlations of retention indices). A sophisticated relationship was elaborated between retention time and carbon atom number; the related thermodynamic quantities of solvation can be calculated [41].

The semiempirical topological index can help in the elucidation of the molecular structure [47,113].

Some data sets became standards for further QSRR investigations: for apolar interactions, methyl-alkanes [59], for polar interactions, oxo compounds [49].

Partition coefficients (Kp) in a heterogeneous system consisting of two immiscible organic solvents can be successfully used for a supplementary identification parameter in qualitative GC and GC-MS analysis of organic compounds including alkyl aromatic hydrocarbons and esters, group identification of components [72].

The correlations serve as a basis for physicochemical interpretation of the topological parameters of molecules as quantities proportional to the intramolecular vibrational and rotation energies [87].

If GC-MS library search "hit list" matches the retention index of the unknown, there is a strong presumption that a correct identification can be made [119].

Quantitative prediction of normal boiling points for organic compounds using chromatographic retention times on two columns of different polarity. Only hydrocarbons on nonpolar columns gave good results with a simple linear model [126].

The only review found concerning gas chromatography was in Chinese language [146].

3. Quantitative structure - enantioselective retention relationships, QSERR

Enantiomer separations are difficult to predict. Present status of solution theories does not make possible an unambiguous prediction. Nevertheless, enormous amount of empirical knowledge was gathered. Commercial data bases (CHIRBASE and CHIRSOURCE) contain more than 61000 separation [3]. As large number of chiral stationary phases is available, the success rate in enantiomer separations is quite high. The efforts to rationalize chiral separation using QSRR methodology have achieved limited success only. QSERR models provide some insights into the role of various interactions, but they are not able to recognize chiral selectors for a particular separation. One of the crucial problems is the selection of suitable molecular descriptors. The other problem is that the available congener series are small, the small number of compounds involved exclude the proper validation of models. Even the elution order (whether R or S enantiomer elutes first) is uncertain. A QSERR can be used as an alternative method to confirm the elution order of enantiomers. The prediction of elution order can be considered as a classification study from a chemometric point of view.

3.1 General tendencies

Only one review is available in Chinese [172]. A common feature of QSERR investigations is that the authors attempt to use quantumchemical and 3D descriptors in linear
regression. Chiral descriptors are rarely applied. The elution order of the enantiomers can be predicted from the interaction energy calculated by molecular mechanics.

3.2 Misleading practice and suggestions for future works

The prediction performance of models is questionable. There is no need to give the retention data in a form of an equation, if the numbers of compounds are small. The retention data, the selectivity for enatiomeric separation (α) can be used directly for identification, for determination of absolute conformation. The conclusion that e.g. 'molecular mechanics is suitable to study chiral separation' is either trivial or not true. The small number of compounds involved in the studies cannot make proper validations feasible. Hence, validation is missing from the contributions with several exceptions.

Any model providing elution order of enantiomers has an a priori success rate of 50%. Sign test and other test based on binomial distribution could show whether the predicted elution order is accidental or bear definite physiochemical relevance. As the number of compounds is generally small, careful internal validation (leave-one-out, leave-multiple-out) is recommended.

3.3 Summary of QSERR papers

Table 2 gathers the QSERR examinations covering the period of 1996-2006.
Table 2
One example is emphasized, where hundreds of descriptors have encoded resolution for chiral separation successfully [195].

4. Quantitative structure - retention relationships in planar chromatography

4.1 General tendencies

Wang and Zhang have summarized the developments till 1999 [1] Moreover, Cserhati and Forgacs have critically evaluated how to calculate quantitative relationships between molecular structure and retention data, and how to determine physicochemical parameters by TLC [2]. Only the sources not covered in these reviews are enumerated here.

Physicochemical parameters, topological indices, non-specific parameters, and their combinations are used generally as descriptors. QSRRs in TLC are used for prediction of retention and determination of lipophilicity (and other physicochemical constants).

As TLC is a rapid, low-cost, simple method, the best TLC systems are routinely selected for determination of the octanol/water partition coefficient and thus the lipophilicity of the molecules.

4.2 Misleading practice and conclusions

The prediction performance of models has not been examined. Correlations can be found frequently by chance, especially if the number of descriptors is large. As the number of substances is limited on a plate the validation of models is often missing from the contributions. The conclusions such as 'correlations can be found between lipophilicity (hydrophobicity) and retention data' are trivial or at least well-known for a long time.

4.3 Suggestions for future works

The plates are of limited magnitudes; hence, QSRRs can be developed for a limited number of solutes. The mobile phases can be varied more extensively than in the case of

HPLC. As the number of compounds is necessarily small careful internal validation (leave-one-out, leave-multiple-out) is recommended.

4.4 Summary of QSRR papers in planar chromatography

Table 3 summarizes the solutes, methods and techniques for QSRR models in TLC.

Table 3

5. Quantitative structure - retention relationships in column liquid chromatography

Despite the ever increasing usage of HPLC for the separation and analysis of various compounds, drugs, metabolites, etc., the selection of chromatographic conditions is still a tedious, time-consuming procedure mainly governed by trial and error approaches. A priori knowledge of the retention time of a given solute simplifies the selection of conditions. No wonder that the mainstream is to rationalize and to predict retention data using available and interpretable descriptors.

Although linear solvation energy relationships have similarly been defined for gas and liquid chromatography data, LSER has not gained general usage in gas chromatography, but in liquid chromatography, where LSER is used to predict retention data, to predict physical properties of solutes and classify chromatographic columns. The LSER equation for liquid chromatography is as follows [221]:

$$
\begin{equation*}
\text { Solute Property }=c+e E+s S+a A+b B+v V \tag{2}
\end{equation*}
$$

where solute property can be of any kind, e.g. $\log k^{\prime}, \log P$, etc.; E is the excess molar refraction $\left(R_{2}\right)$; S is the dipolarity/polarizability $\left(\pi_{2}{ }^{\mathrm{H}}\right)$; A is the overall hydrogen bond acidity $\left(\Sigma \alpha_{2}{ }^{H}\right)$; B is the overall hydrogen bond basicity $\left(\Sigma \beta_{2}{ }^{H}\right) ; V$ is the McGowan volume (V_{x} in
$\left.\left[\mathrm{cc} \mathrm{mol}^{-3}\right]\right) ; c$ is a constant (intercept, off-set, e.g. $\log k_{\mathrm{ref}}$); e, s, a, b, v are regression coefficients of the multilinear model. Eq. (1) has been designed to deal with transfers from one condensed phase to another. In gas chromatography instead of the McGowan volume the gas-hexadecane partition coefficient is used: $\log \left(L_{16}\right)$, which accounts for the transfers from the gas phase to a condensed phase.

LSER includes cavity formation/dispersive interactions (V), dipolarity/polarizability interactions (S), and hydrogen bonding interactions (A and B). The outcome of a LSER analysis is a set of regression coefficients which provide us with information about which solute-solvent interactions significantly affect the retention process. The coefficients (e, s, a, $b, v)$ are related to the chemical nature of the mobile and stationary phases, and their values can be determined easily. It should be mentioned that the regression coefficients are interrelated (coupled) similarly to the Abraham descriptors $(E, S, A, B, V$ or L) i.e. they do not carry independent information. Recent (unpublished) examinations on the data of ref. [221] show that two to four (on average three) independent (orthogonal) coefficient would be sufficient to represent the retention phenomenon properly (depending on the method used for determination of independent parameters). This finding has been supported by separate examinations [222].

LSER models can be applied with very large variations in chromatographic conditions. Using a relatively small set of model compounds predictions can be made well outside of the model domain. This implies that LSER models are general and indeed the LSER explanation for partitioning is generally accepted. On the other hand LSER models are typically not accurate enough for prediction purposes. LSER models contribute mainly to the general understanding of partition processes and less to optimize separations.

Linear relationships were established for a set of compounds between logarithm of retention factor (k) and volume fraction of organic modifier (φ) :

$$
\begin{equation*}
\log k=\log k_{\mathrm{w}}-S \varphi \tag{3}
\end{equation*}
$$

where S is the slope, and $\log k w$ is the intercept. S versus $\log k w$ correlations are chemically meaningful for a non-homologous series of compounds.

The hydrophobic-subtraction model assumes that first the major contribution of hydrophobicity is subtracted from the retention in reversed-phase liquid chromatography (RP-HPLC). Such a way the remaining contributions to retention from other solute-column interactions can be established. The general formula for retention (k) and column selectivity (α) is given by Snyder at al.:

$$
\begin{equation*}
\log \alpha \equiv \log k / k_{\mathrm{ref}}=\eta^{\prime} H-\sigma^{\prime} S^{*}+\beta^{\prime} A+\alpha^{\prime} B+\kappa^{\prime} C \tag{4}
\end{equation*}
$$

where $k_{\text {ref }}$ - non-polar reference solute. The coefficients denote properties of the solute: η ' hydrophobicity; σ^{\prime} - molecular "bulkiness" or resistance to insertion of the solute into the stationary phase; β^{\prime} - hydrogen-bond basicity; α^{\prime} - hydrogen-bond acidity κ^{\prime}, approximate charge (either positive or negative) on the solute molecule whereas parameters denoted by capital letters are complementary properties of columns: H - hydrophobicity; S^{*} - steric resistance to insertion of bulky solute molecules into the stationary phase; A - column hydrogen-bond acidity, B - column hydrogen-bond basicity, C - column cation-exchange activity, (hence C is pH dependent).

Snyder's parameters are tabulated for more than 300 columns [223]. Eq. (4) is suitable for prediction and optimization of RP-HPLC separations.

5.1 General tendencies

Linear solvation energy relationships (LSERs) are abundantly used for characterization of stationary phases (polymers). Another important aspect is to determine lipophilicity (hydrophobicity) parameters from retention data. The reference scale for lipophilicity (logarithm of partition coefficient denoted by $\log P$ and determined in the l-octanol-water
partition system) is accepted broadly. As the conventional determination of $\log P$ is tedious and lacks the acceptable interlaboratory reproducibility, alternative scales based on chromatographic retention have been defined to measure lipophilicity. The reversed-phase high - performance liquid chromatography, i.e the partition of a solute between a polar, aqueous mobile phase and a nonpolar stationary phase appeared to be especially suitable for lipophilicity determinations. Rational drug design have profited a lot using fast screening HPLC methods.

Fundamental relationships between chromatographic parameters are reviewed from the point of view of convenient and reliable lipophilicity measurements [298].

As theoretical basis exists to rationalize the main effects of retention many colleagues do not feel to be bounded to validate QSRR models for liquid chromatography. Since the millennium the number of validated models is increasing.

5.2 Misleading practice and conclusions

Statements as "the model describes the retention of ... compounds under conditions very well" says not much about the achievements. The description is not inevitably necessary as the retention data for these compounds under these conditions are available in tabular form. A prediction of retention data for not yet measured compounds would be a real gain. However, this should be checked and proved by cross-validation or external validation. Other valuable aims could be the rationalization of measured data and classification of column/system properties, but we should not forget that such rationalizations for the same/similar compounds are available from renowned authors abundantly. Similarly, numerous classification schemes are available, but none of them achieved general usage.

The correlation coefficients are often given without the degrees of freedom; crossvalidated correlation coefficients are also missing in many cases.

Concluding remarks as "The predicted values are in very good agreement with the experimental values" say very little about the real prediction performance, they should be avoided.

There is some ambiguity in the usage of 'test analytes' and 'test sets'. Test analytes form the training set whereas a new independent series of compound serve for testing the prediction performance. The prediction set is often called as test set in chemometrics.

The statements as "ANN predicts the retention data better than MLR method" has little relevance (see the text in gas chromatography part).

5.3 Suggestions for future works

The domain of model applicability is rarely given for QSRR investigations in liquid chromatography, neither. Although mobile phase concentrations are provided, which compounds can be included and which ones should be excluded from the investigations are missing.

Properly validated models should be recommended for prediction purposes. The same performance indicators (adjusted correlation coefficients, cross-validated correlation coefficients, F values, standard errors, etc) should be used for comparison.

Standardization of optimization strategies for chromatographic separation conditions would provide great benefit if using QSRR equations.

5.4 Summary of QSRR papers in column liquid chromatography

Table 4 summarizes the solutes, methods and techniques for QSRR models in column LC (correlation coefficients are in brackets).

Table 4

The basicity of solutes has a larger effect on the retention of the PBD-zirconia phase than of conventional bonded phases. Strong hydrogen bases and highly dipolar solutes, when compared to nonpolar ones, are less strongly retained on PBD-zirconia than on conventional phases [224].

A (good) linear correlation was obtained between the gradient retention time values and the isocratically determined φ_{0} values for 76 structurally unrelated compounds. The constants of this linear correlation can be used to calculate chromatographic hydrophobicity index, CHI [238].

The assignment of HPLC peaks to their corresponding compounds in libraries of single compounds can be made on the basis of the correlation of the retention times with the different substituents in the variable positions of the molecule. The correlation is performed automatically by a new algorithm which is part of the computer program LIBFINDER [244].

Lipopholicity parameters, CHI and $\log k_{50}$ are moderately correlated with $\log P$ (water/octanol), and both can be used as alternative measures of lipophilicity. Analysis using the general salvation equation of Abraham shows that the solute factors that influence CHI and $\log k_{50}$ are not entirely the same as those that influence $\log P$, so that neither CHI nor $\log k_{50}$ can be used as a direct measure of $\log P$ and vice versa. However, the factors that influence CHI are qualitatively and quantitatively the same as those that influence $\log k_{50}$ [251].

Using 3D descriptors variable-reduced models resulted in considerably better predictions, although these were not as good as for those models obtained by means of classical physicalchemical descriptors [257].

QSRR investigations may reveal non-congeneric behavior of similar compounds [266], but the problem remains whether an extraordinary high lipophilicity will cause outlying biological activity or not.

Properly designed test series of analytes can be recommended for comparative studies of analytical columns. QSRRs once derived on a given column for model analytes can be used to predict the retention of other analytes of a defined structure. That in turn can facilitate the procedure of the rational optimization of chromatographic separations and can characterize modern stationary phases (systems) in an objective, quantitative manner [274].

The linear solvent strength (LSS) model + QSRR approach has been demonstrated to provide approximate, yet otherwise unattainable, a priori predictions of gradient retention of analytes based solely on their chemical formulae [302].

Solute polarity descriptor (p) is useful to transfer retention data between solvents and/or columns. The retention for any chromatographic systems (mobile phase composition) can be predicted using the five solvation descriptors (Eq. (1)), if the polarity of the column has been characterized using a small training set. Alternatively, $\log P$ and hydrogen-bond acidity data can be used for these predictions [313].

Numerous correlations of retention data with an octanol-water partition coefficient have been reported. K. Valko has reviewed lipophilicity correlations and alternative lipophilicity measures [315].

A comparison of chemometric methods based on predictive performance indicated the most important variables and that, individually, genetic algorithm selected descriptors with multiple linear regression modeling outperformed all other models [335].

6. Quantitative structure - retention relationships in micellar chromatography

Micellar liquid chromatography, micellar electrokinetic chromatography, micellar electrokinetic capillary chromatography, biopartitioning micellar chromatography, liposome
electrokinetic chromatography, and microemulsion electrokinetic chromatography are indexed under this heading. Although physicochemical principles of separation are different in case of electrokinetic and non-electrokinetic methods, the two types were merged here. There is no use to fragment the review further.

The separation system in micellar electrokinetic chromatography (MEKC) consists of a homogeneous distribution of charged surfactant micelles in an electrolyte solution. Provided that the velocity of the micelles in a defined direction is different to the velocity of the bulk electrolyte solution in an electric field a separation of neutral solutes is possible.

6.1 General tendencies

Generally correlations are searched between retention data in micellar liquid chromatoghraphy (MLC) and different measures for hydrophobicity $(\log P)$. Diverse chemical compounds, substituted benzenes, drugs, pesticides, etc. are frequently used as model compounds.

Pharmacodynamic quantities, toxicity values, bioconcentration factors can preferably be predicted with micellar chromatography. The retention often serves as independent (\boldsymbol{X}) variable; the method sometimes called QRAR , i.e. quantitative retention- activity relationships.

6.2 Misleading practice and suggestions for future works

In this first phase of the research the potential of the new method is used to be revealed. Hence, chemometric methods, encoding the molecular structure and cross-validation, are rarely used. After the rationalization of measured data multivarate methods will be applied with proper validation in the near future.

6.3 Summary of QSRR papers in micellar chromatography

Table 5 summarizes the solutes, methods and techniques for QSRR models in micellar chromatography (correlation coefficients are in brackets).

Table 5
A migration index (MI) concept, a novel scale for measuring the hydrophobicity of neutral solutes, was extended to anionic solutes. The MI values of anionic solutes correlated very well with $\log P$, whereas the RP-HPLC retention parameter ($\log k^{\prime}$ w), which is also used as a hydrophobicity scale, correlated very little with $\log P$ for the examined anionic solutes [341].

A measure of the hydrophobic character of such amphoteric compounds (as the studied sulfonamides), could be the values of the retention coefficient determined at pH of the isoelectric point [351].

Biopartitioning micellar chromatography (BMC) based models may be a useful to screening new chemicals in the early stage of development and to select safer chemicals [356].

The retention of compounds in MLC using Brij 35 surfactant is able to describe and predict pharmacokinetic and pharmacodynamic parameters of non-steroidal antiinflammatory drugs. QRAR model is a model which can estimate the pharmacokinetic and pharmacodynamic parameters of new compounds in vitro [359].

The chromatographic retention of any molecule in BMC, independently of its family, can be adequately described by its hydrophobicity (expressed as $\log P$) and its anionic and cationic total molar charge [363].

7. Quantitative structure - retention relationships in affinity chromatography

Affinity chromatography (AC) and immobilized artificial membrane (IAM) chromatography are indexed under this heading. Affinity chromatography where biomacromolecules form the stationary phase became an important tool in rational drug design. AC models the drug-receptor interactions. Structural requirements of specific binding sites on biomacromolecules are also revealed. Protein based stationary phases can be used for enantiomer separations (c.f. QSERR, see there) as all proteins are in fact chiral, AC can be applied to elucidate the molecular mechanism of enantioseparation on natural biopolymer stationary phases, hence rational selection of chiral columns for specific analytical separations is enhanced.

Affinity chromatography plays an important role in rational drug design because the efficiency of finding new drugs is enhanced. Moreover, it can reduce the tedious experiments of in vivo screenings. Strictly speaking refs. [377,385] do not belong to artificial membrane chromatography as no biomacromolecules form the stationary phases. However, receptor binding, affinity is modeled; hence these references are also included.

7.1 General tendencies

AC followed by chemometric data evaluation (searching QSRRs) provides information on both the solute molecules and the macromolecules forming the stationary phases. QSRR equations derived for selected solutes (often drugs) can be interpreted in terms of structural requirements of the specific binding sites on macromolecules. Multiple linear regression of affinity-chromatographic data increases the speed of search for new drugs. Specific highperformance affinity-chromatographic separations can be optimized by rational selection of chiral columns, the characteristics of which are provided by QSRR.

The main efforts concern to find lipohilicity measures from IAM chromatography, i.e. a lot of work is devoted to relate hydrophobicity parameters $(\log P)$ and retention date on AIM phases.

7.2 Misleading practice and suggestions for future works

Chemometric analysis is over and over again limited to linear regression, to search correlations. Although the way of giving correlation equations is appropriate, considerably more information could be extracted if using multivariate methods.

Calculation of descriptors encoding of the molecular structure and cross-validation are rarely used. It is easy to foreseen that multivarate methods will be applied with proper validation in the near future.

7.3 Summary of QSRR papers in affinity chromatography

Table 6 summarizes the solutes, methods and techniques for QSRR models in affinity chromatography.

Table 6

Detailed reviews are available abundantly [370,374-376,383,384].
A good chromatographic model of skin permeability has been determined solely by a lipophilic property, $\log k$, which was measured on an immobilized artificial membrane column [369].

Immobilized human serum albumin (HSA) could be used to estimate plasma protein binding [372].

The IAM-retention is governed by hydrophobicity factors for carboxylic compounds, followed by electronic effects due to polarizability in second place. Moreover, it can be
concluded that the ratio of polarizability and hydrophobic effects is not the same toward IAM phases and biological membranes [381].

Negatively charged compounds bind more strongly to human serum albumin than it could be expected from the lipophilicity of the ionized species at a certain pH values. Several compounds showed stronger HSA binding than could be expected solely from their lipophilicity [382].

It is possible to classify potential drug molecules on the basis of QSRR analysis of retention data. Artificial neural network models utilize structural descriptors and predict pharmacological properties. Such a way diminishing the number of biological assays in the search for new drugs becomes possible [385].

8. Remaining quantitative structure - (chromatographic) retention relationship studies

Mainly ion exchange systems are gathered under this heading. Other studies cannot be easily classified into the preceding groups: supercritical chromatography, fragmental approach, etc. Therefore, general tendencies, etc. have no relevance here. In ion exchange chromatography protein retention data are predicted in several cases with advanced chemometric methods e.g. with support vector machines. Whether simpler tools would do remains unknown.

Table 7 summarizes the solutes, methods and techniques for QSRR studies, which cannot easily be categorized in the former groups.

Table 7

9. References

[1] R. Kaliszan, Quantitative structure-chromatographic retention relationships, Wiley, New York, 1987.
[2] R. Kaliszan, Structure and retention in chromatography. A chemometric approach, Harwood, Amsterdam, 1997.
[3] C. F. Poole, The essence of chromatography, Elsevier, Amsterdam, 2003.
[4] K. Heberger, Discrimination between linear and non-linear models describing retention data of alkylbenzenes in gas-chromatography, Chromatographia, 29 (1990) 375-84.
[5] I. G. Zenkevich, Reciprocally unambiguous conformity between GC retention indices and boiling points within two- and multidimensional taxonomic groups of organic compounds, J. High Res. Chromatogr. 21 (1998) 565-568.
[6] A. J. Miller, Subset selection in regression, Chapman and Hall, London, 1990, pp. 4382.
[7] D.M. Hawkins, Assessing model fit by cross validation, J. Chem. Inf. Comput. Sci. 43 (2003) 579-586.
[8] K. Baumann, Chance correlation in variable subset regression, influence of the objective function, the selection mechanism, and ensemble averaging, QSAR Comb. Sci. 24 (2005) 1033-1046.
[9] A. Tropsha, P. Gramatica, V. K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003) 69-77.
[10] R. Vanyur, K. Heberger, I. Kovesdi J. Jakus, Prediction of photosensitizer properties affecting tumoricidal effect in photodynamic therapy using artificial neural network, Photochem. Photobiol. 75 (2002) 471-478 cf. Table 3.
[11] V. E. F. Heinzen, R. A. Yunes, Using topological indices in the prediction of gas chromatographic retention indices of linear alkyl-benzene isomers, J. Chromatogr. A 719 (1996) 462-467.
[12] W. H. Donovan, G. R. Famini, Using theoretical descriptors in structure-activity relationships: retention indices of sulfur vesicans and related compounds. J. Chem. Soc. Perkin Trans. 2 1996, 83-89.
[13] I. G. Zenkevich, Structural analogy principle for estimating gas chromatographic retention indices, J. Struct. Chem. 37 (1996) 674-682 \{Zh. Struct. Khim. 37 (1996) 784795\}.
[14] I. G. Zenkevich, A. A. Chupalov, R. Khertsshu, Correlation dependence of increments of chromatic retention indexes and differences in internal molecular energies of reagents and product in chemical reactions, Zh. Org. Khim. 32 (1996) 1685-1691.
[15] X. Zhang, P. Lu, Unified equation between Kovats indices on different stationary phases for select types of compounds, J. Chromatogr. A 731 (1996) 187-199.
[16] M. Righezza, A. Hassani, B. Y. Meklati, J .R. Chretien, Quantitative structureretention relationships (QSRR) of congeneric aromatics series studied on phenyl OV phases in gas chromatography, J. Chromatogr. A 723 (1996) 77-91.
[17] P. Andersson, P. Haglund, C. Rappe, M. Tysklind, Ultraviolet absorption characteristics and calculated semi-empirical parameters as chemical descriptors in multivariate modelling of polychlorinated biphenyls, J. Chemometr. 10 (1996) 171-185.
[18] Z. Kiraly, T. Kortvelyesi, L. Seres, Structure-retention relationship in the gas chromatography of N,N-dialkylhydrazones, Chromatographia, 42 (1996) 653-659.
[19] M. Gorgenyi, Z. Kiraly, T. Kortvélyesi, H. Van Langenhove, L.Seres, Structureretention relationship in the gas chromatography of hydrazones | [Szerkezet és retencio
kapcsolata a hidrazonok gazkromatografiajaban] Magy. Kem. Folyoirat, Kem. Kozl. 103 (1997) 576-581.
[20] N. Dimov, A. Osman, Selection of molecular descriptors used in quantitative structure-gas chromatographic retention relationships II. Isoalkanes and alkenes, Anal. Chim. Acta 323 (1996) 15-25.
[21] P. Mnuk, L. Feltl, V. Schurig, Gas chromatographic study of the inclusion properties of calixarenes II. Selective properties of cyclic tetra- to octamers derived from phenol, and some problems associated with the use of calixarenes in capillary gas chromatography, (1996) J. Chromatogr. A 732 (1) 63-74.
[22] M. P. Elizalde-Gonzalez, M. Hutfließ, K. Hedden, Retention index system, adsorption characteristics, and structure correlations of polycyclic aromatic hydrocarbons in fuels, J High Res. Chromatogr. 19 (1996) 345-352.
[23] C. G. Georgakopoulos, J. C. Kiburis, Quantitative structure-retention relationships in doping control, J. Chromatogr. B 687 (1996) 151-156.
[24] T. J. Betts, Plots of relative retention against solute boiling points may indicate hostguest interactions with modified cyclodextrin gas chromatographic phases, J. Chromatogr. A 732 (1996) 408-413.
[25] M. Pompe, M. Razinger, M. Novic, M. Veber, Modelling of gas chromatographic retention indices Using Counterpropagation Neural Networks. Anal. Chim. Acta 348 (1997) 215-221.
[26] J. M. Sutter, T. A. Peterson, P. C. Jurs, Prediction of gas chromatographic retention indices of alkylbenzenes, Anal. Chim. Acta 342 (1997) 113-122.
[27] J. Olivero, T. Gracia, P. Payares, R. Vivas, D. Diaz, E. Daza, P. Geerlings, Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil, J. Pharm. Sci. 86 (1997) 625-630. chromatographic relative retention times of flavonoids from molecular structure, J. Chromatogr. A 771 (1997) 213-219.
[29] N. Dimov, A. Osman, Influence of conformation on the accuracy of quantitativestructure retention relationship calculations in gas chromatography, J. Chromatogr. A 773 (1997) 368-371.
[30] G. M. Frame, A collaborative study of 209 PCB congeners and 6 aroclors on 20 different HRGC columns: 1. Retention and coelution database Fresenius' J. Anal. Chem. 357 (1997) 701-713.
[31] V. Isidorov, I. G. Zenkevich, T. Sacharewicz, Calculation of gas chromatographic retention indices for monoterpenes and terpenoids from their physico-chemical constants, Chem. Anal. (Warsaw) 42 (1997) 627-634.
[32] G. I. C. Simpson, Y. A. Jackson, Predictive strategies for determining retention indices of some allylic alcohols and their eaters by gas chromatography, J. Chromatogr. A 766 (1997) 141-146.
[33] K. Heberger, T. Kowalska, Thermodynamic properties of alkylbenzenes from retention - Boiling point correlations in gas chromatography, Chromatographia 44 (1997) 179-186.
[34] K. Heberger, T. Kowalska, Determination of heats of vaporization and Gibbs free energies of alkylbenzenes on GC stationary phases of different polarity, Chromatographia 48 (1998) 89-94.
[35] Q. Shen, L. Xu, H. Li, Orthogonalized molecular descriptors and prediction of gas chromatographic rentention values of aliphatic alcohols, aldehydes, acids and amines, Fenxi Huaxue 25 (1997) 471.
[36] A. Yan, R. Zhang, M. Liu, Z. Hu, M. A. Hooper, Z. Zhao, Large artificial neural networks applied to the prediction of retention indices of acyclic and cyclic alkanes, alkenes, alcohols, esters, ketones and ethers, Comp. Chem. 22 (1998) 405-412.
[37] J. Kang, C. Cao, Z. Li, Quantitative structure-retention relationship studies for predicting the gas chromatography retention indices of polycyclic aromatic hydrocarbons: Quasi-length of carbon chain and pseudo-conjugated system surface, J. Chromatogr. A 799 (1998) 361-367.
[38] P. Gramatica, N. Navas, R. Todeschini, 3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs), Chemometrics Intell. Lab. Syst. 40 (1998) 53-63.
[39] M. Jalali-Heravi, M. H .Fatemi, Prediction of flame ionization detector response factors using an artificial neural network, J. Chromatogr. A 825 (1998) 161-169.
[40] M. Pompe, M. Novic, Prediction of gas-chromatographic retention indices using topological descriptors, J. Chem. Inf. Comput. Sci. 39 (1999) 59-67.
[41] F. R. Gonzalez, J. L. Alessandrini, A. M. Nardillo, Revision of a theoretical expression for gas-liquid chromatographic retention, J. Chromatogr. A 852 (1999) 583588.
[42] K. Heberger, T. Kowalska, Quantitative structure-retention relationships VI. Thermodynamics of Kovats retention index-boiling point correlations for alkylbenzenes in gas chromatography, Chemometrics Intell. Lab. Syst. 47 (1999) 205-217.
[43] K. Heberger, T. Kowalska, Thermodynamic significance of boiling point correlations for alkylbenzenes in gas chromatography. Extension of Trouton's rule, J. Chromatogr. A 845 (1999) 13-20.
[44] X. Zhu, L. Zhang, J. Chen, L. Wang, X. Che, The application quantitative structureretention relationship of GC to aid MS qualitative analysis, Se Pu 17 (1999) 351-353.
[45] J. Olivero, K. Kannan, Quantitative structure-retention relationships of polychlorinated naphthalenes in gas chromatography, J. Chromatogr. A 849 (1999) 621627.
[46] K. Heberger, T. Kowalska, M. Gorgenyi, Determination of the Gibbs free energy of one methylene unit from Kovats retention index - boiling point correlations on DB-210 stationary phase, Acta Chromatogr. 9 (1999) 25-37.
[47] V. E. F. Heinzen, M. F. Soares, R.A. Yunes, Semi-empirical topological method for the prediction of the chromatographic retention of cis- and trans-alkene isomers and alkanes, J. Chromatogr. A 849 (1999) 495-506.
[48] X.h. Zhu, L.-f. Zhang, X. Che and L.-x. Wang, The classification of hydrocarbons with factor analysis and the PONA analysis of gasoline, Chemometrics Intell. Lab. Syst. 45 (1999)147-155.
[49] K. Heberger, M. Gorgenyi, Principal component analysis of Kovats indices for carbonyl compounds in capillary gas chromatography, J. Chromatogr. A 845 (1999) 2131.
[50] E. Estrada, Y. Gutierrez, Modeling chromatographic parameters by a novel graph theoretical sub-structural approach, J. Chromatogr. A 858 (1999) 187-199.
[51] M. De Freitas Soares, F. Delle Monache, V. E. F. Heinzen, R. A. Yunes, Prediction of Gas Chromatographic Retention Indices of Coumarins, J. Braz. Chem. Soc. 10 (1999) 189-196.
[52] R. Zhang, A. Yan, M. Liu, H. Liu, Z. Hu, Application of artificial neural networks for prediction of the retention indices of alkylbenzenes, Chemometrics Intell. Lab. Syst. 45 (1999) 113-120.
[53] I. G. Zenkevich, Dependence of chromatographic retention indices on the dynamic characteristics of molecules, Russian J. Phys. Chem. 73 (1999) 797-801 \{Zh. Fiz. Khim. 73 (1999) 905-910\}.
[54] B. Lucic, N. Trinajstic, S. Sild, M. Karelson, A. R. Katritzky, A new efficient approach for variable selection based on multiregression: Prediction of gas chromatographic retention times and response factors, J. Chem. Inf. Comput. Sci. 39 (1999) 610-621.
[55] T. R. Rybolt, D. L. Logan, M. W. Milburn, H. E. Thomas, A. B. Waters, Correlations of Henry's law gas-solid virial coefficients and chromatographic retention times for hydrocarbons and halocarbons adsorbed on carbopack C carbon, J. Colloid Interface Sci. 220 (1999) 148-156.
[56] R. Acuna-Cueva, F. Hueso-Urena, N.A. Illan Cabeza, S.B. Jimenez-Pulido, M.N. Moreno-Carretero, J. M. Martinez Martos, Quantitative structure-capillary column gas chromatographic retention time relationships for natural sterols (trimethylsilyl ethers) from olive oil, JAOCS, J. Am. Oil Chem. Soc. 77 (2000) 627-630.
[57] K. Heberger, M. Gorgenyi, M. Sjostrom, Partial least squares modeling of retention data of oxo compounds in gas chromatography, Chromatographia 51 (2000) 595-600.
[58] H. Kato, Y. Ueda, M. Nakata, Calibration method for the gas-chromatographic retention time of polychlorinated biphenyl congeners, Anal. Sci. 16 (2000) 693-699.
[59] A. R. Katritzky, K. Chen, U. Maran, D. A. Carlson, QSPR correlation and predictions of GC retention indexes for methyl- branched hydrocarbons produced by insects, Anal. Chem. 72 (2000) 101-109.
[60] X. Liang, W. Wang, K.-W. Schramm, Q. Zhang, K. Oxynos, B. Henkelmann, A. Kettrup, A new method of predicting of gas chromatographic retention indices for polychlorinated dibenzofurans (PCDFs), Chemosphere 41 (2000) 1889-1895.
[61] A. Yan, G. Jiao, Z. Hu, B.T. Fan, Use of artificial neural networks to predict the gas chromatographic retention index data of alkylbenzenes on carbowax-20M, Comp. Chem. 24 (2000) 171-179.
[62] M. Jalali-Heravi, F. Parastar, Development of comprehensive descriptors for multiple linear regression and artificial neural network modeling of retention behaviors of a variety of compounds on different stationary phases, J. Chromatogr. A 903 (2000) 145-154.
[63] O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, A. T. Balaban, Comparison of weighting schemes for molecular graph descriptors: application in quantitative structure-retention relationship models for alkylphenols in gas-liquid chromatography, J. Chem. Inf. Comput. Sci. 40 (2000) 732-743.
[64] S. Liu, Molecular distance-edge vector (μ) and chromatographic retention index of alkanes, J. Chin. Chem. Soc. 47 (2000) 455-460.
[65] S.-S. Liu, Y. Liu, Z.-L. Li, S.-X. Cai, A novel molecular electronegativity-distance vector (MEDV), J. Chin. Chem. Soc. 58 (2000) 1353-1357.
[66] Y. Qi, J. Yang, L. Xu, Correlation analysis of the structures and gas-liquid chromatographic retention indices of amines, Fenxi Huaxue 28 (2000) 226-227.
[67] J. Ruther, Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry, J. Chromatogr. A 890 (2000) 313-319.
[68] J. M. Santiuste, Relationship between GLC retention data and topological indices for a wide variety of solutes on five stationary phases of different polarity, Chromatographia 52 (2000) 225-232.
[69] J. M. Santiuste, J. A. García-Domínguez, Study of retention interactions of solute and stationary phase in the light of the solvation model theory, Anal. Chim. Acta 405 (2000) 335-346.
[70] K. Sielex, J. T. Andersson, Prediction of gas chromatographic retention indices of polychlorinated dibenzothiophenes on non-polar columns, J. Chromatogr. A 866 (2000) 105-120.
[71] M. Jalali-Heravi, M.H. Fatemi, Prediction of thermal conductivity detection response factors using an artificial neural network, J. Chromatogr. A 897 (2000) 227-235.
[72] T. J. Betts, The use of linear expressions of solute boiling point versus retention to indicate special interactions with the molecular rings of modified cyclodextrin phases in gas chromatography, J. Chromatogr. Sci. 38 (2000) 357-364.
[73] M. M. C. Ferreira, Polycyclic aromatic hydrocarbons: A QSPR study, Chemosphere 44 (2001) 125-146.
[74] T. Kortvelyesi, M. Gorgenyi, K. Heberger, Correlation between retention indices and quantum-chemical descriptors of ketones and aldehydes on stationary phases of different polarity, Anal. Chim. Acta 428 (2001) 73-82.
[75] L. P. Zhou, Z. N. Xia, B. Y. Li, S. S. Liu, H. Li, M. He, Z. L. Li, Estimation of gas chromatographic retention index for polycyclic aromatic hydrocarbons using VMDE, Se Pu 19 (2001) 25-31.
[76] O. Ivanciuc, T. Ivanciuc, D. J. Klein, W. A. Seitz, A. T. Balaban, Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors, SAR QSAR Environ. Res. 11 (2001) 419-452.
[77] A. Yan, Z. Hu, Linear and non-linear modeling for the investigation of gas chromatography retention indices of alkylbenzenes on Cit.A-4, SE-30 and Carbowax 20M, Anal. Chim. Acta 433 (2001) 45-154.
[78] C.-S. Yin, W.-M. Guo, W. Liu, W. Zhao, Z.-X. Pan, Estimation and prediction of gas chromatography retention indices of hydrocarbons in straight-run gasoline by using
artificial neural network and structural coding method, Chem. Res. Chinese Univ. 17 (2001) 31-40.
[79] Z .H. Lin, S. S. Liu, Z. L. Li, Quantitative structure-retention relationship (QSRR) studies of polychlorinated dibenzofurans (PCDFs) on diverse gas chromatographic stationary phases on a set of novel molecular distance edge vector, Se Pu 19 (2001) 116123.
[80] C. Yin, W. Liu, Z. Li, Z. Pan, T. Lin, M. Zhang, Chemometrics to chemical modeling: Structural coding in hydrocarbons and retention indices of gas chromatography, J. Sep. Sci. 24 (2001) 213-220.
[81] M. Jalali-Heravi, M. H. Fatemi, Artificial neural network modeling of Kovats retention indices for noncyclic and monocyclic terpenes, J. Chromatogr. A 915 (2001) 177-183.
[82] V. A. Isidorov U. Krajewska, E. N. Dubis, M. A. Jdanova, Partition coefficients of alkyl aromatic hydrocarbons and esters in a hexane-acetonitrile system, J. Chromatogr. A 923 (2001) 127-136.
[83] T. Ivanciuc, O. Ivanciuc, Quantitative structure-retention relationship study of gas chromatographic retention indices for halogenated compounds, Internet Electron J. Mol. Des. 1 (2002) 94-107.
[84] C. J. Feng, X. H. Du, Topological research of Kovats indices for amines Se Pu 19 (2001) 124-127.
[85] T. R. Rybolt, D. N. Hooper, J. B. Stensby, H. E. Thomas, M. L. Baker Jr, Molar refractivity and connectivity index correlations for Henry's law virial coefficients of odorous sulfur compounds on carbon and for gas-chromatographic retention indices, J. Colloid Interface Sci. 234 (2001) 168-177.
[86] W. Guo, Y. Lu, X. M. Zheng, The predicting study for chromatographic retention index of saturated alcohols by MLR and ANN, Talanta 51 (2000) 479-488 and in chinese: W. Guo, Y. Lu, X. M. Zheng, The application of artificial neural networks in the study of quantitative structure-retention relationships for saturated alcohols, Fenxi Huaxue 29 (2001) 420.
[87] I. G. Zenkevich, A. N. Marinichev, Comparison of the topological and dynamic characteristics of molecules for calculating retention indices of organic compounds, J. Struct. Chem. 42 (2001) 747-754.
[88] I. G. Zenkevich, Interpretation of retention indices in gas chromatography for establishing structures of isomeric products of alkylarenes radical chlorination, Russian J. Org. Chem. 37 (2001) 270-280.
[89] A. R. Katritzky, R. Petrukhin, D. Tatham, S. Basak, E. Benfenati, M. Karelson, U. Maran, Interpretation of quantitative structure - property and - activity relationships, J. Chem. Inf. Comput. Sci. 41 (2001) 679-685.
[90] Z. Lin, J. Xu, S. Liu, Z. Li, Estimation and prediction of gas chromatography retention index for polycyclic aromatic hydrocarbons, Fenxi Huaxue 29 (2001) 889.
[91] M. Randic, S.C. Basak, M. Pompe, M. Novic, Prediction of gas chromatographic retention indices using variable connectivity index, Acta Chim. Sloven. 48 (2001) 169180.
[92] C. Yin, W. Guo, T. Lin, S. Liu, R. Fu, Z. Pan, L. Wang, Application of wavelet neural network to the prediction of gas chromatographic retention indices of alkanes, J. Chin. Chem. Soc. 48 (2001) 739-749.
[93] E. J. Delgado, A. Matamala, J. B. Alderete, Predicting gas chromatographic retention time of polychlorinated dibenzo-p-dioxins from molecular structure, Z. Phys. Chem. 216 (2002) 451-457.
[94] M. Harju, P. L. Andersson, P. Haglund, M. Tysklind, Multivariate physicochemical characterisation and quantitative structure-property relationship modelling of polybrominated diphenyl ethers, Chemosphere 47 (2002) 375-384.
[95] M. Jalali-Heravi, Z. Garkani-Nejad, Prediction of relative response factors for flame ionization and photoionization detection using self-training artificial neural networks, J. Chromatogr. A 950 (2002) 183-194.
[96] B. S. Junkes, R. D. M. C. Amboni, V. E. F. Heinzen, R. A. Yunes, Quantitative structure - retention relationships (QSRR), using the optimum semi-empirical topological index, for methyl-branched alkanes produced by insects, Chromatographia 55 (2002) 707713.
$[97]$ B. S. Junkes, R. D. M. C. Amboni, V. E. F. Heinzen, R. A. Yunes, Use of a semiempirical topological method to predict the chromatographic retention of branched alkenes, Chromatographia 55 (2002) 75-80.
[98] Z. Lin, S. Liu, Z. Li, Molecular modeling of quantitative structure retention relationship studies: Retention behavior of polychlorinated dibenzofurans on gas chromatographic stationary phases of varying polarity by a novel molecular distance edge vector, J. Chromatogr. Sci. 40 (2002) 7-13.
[99] M. Jalali-Heravi, Z. Garkani-Nejad, Use of self-training artificial neural networks in modeling of gas chromatographic relative retention times of a variety of organic compounds, J. Chromatogr. A 945 (2002) 173-184.
[100] S. Liu, C. Yin, S. Cai, Z. Li, Molecular structural vector description and retention index of polycyclic aromatic hydrocarbons, Chemometrics Intell. Lab. Syst. 61 (2002) 315.
[101] M. H. Fatemi, Simultaneous modeling of the Kovats retention indices on OV-1 and SE-54 stationary phases using artificial neural networks, J. Chromatogr. A 955 (2002) 273-280.
[102] X. Yao, X. Zhang, R. Zhang, M. Liu, Z. Hu, B. Fan, Prediction of gas chromatographic retention indices by the use of radial basis function neural networks, Talanta 57 (2002) 297-306.
[103] Y. Wang, X. Yao, X. Zhang, R. Zhang, M. Liu, Z. Hu, B. Fan, The prediction for gas chromatographic retention indices of saturated esters on stationary phases of different polarity, Talanta 57 (2002) 641-652.
[104] R. D. M. C. Amboni, B. D. S. Junkes, R. A. Yunes, V. E. F. Heinzen, Quantitative structure-property relationship study of chromatographic retention indices and normal boiling points for oxo compounds using the semi-empirical topological method, J. Mol. Struct: THEOCHEM 586 (2002) 71-80.
[105] S.-Y. Li, C. Sun, Y. Wang, S.-F. Xu, S.-C. Yao, L.-S. Wang, Quantitative structure retention relationship studies for predicting relative retention times of chlorinated phenols on gas chromatography, J. Environ. Sci. 14 (2002) 418-422.
[106] S. S. Liu, C. S. Yin, L. S. Wang, MEDV-13 for QSRR of 62 polychlorinated naphthalenes, Chin. Chem. Lett. 13 (2002) 791-794.
[107] Y. Du, Y. Liang, D. Yun, Data mining for seeking an accurate quantitative relationship between molecular structure and GC retention indices of alkenes by projection pursuit, J. Chem. Inf. Comput. Sci. 42 (2002) 1283-1292.
[108] I. G. Zenkevich, Chemometric characterization of differences in chromatographic retention indices on standard polar and nonpolar phases as a criterion for the group identification of organic compounds, J. Anal. Chem. 58 (2003) 99-109.
[109] A. Krawczuk, A. Voelkel, J. Lulek, R. Urbaniak, K. Szyrwinska, Use of topological indices of polychlorinated biphenyls in structure-retention relationships, J. Chromatogr. A 1018 (2003) 63-71.
[110] Y. Gao, Y. Wang, X. Yao, X. Zhang, M. Liu, Z. Hu, B. Fan, The prediction for gas chromatographic retention index of disulfides on stationary phases of different polarity, Talanta 59 (2003) 229-237.
[111] J. M. Santiuste, J. Harangi, J. M. Takacs, Mosaic increments for predicting the gas chromatographic retention data of the chlorobenzenes, J. Chromatogr. A 1002 (2003) 155-168
[112] J. M. Santiuste, J. M. Takacs, Relationships between retention data of benzene and chlorobenzenes with their physico-chemical properties and topological indices, Chromatographia 58 (2003) 87-96.
[113] B. Ren, Atom-type-based AI topological descriptors for quantitative structureretention index correlations of aldehydes and ketones, Chemometrics Intell. Lab. Syst. 66 (2003) 29-39.
$[114]$ B. S. Junkes, R. D. M. C. Amboni, R. A. Yunes, and V. E. F. Heinzen, Semiempirical topological index: A novel molecular descriptor for quantitative structure-retention relationship studies, Internet Electron. J. Mol. Des. 2003, 2, 33-49 and supplementary material S1-S12.
[115] Y.-R. Jiang, Z.-G. Liu, J.-Y. Liu, Y.-H. Hu, D.-Z.Wang, Application of a novel moledular topological index, Acta Phys. Chim. Sinica 19 (2003) 198-202.
[116] D. Xihua, F. Changjun, A molecular topological research on the gas chromatography retention index of alcohols, Fenxi Huaxue 31 (2003) 486-489.
[117] I. G. Zenkevich, B. Kranicz, Choice of nonlinear regression functions for various physicochemical constants within series of homologues, Chemometrics Intell. Lab. Syst. 67 (2003) 51-57.
[118] Y. Du, Y. Liang, Data mining for seeking accurate quantitative relationship between molecular structure and GC retention indices of alkanes by projection pursuit, Comput. Biol. Chem. 27 (2003) 339-353.
[119] W. P. Eckel T. Kind Use of boiling point-Lee retention index correlation for rapid review of gas chromatography-mass spectrometry data, Anal. Chim. Acta 494 (2003) 235-243.
$[120]$ B. S. Junkes, R. D. M. C. Amboni, R. A. Yunes, V. E. F. Heinzen, Prediction of the chromatographic retention of saturated alcohols on stationary phases of different polarity applying the novel semi-empirical topological index, Anal. Chim. Acta 477 (2003) 29-39.
[121] D. Wang, X. Xu, S. Chu, D. Zhang, Analysis and structure prediction of chlorinated polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride, Chemosphere 53 (2003) 495-503.
[122] C. Yin, S. Liu, X. Wang, D. Chen, L. Wang, An efficient and simple approach to predict Kovats indexes of polychlorinated naphthalenes in gas chromatography, J. Chin. Chem. Soc. 50 (2003) 875-879.
[123] F. Hueso-Ureña, N. I. Cabeza, S. B. Jiménez-Pulido, M. N. Moreno-Carretero, and J. M. Martínez-Martos, A recalculation of quantitative structure chromatographic retention time relationships on natural phenols and sterols found in olive oil, Internet Electron. J. Mol. Des. 2004, no 6 (without page number).
$[124]$ B. D. S. Junkes, R. D. De. M. C. Amboni, R. A. Yunes, V. E. F. Heinzen, Application of the semi-empirical topological index in quantitative structure-chromatographic
retention relationship (QSRR) studies of aliphatic ketones and aldehydes on stationary phases of different polarity, J. Braz. Chem. Soc. 15 (2004) 183-189.
[125] M. Pompe, J. M. Davis, C. D. Samuel, Prediction of thermodynamic parameters in gas chromatography from molecular structure: Hydrocarbons, J. Chem. Inf. Comput. Sci. 44 (2004) 399-409.
[126] X. Shao, G. Wang, Quantitative prediction of normal boiling points for organic compounds using chromatographic retention times on two columns of different polarity, Chromatographia 59 (2004) 615-620.
[127] A. G. Fragkaki, M. A. Koupparis, C. G. Georgakopoulos, Quantitative structureretention relationship study of α-, $\beta 1$-, and $\beta 2$-agonists using multiple linear regression and partial least-squares procedures, Anal. Chim. Acta 512 (2004) 165-171.
[128] M. R. Hodjmohammadi, P. Ebrahimi, F. Pourmorad, Quantitative structure-retention relationships (QSRR) of some CNS agents studied on DB-5 and DB-17 phases in gas chromatography, QSAR Comb. Sci. 23 (2004) 295-302.
[129] O. Farkas, K. Heberger, I. G. Zenkevich, Quantitative structure-retention relationships XIV: Prediction of gas chromatographic retention indices for saturated $\mathrm{O}-, \mathrm{N}-$, and $\mathrm{S}-$ heterocyclic compounds, Chemometrics Intell. Lab. Syst. 72 (2004) 173-184.
[130] B. Skrbic, N. Djurisic-Mladenovic, J. Cvejanov, Discrimination between linear and non-linear models for retention indices of polycyclic aromatic hydrocarbons in the socalled Lee's scale, Chemometrics Intell. Lab. Syst. 72 (2004) 167-171.
[131] X.-H. Du, Prediction of gas chromatography retention index of sulfides by the method of novel molecular connectivity index and topological index, Nanjing Li Gong Daxue Xuebao 28 (2004) 524-527.
[132] H. Du, Z. Ring, Y. Briker, P. Arboleda, Prediction of gas chromatographic retention times and indices of sulfur compounds in light cycle oil, Catalysis Today 98 (2005) 217225
[133] T. R. Rybolt, V. E. Janeksela, D. N. Hooper, H. E. Thomas, N. A. Carrington, E. J. Williamson, Predicting second gas-solid virial coefficients using calculated molecular properties on various carbon surfaces, J. Colloid Interface Sci. 272 (2004) 35-45.
[134] I. G. Zenkevich, M. Moeder, G. Koeller, S. Schrader, Using new structurally related additive schemes in the precalculation of gas chromatographic retention indices of polychlorinated hydroxybiphenyls on HP-5 stationary phase, J Chromatogr A 1025 (2004) 227-236.
[135] M. Jalali-Heravi, A. Kyani, Use of computer-assisted methods for the modeling of the retention time of a variety of volatile organic compounds: A PCA-MLR-ANN approach, J. Chem. Inf. Comput. Sci. 44 (2004) 1328-1335.
[136] M. Jalali-Heravi, E. Noroozian, M. Mousavi, Prediction of relative response factors of electron-capture detection for some polychlorinated biphenyls using chemometrics, J. Chromatogr. A 1023 (2004) 247-254.
[137] J. M. Pérez-Parajón, J. M. Santiuste, J. M Takacs, Sensitivity of the methylbenzenes and chlorobenzenes retention index to column temperature, stationary phase polarity, and number and chemical nature of substituents, J Chromatogr A 1048 (2004) 223-232.
[138] Z. Garkani-Nejad, M. Karlovits, W. Demuth, T. Stimpfl, W. Vycudilik M. JalaliHeravi, K. Varmuza, Prediction of gas chromatographic retention indices of a diverse set of toxicologically relevant compounds, J Chromatogr A, 1028 (2004) 287-95.
[139] H. Deng, P. Huang, Y. Hu, N. Ye, Z. Li, A novel molecular distance edge vector as applied to chemical modeling of quantitative structure-retention relationships: Various
gas chromatographic retention behaviors of polychlorinated dibenzofurans on different polarity-varying stationary phases, Chinese Sci. Bull. 50 (2005) 1683-1687.
[140] X. Yu, D. Yang, Predicting the Kovats retention index for alkoxyl silicon chlorides and sulfides on stationary phases of different polarities using novel definition of molecular topological index, Fenxi Huaxue 33 (2005) 101-105.
[141] J. Shi, F. Jiang, W. Yan, J. Wang, G. Wang, Quantitative structure-chromatographic retention relationships of hydrocarbons on different polar stationary phases, Fenxi Huaxue 33 (2005) 181-186.
[142] P. Korytar, A. Covaci, J. De Boer, A. Gelbin, U.A.Th. Brinkman, Retention-time database of 126 polybrominated diphenyl ether congeners and two Bromkal technical mixtures on seven capillary gas chromatographic columns, J. Chromatogr. A 1065 (2005) 239-249.
[143] O. Farkas, K. Heberger, Comparison of ridge regression, partial least-squares, pairwise correlation, forward- and best subset selection methods for prediction of retention indices for aliphatic alcohols, J. Chem. Inf. Model. 45 (2005) 339-346.
[144] X. Du, J. Gu, A modified topological index and its application in the chromatography, Fenxi Huaxue 33 (2005) 553-556.
[145] Y. Song, J. Zhou, S. Zi, J. Xie, Y. Ye, Theoretical analysis of the retention behavior of alcohols in gas chromatography, Bioorg. Med. Chem. 13 (2005) 3169-3173.
[146] C. Zhao, Y. Liang, Q. Hu, T. Zhang, Review on gas chromatographic retention index, Fenxi Huaxue 33 (2005) 715-721.
$[147]$ B. S. Junkes, A. C. S. Arruda, R. A. Yunes, L. C. Porto, V. E. F. Heinzen, Semiempirical topological index: A tool for QSPR/QSAR studies, J. Mol. Model. 11 (2005) 128-134.
[148] H. Can, A. Dimoglo, V. Kovalishyn, Application of artificial neural networks for the prediction of sulfur polycyclic aromatic compounds retention indices, J. Mol. Struct: THEOCHEM 723 (2005) 183-188.
[149] Z. Zhai, Z. Wang, L. Wang, Quantitative structure-property relationship study of GC retention indices for PCDFs by DFT and relative position of chlorine substitution, J. Mol. Struct: THEOCHEM 724 (2005) 115-124.
[150] G.H. Ding, J.W. Chen, X.L. Qiao, L.P. Huang, J. Lin, X.Y. Chen, Comparison of subcooled liquid vapor pressures of polychlorinated dibenzo-p-dioxins and dibenzofurans predicted by QSPR and GC-RI methods, SAR QSAR Environ. Res. 16 (2005) 301-312.
[151] K. Zarei, M. Atabati, Prediction of GC retention indexes for insect-produced methylsubstituted alkanes using an artificial neural network and simple structural descriptors, J. Anal. Chem. 60 (2005) 732-737.
[152] X. Du, Correlation between group modify index and chromatographic retention value of PCDFs, Huagong Xuebao 56 (2005) 1955-1961.
[153] F. Safa, M. R.Hadjmohammadi, Use of topological indices of organic sulfur compounds in quantitative structure-retention relationship study, QSAR Comb. Sci. 24 (2005) 1026-1032.
[154] H. Wang, X. Wang, J. Zhao, C. Sun, L.Wang, Holographic QSRR of polychlorinated dibenzofurans, Chinese Sci. Bull. 50 (2005) 961-964.
[155] R.-J. Hu, H.-X. Liu, R.-S. Zhang, C.-X. Xue, X.-J. Yao, M.-C. Liu, Z.-D. Hu, B.-T. Fan, QSPR prediction of GC retention indices for nitrogen-containing polycyclic aromatic compounds from heuristically computed molecular descriptors, Talanta 68 (2005) 31-39.
[156] L. Liu, C.-Z. Cao, B. Xie, L.-K. Zou, Research of QSRR on chromatography retention index of sulfides and mercaptans, J Hunan Univ. Sci. Technol. 20 (2005) 74-80.
[157] S. Sremac, B. Skrbic, A.Onjia, Artificial neural network prediction of quantitative structure - retention relationships of polycyclic aromatic hydocarbons in gas chromatography, J. Serb. Chem. Soc. 70 (2005) 1291-1300.
[158] F. Luan, C. Xue, R. Zhang, C. Zhao, M. Liu, Z. Hu, B. Fan, Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine, Anal. Chim. Acta 537 (2005) 101-110.
[159] C. Nie, Y. Dai, S. Wen, Z. Li, Molecular topological study on gas chromatographic retention indices of alkane series, $\mathrm{Se} \operatorname{Pu} 23$ (2005) 1-6.
[160] Z.-C. Zhai, Z.-Y. Wang, S.-D. Chen, Quantitative structure-retention relationship for gas chromatography of polychlorinated naphthalenes by ab initio quantummechanical calculations and a Cl substitution position method, QSAR Comb. Sci. 25 (2006) 7-14.
[161] J. Acevedo-Martinez, J. C. Escalona-Arranz, A. Villar-Rojas, F. Tellez-Palmero, R. Perez-Roses, L. Gonzalez, R. Carrasco-Velar, Quantitative study of the structureretention index relationship in the imine family, J. Chromatogr. A 1102 (2006) 238-244.
[162] Y. Wang, S.-S. Liu, J.-S. Zhao, X.-D. Wang, L.-S. Wang, Prediction of gas chromatographic retention indices of organophosphates by electrotopological state index, Acta Chim. Sinica 64 (2006) 1043-1050.
[163] Y. Wang, A. Li, H. Liu, Q. Zhang, W. Ma, W. Song, G. Jiang, Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners, J. Chromatogr. A 1103 (2006) 314-328.
[164] M.-J. Li, C.-J. Feng, Topological indices of gas chromatographic retention indices for aliphatic alcohols, Shiyou Huagong Gaodeng Xuexiao Xuebao 19 (2006) 28-33.
[165] C. Lu, W. Guo, C. Yin, Quantitative structure-retention relationship study of the gas chromatographic retention indices of saturated esters on different stationary phases using novel topological indices, Anal. Chim. Acta 561 (2006) 96-102.
[166] V. Isidorov, A. Purzynska, A. Modzelewska, M. Serowiecka, Distribution coefficients of aliphatic alcohols, carbonyl compounds and esters between air and Carboxen/polydimethylsiloxane fiber coating, Anal. Chim. Acta 560 (2006) 103-109.
[167] B. Skrbic, A. Onjia, Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network, J. Chromatogr. A 1108 (2006) 279-284.
[168] F. Liu, Y. Liang, and C. Cao, Prediction of gas chromatographic retention indices of methylalkanes produced by insects, Internet Electron. J. Mol. Des. 5 (2006) 102-115.
[169] S. A. Mjos, Prediction of equivalent chain lengths from two-dimensional fatty acid retention indices, J. Chromatogr. A 1122 (2006) 249-254.
[170] A. S, Mjos, O. Grahl-Nielsen, Prediction of gas chromatographic retention of polyunsaturated fatty acid methyl esters, J. Chromatogr. A 1110 (2006) 171-180.
[171] T. Schade, J. T. Andersson, Speciation of alkylated dibenzothiophenes through correlation of structure and gas chromatographic retention indexes, J. Chromatogr. A 1117 (2006) 206-213.
[172] R.-Y. Gao, H.-F. Wang, The quantitative structure - Enantioselective retention relationships and the application in the chiral recognition mechanism in the chromatography, Chinese J. Org. Chem. 19 (1999) 139-140.
[173] T. D. Booth, I. Wainer, Investigation of the enantioselective separations of aalkylarylcarboxylic acids on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase using quantitative structure-enantioselective retention relationships identification of a conformationally driven chiral recognition mechanism, J. Chromatogr. A 737 (1996) 157-169.
[174] T. D. Booth, I. W. Wainer, Mechanistic investigation into the enantioselective separation of mexiletine and related compounds, chromatographed on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase, J. Chromatogr. A 741 (1996) 205-211.
[175] C. Altomare, S. Cellamare, A. Carotti, M.L. Barreca, A. Chimirri, A.-M. Monforte, F. Gasparrini, C. Villani, M. Cirilli, F. Mazza, Substituent effects on the enantioselective retention of anti-HIV 5-aryl-2-1,2,4-oxadiazolines on R,R-DACH-DNB chiral stationary phase, Chirality 8 (1996) 556-566.
[176] V. Andrisano, T. D. Booth, V. Cavrini, I. W. Wainer, Enantioselective separation of chiral arylcarboxylic acids on an immobilized human serum albumin chiral stationary phase, Chirality 9 (1997) 178-183.
[177] T. D. Booth, K. Azzaoui, I. W. Wainer, Prediction of chiral chromatographic separations using combined multivariate regression and neural networks, Anal. Chem. 69 (1997) 3879-3883.
[178] T. D. Booth, W. J. Lough, M. Saeed, T. A. G. Noctor, I. W. Wainer, Enantioselective separation of enantiomeric amides on three amylose- based chiral stationary phases: Effects of backbone and carbamate side chain chiralities, Chirality 9 (1997) 173-177.
[179] Z. Chilmonczyk, H. Ksycinska, M. Mazgajska, J. Cybulski, R. Kaliszan, Non-linear structure-enantioselective retention relationships in a homologous series of 1,4disubstituted piperazine derivatives, J. Chromatogr. A 788 (1997) 81-85.
[180] L. I. Nord, S. P. Jacobsson, A novel method for examination of the variable contribution to computational neural network models, Chemometrics Intell. Lab. Syst. 44 (1998) 153-160.
[181] H. Chen, X.-Y. Lu, R.-Y. Gao, J.-M. Huang, H.-Z. Yang, Q.-S. Wang, Investigation of retention and chiral recognition mechanism using quantitative structure- enantioselectivity retention relationship in high performance liquid chromatography, Chin. J. Chem. 18 (2000) 194-197.
[182] C. A. Montanari, Q. B. Cass, M. E. Tiritan, A. L. S. D. Souza, A QSERR study on enantioselective separation of enantiomeric sulphoxides, Anal. Chim. Acta 419 (2000) 93-100.
[183] J. Huang, H. Chen, R. Gao, Q. Wang, R. Chen, Retention and chiral recognition mechanism of organo-phosphorus compounds in high-performance liquid chromatography, Science in China, Series B: Chemistry 44 (2001) 147-153.
[184] T. Suzuki, S. Timofei, B. E. Iuoras, G. Uray, P. Verdino, W. M. F. Fabian, Quantitative structure-enantioselective retention relationships for chromatographic separation of arylalkylcarbinols on Pirkle type chiral stationary phases, J. Chromatogr. A 922 (2001) 13-23.
[185] J.-M. Huang, H. Chen, R.-Y. Gao, Q.-S. Wang, Investigation of retention and chiral recognition mechanism of the derivative β-cyclodextrin bonded stationary phase (II), Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao 22 (2001) 1842.
[186] J.-M. Huang, H. Chen, Q.-S. Wang, R.-Y. Gao, R.-Y.Chen, Investigation of retention and chiral recognition mechanism of the a-aminophosphonate compounds on the derivative β-cyclodextrin bonded stationary phase, J. Chin. Chem. Soc. 59 (2001) 2991305.
[187] J.-M. Huang, H. Chen, Q.-S. Wang, R.-Y. Gao, R.-Y. Chen, Study of retention and chiral recognition mechanisms of diphenyl 1-(n-benzyloxycarbonyl)-aminoalkanephosphonates organophosphorus compounds in HPLC, J. Chin. Chem. Soc. 59 (2001) 19751981.
[188] E. Calleri, E. De Lorenzi, D. Siluk, M. Markuszewski, R. Kaliszan, G. Massolini, Riboflavin binding protein - chiral stationary phase: Investigation of retention mechanism, Chromatographia 55 (2002) 651-658.
[189] I. G. Zenkevich and R. R. Kostikov, Prediction of gas-chromatographic elution sequence of diastereomers and enantiomers using the molecular dynamics methods, Russian J. Org. Chem. 39 (2003) 1057-1063.
[190] W. M. F. Fabian, W. Stampfer, M. Mazur, G. Uray, Modeling the chromatographic enantioseparation of aryl- and hetarylcarbinols on ULMO, a brush-type chiral stationary phase, by 3D-QSAR techniques, Chirality 15 (2003) 271-275.
[191] B. Zhang, Z.-C. Shang, W.-N. Zhao, J.-W. Zou, G.-X. Hu, Q.-S. Yu, Quantitative structure-enantioselective retention relationships study of 5-arylhydantoins, Acta Physico - Chimica Sinica 19 (2003) 938-943.
[192] G.-S. Yang, S.-L. Yuan, X.-J. Lin, Z.-N. Qi, C.-B. Liu, H.Y. Aboul-Enein, G. Felix, The study of chiral discrimination of organophosphonate derivatives on pirkle type chiral stationary phase by molecular modeling, Talanta 64 (2004) 320-325.
[193] C. Yang, C. Zhong, Chirality factors and their application to QSAR studies of chiral molecules, QSAR Comb. Sci. 24 (2005) 1047-1055.
[194] G. Massolini, G. Fracchiolla, E. Calleri, G. Carbonara, C. Temporini, A. Lavecchia, S. Cosconati, E. Novellino, F. Loiodice, Elucidation of the enantioselective recognition mechanism of a penicillin G acylase-based chiral stationary phase towards a series of 2-aryloxy-2- arylacetic acids, Chirality 8 (2006) 633-643.
[195] S. Caetano, Y. Vander Heyden, Modelling the quality of enantiomeric separations based on molecular descriptors, Chemometrics Intell. Lab. Syst. 84 (2006) 46-55.
[196] Q. S. Wang, L. Zhang, Review of research on quantitative structure-retention relationships in thin-layer chromatography, J. Liq. Chrom. Rel. Technol. 22 (1999) 1-14.
[197] T. Cserhati, E. Forgacs, Structure-retention relationships and physicochemical characterization of solutes in thin-layer chromatography, Journal of AOAC International 81 (1998) 1105-1107.
[198] T. Cserhati, G. Oros, Determination of hydrophobicity parameters of antibiotics by reversed-phase chromatography. The effect of support, Biomed. Chromatogr. 10 (1996) 117-121.
[199] J. Novakovic, V. Pacakova, J. Sevcik, T. Cserhati, Quantitative structurechromatographic retention relationship study of six underivatized equine estrogens, J. Chromatogr. B 681 (1996) 115-123.
[200] E. Forgacs, T. Cserhati, R. Kaliszan, P. Haber, A. Nasal, Reversed-phase thin-layer chromatographic determination of the hydrophobicity parameters of nonsteroidal antiinflammatory drugs, J. Planar Chromatogr. - Modern TLC 11 (1998) 383-387.
[201] T. Cserhati, A. Kosa, S. Balogh, Comparison of partial least-square method and canonical correlation analysis in a quantitative structure-retention relationship study, J. Biochem. Biophys. Methods 36 (1998) 131-141.
[202] W. Yuesong, L. Leming, Z. Jun, Prediction of the thin-layer chromatographic retention of amino acids, J. Planar Chromatogr. Modern TLC 11 (1998) 300-304.
[203] H. Celkova, J. Cizmarik, R. Mlynarova, K. Hrobonova, J. Lehotay, Relationships between the lipophilicity of some 1,4-piperazine derivatives of aryloxyaminopropanols and their β-andrenolytic activity, Acta Poloniae Pharmaceutica - Drug Research 55 (1998) 449-452.
[204] G. A. Csiktusnadi-Kiss, E. Forgacs, M. Markuszewski, S. Balogh, Application of multivariate mathematical-statistical methods to compare reversed-phase thin-layer and liquid chromatographic behaviour of tetrazolium salts in Quantitative Structure-Retention Relationships (QSRR) studies, Analusis 26 (1998) 400-406.
[205] J. K. Rozylo, A. Niewiadomy, A. Zabinska, J. Matysiak, RPTLC investigation of the hydrophobicity and biological activity of new fungicidal compounds J. Planar Chromatogr. - Modern TLC 11 (1998) 450-456.
[206] W. Maciejewicz, E. Soczewinski, Chemometric characterization of TLC systems of the type silica-binary non-aqueous mobile phase in the analysis of flavonoids, Chromatographia 51 (2000) 473-477.
[207] L. Zhang, G.-Z. Tang, X.-D. Xing, Q.-S. Wang, Quantitative structure-retention relationships of O-alkyl, O-(1-methylthioethylideneamino) phosphoramidates in RPHPTLC, J. Planar Chromatogr. Modern TLC 13 (2000) 231-234.
[208] X. Zhou, L. M. Lin, J. Zhang, J. P. Chen, L. X. Wang, A preliminary study of the quantitative structure-retention relationship of ginsenosides in normal phase thin-layer chromatography. Se Pu 18 (2000) 206-211.
[209] A. Pyka, Investigatioin of the correlation between R_{M} values and selected topological indexes for higher alcohols, higher fatty acids and their methyl esters in RPTLC, J. Planar Chromatogr. Modern TLC 14 (2001) 439-444.
[210] T. Djakovic-Sekulic, M. Acanski, N. Perisic-Janjic, Evaluation of the predictive power of calculation procedure for molecular hydrophobicity of some estradiol derivates, J. Chromatogr. B 766 (2002) 67-75.
[211] A. Pyka, K. Bober, Prediction of the R_{M} values of selected methyl esters of higher fatty acids in RPTLC, J. Planar Chromatogr. Modern TLC 15 (2002) 59-66.
[212] I. Baranowska, M. Zydron, Quantitative structure-retention relationships (QSRR) of biogenic amine neurotransmitters and their metabolites on RP-18 plates in thin-layer chromatography, J. Planar Chromatogr. Modern TLC 16 (2003) 102-106.
[213] A. Pyka, Use of structural descriptors to predict the R_{M} values of m - and p alkoxyphenols in RP TLC, J. Planar Chromatogr. Modern TLC 16 (2003) 131-136.
[214] A. Pyka, E. Kepczyńska, J. Bojarski, Application of selected traditional structural descriptors to QSRR and QSAR analysis of barbiturates, Ind. J. Chem. A. 42 (2003) 1405-1413
[215] E. Brzezinska, G. Koska, K. Walczynski, Application of thin-layer chromatographic data in quantitative structure-activity relationship assay of thiazole and benzothiazole derivatives with H -antihistamine activity, J. Chromatogr. A 1007 (2003) 145-155 and Part II J. Chromatogr. A 1007 (2003) 157-164.
[216] C. Sarbu, D. Casoni, M. Darabantu, C. Maiereanu, Quantitative structure - retention and retention - activity relationships of some 1,3-oxazolidine systems by RP-HPTLC and PCA, J. Pharm. Biomed. Anal. 35 (2004) 213-219.
[217] N. U. Perisic-Janjic, T. Lj. Djakovic-Sekulic, L. R. Jevric, B. Z. Jovanovic, Study of quantitative structure-retention relationships for s-triazine derivatives in different RP HPTLC systems, J. Planar Chromatogr. Modern TLC 18 (2005) 212-216.
[218] A. Pyka, W. Klimczok, Study of lipophilicity and application of selected structural descriptors in QSAR analysis of nicotinic acid derivatives. Investigations on RP18WF254 plates. Part II, J. Planar Chromatogr. Modern TLC 18 (2005) 300-304.
[219] T. Lj. Djakovic-Sekulic, C. Sarbu, N. U. Perisic-Janjic, A comparative study of the lipophilicity of benzimidazole and benztriazole derivatives by RPTLC, J. Planar Chromatogr. Modern TLC 18 (2005) 432-436.
[220] M. Kostecka, A. Niewiadomy, R. Czeczko, Evaluation of N-substituted 2,4dihydroxyphenylthioamide fungicide lipophilicity using the chromatographic techniques HPLC and HPTLC, Chromatographia 62 (2005) 121-126.
[221] M. H. Abraham, A. Ibrahim, A. M. Zissimos, Determination of sets of solute descriptors from chromatographic measurements, J. Chromatogr. A 1037 (2004) 29-47.
[222] K. Héberger, Evaluation of polarity indicators and stationary phases by principal component analysis in gas-liquid chromatography, Chemometrics Intell. Lab. Syst. 47 (1999) 41-49.
[223] L. R. Snyder, J. W. Dolan, P. W. Carr, The hydrophobic-subtraction model of reversed-phase column selectivity, J. Chromatogr. A 1060 (2004) 77-116.
[224] J. Li, P. W. Carr, Characterization of polybutadiene-coated zirconia and comparison to conventional bonded phases by use of linear solvation energy relationships, Anal. Chim. Acta 334 (1996) 239-250.
[225] A. Nasal, P. Haber, R. Kaliszan, E. Forgacs, T. Cserhati, M. H. Abraham, Polyethylene-coated silica and zirconia stationary phases in view of quantitative structure-retention relationships, Chromatographia 43 (1996) 484-490.
[226] Z. L. Sun, L. J. Song, X. T. Zhang, Z .D. Hu, Study on the relationship between retention behavior and molecular structure parameters of substituted benzene derivatives in RPLC, Chromatographia 42 (1996) 43-48.
[227] H. S. Kim, D. W. Lee, Retention behavior of quinolones in reversed-phase liquid chromatography, J. Chromatogr. A 722 (1996) 69-79.
[228] E. R. Collantes, W. Tong, W. J. Welsh, W. L. Zielinski, Use of moment of inertia in comparative molecular field analysis to model chromatographic retention of nonpolar solutes, Anal. Chem. 68 (1996) 2038-2043.
[229] V. Casal, P. J. Martin-Alvarez, T. Herraiz, Comparative prediction of the retention behaviour of small peptides in several reversed-phase high-performance liquid chromatography columns by using partial least squares and multiple linear regression, Anal. Chim. Acta 326 (1996) 77-84.
[230] Y. He, L. Wang, Quantitative structure-activity relationships for studying alkyl (1phenylsulfonyl) cycloalkane-carboxylates, J. Environ. Sci. 8 (1996) 157-166.
[231] H. S. Kim, D. W. Lee, Application of quantitative structure-retention relationships for reversed-phase liquid chromatographic separation of pesticides, Anal. Sci. 12 (1996) 349353.
[232] M. H. Abraham, H.S. Chadha, A. R. E. Leitao, R. C. Mitchell, W. J. Lambert, R. Kaliszan, A. Nasal, P. Haber, Determination of solute lipophilicity, as $\log P$ (octanol) and $\log P$ (alkane) using poly(styrene-divinylbenzene) and immobilised artificial membrane stationary phases in reversed-phase high-performance liquid chromatography, J. Chromatogr. A 766 (1997) 35-47.
[233] H. Hong, L. Wang, G. Zou, Retention in RP-HPLC: lipophilicity determination of substituted biphenyls by reversed-phase high performance liquid chromatography, J. Liq. Chrom. Rel. Technol. 20 (1997) 3029-3037.
[234] H. S. Kim, S. K. Lee, D. W. Lee, Study of retention behavior of pesticides for reversed-phase liquid chromatographic separation by quantitative structure-retention relationships, J. Liq. Chrom. Rel. Technol. 20 (1997) 871-885.
[235] A. Nasal, A. Bucinski, L. Bober, R. Kaliszan, Prediction of pharmacological classification by means of chromatographic parameters processed by principal component analysis, Int. J. Pharm. 159 (1997) 43-55.
[236] E. Grimvall, A. Colmsjo, K. Wrangskog, C. Ostman, M. Eriksson, Quantitative structure-retention relationships for polychlorinated biphenyls and chlorobenzenes on selected normal-phase liquid chromatographic stationary phases, J. Chromatogr. Sci. 35 (1997) 63-70.
[237] Z. L. Sun, L. J. Song, X. T. Zhang, J. Huang, M. L. Li, J. E. Bai, Z. D. Hu, Relationship between retention behavior of substituted benzene derivatives and properties of the mobile phase in RPLC, J. Chromatogr. Sci. 35 (1997) 105-116.
[238] K. Valko, C. Bevan, and D. Reynolds, Chromatographic hydrophobicity index by fast-gradient RP-HPLC: A high-throughput alternative to $\log P / \log D$, Anal. Chem. 69 (1997) 2022-2029.
[239] B. Buszewski, R. M. Gadzala-Kopciuch, M. Markuszewski, R. Kaliszan, Chemically bonded silica stationary phases: Synthesis, physicochemical characterization, and molecular mechanism of reversed-phase HPLC retention, Anal. Chem. 69 (1997) 32773284.
[240] E. Forgacs, T. Cserhati, Use of cluster and principal component analysis in quantitative structure-retention relationship study, Anal. Chim. Acta 348 (1997) 481-487.
[241] J. Chen, L. Yang, L. Wang, Quantitative relationship between molecular structure and chromatographic retention of alkyl(1-phenylsulfonyl)-cycloalkane-carboxylates, Fenxi Huaxue 25 (1997) 192.
[242] L.-J. Luan, S. Zeng, Z.-Q. Liu, X.-C. Fu, Studies on the RP-HPLC retention behavior relationship between the structure of hydroxy compounds and their glucuronides, Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao / Chemical Journal of Chinese Universities 18 (1997) x 10-45.
[243] T. Hanai, K. Koizumi, T. Kinoshita, R. Arora, F. Ahmed, Prediction of $\mathrm{p} K_{(\mathrm{a})}$ values of phenolic and nitrogen-containing compounds by computational chemical analysis compared to those measured by liquid chromatography, J. Chromatogr. A 762 (1997) 5561.
[244] E. G. Von Roedern, A new method for the characterization of chemical libraries solely by HPLC retention times, Molecular Diversity 3 (1997) 253-256.
[245] B. Buszewski, R. Gadzala-Kopciuch, R. Kaliszan, M. Markuszewski, M. T. Matyska, J. J. Pesck, Polyfunctional chemically bonded stationary phase for reversed phase highperformance liquid chromatography, Chromatographia 48 (1998) 615-622.
[246] E. Forgacs, A. Kosa, Csiktusnadi G. Kiss, T. Cserhati, R. Kaliszan, P. Haber, A. Nasal, Use of a modified nonlinear mapping method in quantitative structure retention relationship study, J. Liq. Chrom. Rel. Technol. 21 (1998) 2523-2534.
[247] S. Ounnar, M. Righezza, B. Delatousche, J. R. Chretien, J. Toullec, Study of the influence of electronic effects on the retention of substituted N -benzylideneanilines in normal-phase liquid chromatography, Chromatographia 47 (1998) 164-170.
[248] S. Ounnar, M. Righezza, J. R. Chretien, Quantitative structure retention relationships of chloro-n-benzylideneanilines in normal phase liquid chromatography, J. Liq. Chrom. Rel. Technol. 21 (1998) 459-474.
[249] G. Robertsson, G. Andersson, P. Kaufmann, The use of an optimized RP-HPLC system as a molecular probe in QSPR studies of selected lipid classes, Chromatographia 47 (1998) 643-648.
[250] F. Hueso-Urena, S. B. Jimenez-Pulido, M. N. Moreno-Carretero, J. Rodriguez-Avi, Quantitative structure-liquid chromatographic retention time relationships on natural phenols found in olive oil, JAOCS, J. Am. Oil Chem. Soc. 75 (1998) 793-799.
[251] Chau My Du, K. Valko, C. Bevan, D. Reynolds, M. H. Abraham, Rapid gradient RPHPLC method for lipophilicity determination: A solvation equation based comparison with isocratic methods, Anal. Chem. 1998, 70, 4228-4234.
[252] K. Valko, M. Plass, C. Bevan, D. Reynolds, M. H. Abraham, Relationships between the chromatographic hydrophobicity indices and solute descriptors obtained by using several reversed-phase, diol, nitrile, cyclodextrin and immobilised artificial membrane bonded high-performance liquid chromatography columns, J. Chromatogr. A 797 (1998) 41-55.
[253] A. Sandi, L. Szepesy, Characterization of various reversed-phase columns using the linear free energy relationship. I. Evaluation based on retention factors, J. Chromatogr. A 818 (1998) 1-17 and II. Evaluation of selectivity, J. Chromatogr. A 818 (1998) 19-30.

[254] R. Kaliszan, M. Markuszewski, P. Haber, A. Nasal, T. Cserhati, E. Forgacs, R. M. Gadzala-Kopciuch, B. Buszewski, Application of quantitative structure-retention relationships (QSRR) to elucidate molecular mechanism of retention on the new stationary phases for high-performance liquid chromatography, Chem. Anal. (Warsaw) 43 (1998) 547-559.

[255] S. K. Lee, Y. H. Park, C. J. Yoon, D. W. Lee, Investigation of relationships between retention behavior and molecular descriptors of quinolones in PRP-1 column, J. Microcolumn Sep. 10 (1998) 133-139.
[256] Q.-S. Wang, L. Zhang, H.-Z. Yang, H.-Y. Liu, Quantitative structure-retention relationship for photosystem II inhibitors in RP-HPLC, Chin. J. Chem. 16 (1998) 514520.
[257] L. I. Nord, D. Fransson, S. P. Jacobsson, Prediction of liquid chromatographic retention times of steroids by three-dimensional structure descriptors and partial least squares modeling, Chemometrics Intell. Lab. Syst. 44 (1998) 257-269.
[258] A. Niewiadomy, J. Matysiak, A. Zabinska, J. K. Rozylo, B. Senczyna, K. Jozwiak, Reversed-phase high-performance liquid chromatography in quantitative structureactivity relationship studies of new fungicides, J. Chromatogr. A 828 (1998) 431-438.
[259] M. A. Al-Haj, R. Kaliszan, A. Nasal, Test analytes for studies of the molecular mechanism of chromatographic separations by quantitative structure-retention relationships, Anal. Chem. 71 (1999) 2976-2985.
[260] J. Dai, S. Yao, Y. Ding, L. Wang, Retention of substituted indole compounds on RPHPLC: Correlation with molecular connectivity indices and quantum chemical descriptors, J. Liq. Chrom. Rel. Technol. 22 (1999) 2271-2282.
[261] Q. S. Wang, L. Zhang, M. Zhang, X. D. Xing, G. Z. Tang, A system for predicting the retentions of O-alkyl, n-(1-methylthioethylideneamino) phosphoramidates on RP-HPLC, Chromatographia 49 (1999) 444-448.
[262] R. Kaliszan, M. A. Van Straten, M. Markuszewski, C. A. Cramers, H. A. Claessens, Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships, J. Chromatogr. A 855 (1999) 455-486.
[263] B. Herbreteau, C. Graff, F. Voisin, M. Lafosse, L. Morin-Allory, Interpretation of the chromatographic behavior of perhydrogenated and perfluorinated polyoxyethylene surfactants by molecular modeling, Chromatographia 50 (1999) 490-496.
[264] N. Dimov, K. Chervenkova, B. Nikolova-Damyanova, Retention of iridoid glucosides on octadecylsilane and diol columns, J. Liq. Chrom. Rel. Technol. 23 (2000) 935-947.
[265] M. Jezierska, I. Cendrowska, M. Markuszewski, R. Kaliszan, B. Buszewski, Comparative study of surface topography of high performance liquid chromatography columns in terms of hydrophobicity, Chromatographia 51 (2000) 111-118.
[266] K. Jozwiak, H. Szumilo, B. Senczyna, A. Niewiadomy, RP-HPLC as a tool for determining the congenericity of a set of 2,4-dihydroxythiobenzanilide derivatives, Chromatographia 52 (2000) 159-161.
[267] M. P. Montana, N. B. Pappano, N. B. Debattista, J. Raba, J. M. Luco, Highperformance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling, Chromatographia 51 (2000) 727-735.
[268] M. L. C. Montanari, Q. B. Cass, C. A. Montanari, Quantitative structure-retention relationships of antimicrobial hydrazides evaluated by reverse-phase liquid chromatography, Chromatographia 51 (2000) 722-726.
[269] L. Zhang, M. Zhang, G. Z. X. D. Tang, Xing, Q. S. Wang, Retention prediction system of o-aryl, o-(1-methylthioethylidene-amino)phosphates on RP-HPLC, J. High Res. Chromatogr. 23 (2000) 445-448.
[270] A. Sandi, M. Nagy, L. Szepesy, Characterization of reversed-phase columns using the linear free energy relationship. III. Effect of the organic modifier and the mobile phase composition, J. Chromatogr. A 893 (2000) 215-234.
[271] E. B. Ledesma, M. J. Wornat, QSRR prediction of chromatographic retention of ethynyl-substituted PAH from semiempirically computed solute descriptors, Anal. Chem. 72 (2000) 5437-5443.
[272] Y. L. Loukas, Artificial neural networks in liquid chromatography: Efficient and improved quantitative structure-retention relationship models, J. Chromatogr. A 904 (2000) 119-129.
[273] Y. L. Loukas, Radial basis function networks in liquid chromatography: Improved structure-retention relationships compared to principal components regression (PCR) and nonlinear partial least squares regression (PLS), J. Liq. Chrom. Rel. Technol. 24 (2001) 2239-2256.
[274] M. A. Al-Haj, R. Kaliszan, B. Buszewski, Quantitative structure-retention relationships with model analytes as a means of an objective evaluation of chromatographic columns, J. Chromatogr. Sci. 39 (2001) 29-38.
[275] J. Dai, L. Jin, S. Yao, L. Wang, Prediction of partition coefficient and toxicity for benzaldehyde compounds by their capacity factors and various molecular descriptors, Chemosphere 42 (2001) 899-907.
[276] M. Turowski, T. Morimoto, K. Kimata, H. Monde, T. Ikegami, K. Hosoya, N. Tanaka, Selectivity of stationary phases in reversed-phase liquid chromatography based on the dispersion interactions, J. Chromatogr. A 911 (2001) 177-190.
[277] K. Magnus Aberg, S. P. Jacobsson, Pre-processing of three-way data by pulsecoupled neural networks - an imaging approach, Chemometrics Intell. Lab. Syst. 57 (2001) 25-36.
[278] L. B. Yan, B. R. Xiang, Application of molecular similarity method in the study of quantitative structure-retention relationship for reversed-phase high performance liquid chromatography of drugs, Se pu 19 (2001) 427-432.
[279] S. Yao, C. Sun, D. Chen, Y. Dong, L. Wang, Study on quantitative structure-retention relationships for pyrethroid pesticides compounds, Zhongguo Huanjing Kexue/China Environmental Science 21 (2001) 309-312.
[280] K. Valko, C. M. Du, C. Bevan, D.P. Reynolds, M. H. Abraham, Rapid method for the estimation of octanol/water partition coefficient ($\log P_{\text {oct }}$) from gradient RP-HPLC retention and a hydrogen bond acidity term $\left(\sum \alpha_{2}{ }^{H}\right)$, Current Med. Chem. 8 (2001) 11371146.
[281] A. R. Katritzky, S. Perumal, R. Petrukhin, E. Kleinpeter, CODESSA-based theoretical QSPR model for hydantoin HPLC-RT lipophilicities, J. Chem. Inf. Comput. Sci. 41 (2001) 569-574.
[282] G. P. Romanelli, L. R. F. Cafferata, E. A. Castro, Application of improved quantitative structure-retention relationships to study the molecular mechanism of stationary phases for HPLC, Chem. Phys. Reports 19 (2001) 1767-1775. \{Khim. Fiz. 19 (2000) 105-109\}.
[283] I. Baranowska, M. Zydron, Quantitative structure-retention relationships of xanthines in RP HPLC systems with the new Chromolith RP-18e stationary phases, Anal. Bioanal. Chem. 373 (2002) 889-892.
[284] A. Jakab, M. Prodan, E. Forgacs, Influence of physico-chemical parameters of some barbituric acid derivatives on their retention on an amide embedded RP silica column, J. Pharm. Biomed. Anal. 27 (2002) 913-921.
[285] A. Jakab, G. Schubert, M. Prodan, E. Forgacs, Study of the retention parameters of barbituric acid derivatives in reversed-phase HPLC by using quantitative structureretention relationships, Chromatographia 56 (2002) S55-S59.
[286] A. Jakab, G. Schubert, M. Prodan, E. Forgacs, PCA, followed by two-dimensional nonlinear mapping and cluster analysis, versus multilinear regression in QSSR, J. Liq. Chrom. Rel. Technol. 25 (2002) 1-16.
[287] A. Jakab, G. Schubert, M. Prodan, E. Forgacs, Determination of the retention behavior of barbituric acid derivatives in reversed-phase high-performance liquid chromatography by using quantitative structure-retention relationships, J. Chromatogr. B 770 (2002) 227-236.
[288] X.-h. Liu, C.-d. Wu, S.-k. Han, L.-s. Wang, Prediction of liquid chromatography retention factors for a-branched phenylsulfonyl acetates using quantum chemical descriptors, J. Environ. Sci. 14 (2002) 151-155.
[289] S. Y. Tham, S. Agatonovic-Kustrin, Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives, J. Pharm. Biomed. Anal. 28 (2002) 581-590.
[290] M. Bartolini, C. Bertucci, R. Gotti, V. Tumiatti, A. Cavalli, M. Recanatini, V. Andrisano, Determination of the dissociation constants ($\mathrm{p} K_{\mathrm{a}}$) of basic acetylcholinesterase inhibitors by reversed-phase liquid chromatography, J. Chromatogr. A 958 (2002) 59-67.
[291] R. Kaliszan, P. Haber, T. Baczek, D. Siluk, K. Valko, Lipophilicity and pK estimates from gradient high-performance a liquid chromatography, J. Chromatogr. A 965 (2002) 117-127.
[292] N. S. Wilson, M. D. Nelson, J. W. Dolan, L .R. Snyder, R. G. Wolcott, P. W. Carr, Column selectivity in reversed-phase liquid chromatography: I. A general quantitative relationship, J. Chromatogr. A 961 (2002) 171-193.
[293] T. Hanai, H. Homma, Computational chemical prediction of the retention factor of aromatic acids, J. Liq. Chrom. Rel. Technol. 25 (2002) 1661-1676.
[294] T. Baczek, R. Kaliszan, Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography, J. Chromatogr. A 962 (2002) 41-55.
[295] Y. Wang, X. Zhang, X. Yao, Y. Gao, M. Liu, Z. Hu, B. Fan, Prediction of $\log k_{\mathrm{w}}$ of disubstituted benzene derivatives in reversed-phase high-performance liquid chromatography using multiple linear regression and radial basis function neural network, Anal. Chim. Acta 463 (2002) 89-97.
[296] J. Jiskra, H. A. Claessens, C. A. Cramers, R. Kaliszan, Quantitative structureretention relationships in comparative studies of behavior of stationary phases under highperformance liquid chromatography and capillary electrochromatography conditions, J. Chromatogr. A 977 (2002) 193-206.
[297] T. Moon, M. W. Chi, S .J. Park, C. N. Yoon, Prediction of HPLC retention time using multiple linear regression: using one and two descriptors, J. Liq. Chrom. Rel. Technol. 26 (2003) 2987-3002.
[298] A. Nasal, D. Siluk, R. Kaliszan, Chromatographic retention parameters in medicinal chemistry and molecular pharmacology, Current Med. Chem. 10 (2003) 381-426.
[299] T. Hanai, Quantitative structure-retention relationships of phenolic compounds without Hammett's equations, J. Chromatogr. A 985 (2003) 343-349.
[300] T. Baczek, R. Kaliszan, Predictive approaches to gradient retention based on analyte structural descriptors from calculation chemistry, J. Chromatogr. A 987 (2003) 29-37.
[301] R. Put, C. Perrin, F. Questier, D. Coomans, D. L. Massart, Y. Vander Heyden, Classification and regression tree analysis for molecular descriptor selection and retention prediction in chromatographic quantitative structure-retention relationship studies, J. Chromatogr. A 988 (2003) 261-276.
[302] R. Kaliszan, T. Baczek, A. Bucinknski, B. Buszewski, M. Sztupecka, Prediction of gradient retention from the linear solvent strength (LSS) model, quantitative structureretention relationships (QSRR), and artificial neural networks (ANN), J. Sep. Sci. 26 (2003) 271-282.
[303] R. Bosque, J. Sales, E. Bosch, M. Roses, M. C. Garcia-Alvarez-Coque, J. R. TorresLapasio, A QSPR study of the p solute polarity parameter to estimate retention in HPLC, J. Chem. Inf. Comput. Sci. 43 (2003) 1240-1247.
[304] T. Djakovic-Sekulic, N. Perisic-Janjic, A. Pyka, Correlation of retention of anilides and some molecular descriptors. Application of topological indexes for prediction of $\log k$ values, Chromatographia 58 (2003) 47-51.
[305] E. C. Vonk, K. Lewandowska, H. A. Claessens, R. Kaliszan, C. A. Cramers, Quantitative structure-retention relationships in reversed-phase liquid chromatography using several stationary and mobile phases, J. Sep. Sci. 26 (2003) 777-792.
[306] F. A. L. Ribeiro, M. M. C. Ferreira, QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons, J. Mol. Struct: THEOCHEM 663 (2003) 109-126.
[307] S. K. Lee, Y. Polyakova, K. H. Row, Interrelation of retention factor of amino-acids by QSPR and linear regression, Bull. Korean Chem. Soc. 24 (2003) 1757-1762.
[308] S. K. Lee, Y. Polyakova, K. H. Row, Evaluation of predictive retention factors for phenolic compounds with QSPR equations, J. Liq. Chrom. Rel. Technol. 27 (2004) 629639.
[309] K. A. Lippa, L. C. Sander, S. A. Wise, Chemometric studies of polycyclic aromatic hydrocarbon shape selectivity in reversed-phase liquid chromatography, Anal. Bioanal. Chem. 378 (2004) 365-377.
[310] J. Matysiak, A. Niewiadomy, B. Senczyna, A. Zabinska, J. K. Rozylo, Relationships between LC retention, octanol-water partition coefficient, and fungistatic properties of 2-(2,4-dihydroxyphenyl)benzothiazoles, Journal of AOAC International 87 (2004) 579-586.
[311] J. Li, Prediction of internal standards in reversed-phase liquid chromatography, Chromatographia 60 (2004) 63-71.
[312] J. Li, Prediction of internal standards in reversed-phase liquid chromatography: IV. Correlation and prediction of retention in reversed-phase ion-pair chromatography based on linear solvation energy relationship, Anal. Chim. Acta 522 (2004)113-126.
[313] J. R. Torres-Lapasió, M. C. García-Alvarez-Coque, M. Rosés, E. Bosch, A. M, Zissimos, M. H. Abraham, Analysis of a solute polarity parameter in reversed-phase liquid chromatography on a linear solvation relationship basis, Anal. Chim. Acta 515 (2004) 209-227.
[314] T. Hanai, R. Miyazaki, A. Koseki, T. Kinoshita, Computational chemical analysis of the retention of acidic drugs o a pentyl-bonded silica gel in reversed-phase liquid chromatography, J. Chromatogr. Sci. 42 (2004) 354-360.
[315] K. Valkó, Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution, J. Chromatogr. A 1037 (2004) 299-310.
[316] H. X. Liu, C. X. Xue, R. S. Zhang, X. J. Yao, M. C. Liu, Z. D. Hu, B. T. Fan, Quantitative prediction of $\log k$ of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine, J. Chem. Inf. Comput. Sci. 44 (2004) 1979-1986.
[317] S. Schefzick, C. Kibbey, M. P. Bradley, Prediction of HPLC conditions using QSPR techniques: An effective tool to improve combinatorial library design, J. Comb. Chem. 6 (2004) 916-927.
[318] Z.-T. Jiang, Y.-M. Zuo, R. Li, J. C. Yu, Chromatographic retention of polybutadiene coated titania stationary phase using quantitative structure-retention relationships, Chem. Anal. (Warsaw) 49 (2004) 551-559.
[319] W. Longxing, Z. LeFeng, W. Shisheng, X. Hongbin, L. Xinmiao, Discriminating the xanthones in an extract of Swertia franchetiana by retention parameters, Phytochem. Anal. 16 (2005) 34-38.
[320] Y. Xia, Y. Guo, H. Wang, Q. Wang, Y. Zuo, Quantitative structure-retention relationships of benzoylphenylureas on polystyrene-octadecene-encapsulated zirconia stationary phase in reversed-phase high performance liquid chromatography, J. Sep. Sci. 28 (2005) 73-77.
[321] R. Kaliszan, T. Baczek, A. Cimochowska, P. Juszczyk, K. Wisniewska, Z. Grzonka, Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships, Proteomics 5 (2005) 409-415.
[322] T. Baczek, P. Wiczling, M. Marszall, Y. V. Heyden, R. Kaliszan, Prediction of peptide retention at different HPLC conditions from multiple linear regression models, J. Proteome Res. 4 (2005) 555-563.
[323] T. Baczek, R. Kaliszan, K. Novotna, P. Jandera, Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobicsubtraction model, J. Chromatogr. A 1075 (2005) 109-115.
[324] P. Zhuang, R. A. Thompson, T. P. O'Brien, A retention model for polar selectivity in reversed phase chromatography as a function of mobile phase organic modifier type, J. Liq. Chrom. Rel. Technol. 28 (2005) 1345-1356.
[325] F. Ruggieri, A. A. D'Archivio, G. Carlucci, P. Mazzeo, Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography, J. Chromatogr. A 1076 (2005) 163-169.
[326] T. Hanai, Chromatography in silico, basic concept in reversed-phase liquid chromatography, Anal. Bioanal. Chem. 382 (2005) 708-717.
[327] Z.-Y. Wang, X.-Y. Han, L.-S. Wang, Quantitative correlation of chromatographic retention and acute toxicity for alkyl(1-phenylsulfonyl) cycloalkane carboxylates and their structural parameters by DFT, Jiegou Huaxue 24 (2005) 851-857.
[328] Z. Wu, N. J. Medlicott, M. Razzak, I. G. Tucker, Development and optimization of a rapid HPLC method for analysis of ricobendazole and albendazole sulfone in sheep plasma, J. Pharm. Biomed. Anal. 39 (2005) 225-232.
[329] T. Hanai, Chromatography in silica, quantitative analysis of retention mechanisms of benzoic acid derivatives, J. Chromatogr. A 1087 (2005) 45-51.
[330] T. Hanai, Chromatography in silico, quantitative analysis of retention of aromatic acid derivatives, J. Chromatogr. Sci. 44 (2006) 247-252.
[331] B. Buszewski, S. Kowalska, K. Krupczynska, New generation of chromatographic packings and columns for determination of biologically active compounds, Crit. Rev. Anal. Chem. 35 (2005) 89-116.
[332] H. Luo, Y.-K.Cheng, Quantitative structure-retention relationship of nucleic-acid bases revisited. CoMFA on purine RPLC retention, QSAR Comb. Sci. 24 (2005) 968975.
[333] C. Stella, A. Galland, X. Liu, B. Testa, S. Rudaz, J.-L. Veuthey, P.-A. Carrupt, Novel RPLC stationary phases for lipophilicity measurement: Solvatochromic analysis of retention mechanisms for neutral and basic compounds, J. Sep. Sci. 28 (2005) 2350-2362.
[334] T. M. G. Almeida, A. Leitao, M. L. C. Montanari, C. A. Montanari, The molecular retention mechanism in reversed-phase liquid chromatography of meso-ionic compounds by quantitative structure - retention relationships (QSRR), Chemistry and Biodiversity 2 (2005) 1691-1700.
[335] T. Hancock, R. Put, D. Coomans, Y. Vander Heyden, Y. Everingham, A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies, Chemometrics Intell. Lab. Syst. 76 (2005) 185-196.
[336] Q. Zheng, Z.-Y. Wang, L. Sun, B. Yu, Correlation between chromatographic capacity factors and structural parameters of indole derivatives, Jiegou Huaxue 24 (2005) 13811386.
[337] Y. Polyakova, M. J. Long, H. R. Kyung, Linear regression based QSPR models for the prediction of the retention mechanism of some nitrogen containing heterocycles, J. Liq. Chrom. Rel. Technol. 29 (2006) 533-552.
[338] Y. Polyakova, M. J. Long, H. R. Kyung, QSPR models for chromatographic retention of some azoles with physicochemical properties, Bull. Korean Chem. Soc. 27 (2006) 211218.
[339] P. Ghosh, B. Chawla, P. V. Joshi, S. B. Jaffe, Prediction of chromatographic retention times for aromatic hydrocarbons, Energy and Fuels 20 (2006) 609-619.
[340] M. Salo, H. Siren, P. Volin, S. Wiedmer, H. Vuorela, Structure-retention relationships of steroid hormones in reversed-phase liquid chromatography and micellar electrokinetic capillary chromatography, J. Chromatogr. A 728 (1996) 83-88.
[341] Y. Ishihama, Y. Oda, N. Asakawa, A hydrophobicity scale based on the migration index from microemulsion electrokinetic chromatography of anionic solutes, Anal. Chem. 68 (1996) 1028-1032.
[342] H. Zou, H. Wang, R. Li, Y. Zhang, Separation mechanism of micellar-electrokinetic capillary chromatography studied by quantitative-structure retention relationship, Progr. Nat. Sci. 6 (1996) 689-691.
[343] J. M. Sanchis Mallols, R. M. Villanueva Camanas, S. Sagrado, M. J. MedinaHernandez, Quantitative retention - structure and retention - activity relationship studies of ionic and non-ionic catecholamines by micellar liquid chromatography, Chromatographia 46 (1997) 605-612.
[344] L. Escuder-Gilabert, S. Sagrado, R. M. Villanueva-Camanas, M. J. MedinaHernandez, Quantitative retention-structure and retention-activity relationship studies of local anesthetics by micellar liquid chromatography, Anal. Chem. 70 (1998) 28-34.
[345] H.-R. Liang, H. Vuorela, P. Vuorela, R. Hiltunen, M.-L. Riekkola, The statistical evaluation of migration parameters of flavonoids in capillary electrophoresis with reference to structural descriptors, J. Liq. Chrom. Rel. Technol. 21 (1998) 625-643.
[346] M. Cuenca-Benito, S. Sagrado, R. M. Villanueva-Camanas, M. J. Medina-Hernandez, Quantitative retention-structure and retention-activity relationships of barbiturates by micellar liquid chromatography, J. Chromatogr. A 814 (1998) 121-132.
[347] L. Escuder-Gilabert, J. M. Sanchis-Mallols, S. Sagrado, M. J. Medina-Hernandez, R. M. Villanueva-Camanas, Chromatographic quantitation of the hydrophobicity of ionic compounds by the use of micellar mobile phases, J. Chromatogr. A 823 (1998) 549-559.
[348] R. Zhao, Y. Shan, Z. Liu, H. Zou, Y. Zhang, Application of the artificial neural network in a study of the relationship between retention index and molecular structure parameters in MECC, American Laboratory 32 (2000) 13-14.
[349] A. Detroyer, Y. Vander Heyden, I. Cambre, D. L. Massart, Chemometric comparison of recent chromatographic and electrophoretic methods in a quantitative structureretention and retention-activity relationship context, J. Chromatogr. A 986 (2003) 227238.
[350] L. Escuder-Gilabert, S. Sagrado, R. M. Villanueva-Camanas, M. J. MedinaHernandez, Development of predictive retention-activity relationship models of nonsteroidal anti-inflammatory drugs by micellar liquid chromatography: Comparison with immobilized artificial membrane columns, J. Chromatogr. B 740 (2000) 59-70.
[351] W. Szczepaniak, A. Szymanski, Relationship between hydrophobic properties of amphoteric sulfonamides and their retention in micellar reversed-phase liquid chromatography, J. Liq. Chrom. Rel. Technol. 23 (2000) 1217-1231
[352] S. Yang, J. G. Bumgarner, L. F. R. Kruk, M. G. Khaledi, Quantitative structureactivity relationships studies with micellar electrokinetic chromatography: Influence of surfactant type and mixed micelles on estimation of hydrophobicity and bioavailability, J. Chromatogr. A 721 (1996) 323-335.
[353] A. Detroyer, Y. Vander Heyden, S. Carda-Broch, M. C. Garcia-Alvarez-Coque, D. L. Massart, Quantitative structure-retention and retention-activity relationships of B-blocking agents by micellar liquid chromatography, J. Chromatogr. A 912 (2001) 211-221.
[354] Y. Martin-Biosca, L. Escuder-Gilabert, M. L. Marina, S. Sagrado, R. M. VillanuevaCamanas, M. J. Medina-Hernandez, Quantitative retention- and migration-toxicity relationships of phenoxy acid herbicides in micellar liquid chromatography and micellar electrokinetic chromatography, Anal. Chim. Acta 443 (2001) 191-203.
[355] C. Quinones-Torrelo, S. Sagrado, R. M. Villanueva-Camanas, M. J. MedinaHernandez, Retention pharmacokinetic and pharmacodynamic parameter relationships of antihistamine drugs using biopartitioning micellar chromatography, J. Chromatogr. B 761 (2001) 13-26.
[356] L. Escuder-Gilabert, Y. Martin-Biosca, S. Sagrado, R. M. Villanueva-Camanas, M. J. Medina-Hernandez, Biopartitioning micellar chromatography to predict ecotoxicity, Anal. Chim. Acta 448 (2001) 173-185.
[357] S. T. Burns, M. G. Khaledi, Rapid determination of liposome-water partition coefficients ($K_{\text {lw }}$) using liposome electrokinetic chromatography (LEKC), J. Pharm. Sci. 91 (2002) 1601-1612.
[358] A. Detroyer, Y. Vander Heyden, K. Reynaert, D. L. Massart, Evaluating "fast" micellar monolithic liquid chromatography for high-throughput quantitative structureretention relationship screening, Anal. Chem. 76 (2004) 1903-1908.
[359] L.-M. Ye, T. Ma, G. Chen, Y. Chen, Study on predictive quantitative retentionactivity relationship models of non-steroidal anti-inflammatory drugs by micellar liquid chromatography, Chinese Pharm. J. 40 (2005) 1737-1740.
[360] J. M. Bermudez-Saldana, L. Escuder-Gilabert, M. J. Medina-Hernandez, R. M. Villanueva-Camanas, S. Sagrado, Chromatographic evaluation of the toxicity in fish of pesticides, J. Chromatogr. B 814 (2005) 115-125.
[361] J. M. Bermudez-Saldana, L. Escuder-Gilabert, M. J. Medina-Hernandez, R. M. Villanueva-Camanas, S. Sagrado, Modelling bioconcentration of pesticides in fish using biopartitioning micellar chromatography, J. Chromatogr. A 1063 (2005) 153-160.
[362] M. J. Ruiz-Angel, S. Carda-Broch, M. C. Garcia-Alvarez-Coque, A. Berthod, Effect of ionization and the nature of the mobile phase in quantitative structure-retention relationship studies, J. Chromatogr. A 1063 (2005) 25-34.
[363] L. Escuder-Gilbert, S. Sagrado, R. M. Villanueva-Camanas, M. J. Medina-Hernandez, Quantitative structure-retention relationships for ionic and non-ionic compounds in biopartitioning micellar chromatography, Biomed. Chromatogr. 19 (2005) 155-168.
[364] H. Golmohammadi, M. H. Fatemi, Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography, Electrophoresis 26 (2005) 3438-3444.
[365] H. Liu, X. Yao, M. Liu, Z. Hu, B. Fan, Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method, Anal. Chim. Acta 558 (2006) 86-93.
[366] W. Ma, F. Luan, H. Zhang, X. Zhang, M. Liu, Z. Hu, B. Fan, Quantitative structureproperty relationships for pesticides in biopartitioning micellar chromatography, J. Chromatogr. A 1113 (2006) 140-147.
[367] R. Kaliszan, A. Nasal, M. Turowski, Quantitative structure-retention relationships in the examination of the topography of the binding site of antihistamine drugs on $\alpha 1$-acid glycoprotein, J. Chromatogr. A 722 (1996) 25-32.
[368] T. Salminen, A. Pulli, J. Taskinen, Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs, J. Pharm. Biomed. Anal. 15 (1997) 469-477.
[369] M. Turowski, R. Kaliszan, Keratin immobilized on silica as a new stationary phase for chromatographic modelling of skin permeation, J. Pharm. Biomed. Anal. 15 (1997) 1325-1333.
[370] R. Kaliszan, Retention data from affinity high-performance liquid chromatography in view of chemometrics, J. Chromatogr. B 715 (1998) 229-244.
[371] M. A. Al-Haj, P. Haber, R. Kaliszan, B. Buszewski, M. Jezierska, Z. Chilmonzyk, Mechanism of separation on cholesterol-silica stationary phase for high-performance liquid chromatography as revealed by analysis of quantitative structure-retention relationships, J. Pharm. Biomed. Anal. 18 (1998) 721-728.
[372] F. Beaudry, M. Coutu, N. K. Brown, Determination of drug-plasma protein binding using human serum albumin chromatographic column and multiple linear regression model, Biomed. Chromatogr. 13 (1999) 401-406.
[373] K. Valko, Chau My Du, C. D. Bevan, D. P. Reynolds, M. H. Abraham, Rapidgradient HPLC method for measuring drug interactions with immobilized artificial membrane: Comparison with other lipophilicity measures, J. Pharm. Sci. 89 (2000) 10851096.
[374] R. Kaliszan, Chromatography and capillary electrophoresis in modelling the basic processes of drug action, TrAC - Trends in Anal. Chem. 18 (1999) 400-410.
[375] T. Baczek, R. Kaliszan, Quantitative structure/retention relationships in affinity chromatography, J. Biochem. Biophys. Methods 49 (2001) 83-98.
[376] M. Markuszewski, R. Kaliszan, Quantitative structure-retention relationships in affinity high-performance liquid chromatography, J. Chromatogr. B 768 (2002) 55-66.
[377] A. Nasal, A. Wojdelko, T. Baczek, R. Kaliszan, M. Cybulski, Z. Chilmonczyk, Relationship between chromatographic behavior and affinity to 5 -HT1A serotonin receptors of new buspirone analogues, J. Sep. Sci. 25 (2002) 273-279.
[378] R. Kaliszan, M. J. Markuszewski, Studies on correlation between structure of solutes and their retention, Chem. Anal. (Warsaw) 48 (2003) 373-395.
[379] M. Reta, L. Giacomelli, M. Santo, R. Cattana, J. J. Silber, C. Ochoa, M. Rodriguez, A. Chana, Determination of lipophilic descriptors of antihelmintic 6,7-diaryl-pteridine derivatives useful for bioactivity predictions, Biomed. Chromatogr. 17 (2003) 365-372.
[380] F. Pehourcq, C. Jarry, B. Bannwarth, Potential of immobilized artificial membrane chromatography for lipophilicity determination of arylpropionic acid non-steroidal antiinflammatory drugs, J. Pharm. Biomed. Anal. 33 (2003) 137-144.
[381] J. M. Luco, A. P. Salinas, A. A. J. Torriero, R. N. Vazquez, J. Raba, E. Marchevsky, Immobilized artificial membrane chromatography: quantitative structure-retention relationships of structurally diverse drugs, J. Chem. Inf. Comput. Sci. 43 (2003) 21292136.
[382] K. Valko, S. Nunhuck, C. Bevan, M. H. Abraham, D. P. Reynolds, Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity, J. Pharm. Sci. 92 (2003) 2236-2248.
[383] G. Massolini, E. Calleri, Survey of binding properties of fatty acid-binding proteins: Chromatographic methods, J. Chromatogr. B 797 (2003) 255-268.
[384] B. Buszewski, T. Welerowicz, Stationary phases with special structural properties for high-throughput separation techniques: Preparation, characterization and applications, Comb. Chem. High Throughput Screen. 7 (2004) 291-312.
[385] A. Nasal A. Bucinski T. Baczek A Wojdelko, Prediction of the affinity of the newly synthesised azapirone derivatives for 5-HT1A receptors based on artificial neural network analysis of chromatographic retention data and calculation chemistry parameters, Comb. Chem. High Throughput Screen. (2004) 313-325.
[386] M. Jalali-Heravi, Z. Garkani-Nejad, Prediction of electrophoretic mobilities of sulfonamides in capillary zone electrophoresis using artificial neural networks, J. Chromatogr. A 927 (2001) 211-218.
[387] G. P. Romanelli, J .L. Jios, J. C. Autino, L. F. Cafferata, E. A. Castro, Relationships between Kovats retention indices and molecular descriptors of 1-(2-hydroxy)-3-arylpropane-1,3-diones, The Scientific World Journal [electronic resource] 1 (2001) 897905.
[388] C. B. Mazza, N. Sukumar, C. M. Breneman, S. M. Cramer, Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure, Anal. Chem. 73 (2001) 5457-5461.
[389] C. B. Mazza, C. E. Whitehead, C. M. Breneman, S. M. Cramer, Predictive quantitative structure retention relationship models for ion-exchange chromatography, Chromatographia 56 (2002) 147-152.
[390] T. Cserhati, E. Forgacs, Z. Deyl, I. Miksik, A. Eckhardt, Modification of nonlinear mapping technique for quantitative structure-retention relationship studies, Croatica Chemica Acta 75 (2002) 13-24.
[391] G. P. Romanelli, J. Jios, J. C. Autino, L. F. R. Cafferata, D. Ruiz, E. A. Castro, Application of quantitative structure-retention relationships to calculate chromatographic retention times of o-acethylphenyl esters, Chem. Anal. (Warsaw) 47 (2002) 205-217.
[392] G. P. Romanelli, J. C. Autino, E. A. Castro, Application of quantitative structureretention relationships (QSRR) to a set of organic bromo and nitrile derivatives, Turkish J. Chem. 26 (2002) 335-343.
[393] N. S. Zefirov, V. A. Palyulin, Fragmental approach in QSPR, J. Chem. Inf. Comput. Sci. 42 (2002) 1112-1122.
[394] M. Song, C. M. Breneman, J. Bi, N. Sukumar, K. P. Bennett, S. Cramer, N. Tugcu, Prediction of protein retention times in anion-exchange chromatography systems using support vector regression, J. Chem. Inf. Comput. Sci. 42 (2002) 1347-1357.
[395] N. Tugcu, M. Song, C. M. Breneman, N. Sukumar, K. P. Bennett, S. M. Cramer, Prediction of the effect of mobile-phase salt type on protein retention and selectivity in anion exchange systems, Anal. Chem. 75 (2003) 3563-3572.
[396] A. Ladiwala, K. Rege, C. M. Breneman, S. M. Cramer, Investigation of mobile phase salt type effects on protein retention and selectivity in cation-exchange systems using quantitative structure retention relationship models, Langmuir 19 (2003) 8443-8454.
[397] M. H. Fatemi, E. Baher, Prediction of retention factors in supercritical fluid chromatography using artificial neural network, J. Anal. Chem. 60 (2005) 860-865.
[398] T. Hanai, Y. Masuda, H. Homma, Chromatography in silico; retention of basic compounds on a carboxyl ion exchanger, J. Liq. Chrom. Rel. Technol. 28 (2005) 30873097.
[399] G. Malmquist, U. H. Nilsson, M. Norrman, U. Skarp, M. Stromgren, E.Carredano, Electrostatic calculations and quantitative protein retention models for ion exchange chromatography, J. Chromatogr. A 1115 (2006) 164-186.
[400] A. Ladiwala, F. Xia, Q. Luo, C. M. Breneman, S. M. Cramer, Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models, Biotechn. Bioeng. 93 (2006) 836-850.

Standard English transliteration was applied for names, e.g. á $\rightarrow \mathrm{a}, \mathrm{n} \rightarrow \mathrm{n}$, etc.

Captions to figures

Figure 1
Number of scientific papers dealing with QSRR within 1996-2006.

Figure 2
1916 Occurrence (frequency) of QSRR papers versus rank ordering of scientific journals within 1917 1996-2006.

1919

Table 1 QSRR in gas chromatography 1996-2006

Solutes	Descriptors	Model building	Stationary phase (SP)	Validation	Source
Linear alkylbenzene isomers with	Balaban, Wiener,	I, MLR		No	[11]
$\mathrm{C}_{10}-\mathrm{C}_{14}$ linear alkyl chains	Electrotopological state and molecular shape indices				
37 organosulfur compounds (vesicants)	Quantumchemical MNDO, PM3, AM1	MLR	three	No	[12]
Various examples	Homomorphic factors, topochemically equivalent increments	I, Additive schemes		No	[13]
Alkyl groups	Internal molecular energies of reactants and products	I, increments			[14]
Homologous series and their branched-chain isomers (1000)	Retention data on other SPs	I	Two various	'Relative higher accuracy'	[15]
Congener series of substituted benzenes, benzaldehydes and acetophenones	Different set of topological parameters	I, Correspondence factor analysis CFA	Six OV (Ohio Valley) i.e. (methyl-phenylsiloxanes)		[16]
Polychlorinated biphenyls (PCBs)	Physicochemical descriptors (52): ultraviolet (UV) absorption spectra, semiempirical parameters (AM1): heat of formation, dipole moments, ionization potential and the barrier of internal rotation, GC retention times	PCA		No	[17]
N,N-Dialkylhydrazones	T_{b}, homomorphic factors, bond angle and electron density \{I(oxo) \}, volumes, van der Waals' surface.	I, Simple linear	HP-1, HP-5	Visual	$\begin{aligned} & {[18,} \\ & 19] \end{aligned}$
38 isoalkanes and 24 alkenes	substantial, important, likely and	I, MLR	Squalane,	$1.6<\mathrm{SD}<9.7$	[20]

	specific parameters, (quantumchemical)		citroflex, carbon black		
Aromatic analytes, positional isomers of xylenes, ethyltoluenes and diethylbenzenes		RRT	Fused-silica with calixarene oligomers		[21]
PAHs (70)	T_{b}, vaporization enthalpy, molecular total energy	I, linear, nonlinear (Etot)	Methylsilicone, Carbopack	No	[22]
Anabolic steroids, stimulants and narcotics	Molecular characteristics				[23]
Low-polarity solutes (9) e.g. camphene, α-terpinene, myrcene	$T_{\text {b }}$	RRT, linear (0.994)	Six different modified α-, β and γ cyclodextrin	No	[24]
Cyclic alkanes, alkenes, alcohols, esters, ketones (C4-C10, O1-O2)	Topological (8), chemical (4)	$\begin{aligned} & \text { I, CP-ANN (} 0.892 \\ & -0.928 \text {), SOM } \end{aligned}$	Squalane, OV-1	Training and test set, $35<$ RMS <43	[25]
Alkylbenzenes (150)	Topological, geometric, electronic, no physical descriptor	I, BP-ANN	Carbowax 20M	Training and test set, $\begin{aligned} & \text { RMS(MLR)=22, } \\ & \text { RMS(ANN) }=19 \end{aligned}$	[26]
Compounds from Ylang-Ylang essential oil (48)	Topological, geometric, electronic	I, MLR, PCA	DB-1, DB-wax		[27]
Flavonoids (49: flavones, Flavonols, flavanones, a chalcone)	Topological, geometric, electronic	Reciprocal RRT, MLR (0.975),	Apolar column	$\mathrm{SD}=0.12$	[28]
Alkenes	Conformational E, no of quaternary C atoms	$\begin{aligned} & I, \text { MLR }(0.9957- \\ & 0.9987) \end{aligned}$	Graphitized carbon black	$7<\mathrm{SD}<14$	[29]
All PCB congeners (209)	Congener substitution pattern				[30]
Monoterpenes, monoterpenoids homologues and isomers	$T_{\text {b }}$	I, biparameter linear		Error $<$ interlaboratory scatter	[31]
Allylic alcohols and unsaturated esters	Fragments increments $n-\pi$ orbital overlap of lone pairs	I, Additive schemes	Polar and nonpolar	Deviation<3.00\%	[32]

Alkylbenzenes (18)	$\mathrm{C}=\mathrm{C}$ bonds T_{b}, reciprocal T_{b}			$0.047<$ SD <0.42	[33]
Alkylbenzenes (18)	T_{b}, reciprocal T_{b}	(0.9585-0.9967)	dinonylphtalate, PEG4000, Bentone 34	$0.047<S D<0.42$	[33]
Alkylbenzenes (18)	T_{b},	I	- "	Theoretical derivation	[34]
Aliphatic alcohols, aldehydes, acids and amines	Ortogonalized descriptors	PCA		No	[35]
Organic compounds, homologues, congeners	T_{b}, structural fragments, molecular polarizabilities	I, linearlogarithmic	Dimethylpolysiloxane	$I \sim 5 / 10$ i.u.	[5]
Acyclic and cyclic alkanes, alkenes, alcohols, esters, ketones and ethers (184)	Molar volume, T_{b}	I, BP-ANN	Not given	Cross-validation and leave-20\%-out	[36]
PAHs (100)	Pseudo-conjugated π-system surface ($\mathrm{S}(\pi)$) and quasi-length of carbon chain (N^{\prime})	I, bilinear (0.9968)	SE-52	$7.1<$ S <10.3	[37]
PCBs	3D WHIM,	RRT, solubility, logKow, MLR, GA	Not given	Leave-one-out, leave-multiple-out, $\mathrm{SEC}=\mathrm{SEP}=0.023$	[38]
Various organic compounds	Total energy, relative effective mass and number of carbon atoms, minimum valency on H atoms, etc	$\begin{aligned} & \text { RF (} 0.956 \text {), MLR, } \\ & \text { BP-ANN } \end{aligned}$		Two prediction sets, 5.0<SEP<7.1	[39]
Acyclic, cyclic alkanes, alkenes, dienes, ketones aldehydes ethers, aromatic hydrocarbons C3-C11 O1-O2 (381)	Informational and topological structural descriptors (16)	I, MLR (0.987), BP-ANN (0.990), CP-ANN (0.969)	Squalene	LOO, 10 fold CV, average RMS: 19 (BP-ANN), 22.5 (MLR), 36.1 (CPANN)	[40]
n-Alkanes	Backbone carbon atom number	k, exponential		Theoretical derivation	[41]
Alkylbenzenes (18)	$\begin{aligned} & T_{\mathrm{b}}, 1 / T_{\mathrm{b}}, \mathrm{~T} / T_{\mathrm{b}},\left(T_{\mathrm{b}}-\mathrm{T}\right),\left(1-T_{\mathrm{b}} / \mathrm{T}\right), \\ & T_{\mathrm{b}} \wedge 2,\left(T_{\mathrm{b}}-\mathrm{T}\right)^{\wedge} 2,\left(1-T_{\mathrm{b}} / \mathrm{T}\right)^{\wedge 2} \end{aligned}$	$\begin{aligned} & I, \text { linear } \\ & (0.9692-0.9992) \end{aligned}$	Silicon oil 550, dinonylphtalate,	$4.3<\mathrm{SD}<47.9$	[42]

Alkylbenzenes (18)
Polysubstituted alkylbenzene
isomers
T_{b}, reciprocal T_{b}

Indices of benzene,
monsubstituted alkylbenzenes and disubstituted alkylbenzenes

Aldehydes, ketones
Alkanes (157), cis- and trans-nalkene isomers (79)

Hydrocarbons (191)
Aldehydes, ketones

Alkanes (156) oxygen-containing organic molecules (81)
Coumarins
heat of formation, maximum valu for atomic valence, the minimum value for electronic orbital population
$T_{\mathrm{b}}, \ln T_{\mathrm{b}}, T_{\mathrm{b}}{ }^{*} \ln T_{\mathrm{b}}$
Semiempirical topological index, increments

Oblique factors
$T_{\mathrm{b}}, \mathrm{M}_{\mathrm{w}}, V_{\mathrm{m}}, R_{\mathrm{m}}, \log P$, Ind,

Weighted fragments, spectral moments
Total surface area (AT), electrotopological state index, oxygen in position 1, HOMO,

PEG4000,

Bentone 34

| RRT, exponential | Silicon oil 550,
 (0.9455-0.9977)
 dinonylphtalate, |
| :--- | :--- | :--- |
| | PEG4000, |
| | Bentone 34 |

Bentone 34
I

RRT, MLR
DB-5
SE=16.7

I I linear, (0.9976-	DB-210	$11.5<\mathrm{SD}<12.1$
$0.99994)$		
I, linear (0.9901),	Squalane	$2.35<\mathrm{SD}<26.2$

Cross-validation
Comparison with
prediction by
Wiener, Randic
indices
FA, varimax, promax rotations I, scores, PCA, MLR (0.99901)

DB-1, DB-5, SE- GC/MS
identification
SD=0.0491

Alkylbenzenes (32)	Boiling point, molar volume, stationary phase	I, BP-ANN	Squalane, SE- 30, PEG,	Training and test sets, Relative error 3\%	[52]
isoalkanes, dialkyl sulfates, and aliphatic amines and	$T_{\mathrm{b}}, \mathrm{NC}, V_{\mathrm{m}}, R_{\mathrm{m}}$, sum of internal rotational and vibrational energies	I, structural fragments		Molecular dynamic caculations	[53]
Diverse chemical compounds (152)	CODESSA descriptors (296), linear selection	Retention time, RF, MLR, nonlinear models		Comparison with earlier results	[54]
Halocarbons C1-C4, hydrocarbons C4-C6 (17)	Retention time, R_{m}	Virial coefficients Interaction energies (0.973 , $0.982)$	Carbopack C		[55]
Trimethylsilyl ether derivatives of natural sterols (16)	Conventional, topological, quantum-chemical (60)	I, MLR (>0.9880)	SE-54, SE-52	Relative mean errors $2.88 \%, 3.24 \%$.	[56]
Aldehydes, ketones	$T_{\mathrm{b}}, \mathrm{M}_{\mathrm{w}}, V_{\mathrm{m}}, R_{\mathrm{m}}, \log P$, Ind,	$\begin{aligned} & I, \text { scores, PLS, } \\ & (0.990-0.995) \end{aligned}$	HP-1, HP-50, DB-210, HPInnowax	$\begin{aligned} & \text { Cross-validation } \\ & 0.975<Q^{\wedge} 2<0.990 \end{aligned}$	[57]
Polychlorinated biphenyl (PCB) congeners,	New QSRR descriptors for selectivity correction	Retention time	various	SDs are 'within a chromatographic peak width'	[58]
Methylalkanes produced by insects (178)	Mainly topological descriptors	I, MLR	DB-1	Internal (LOO, leave- 33%-out) and external (30) crossvalidation, $\mathrm{SD}=4.6$ (overall) $\mathrm{SD}=4.3$ (truncated)	[59]
Polychlorinated dibenzofurans (PCDFs),	Substitution pattern, positions	I, MLR (>0.9995)	DB-5	SD<7 i.u.	[60]
Alkylbenzenes (129)	molecular graph descriptors, sequential orthogonalization	I, MLR		calibration and prediction sets	[61]
Diverse sets	Abraham type solvatochromic	gas-liquid	EGAD, THPED,	Residual analysis,	[62]

	parameters (6),	partition coefficient, $\mathrm{K}(\mathrm{L})$, MLR, BP-ANN, nonlinear function	Ucon 50 HB 660 DEHPA,QBES	training, prediction sets	
Alkylphenols	Wiener, hyper-Wiener, minimum and maximum eigenvalue, Ivanciuc-Balaban, and information on distance operators	I, MLR	Not given	$\begin{aligned} & \mathrm{S}=37-38 \text { i.u. } \\ & \text { (biparametric); } \\ & \mathrm{S}=15-19 \text { (5-4 } \\ & \text { parametric) } \end{aligned}$	[63]
Alkanes (64)	Novel molecular distance-edge vector (10 elements)	$\begin{aligned} & \text { I, MLR (0.9988- } \\ & 0.9992) \end{aligned}$		Cross validation RMS(training) $=$ 5.9, $\operatorname{RMS}($ test $)=$ 7.1	[64]
Alkanes, alcohols and polycyclic aromatic hydrocarbons.	Electronegativity-distance vector (MEDV),	I, MLR			[65]
Amines	Topological indices Aml, Am2, Am3, gravitational index G1.	I, MLR	Phase of various polarity (3)		[66]
Saturated and monounsaturated six- carbon aldehydes, alcohols and esters	$T_{\text {b }}$	I	$\begin{aligned} & \text { DB-5, DB- } 1701 \text {, } \\ & \text { DB-Wax } \end{aligned}$		[67]
Hydrocarbons and derivatives containing oxygen, nitrogen and halogens	Valence connectivity indices, $1(\chi)(v)$ Wiener, W, and Balaban, J, indices	$\log \mathrm{V}(\mathrm{g}), I$, linear, non-linear (0.9597-0.99999)	Various, PDMS, PEA, PBD, TFPS15, XF1150	No	[68]
Alkanes, diverse compounds	LSER	Specific retention volumes, MLR	18 polymers	No	[69]
Polychlorodibenzothiophenes PCDTs (19)	Structural features	MLR	DB-5 and DB5ms		[70]
Hydrocarbons, benzene derivatives, esters, alcohols, aldehydes, ketones and heterocyclics (110)	Molecular mass, number of vibrational modes of the molecule, molecular surface area and Balaban index	RF, MLR, BPANN		Mean absolute error $=0.02$	[71]
Diverse C10 polar solutes from	$T_{\text {b }}$	RRT, linear	12 modified	$\mathrm{SD}<5.5$	[72]

volatile oils
PAHs (unsubstituted sixmembered fused aromatic rings, 48)

Aldehydes, ketones

100 polycyclic aromatic
hydrocarbons (PAH)s
Alkylbenzenes (129)
46 alkylbenzenes them.

Hydrocarbons
Polychlorinated dibenzofurans PCDFs
Hydrocarbons (150)

Noncyclic and monocyclic terpenes (53)
(>0.990) cyclodextrin
Electronic, geometric, topological
(e.g. electron affinity, the
difference between electron affinity and ionization potential (GAP), Wiener, and connectivity indexes, volume, surface area, length-to-breadth ratio, enthalpy of formation
Quantum-chemical method PM3. I, MLR, (0.9930- OV-1, HP-50, $12<$ SD <19 HOMO, LUMO, polarizability, dipole moment, solvent accessible surface area
Novel molecular distance-edge vector (6 parameters)

Molecular graph descriptors (5)
Simple set of six numeric codes
McReynolds' constant of the different stationary phases, temperature
Molecular structure
Molecular distance-edge vector
Numeric structural codes

One electronic, two geometric, two topological and one physicochemical descriptors

I
0.9975) PCA, CA DB-210 and HP-

Innowax
I, linear (0.988), Comparison with to the gas
I, MLR
I, MLR, BP-ANN
Cit.A-4, SE-30
and Carbowax 20M

$\begin{aligned} & \text { I, BP-ANN } \\ & (0.9934) \end{aligned}$		Leave-10\%-out, $\mathrm{SD}=16.5$
MLR, (>0.98)	$\begin{aligned} & \text { DB-5, SE-54, } \\ & \text { OV-101 } \end{aligned}$	Cross-validation (0.97)
I, MLR (0.9874 -		20.2<SD<22.9
0.9901)		leave-one-out cross-validation
I, MLR, BP-ANN	Carbowax 20 M	Training and prediction (1.88\%) sets, $\mathrm{SD}=38$

results of molecular polarizability index
Calibration and
prediction sets

Alkyl aromatic hydrocarbons and esters (252)	Partition coefficients (K_{p}), group identification	I, linear	HP-5	Visual	[82]
207 halogenated hydrocarbons	CODESSA descriptors: Kier-Hall connectivity index, number of F atoms, gravitation index	$\begin{aligned} & I, \text { MLR (} 0.994 \text { - } \\ & 0.993 \text {) } \end{aligned}$	Methylsilicone	Leave-one-out cross-validation $0.991<\mathrm{q}<0.992$	[83]
22 amines	Novel connectivity index, mQ	$\begin{aligned} & I, \text { MLR (} 0.9734 \text { - } \\ & 0.9733) \end{aligned}$	$\begin{aligned} & \text { OV-101, OV-225 } \\ & \text { and NGA } \end{aligned}$	Modified Jackknife's test	[84]
Malodorous organic sulfur compounds, thiols and thioethers 373 organic compounds	Molar refractivity and connectivity index values	Second gas-solid virial coefficient I, (0.975-0.994)	Carbopack C	Visual	[85]
Linear, branched alcohols with hydroxyl group on a primary, secondary, or tertiary carbon atom.	Molecular connectivity indices	I, MLR, BP-ANN	OV series columns	Cross-validation	[86]
Several groups of isomeric organic compounds	Topological (Wiener and Hosoya indices) and dynamic parameters	I, MLR			[87]
Chlorinated alkylarenes	Molecular dynamic parameters,	I, additivity schemes	Nonpolar		[88]
Various	topological	Retention times, PCA	Various		[89]
Polycyclic aromatic hydrocarbons PAHs (94)	Molecular distance-edge vector (VMDE)	$\begin{aligned} & I, \text { MLR (} 0.9928 \text { - } \\ & 0.9946 \text {) } \end{aligned}$		Leave-one-out cross validation 8.15<RMS<9.35	[90]
Alkanes (48), alcohols (31)	Variable connectivity index $1 \chi \mathrm{f}$	I, MLR (0.9933)		SD=14.2	[91]
Alkanes	Molecular distance edge vector (MDEV)-consisting of ten elements	I, Wavelet NN (0.9996) BP-ANN		$\mathrm{SD}=5.06$	[92]
Polychlorinated dibenzo-pdioxins	Molecular descriptors: Randic index (order 3), the Kier shape index (order 3)	Retention time (0.9950)	DB-5	$\mathrm{SD}=0.2550$.	[93]
Polybrominated diphenyl ethers PDBEs	Physicochemical descriptors (40) AM1 quantumchemical, molecular	RRT, PCA, PLS	Four capillary columns	$\begin{aligned} & \text { CPSil-8, HP-1701, } \\ & \text { SP-2380,SB- } \end{aligned}$	[94]

mechanics, heats of formation,
frontier molecular orbital energies, atomic charges, dipole moments,
$\log P$ values, and molecular surface
areas,
Organic compounds with various functional groups

Methylalkanes produced by insects (178)
Branched alkenes
polychlorinated dibenzodioxins PCDDs
13 different classes of organic compounds

Polycyclic aromatic hydrocarbons PAHs (209)
Esters, alcohols, aldehydes ketones

Alkanes, alkenes, alcohols, esthers, ketones, ethers Saturated esters (98)
T_{b}, α, heat of formation, density, various indices, inertia, HOMO. Etc.
Semi-empirical topological index
Semi-empirical topological index
molecular distance edge vector (VMDE)
molecular density, Wiener number, boiling point, polarizability and square of polarizability
Molecular electronegativity-
distance vector (MEDV)
HOMO, molecular values, number
of atoms, molecular shadow area
on the xy plane,
$T_{\mathrm{b}}, V_{\mathrm{m}}$
PM3 descriptors (Hyperchem 4.0),
topological, degree of branching

Smectic
$\begin{array}{llll}\begin{array}{lll}\text { RF, MLR, BP- } \\ \text { ANN }\end{array} & \text { Not given } & \begin{array}{l}\text { Training, prediction } \\ \text { sets; residual } \\ \text { analysis }\end{array} & \text { [95] } \\ \text { I, MLR (0.99999) }\end{array}$ DB-1 $\left.\quad \begin{array}{l}\text { SD=3.20 } \\ \text { External SD=4.6 } \\ \text { I, MLR }\end{array} \begin{array}{l}\text { Squalane, 1- } \\ \text { octadecene, } \\ \text { Apiezon-L, OV- } \\ \text { 1, DB-1 }\end{array}\right)$

			$\begin{aligned} & \text { DC-230 and DC- } \\ & 530 \end{aligned}$		
Oxo compounds (54)	Semiempirical topological index	I, linear (0.999)	HP-1, HP-50, DB-210, HPInnowax	$\mathrm{SD}=5.0$	[104]
Chlorinated phenols		$\begin{aligned} & \text { RRT, MLR } \\ & (0.985) \end{aligned}$	DB-5	$\mathrm{SD}=0.0472$	[105]
Polychlorinated naphthalenes (62)	Molecular electronegativity distance vector	I, MLR (0.9912),		RMS=31.4, leave-one-out (0.9898) RMS=33.8	[106]
Alkenes	Class distance variable (information about the branch, position of the double bonds, the number of double bonds)	I, projection pursuit	Squalane	Training and prediction sets	[107]
226 series of compounds		ΔI, additivity scheme		theoretical	[108]
Polychlorinated biphenyls, PCBs (30)	Topological parameters (Balaban index and electrotopological index	RRT, RI, linear (0.78-0.99) nonlinear	PE-5MS	Relative error=2.8\%-24.4\%	[109]
Disulfides (50)	Semi-empirical quantum chemical (AM1) HYPERCHEM 4.0	$\begin{aligned} & I, \text { MLR (} 0.976- \\ & 0.995 \text {), RBF-NN } \end{aligned}$	Apiezon M, OV17, Triton X-305 and PEG-1000	Training and validation sets	[110]
Benzene and 12 chlorobenzenes	Mosaic and bond increments	k, I, additivity schemes	Agilent 6850, HP-5, HP-5890, HP-5840, SE-30, SPB-1, Wax-10	Training (6) test (8) absolute deviation=1.7 i.u. relative errors=0.9\% 3.5\%	[111]
Benzene and 12 chlorobenzenes	topological indices (first-order connectivity index, Wiener's index and Balaban index) physicochemical properties (freezing point, boiling point, refraction	$\begin{aligned} & I, \text { MLR }(0.9976- \\ & 0.9998), \text { PCA } \end{aligned}$	Various (7)		[112]

	index, dipole moment, density, molecular mass and vapor pressure				
Aldehydes, ketones	Xu index, atom-type-based AI topological indices (fragments)	$I, \mathrm{MLR}(\mathrm{r}>0.995)$	HP-1, HP-50, DB-210, HPInnowax	Theoretical considerations	[113]
Alkanes, alkenes, esters, ketones, aldehydes, and alcohols (548)	Semi-empirical topological index, IET	$I, \mathrm{MLR}(1.0000)$		$\begin{aligned} & \text { Test set (182), } \\ & \mathrm{SD}=7.7 \end{aligned}$	[114]
Alkoxyl silicon chlorides	molecular topological index mXY	I,			[115]
Alcohols (25)	hydrogen connectivity index	I, MLR			[116]
homologues	number of carbon atoms nC , reciprocal T_{b}	nonlinear			[117]
branched alkanes	class distance variable	projection pursuit (PP)			[118]
Various (20 chemical classes)	$T_{\text {b }}$	Lee's I	Not given		[119]
Saturated alcohols	Semi-empirical topological index	I, linear (0.9978)	$\begin{aligned} & \text { OV-1, SE-30, } \\ & \text { OV-3, OV-7, OV- } \\ & 11, \text { OV-17, OV- } \\ & 25 \end{aligned}$	$\mathrm{SD}=9.54$	[120]
Chlorinated polycyclic aromatic hydrocarbons, Cl-PAHs (18)	MNDO quantumchemical: total energy, dipole moment, net atomic charge on Cl	RRT (0.9968), Clatom position	HP-5ms		[121]
Polychlorinated naphthalenes (62)	Structural parameters	$\begin{aligned} & I, \text { MLR (} 0.9839- \\ & 0.9880) \end{aligned}$		Leave-one-out cross-validation	[122]
Trimethyl silyl derivatives of natural phenols and sterols	Descriptors generated with the HYPERCHEM 4.0, AMPAC 6.7 and CODESSA 2.3	$\begin{aligned} & \text { RRT, } \\ & \operatorname{MLR}(>0.99) \end{aligned}$	SE-54 and SE-52	Relatieve errors: $0.01 \% 0.37 \%$	[123]
Aldehydes, ketones	Semi-empirical topological index, IET	$I, \mathrm{MLR}(>0.9995)$	HP-1, HP-50, DB-210, HPInnowax	$\mathrm{SD}=5.5$	[124]
n -alkanes, 1-alkenes, and 2alkenes homologous series	Hyperchem, MOPAC,	$\Delta H, R T, ~ M L R$	DB-1	$\begin{aligned} & \mathrm{S}(\Delta \mathrm{H})=161 \\ & \mathrm{cal} / \mathrm{mol} ; \text { cross- } \end{aligned}$	[125]

				validation	
271 organic compounds of diverse structures	Retention data on two phases of different polarity	$\begin{aligned} & T_{\mathrm{b}}, \\ & \text { bilinear(0.9724) } \end{aligned}$	DB1-60W, DBWAX-30N	SD=16.1 K	[126]
$\alpha-, \beta 1-$, and $\beta 2$-agonists	Diverse connectivity and electrotopological indices	RRT, MLR, PCA, PLS	Crosslinked methylsilicone gum,	Training and prediction set	[127]
CNS agents (benzodiazepines, barbiturates, phenytoin)	Calculated descriptors	$\begin{aligned} & I, \text { MLR (} 0.983- \\ & 0.988) \end{aligned}$	DB-5, DB-17	Leave-one-out cross validation (0.967) and external prediction set (0.954)	[128]
$\mathrm{O}-$, $\mathrm{N}-$, and S-heterocyclic compounds	T_{b}, WHIM, GETAWAY, connectivity indices, 0D constitutive descriptors	I, MLR, PLS	Nonpolar dimethyl polysiloxane	Cross validation	[129]
Polycyclic aromatic hydrocarbons, PAHs	T_{b}, molecular mass and connectivity index	I (Lee's scale), linear, quadratic exponential	DB-5	$\begin{aligned} & \mathrm{SD}=1.9, \text { external } \\ & \mathrm{SD}=2.4 ; 3.3 \end{aligned}$	[130]
Sulfides	Atomic structure parameters molecular connectivity index topological index	$I, \operatorname{MLR}(>0.97)$	Different polarity		[131]
Mercaptans, sulfides, thiophenes (34)	Molecular descriptors (7,8)	RT, I, MLR		$\mathrm{S}=0.61$ and 1.63,	[132]
Methane, ethane, propane, chloromethane, chlorodifluoromethane, dimethyl ether, and sulfur hexafluoride, (65)	R_{m}, connectivity index, surface area, surface energy contribution ($\mathrm{r} 2=0.952$) of the 65 different $\operatorname{lnB} 2$ s values. T	Second gas-solid virial coefficient, B2s (0.9757)	Carboxen-1000 carbon molecular sieve		[133]
Polychlorinated hydroxybiphenyls (839)	Simpler structural analogues of target compounds	Additivity scheme arithmetical operations of Is	HP-5		[134]
149 C3-C12 volatile organic compounds	Total information index of atomic composition IAC, Wiener number, W, solvation connectivity index,	PCA, MLR for variable selection BP-ANN	DB-1		[135]

$\left.\begin{array}{llllll} & \begin{array}{l}\text { Xlsol, number of substituted } \\ \text { aromatic C(sp2), nCaR, }\end{array} & & & \\ \begin{array}{ll}\text { Ionization potential (molecules } \\ \text { and molecular ions), topological } \\ \text { indices, inertia }\end{array} & \begin{array}{l}\text { RF (ECD), MLR } \\ \text { for variable } \\ \text { selection BP- }\end{array} & \text { DB-5 } & & \begin{array}{l}\text { Training and } \\ \text { prediction sets }\end{array} \\ \text { PCBs }\end{array} \quad \begin{array}{l}\text { ANN }\end{array}\right]$

Aliphatic alcohols
Polycyclic aromatic sulfur heterocyclic compounds, PASHs 136 polychlorinated
dibenzofurans, PCDFs
Polychlorinated dibenzo-pdioxins, PCDDs .dibenzofurans, PCDFs
Methyl-substituted alkanes produced by insects

Polychlorinated dibenzofurans, PCDFs
Organic sulfur compounds

Polychlorinated dibenzofurans, PCDFs (135) PCDFs.
Nitrogen-containing polycyclic aromatic compounds, N -PACs Sulfides and mercaptans

Polycyclic aromatic
hydrocarbons, PAHs
149 volatile organic compounds (VOCs).

Semi-empirical topological index (IET),
μ, Constitutional, geometric, topological, molecular walks Number and position of chlorine substitutions, quantumchemical

I

Total number of carbons in the backbone, the number of the multiple methyl groups attached to the carbon chain, their relative positions
Molecular structure index, group modify index
Topological descriptors, temperature

Molecular hologram
Codessa descriptors (3)
Molecular polarizability effect index (MPEI), the effective topological steric effect index (ETSEI), the number of carbon (N), Wiener three-walk path (P3) T_{b}, connectivity indices and molecular weights
Five molecular descriptors
(CODESSA)
$\left.\begin{array}{llll}\text { Linear (>0.98) } & & \begin{array}{l}\text { Cross-validation } \\ \text { leave-one-out } \\ \text { Cross-validation }\end{array} & {[147]} \\ I, \text { nonlinear } & \text { BPX5 } & \text { Cross-validation } & {[149]} \\ I,(0.993-0.998) & \text { DB-5 } & & {[150]} \\ \begin{array}{l}\text { Subcooled liquid } \\ \text { vapor pressures } \\ \text { (PL) }\end{array} & & \begin{array}{l}\text { Average relative } \\ \text { I, BP-ANN }\end{array} & \text { DB-1 }\end{array}\right][151]$

Alkanes, organic compounds	Topological index based on distance matrix and branch vertex of the atoms	$\begin{aligned} & I, \text { MLR (0.9919 - } \\ & 0.9922) \end{aligned}$	Squalane, SE-30	$\mathrm{SD}=13.7,12.0$	[159]
Polychlorinated naphthalenes PCNs	Quantumchemical (HF/6-31G* and B3LYP/6-31G* levels), relative position of chlorine substitution	$\begin{aligned} & I, \text { MLR (0.9907-} \\ & 0.9978), 0.9983 \end{aligned}$		$\begin{aligned} & \text { Cross-validation } \\ & (0.9885-0.9974) \\ & 0.9979 \end{aligned}$	[160]
Aromatic imines	Topologic, topographic and quantum-chemical	I, MLR (0.987), BP-ANN (0.940)	DB-1	external set (0.9110.985), leave-oneout (LOO) and the leave.multiple-out (LMO)	[161]
Organophosphates (35)	Electrotopological state index for atom types, ETSI	I, MLR (>0.99)		Calibration, validation (0.98) sets	[162]
Polybrominated diphenyl ethers (209)	Wiener index, Randic index, polarity parameter,	$\begin{aligned} & \text { RRT, MLR } \\ & (0.983-0.996) \end{aligned}$	DB-1 DB-5MS, HT-5, DB-17, DB-XLB, HT-8, CP-Sil 19	$\begin{aligned} & \text { Cross-validation } \\ & (0.979-0.995) \end{aligned}$	[163]
Aliphatic alcohols (35)	Electrotopological state index (En) the molecule connectivity index (MCI)	$\begin{aligned} & I, \text { MLR (0.994), } \\ & \text { PLS } \end{aligned}$		Leave-one-out	[164]
Saturated esters (90)	Lu index, distance-based atomtype DAI topological indices	I, MLR	SE-30, OV-7, DC-710, OV-25, XE-60, OV-225, Silar-5CP	$\begin{aligned} & \mathrm{SD}=10-19.3 \text { i.u- } \\ & \text { (cross validated) } \end{aligned}$	[165]
Aliphatic carbonyl compounds, esters and alcohols	T_{b}, linear temperature programmed retention index	$K_{\text {fg }}$, bilinear	Carboxen/polydi methylsiloxane	No	[166]
PAHs	T_{b}, molecular mass, connectivity index, Schabron molecular size	I (Lee scale), BP- ANN (0.9381)	SE-52, DB-5	validation and two testing sets (0.89390.9460)	[167]
177 methylalkanes (insects)	Molecular tightness index, MTI,	I, MLR (0.99999)	DB-1	Leave-one-out	[168]

	polarizability effect index, PEI, number of carbon atoms in backbone, NC, number of the 2methyl groups (N2-CH3) number of methyl groups attached to the carbon backbone (NCH3)			cross validation, external data set. $3.7>$ SD >4.6	
Fatty acid methyl esters (FAME)	Two-dimensional fatty acid retention index system, 2D-FAI	Equivalent chain lengths, ECL, MLR	BPX-70	$\begin{aligned} & \text { Test sets } \\ & 0.002<\text { RMS }<0.012 \\ & \text { ECL units } \end{aligned}$	[169]
Methylene-interrupted polyunsaturated fatty acids	Chain length, number of double bonds, position of the double bond system	Retention indices as equivalent chain lengths (ECL)	Cyanopropyl column	$\begin{aligned} & \text { RMS=0.03 ECL } \\ & \text { units } \end{aligned}$	[170]
Polycyclic aromatic sulfur heterocycles, PASH alkylated dibenzothiophenes	Substitution pattern	I	Methylphenylsilo xane (5\% and 50\% phenyl groups): DB5ms, DB17ms	New synthesized compounds	[171]

[^0]LMO - leave-multiple-out (internal) cross-validation
PAH - polycyclic aromatic hydrocarbon
PCA - principal component analysis
PCB - polychlorinated biphenyls
PCDF - polychlorinated dibenzofuran
PDMS - dimethylpolysiloxane
PP - projection pursuit
PPEG - poly(ethylene glycol) (Ucon 50 HB 660) (U50HB),
QBES - tetra-n-butylammonium N,N-(bis-2-hydroxylethyl)-2-
aminoethanesulfonate
RBF-NN - radial basis function neural network
RF - response factors
R_{m} - molar refraction
RR - ridge regression
RRT - relative retention time
SD - standard deviation
SE, SEC, SEP, standard error, calibration, prediction
SOM - self-organizing map, (Kohonen network)
T_{b} - boiling point
THPED - N,N,N',N'-tetrakis(2-hydroxypropyl) ethylenediamine
V_{m} - molar volume

Table 2 QSERR examinations between 1996-2006.

Solutes	Descriptors	Model building	Stationary phase (SP)	Source
Chiral α-alkyl arylcarboxylic acids (28)	Hydrogen bonding ability and aromaticity	Retention data	AD-CSP	173]
Mexiletine and a series of structurally related compounds	Presence or absence of secondary hydrogen-bonding group, nonempirical descriptors	Retention data, MLR	AD-CSP	[174]
Racemic 3-phenyl-4-(1-adamantyl)-5-X-phenyl-?2-1,2,4-oxadiazolines	Aromatic ring substituents, electronic and bulk parameters or CoMFA descriptors	MLR, CoMFA	Pirkle-type N,N'-(S.S-dinitrobenzoyl)-1(R),2(R)diaminocyclohexane	[175]
12 chiral arylcarboxylic acids	Hydrophobicity and steric volume	MLR	Immobilized human serum albumin chiral stationary phase (HSA-CSP).	[176]
29 aromatic acids	Charge transfer, electrostatic, lipophilic, and dipole interactions	MLR, BP-ANN	Amylosic CSP	[177]
Enantiomeric amides	Chirality of the amylose backbone	Elution order	Amylosic CSP	[178]
Homologous series of 1,4disubstituted piperazine	Carbon number of the alkyl substituent (max. C4-C5)	Nonlinear	Chiral cellulose tris(4methylbenzoate)	[179]
Nonlinear data set for chiral separation	Mass (m/z)	PLS, ANN	Pirkle-type CSP	[180]
14 O-ethyl O-(substituted) phenyl N -isopropyl-phosphoroamidothioates	Molecular descriptors (7) significant descriptors (4)	MLR		[181]
Chiral sulphoxides	Molecular connectivity indices, similarity and holistic descriptors (3D-WHIM)	RRT, MLR	Cellulose and amylose trisphenylcarbamates coated onto 3-aminopropyl mesoporous silica	[182]
O-ethyl O-(substituted) phenyl N-isopropyl phosphoroamidothioate	LUMO, interaction of hydrogen bond, $\pi-\pi$ interaction, $\log P$ and	MLR	Pirkle-type CSPs, Sumichiral OA4700	[183]
42 chiral arylalkylcarbinols	2D and 3D molecular descriptors	$\log \alpha$, MLR, ANN, CoMFA	Pirkle-type CSP	[184]

α-aminophosphonates	quantum chemical (LUMO) hydrophobicity. Molecular parameters (4)	k, MLR, FA	Phenyl carbamate derivative β-cyclodextrin bonded	[185]
Diphenyl 1-(N-benzyloxycarbonyl)aminoalkanephosphonates	$\log P$, Angle, HOMO and LUMO	$k, \mathrm{MLR}, \mathrm{FA}$		[186]
Diphenyl 1-(N-benzyloxycarbonyl)aminoalkanephosphonates	$\log P$, Angle, $\operatorname{loc} D$ and TE	MLR	Pirkle-type	[187]
Various drugs, phenoxy propionic acid derivatives	Molecular descriptors (4)	MLR	Riboflavin Binding Protein (RfBP)	[188]
Diastereomers and enantiomers	Molecular dynamics	Addition of chiral substituents	Cyclodextrin derivatives	[189]
Aryl- and hetaryl-carbinols (22)	3D descriptors descriptor based on normal mode eigenvalues (EVA)	$\log \alpha$, CoMFA, CoMSIA, PLS, (0.97-0.99) validation (0.85-0.91)	(SS)-3,5- dinitrobenzoylated 1,2- diphenylethane-1,2diamine	[190]
5-arylhydantoins (50)	2D and 3D molecular descriptors quantum chemical	MLR	Pirkle-type	[191]
Organophosponates	$V_{\mathrm{m}}, M_{\mathrm{w}}, \mathrm{H}$-bond acceptor, dipole-Z	Elution order	N -(3,5-dinitrobenzoyl)-Sleucine	[192]
Hydroxy acids (8)amino acids (10)	Chiral topological indices	I (HP-TLC)		[193]
2-aryloxy-2-arylacetic acids (1-$3,5-16)$, thioisostere derivative (4)	Polar, charge-transfer interactions, steric effects	k, Elution order, enantioseparation factors $(\alpha>2)$	Penicillin G Acylase chiral stationary phase (PGACSP)	[194]
5-arylhydantoins (50)	Dragon descriptors (557)	Selectivity, resolution, PCA, PP, UVE-PLS MLR, CART	3R,4S-Welk-O-1	[195]

Notations
AD-CSP - amylose tris(3,5-dimethylphenylcarbamate)
AR-CSP - amylose tris(R-phenylethyl-carbamate)
AS- CSP - amylose tris(S-phenylethylcarbamate)
ANN - artificial neural network
α - chiral separation factor
BP - back-propagation
CART - classification and regression trees
CoMFA - comparative molecular field analysis
CoMSIA - comparative molecular similarity indices analysis
CSP - chiral stationary phase.
FA- factor analysis
HSA-CSP - immobilized human serum albumin CSP
k - retention coefficient, (capacity factor)
LOO - leave-one-out (internal) cross-validation
LUMO - energy of lowest unoccupied molecular orbital
$M_{\text {w }}$ - molecular mass
MLR - multiple linear regression

PCA - principal component analysis
PGA-CSP - Penicillin G Acylase CSP
PLS - partial least squares
PP - projection pursuit
RfBP - riboflavin binding protein
UVE-PLS - uninformative variable elimination-PLS
V_{m} - molar volume

Table 3 QSRR examinations in TLC between 1996-2006.

Solutes	descriptors	model building	Method	source
29 antibiotics	Hydrophobicity parameters, surface areas	Weak or no correlations	Impregnated silica and alumina supports	[198]
Estrone, equilin, equilenin, their 17α-diols, 17α-estradiol, 17α dihydroequilin (DHEQ), 17 α dihydroequilenin	Dipole moments, Randic's connectivity indices, number of H atoms	PCA, NLM	TLC, RP-HPLC, capillary GC	[199]
18 nonsteroidal antiinflammatory drugs	Lipophilicity and specific hydrophobic surface area	NLM	RP-TLC, methanol (acetic acid, sodium acetate, or sodium chloride)	[200]
7 monotetrazolium and 9 ditetrazolium salts	Physicochemical parameters (hydrophobic, electronic, steric)	PLS, CCA	Alumina and reversedphase (RP) alumina layers using n-hexane-1-propanol and water-1-propanol	[201]
15 amino acids	Ttopological indexes, physicochemical properties (15)	$R_{\text {f }}, \mathrm{MLR}$	Silica gel layers	[202]
Aryloxyaminopropanol derivatives of 1,4-piperazine	Lipophilic Hansch's constants π, the number of carbon atoms in R1 substituent	R_{m}, linear, β-adrenolytic activity vs. $\log k$ is parabolic	TLC, HPLC	[203]
7 mono- and 9 ditetrazolium salts	Steric and electronic parameters	PCA, NLM	TLC, HPLC	[204]
Dihydroxythiobenzanilides	Hydrophobicity, antimycotic activity, lipophilicity Hansch parameter	$\log k$, limited linear	RPTLC, acetone-water methanol-water	[205]
18 flavonoids	Number of hydroxyl groups	Selectivities, sequences	Silica-diluent + polar modifier	[206]
O-alkyl, O-(1-methylthioethylideneamino) phosphoramidates	17 structural parameters: topologic indices, physicochemical	MLR	RPTLC,	[207]
10 ginsenosides	Topologic indices, physicochemical properties, novel	MLR	Silica gel layers (chloroform-ethyl acetate,	[208]

| Homologous series of higher
 fatty acids, their methyl esters,
 higher alcohols
 Estradiol derivates | parameter "E"
 Topological indexes based on
 adjacency matrix, distance matrix | $R_{\mathrm{M}}, \log P($ Rekker $)$ simple
 linear | methanol-water) | [209] |
| :--- | :--- | :--- | :--- | :--- | :--- |

Nicotinic acid, its derivatives
Alkyl nicotinates (MN),
nicotinamide, N-methylnicotinamide
Benzimidazole and benztriazole
derivatives

2,4-Dihydroxyphenylthioamide derivatives

Measured and calculated partition $\quad R_{\mathrm{M} 0}$, coefficients, $\log P \exp , A \log P \mathrm{~s}$, IA $\log P, \mathrm{C} \log P, \log P K o w i n$, $\mathrm{x} \log P$, topological indices

Antifungal activity

Notations

CA - cluster analysis
FA- factor analysis
HPTLC - high-pressure TLC
k - retention coefficient, (capacity factor)
MLR - multiple linear regression
NLM - non-linear mapping
PAH - polycyclic aromatic hydrocarbons
PC - principal components
PCA - principal component analysis
PLS - partial least squares
R_{f} and $R_{\mathrm{M} 0}$, PCA
$R_{\text {Mw }}$ and $\log k_{\mathrm{w}}$, linear dependence, parabolic

RP18WF254, methanolwater
paraffin oil-impregnated silica gel plates, methanolwater
RPLC, TLC, Methanolwater
$R_{\mathrm{m}}, R_{\mathrm{M}}$ - TLC retention parameter, $\mathrm{R}_{\mathrm{m}}=\log \left(1 / \mathrm{R}_{\mathrm{f}}-1\right)$ RPTLC - reversed phase TLC
TLC - thin layer chromatography

Table 4 QSRR examinations in column liquid chromatography between 1996-2006.

Solutes	Descriptors	Models	Column, mobile phase	Source
Substituted aromatic hydrocarbons	S, A, B, V	LSER	Polybutadiene (PBD)-coated zirconia	224
25 structurally diverse solutes	E, S, A, B, V; and water accessible V_{w}, μ, atomic electron excess charge	LSER, $\log k^{\prime}$	Polyethylene-coated silica (PECSiO(2)) polyethylenecoated zirconia (PECZrO (2)),	225
Substituted benzenes	Substituent constant (π) and the total solubility parameter ($\delta \mathrm{T}$)	MLR,	Various columns in several different eluents	226
Quinolones	$S_{\mathrm{w}}, \mathrm{y}$-component of $\mu, \mathrm{MM}+$ and AM1	MLR, CA of solutes	PRP-1 column and aqueous organic solvent system	227
31 unsubstituted 3-6-ring PAHs	Moment of inertia,	CoMFA (0.973), cross- validated (0.930)	Polymeric C18 reversedphase column	228
Small peptides	Sum of the hydrophobic contributions of respective amino acid residues	MLR, PLS, retention times	Ultrasphere Octyl, Ultrasphere ODS, Polymeric reversed phase PLRP-S, Nova-pak C-18	229
28 alkyl (1-phenylsulfonyl) cycloalkane-carboxylates	Octanol/water partition coefficients	LSER	RP-HPLC	230
Carboxamides and oxadiazoles	MM+ and AM1 descriptors for intermolecular interaction, isomeric effect and substituent effect: $S_{\mathrm{w}}, \mathrm{x}$ component of μ, logP and μ	MLR, Bilinear,	RP-HPLC	231
LSER solutes (nitroalkanes, substituted benzenes)	LSER descriptors: E, S, A, B, V;	$\log k^{\prime}$ or $\log k(\mathrm{w})$, $\log P$ (octanole or alkane)	Poly(styrene-divinylbenzene) and immobilized artificial membrane, PRP-1	232
25 substituted biphenyls	Solute volume (V) and hydrogen bond basicity (B)	$S, \log k_{\mathrm{w}}(>0.99)$	C18 column, methanol/water	233

Pesticides; triazines,	MM+ and AM1 descriptors solvation energy of specific site of solute solvation energy and polarizability, S_{w}	t_{R}	RP, methanol-water acetonitrile-water.	234		
Physicochemical parameters					\quad	LSER, classification,
:---						
PCA, similarity analysis	,	8 systems				
:---						

20 nonsteroidal anti-
inflammatory drugs
72 substituted N -benzylidene anilines

Disubstituted N-benzylidene anilines
Selected phospholipid classes
Natural phenols in olive oils

Very diverse set of 55
compounds
29 compounds were examined under conditions using automated fast gradient methods.
Homologous series
34 solutes of widely different type

Quinolones studied. At pH 3 ,
was mainly affected by two
descriptors,
2-cyano-3-methylthio-3-

Physicochemical. parameters PCA, NLM, CA
Solute polarity, Hammett's CA, CFA constants
μ, Hammett's constants, $\sigma_{\mathrm{X}}, \sigma_{\mathrm{Y}} \quad \log k$,
LSER descriptors
Configurational + conformational descriptors
62 molecular descriptors:
conventional, topological, and quantum-chemical
CHI, $\log P$
$\log k_{50}$
CHI, LSER descriptors: $\mathrm{E}, \mathrm{S}, \quad \log k_{\mathrm{c}}, \mathrm{t}_{\mathrm{R}}, \log P$
A, B, V

LSER descriptors
LSER descriptors

HOMO μ, MM + , AM1
semiempirical
10 structural parameters

Hydrophobic selectivity and polar selectivities PCA
$\operatorname{logk}^{\prime}$
$\log k^{\prime}$, PCA, MLR

OH), amino (-NH2), cyano (-
CN), phenyl (-Ph), octyl (-
C8) and octadecyl (- C18) groups
RP-HPLC246
NP: heptane and threemodifiers, tetrahydrofuran,1-octanol and ethyl acetateNP-HPLC248
RP-HPLC 249
RMSE 6.8\% - 2.6 \% 250
ODS column and acetonitrile 251
mobile phase
20 different RP-HPLC, fast 252

Widely different RP-HPLC253
Nine prepacked narrow-pore 254and six wide-pore RP-HPLCvarious ligands (C18, C8,
C4, CN)
PRP-1 columns, MeOH , 255
THFNot given256
substituted amino-acrylates (25) Steroids

2,4-dihydroxythiobenzanilides φ
(fungicides)
58 diverse analytes
18 substituted indoles
-(1- methylthio-ethyl ideneamino) phosphoramidate 25 structurally diverse analytes

Perhydrogenated and
Perfluorinated polyoxyethylene surfactants

Iridoid glucosides
Benzene and phenol derivatives, indazol, tiophene, caffeine, etc.
2,4-dihydroxythiobenzanilides
17 chalcones

Antimicrobial hydrazides

3D field descriptors
φ
LSER descriptors, $\log P$
Molecular connectivity indices and quantum chemical descriptors
Solute-related structural
parameters
$\log P$, LSER descriptors, simple structural descriptors Length of alkyl chain, the number of oxyethylene residues, the presence of an oxygen or sulfur atom in the molecule, Molecular electrostatic potential, molecular lipophilic potential, $\log P$ calc, V_{m}
Free rotation around σ-bonds
$\log P$, structural- and LSER
descriptors
$\log P$,
Molecular descriptors, LSER
3D-fields

RT, SOM, PL
calibration set, test set (0.65-0.89)
$\log k^{\prime}, \log k_{\mathrm{w}}$, linear,
parabolic
$\log k^{\prime}, \log k_{\mathrm{w}}$,
k'
k^{\prime}, FA, CA, MLR
$\log k_{\mathrm{w}}$, column
classification
$\log \mathrm{l} \log k_{\mathrm{w}}$

NP, RP
257

RP, methanol-water or258 acetonitrile-water
Inertsil ODS3, symmetry C8,259RP-HPLC, C18 column260
Not given 26
18 RP-HPLC 262
RP-HPLC, methanol - water 263
C18, normal diol SPs 264
SG-AP,Supelcosil ABZ + 265
Plus Waters Symmetry-Shield(TM) RP8. C18
Symmetry(TM)266
RP-HPLC, methanol-water 267
C-8, methanol-water 268

O-aryl,O-(1-methylthioethyli-dene-amino)phosphates (13)	8 solute-related structural parameters	k^{\prime}, FA, MLR	RP-HPLC	269
233 very different compounds	4 structural descriptors, $\log P$	Solute polarity parameter (p), MLR (0.977)	RP-HPLC	270
12 ethynyl-substituted PAHs and unsubstituted counterparts	Polarizability and subpolarity, AM1; PM3	RT (0.967-0.984)	C18, RP-HPLC, water/acetonitrile	271
25 substances	Structural descriptors	$\log k^{\prime}$, ANN (MLP), PLS	Polyethylene-silica and polyethylene-alumina	272
25 substances	Structural descriptors	ANN (RBF), GRNN, PCR, polynomial PLS	Polyethylene-silica and polyethylene-alumina	273
Three test series of analytes	Reduced LSER, $\log P$	RT	RP-HPLC	274
14 substituted benzaldehydes	Molecular connectivity indices, LSER and quantum chemical parameters	$\log k$	C18, RP-HPLC, methanolwater	275
Alkylbenzenes, halobenzenes, xylenes, alkanes, isoalkanes	LSER, structural	$\alpha, \log k$	C8, C18, PBB, PYE	276
24 steroids	3D image	Pulse-coupled neural network: PCNN, PLS	RP-HPLC, cross-validation	277
162 drugs	Molecular similarity	$\log k$, ANN (0.992-0.996)	RP-HPLC, cross-validation	278
pyrethroid pesticides	$\log k^{\prime}$,	$\log k, \log P$	RP-HPLC, LOO	279
86 diverse compounds:	$\mathrm{CHI}(\mathrm{ACN}, \mathrm{MeOH})$, hydrogen bond acidity	$\log P(0.943-0.970)$	Fast gradient RP-HPLC	280
Hydantoin derivatives	CODESSA descriptors, AM1	Lipophilicity (S)	RP-HPLC	281
	main structural factors, LFER descriptors		RP-HPLC	282
Xanthines and derivatives	Semiempirical quantumchemical	$\log k^{\prime}$, MLR	Chromolith RP-18e	283
45 barbituric acid derivatives	φ, substituents steric parameters	$\log k$, MLR, PCA, NLM	Amide embedded RP silica column (Discovery RPAmideC16), wateracetonitrile	284
45 barbituric acid derivatives	$\varphi,-\varphi_{0}$, conventional and	$\log k$, MLR, asymmetry	Amide embedded RP silica	285

45 barbituric acid derivatives

45 barbituric acid derivatives

20 new α-branched phenylsulfonyl acetates

18 selected amino acids, phenylthiocarbamyl (PTC) amino acid derivatives Basic compounds related to caproctamine, dibenzylaminediamide (reversible inhibitor of acetylcholinesterase)
Drugs and model compounds

67 neutral, acidic and basic solutes
Aromatic acids
Model series, 15 analytes
quantum chemical structural
$\varphi,-\varphi_{0}$, conventional and quantum chemical structural
$\varphi,-\varphi_{0}$, conventional and quantum chemical structural

Geometric and electronic descriptors, surface area (S), ovality (O), the charge of carboxyl group (Qoc), surface area
36 molecular descriptors, $\log P$, RT, GA-ANN molecular size, shape (topological indices) Hammett σ (electronic properties of the orthosubstituents)

Lipophilicity and acidity

LSER descriptors, and variants
$\log P, \mathrm{p} K_{\mathrm{a}}$ (partial charges of atoms)
Total μ, electron excess charge of the most negatively charged atom water-accessible surface area

54 disubstituted benzenes	8 molecular descriptors, PM3 semiempirical	$\log k_{\mathrm{w}}, \mathrm{MLR}, \mathrm{RBF}-\mathrm{ANN}$	RP-HPLC	295
25 , mainly substituted benzenes	LSER descriptors, $S_{\text {w }}$,	$\log k_{\mathrm{w}}, \mathrm{MLR}, \mathrm{PCA}$	8 RP-HPLC, CE	296
PAHs	Molecular connectivity, μ	RT, bilinear, MLR,	Training, test sets, HPLC	297
Xenobiotics	Chromatographic parameters	$\log P$, PCA	RP-HPLC	298
phenols	$\mathrm{p} K_{\mathrm{a}}$, atomic partial charges by AM1 and PM3	RT	RP-HPLC	299
15 diverse aromatics (training)	$\log P, \mu, S_{\text {w }}$, electron excess	RT, MLR (0.8953-	Supelcosil LP18	300
47 diverse compounds (test)	charge on the most negatively charged atom	0.9870)		
83 structurally diverse drugs	266 descriptors, hydrophobicity ($\log P$ and Hy), the size (TPC) of the molecules	$\log k_{\mathrm{w}}, \mathrm{CART}$	Unisphere PBD column isocratic elution	301
15 diverse aromatics (training)	$\log P, \mu, S_{\mathrm{w}}$, electron excess charge on the most negatively charged atom	RT, MLR, ANN,	RP-HPLC, methanol-water	302
233 very different compounds	4 descriptors, $\log P$, hydrogen bond acidity	Solute polarity parameter p, MLR, (0.977)	RP-HPLC,	303
Para substituted anilides of 2,2dimethylpropanoic, benzoic and α-phenylacetic acid	Physicochemical parameters, μ, ε, topological indexes $\log P$, $\log S$, hydrogen-bond acceptor indicator (HA) and molecular mass	RT, MLR	RP-18 HPLC, methanolwater	304
Test solutes	LSER descriptors	MLR	C18, C8 columns methanol, acetonitrile, and tetrahydrofuran	305
PAHs	AM1: HOMO, LUMO, GAP hardness, polarizability, atomic charges, connectivity index, volume and surface area	$T_{\mathrm{b}}, \log P, I$, PCR, PLS (0.898-0.995)	RP-HPLC	306
18 L-amino acids	Binding energy (Eb), $\log P$, molecular refractivity (MR),	$k, \mathrm{MLR}(>0.9)$	RP-HPLC	307

$\left.\begin{array}{lllll} & \begin{array}{l}\text { polarizability }(\alpha) \text {, total energy } \\ \text { (Et), water solubility (logS), } \\ \text { connectivity index (} \chi \text {) of } \\ \text { different orders and Wiener } \\ \text { index (W) }\end{array} & & & \\ & \begin{array}{l}\text { As above + hydrophilic- } \\ \text { lipophilic balance (HLB), }\end{array} & k \text {, MLR } & \text { PLS, structural } & \text { Monomeric and polymeric }\end{array}\right] 309$

18 Dihalogeno
benzoylphenylureas
101 peptide
98 peptides
Series of test analytes
Steroid analogues
Triazine herbicides, metabolites

Unsaturated alkenes, phenols, acidic and basic drugs 28 alkyl(1-phenylsulfonyl) cycloalkane carboxylates
Ricobendazole and albendazole sulfone

Aromatic acid derivatives
benzoic acid derivatives
Model series of test analytes
33 purine nucleobases
Neutral and basic compounds

Antiprotozoal meso-ionic 1,3,4-thiadiazolium-3-aminides

Sum of RTs of amino acids,
$\log V_{\mathrm{w}}, \log P$
Sum of RTs of amino acids,
$\log V_{\mathrm{w}}, \log P$
$\log P, \mu, \delta, S_{\mathrm{w}}$, hydrophobic subtraction LSER model

4descriptors

Alkyl-chain length, atomic
partial charge, $\mathrm{p} K_{\mathrm{a}}$
Ab initio quantum chemical,
B3LYP/6-31G*, AM1
$\log P$

Interaction energies, $\mathrm{MM}, \mathrm{p} K_{\mathrm{a}}$
Interaction energies, $\mathrm{MM}, \mathrm{p} K_{\mathrm{a}}$
Structural parameters of stationary phases
3D field descriptors
$\log P$,

RT, MLR

RT, MLR

RT, classification
De novo mathematical model
k, MLR, ANN

k,

$\log k$, bilinear, (0.9747, 0.9741)
$\log k_{\mathrm{w}}, \log k$, Internal standard selection by QSRR
$\log k$,
$\log k$,
Retention data

CoMFA (0.969)
validation (0.832)
$\log k_{\mathrm{w}}, \log k$,

encapsulated zirconia, Kromasil-C18-SiO2	
Gradient HPLC,	321
Gradient HPLC,	322
9 representative RP-HPLC column	323
RP-HPLC, methanol, acetonitrile, tetrahydrofuran	324
Methanol - water, Spherisorb ODS2, precolumn LC 8	325
Graphitic carbon	326
LOO	327
C-18 column, rapid HPLC	328
RP-HPLC,	329
RP-HPLC,	330
NP, RP, CE	331
C18 column	332
Supelcosil ABZ+Plus, Discovery RP Amide C16, and Zorbax Extend C18	333
Supelcosil ABZ+ Plus column methanol-water acetonitrile-water	334

83 basic drugs

16 indole derivatives
29 nitrogen containing
heterocycles

24 nitrogen-containing heterocycles

Single- and multi-ring aromatic hydrocarbons (AH)
(O) probes

1272 molecular descriptors.

Ab initio B3LYP/6-311G**
Molecular connectivity,
Wiener, Kier flexibility,
Harary, Balaban, Zagreb indices
α, MR, $\log P, \mu$, Etot, $\Delta H f$, molecular surface area (SM), binding energy (Eb)
Substituent effect, electronic and geometric descriptors, IP, EA
CART, stochastic Unisphere PBD column 335gradient boosting randomforest, GA-MLR (0.964),
UVE-PLS
$\log k, \log k_{\mathrm{w}}(0.9796), \mathrm{S}$ 336
(0.9874)
$\log k$, simple linear (0.9- LC 337
1.0)
$\log k$, simple linear (0.8 - 338
$1.0)$, multilinear (1.000)
RT, PLS, GA,[3-(2,4-339
dinitroanilino)]propyl-silicacolumn

EA - electron affinity
Etot total energy
ε - permittivity
FA - factor analysis
φ - volume fraction of mobile phase
GA - genetic algorithm
GRNN - generalized regression neural networks
HOMO - energy of highest occupied molecular orbital index of hydrophobicity $\varphi_{0}=-\log k_{w} / \mathrm{S}$
IP - ionization potential
IPC - ion pair chromatography
k, k^{\prime} - retention coefficient, (capacity factor)
$\log k_{\mathrm{w}}$ - intercept of the plot for $\log k^{\prime}$ vs. φ (extrapolated to mobile phase without water)
$\log P, \log k_{o / w}$ - octanol/water partition coefficient
LOO - leave-one-out cross validation
LUMO - energy of the lowest unoccupied molecular orbital
MLR - multiple linear regression
MLP - multilayer perceptron neural networks
MR - molar refraction
μ-dipole moment
NLM - non-linear mapping
NP - normal phase
ODS - octadecil silica
p - solute polarity parameter (eq(1))
PAH - polycyclic aromatic hydrocarbons
PCA - principal component analysis
PCR - principal components regression
$\mathrm{p} K_{\mathrm{a}}$ - dissociation constant
PLS - partial least squares
RBF - radial basis function
RP - reversed phase

RT - retention time
S - slope of the plot for $\log k^{\prime}$ vs. volume fraction of mobile phase (φ)
SOM - self-organizing map, Kohonen network
SP - stationary phase
$S_{\text {w }}$ - solvent-accessible surface area
T_{b} - boiling point
UVE-PLS - uninformative variable elimination-PLS
V_{m} - molar volume
V_{w} - van der Waals volume

Table 5 QSRR examinations in micellar liquid chromatography between 1996-2006.
$\left.\begin{array}{lllll}\text { Solutes } & \text { Descriptors } & \text { Models } & \begin{array}{l}\text { Column, mobile phase, } \\ \text { surfactant }\end{array} & \text { Source } \\ \begin{array}{l}\text { Congener series of steroid } \\ \text { hormones }\end{array} & \begin{array}{l}\text { Topological i.e., connectivity } \\ \text { indices, X, steric factors }\end{array} & \text { RT, linear, multilinear }\end{array} \begin{array}{l}\begin{array}{l}\text { ODS column (RP-HPLC, }) \\ \text { sodium dodecyl sulfate (SDS)- } \\ \text { borate system and with a mixed } \\ \text { micellar solution of SDS and }\end{array} \\ \text { sodium cholate }\end{array}\right\}$

		parameters		
10 amphoteric sulfonamides	$\log P$,	$\log k$	MLC, SDS	351
60 aromatic compounds and 9 corticosteroids	$\log P$, LSER descriptors	$\log k^{\prime}$	MEKC, SDS, SC, LiPFOS, C14TAB	352
16β-blocking agents	$\log P$,	$\log k$	MLC, SDS, n-propanol (organic modifier)	353
Phenoxy acid herbicides	Migration parameters	Toxicity	MLC, MEKC, Brij35	354
Antihistamine drugs	Hydrophobic, electronic and steric, k in BMC	Pharmacokinetic parameters	BMC, Brij35	355
66 organic pollutants	$\log k$, structural parameters	ecotoxicity parameters, $\log P$, PCA	BMC, Cross-validation, calibration set	356
Neutral aromatic compounds, β-blockers, and other drugs	$\log P$, LSER descriptors	$\log k, K_{\mathrm{lw}}$,	LEKC, CE, liposomes are in a buffer solution (pseudostationary phase)	357
Basic pharmaceutical substances	$\mathrm{p} K_{\mathrm{a}}, \log D$	Fast $\log P$, PCA	MLC, monolithic silica	358
Non-steroidal antiinflammatory drugs	$\log P$, IC50 (concentration required to 50% inhibition), $\mathrm{t}_{1 / 2}$ (half-life time)	V_{d} (volume of distribution), CL (clearance), $\log k$	MLC, Brij 35	359
85 pesticides	$\log k$,	Acute toxicity pLC50	BMC,	360
85 pesticides	$\log k, \log P$,	BCF, logk,	BMC,	361
10β-blockers, 7 tricyclic antidepressants (TA), 8 steroids 12 sulfonamides	$\log P, \log P_{\text {apparent }}$	$\log k$,	RPLC acetonitrile, MLC	362
151 structurally unrelated solutes	$\log P$, molecular size, hydrogen bonding properties, ionization degrees	$\log k$, MLR	BMC, Brij35	363
Benzene derivatives, heterocyclic compounds	Molecular surface area, maximum value of electron density, path four connectivity index, Mw, sum of atomic	$\log k$, MLR, ANN	MEKC, Training set	364

Substituted benzenes
79 heterogeneous pesticides

Notations

ANN - artificial neural network
α - polarizability
α^{\prime} - molar total charge of compound at a given pH value
BMC - biopartitioning micellar chromatography
C14TAB - cationic surfactant
CA - cluster analysis
CART - classification and regression tree
CE capillary electrophoresis
CHI - chromatographic hydrophobicity index
CoMFA - comparative molecular field analysis
δ - electron excess charge of the most negatively charged atom
δ^{\prime} - molar fraction of the charged form of the compound
$\delta \mathrm{T}$ - total solubility parameter
EA - electron affinity
Etot total energy
ε - permittivity
FA - factor analysis
φ - volume fraction of mobile phase
GA - genetic algorithm
GRNN - generalized regression neural networks
index of hydrophobicity $\varphi_{0}=-\log k_{\mathrm{w}} / \mathrm{S}$
IPC - ion pair chromatography
k, k^{\prime} - retention coefficient, (capacity factor)
K_{mw} - micelle-water partition coefficient
K_{lw} - liposome-water partition coefficients
$\log k$, MLR, SVM
(09755)

LiPFOS - lithium perfluorooctane sulfonate
LEKC - liposome electrokinetic chromatography
$\log k_{\mathrm{w}}$ - intercept of the plot for $\log k^{\prime}$ vs. φ (extrapolated to mobile phase without water)
$\log P, \log k_{0 / w}$ - octanol/water partition coefficient
MLC - micellar liquid chromatography
MECC - micellar electrokinetic capillary chromatography
MEKC - micellar electrokinetic chromatography
MI - migration index, a general hydrophobicity scale
MLR - multiple linear regression
MLP - multilayer perceptron neural networks
MR - molar refraction
μ - dipole moment
NP - normal phase
ODS - octadecil silica
p - solute polarity parameter (eq(1))
PAH - polycyclic aromatic hydrocarbons
PCA - principal component analysis
$\mathrm{p} K_{\mathrm{a}}$ - dissociation constant
PLS - partial least squares
RP - reversed phase
RT - retention time
S - slope of the plot for $\log k^{\prime}$ vs. volume fraction of mobile phase (φ)
SC - sodium cholate
SDS - sodium dodecyl sulfate

Table 6 QSRR examinations in affinity chromatography between 1996-2006.

Solutes	Descriptors	Models	Column, protein	Source
Antihistamine drugs	$\log k$ (IAM), electron excess charge on thealiphatic N	$\log k$ (AGP)	$\alpha 1$-acid glycoprotein (AGP), IAM	367
56 acidic, basic and neutral drugs	$\log k($ IAM $), \log P$, ionization of acidic groups	Brain/blood concentration,	Commercial IAM.PC.DD	368
Xenobiotics	$M_{\text {w }}, \mu, \log P, \log k($ IAM $)$	$\log k$ (keratin), $\log K_{\mathrm{p}}$	IAM, physical immobilization of keratin on silica support	369
Test series of drug analytes	$\log P$, structural descriptors from molecular modeling	Drug-macromolecule binding	AGP, keratin, collagen, melanin,	370
24 test analytes	$\log P$, LSER descriptors	$\log k, \log k_{\mathrm{w}}$, MLR	Immobilized cholesterol on spherical silica gel, RP-HPLC, C18, IAM	371
40 structurally unrelated drug	Percentage of binding	Retention	Immobilized human serum albumin (HSA)	372
Set of standards	LSER descriptors	$\begin{aligned} & \log k(\mathrm{IAM}), \mathrm{CHI}, \\ & \text { CHI(IAM) } \end{aligned}$	Fast gradient, IAM	373
drugs	$\log P, \log k$,	$\log k(\ldots)$,	HPLC, CE, biomacromolecules	374
Drugs, standards	QSRR descriptors	Retention	Macromolecules as SP	375
Appropriately designed sets	$\log k$ (AGP), $\log k_{\mathrm{w}}$	$\log K_{\mathrm{p}}, \log k(\mathrm{KER}, \mathrm{COLL}$, MEL, etc.)	HAS, AGP, keratin, collagen, melanin, amylose tris (3,5dimethylphenylcarbamate) basic fatty acid binding protein	376
Series of analytes, 65 new buspirones		Diverse and mutually interrelated retention parameters, PCA	9 carefully designed HPLC systems, 5-HT1A serotonin receptors	377
	$\log P$, molecular structural parameters	$\log k$	C18, C8, IAM, AGP, PBCA, PGC	378
Antihelmintic 6,7-diarylpteridine derivatives	$\log P, \log k($ IAM $)$,	$\log k$ (IAM), IC50	ODS, IAM.PC.DD2	379
11 arylpropionic acid derivatives	$\log P, \log D$	$\log k_{\mathrm{w}}(\mathrm{IAM}), \log k_{\mathrm{w}}$ (ODS)	ODS, IAM.PC.MG	380

32 structurally diverse drugs	$\log P, \log D, \log P$ app	$\log k$ (IAM), MLR, PLS	Phospholipids, IAM	381
68 drug molecules.	CHI (IAM), $\log P$, LSER,	$\log K($ HAS $)$	Fast gradient HPLC, HSA	382
Long fatty acids	$\log P$, total lipole	$\log k$,	Immobilized liver basic FABP	383
			"Embedded" phases: aminopropylated silica gel, e.g. phospholipids and cholesterol, IAM's	384
Azapirone derivatives	Molecular structural	Retention parameters, BP-ANN	Rat brain serotonin 5-HT1A receptors, 14 HPLC systems	385

Notations

BP-ANN - back propagation artificial neural network
C18 - bonded octadecil silica
C8 - bonded octyl silica
CHI - chromatographic hydrophobicity index
φ - volume fraction of mobile phase
FABP - fatty acid binding protein
HSA - human serum albumin
index of hydrophobicity $\varphi_{0}=-\log k_{w} / S$
IAM - immobilized artificial membrane
k, k^{\prime} - retention coefficient, (capacity factor)
K_{p} - human skin permeation coefficient
$\log D-\log P$ for ionisable compounds
$\log k_{\mathrm{w}}$ - intercept of the plot for $\log k^{\prime}$ vs. φ (extrapolated to mobile phase without water)
$\log P, \log k_{o / w}$ - octanol/water partition coefficient
$\log P$ app - apparent $\log P$
LSER - linear solvation energy relationships
MLR - multiple linear regression
μ - dipole moment
NP - normal phase
ODS - octadecil silica, C18
PCA - principal component analysis
$\mathrm{p} K_{\mathrm{a}}$ - dissociation constant
PBCA - polybutadiene-coated alumina
PGC - porous graphitic carbon
RP - reversed phase
S - slope of the plot for $\log k^{\prime}$ vs. volume fraction of mobile phase (φ)

Table 7 remaining QSRR examinations between 1996-2006.

Solutes	descriptors	models	Column, method	Source
Series of sulfonamides		Electrophoretic mobility, MLR, BP-ANN	CZE, cross-validation	386
20 beta-diketones	6 descriptors	I, MLR, polynoms		387
Proteins	Descriptors, from protein structure	RT (0.969-0.952)	Ion exchange systems, cross and external validation	388
Probe molecules	Traditional and novel molecular property descriptors	GA, PLS	Ion-exchange chromatography (IEC)	389
19 solutes (Ala, Gly, Lys, Phe, homopeptides)	$\log P$ and specific hydrophobic surface area	PCA, NLM	TLC, impregnated alumina layers	390
o-Acetylphenyl esters	Topological	RT	Not given	391
1-bromo-2-aryiloxyetanes and 3- aryloxypropiononitrile derivatives	5 quantumchemical	RT, polynoms	Not given	392
	Set of fragmental descriptors	I, T_{b}	GC	393
Proteins	Topological, subdivided surface area, TAE, electron-densitybased descriptors	RT, SVM	Anion exchange chromatography, training and validation sets	394
Proteins	Molecular descriptors	RT, SVM (0.943-0.994) cross-validated	Anion exchange chromatography salt-in	395
Proteins		RT, SVM (0.919-0.980)	Cation-exchange systems, counterions,	396
	Number of single bonds, of double bonds, hydrophilic factor	Retention factors, BP- ANN, MLR	Supercritical fluid chromatography, crossvalidation	397
Basic compounds (drugs)	Molecular interaction energies	Elution order	Ion-exchange chromatography	398
Proteins, human lactoferrin	New protein descriptors, ASP 1	RT	Ion-exchange chromatography	399
Set of model proteins	New hydrophobicity descriptors,	RT, SVM	Hydrophobic interaction	400

Notations

ASP - average surface potential
BP-ANN - back propagation artificial neural network
CHI - chromatographic hydrophobicity index
CZE - capillary zone electrophoresis
FABP - fatty acid binding protein
GA - genetic algorithm
HSA - human serum albumin
I - Kovats retention index
IAM - immobilized artificial membrane
IEC - ion-exchange chromatography

LSER - linear solvation energy relationships
MLR - multiple linear regression
NLM - nonlinear mapping
ODS - octadecil silica, C18
PCA - Principal Component Analysis
PLS - partial least squares
RT - retention time
SFC - supercritical fluid chromatography
SVM - support vector machines
S_{w} - solvent accessible surface area
TAE - transferable atom equivalent

[^0]: Notations
 ANN - artificial neural network
 α - polarizability
 BP - back-propagation
 CFA - correspondence factor analysis
 CP - counter-propagation
 DB-1-100\% dimethylpolysiloxane
 DB-5 - 5\% diphenyl and 95\% dimethylpolysiloxane
 DB-210 - trifluoropropylmethyl polysiloxane
 DB-wax - polyethyleneglycol
 DEHPA - di(2-ethylhexyl)phosphoric acid
 EGAD - polyethylene glycol adipate,
 ECL - eqivalent chain length
 FA - factor analysis
 GA - genetic algorithm
 HP-1-100\% dimethylpolysiloxane,
 HP-5 - 5\% diphenyl and 95\% dimethylpolysiloxane
 HP-50-50\% diphenyl and 50\% dimethylpolysiloxane
 HP-Innowax - polyethyleneglycol
 I - Kovats retention index
 k - retention coefficient, (capacity factor)
 K_{fg}, distribution coefficients between fiber coating and gas phase
 LOO - leave-one-out (internal) cross-validation

