1	Copyright © 2007 Elsevier B.V. All rights reserved.
2	Károly Héberger, Quantitative structure - (chromatographic) retention relationships: QSRR
3	[review] Journal of Chromatography A, 1158 /1-2/ 273-305 (2007),
4	https://doi.org/10.1016/j.chroma.2007.03.108
5	
6	
7	
8	Quantitative structure - (chromatographic) retention relationships: QSRR
9	
10	Károly Héberger
11	Chemical Research Center, Hungarian Academy of
12	Sciences, H-1525 Budapest, P. O. Box 17, Hungary
13	
14	
15	
16	
17	
18	
19	
20	
21	Correspondance: heberger@chemres.hu, phone: +36 1 438 11 03, Fax: +36 1 438 11 43
22	
23	Keywords: QSRR, QRAR, QSERR, gas chromatography, column liquid chromatography,
24	planar chromatography, micellar liquid chromatography, affinity chromatography,
25	chemometrics, modeling
26	

27 Abstract

Since the pioneering works of Kaliszan (R. Kaliszan, Quantitative Structure-28 29 Chromatographic Retention Relationships, Wiley, New York, 1987. and R. Kaliszan, 30 Structure and Retention in Chromatography. A Chemometric Approach, Harwood Academic, 31 Amsterdam, 1997) no comprehensive summary is available in the field. Present review 32 covers the period 1996 - August 2006. The sources are grouped according to the special 33 properties of kinds of chromatography: Quantitative structure - retention relationship in gas 34 chromatography, in planar chromatography, in column liquid chromatography, in micellar 35 liquid chromatography, affinity chromatography and quantitative structure enantioselective 36 retention relationships. General tendencies, misleading practice and conclusions, validation of 37 the models, suggestions for future works are summarized for each sub-field. Some 38 straightforward applications are emphasized but standard ones. The sources are gathered in 39 tables and the model compounds, descriptors, predicted retention data, modeling methods and 40 indicators of their performance, validation of models, and stationary phases are collected in 41 the tables. Some important conclusions are: Not all physicochemical descriptors correlate the 42 retention data strongly; the heat of formation is not related to the chromatographic retention. 43 It is not appropriate to give the errors of Kovats indices in percentages. The apparently low 44 values (1-3 %) can disorient the reviewers and readers. Contemporary mean interlaboratory 45 reproducibility of Kovats indices are about 5-10 i.u. for standard non-polar phases and 10-25 46 i.u. for standard polar phases. The predictive performance of QSRR models deteriorates as 47 the polarity of GC stationary phase increases. The correlation coefficient alone is not a 48 particularly good indicator for the model performance. Residuals are more useful than plots 49 of measured and calculated values. There is no need to give the retention data in a form of an 50 equation if the numbers of compounds are small. The domain of model applicability of 51 models should be given in all cases.

53	Contents
54	1. Introduction
55	2. Quantitative structure - retention relationships in gas chromatography
56	2.1 General tendencies
57	2.2 Validation of the models
58	2.3 Misleading practice and conclusions
59	2.4 Suggestions for future works
60	2.5 Summary of QSRR papers in gas chromatography
61	3. Quantitative structure - enantioselective retention relationships, QSERRs
62	3.1 General tendencies
63	3.2 Misleading practice and suggestions for future works
64	3.3 Summary of QSERR papers
65	4. Quantitative structure - retention relationships in planar chromatography
66	4.1 General tendencies
67	4.2 Misleading practice and conclusions
68	4.3 Suggestions for future works
69	4.4 Summary of QSRR papers in planar chromatography
70	5. Quantitative structure - retention relationships in column liquid chromatography
71	5.1 General tendencies
72	5.2 Misleading practice and conclusions
73	5.3 Suggestions for future work
74	5.4 Summary of QSRR papers in column liquid chromatography
75	6. Quantitative structure - retention relationships in micellar chromatography
76	6.1 General tendencies
77	6.2 Misleading practice and suggestions for future works

78 6.3 Summary of QSRR papers in micellar chromatography

7. Quantitative structure - retention relationships in affinity chromatography

- *7.4 General tendencies*
- *7.5 Misleading practice and suggestions for future works*
- 82 7.6 Summary of QSRR papers in affinity chromatography
- **8. Remaining quantitative structure retention relationship studies**
- 84 9. References

86 1. Introduction

87 Quantitative structure-retention relationships, QSRRs, represent a powerful tool in 88 chromatography. What are QSRRs? The terminology is still used confusedly. Firstly 'R' may 89 mean 'reactivity' and not retention; secondly Quantitative structure-property relationships 90 (QSPRs) or Quantitative structure-activity relationships (QSAR) is often used instead: 91 generally if the retention data are used as independent variables to predict properties of the 92 molecules. Quantitative retention-activity relationship (QRAR) is also used instead of QSRR. 93 The principal aim of QSRR is to predict retention data from the molecular structure. 94 However, the same methodology can be used for prediction of physical properties e.g. for 95 octanol/water partition coefficients (log P-s) from retention data. The relationships are 96 empirical, but a firm theoretical basis can be rendered to them using linear free energy 97 relationships (LFERs), in these special cases linear solvation energy relationships (LSERs).

98 QSRR is a technique for relating the variations in one (or rarely several) response 99 variables (*Y*-variables) to the variations of several descriptors (*X*-variables), with predictive 100 or at least explanatory purposes. *Y*-variables are often called dependent and *X*-variables as 101 independent variables. One of the *Y*- or *X*-variables should be related to (chromatographic) 102 retention, the others should encode the molecular structure.

103 QSRRs allow the prediction of retention data of novel, not yet synthesized compounds,104 solely from their structural descriptors.

In many cases the precision and accuracy of the QSRR models are not sufficient for identification purposes; still the models are useful to elucidate retention mechanisms, to optimize the separation of complex mixtures or to prepare experimental designs.

108 One of the crucial problems is how to represent molecular structure for QSRR. Generally 109 the descriptors encoding the molecular structure are classified as physicochemical, 110 quantumchemical, topological, etc. descriptors. The advantage of physicochemical

descriptors is that they are generally strongly related to the retention; i.e. they correlate the retention data strongly. However, they are often not available or with relatively large errors only. The advantage of quantumchemical descriptors is that they provide insights into the mechanism of chromatographic retention on a molecular level. Their correlation is, however, weak only and their calculation is tedious and time consuming. Topological descriptors are easy to calculate with present computing facilities, but they are not necessarily related to the retention phenomena.

118 The second crucial problem is to select the most informative descriptors from among a 119 large number of correlated descriptors. A lot of variable selection method has been elaborated 120 and the proper feature selection is a key to build successful QSRR models.

121 Since the pioneering reviews [1,2] a lot of interesting paper appeared; new tendencies can 122 be observed in the field. QSRR models can be used for successful classification of drugs of 123 various compound classes and/or chromatographic columns (systems). Another interesting 124 and increasing application of QSRRs is to test (compare) various chemometric methods. As 125 the descriptors are highly correlated and numerous, to select the proper model building 126 technique is not a trivial task. Moreover, many laboratories use QSRR models to demonstrate 127 the usefulness and advantages of recently developed chemometric techniques. Similarly, QSRR models demonstrate the applicability of novel topological descriptors many times. 128

Although the basic book of chromatography devotes only several pages to QSRR [3], the field achieved its 'riped' phase. Figure 1 shows the steady and 'noisy' increase of papers dealing with QSRRs.

132

Figure 1

The search covers the period of 1996-2006 Aug with extensive usage of 'Web of Science' and 'Scopus' data bases. The increase is not continuous; random factors also influence the number of papers dealing with structure and retention correlations.

136	Figure 2 illustrates the dispersion law of spreading scientific information on this special
137	example (QSRR). The distribution is much more peaked than the normal distribution. The
138	core journals (disseminating 50% of scientific information) can be seen from the figure 2: J.
139	Chromatogr. A, Chromatographia, J. Liq. Chromatogr. Rel. Technol., Anal. Chim. Acta,
140	Anal. Chem. Chemometrics Intell. Lab. Syst., J. Chem, Inf. Modeling (earlier J. Chem. Inf.
141	Comput. Sci.).

.....

142

100

Figure 2

The review is divided into seven parts: QSRR in Gas chromatography, Quantitative
Structure Enantiomer Retention Relationships, (QSERR), QSRR in Planar Chromatography,
QSRR in column liquid chromatography, QSRR in micellar chromatography, QSRR in
affinity chromatography and QSRR in remaining fields.

147

148

149 **2.** Quantitative structure - retention relationships in gas chromatography

150

151 2.1 General tendencies

Alkanes, alkenes, alkylbenzenes, alcohols, ketones, aldehydes, VOCs and compounds of environmental reverence (PCBs, PCDFs, PBDEs, etc.) have been often used as model compounds (explanations for abbreviations can be found in the footnotes of tables). The Kovats retention index (*I*) is the most popular dependent variable in QSRR studies because of its reproducibility and accuracy. Relative retention times (RRTs) are also applied many times. In some cases response factors are also predicted from molecular structure.

Best models can be built using physical properties. There is a common statement in gas chromatography that boiling point governs the retention. In fact, the volatility governs, but the vapor pressure is of exponential function of the column temperature. Hence, normal boiling points are used as a well-defined and in many cases known quantity instead of vapor pressure. The retention index depends from the boiling points in a complicated nonlinear manner, which can be written in an exponential [4] or in a logarithmic form [5].

Multiple linear regression (MLR) is without doubt the most frequently applied technique in building QSRR models. The features and advantages of artificial neural networks (ANNs) fascinated numerous scientists. A lot of ANN study is fairly a description how to apply ANN for model building than an elaboration of a predictive model.

168

169 2.2 Validation of the models

170 Perhaps the most sensitive problem is the validation. Validation was not required in the 171 first, exploratory phase of QSRR investigations, when the most important approach was to 172 unravel the potential usefulness of the method. Later, the validation became crucial. As the 173 physical background is not unambiguous, chance correlations have to be avoided. Therefore, 174 efforts should be done to prove that the found QSRR relationships are not fortuitous but 175 applicable for future predictions. If sufficient data are available to split the data into three sets 176 is recommended: one is used for model selection, the second one for parameter estimation 177 (calibration) and the third one for external validation (cross-validation is a poor alternative instead) [6]. 178

The general practice is to split the data into training and testing sets. However, one single training set is not appropriate to make variable selection and parameter estimation (calibration) without bias. It is not (absolute) necessary to split the training set into two; resampling methods, cross-validation (CV) would also do. The cross-validation almost unbiasedly estimates the prediction error when no feature selection has been made [7], but it is heavily biased when a large amount of model selection is applied (i.e. sifting through

thousands of models). In the latter case, the indicators of the fit are deceptively overoptimistic(inflation of the cross-validated correlation coefficient) [8].

187 Independently from the fact, whether the training set is split into two sets or a CV has 188 been made, the test set should be independent from the model building and parameter 189 estimation. The process is called then as external validation [9].

190 An instinctive (naïve) way is to estimate the performance of a model using randomly 191 generated variables. The same number of variables should be simulated as was calculated for 192 prediction of retention data. The same steps should be carried out as in the real case: variable 193 selection, parameter estimation, prediction for 'unknown' compounds. The performance 194 indicators (correlation coefficient, prediction errors) should be compared with the same 195 values of the real case. If the variables consisted of solely random numbers indicate 196 approximately the same fit and prediction, the models are of little value even if physical 197 significance can be found for its parameters.

Unfortunately, there is no agreed method how to split data set into training, calibration and test sets. Of course a lot of empirical experience was accumulated, but they are also contradictory. Some algorithms ensure that no outliers or extrapolated values are placed in the test set. However, it provides an overoptimistic performance for prediction if future samples will not be gathered according to such algorithm.

Examination of the residua is often missing from QSRR studies, i.e. nonlinear
 relationships are overlooked in many cases.

205

206 2.3 Misleading practice and conclusions

The role of temperature is sometimes described with descriptors from the molecular structure. However, the temperature dependence of retention data is determined by thermodynamic relationships and cannot be derived from structural descriptors. Similarly, the

polarity of stationary phases is related to the structure of stationary phase and not to that of solute molecules. The more polar a stationary phase the more difficult its characterization. As the polarity of stationary phase increases, the goodness of fit (the correlation) deteriorates.

213 The fact that ANN (or support vector machine, SVM) provides less residual error leads to 214 the conclusion that ANN (or SVM) is better than MLR. However, less residual error can 215 simply be the consequence of overfit. It is true; there are no accepted, correct, fair ways to 216 compare various methods. The conclusions "Root mean square errors (RMSEs) shows the 217 superiority of ANN over that of the MLR", or conversely "the results of MLR equation are 218 better than the neural network ones" say not much about the power and usefulness of the 219 methods. If the relation is nonlinear, ANN cannot be worse than MLR provided its proper 220 usage. Even in the case of linear relationships ANN is at least as good as MLR. However, 221 according to the principle of parsimony MLR models are recommended because of their 222 simplicity and their physical relevance.

223 Considering variable selection an error is committed often in the literature. Namely, the 224 variable selection is made linearly and then the linearly selected descriptors are used in a 225 nonlinear model, i.e. for ANN. This is not simply an inconsequent but a malpractice. It has 226 already been shown that it is expedient to use the same method (linear or nonlinear) for 227 variable selection as for parameter estimation [10].

Some authors give errors in percentage for Kovats retention indices. The apparently low values (1-3%) can disorient the reviewers and readers. The interlaboratory reproducibility for Kovats indices is about 5-10 i.u. for standard non-polar phases and 10-25 i.u. for standard polar phases i.e. 0.1-0.5% error should be achieved for a successful identification.

The domain of model applicability is rarely given for QSRR investigations though it would be essential, e.g. which boiling point range is covered, what is the retention time

domain, how far the models can be used for extrapolation, which compounds can be includedand which ones should be excluded, etc.

Quantumchemical packages provide the calculations of standard heat of formation values. As a consequence many authors try to find correlations between retention and heat of formation. However, contrary to the heat of solution (heat of vaporization), the heat of formation is not related to (chromatographic) retention; at least not better than molecular mass, carbon atom numbers, chain lengths and alike. Another problem with quantumchemical packages is that they are steadily corrected and updated, reparameterized, i.e. without giving the exact version numbers the results are not reproducible.

Many authors discover fortuitous relationships again and again, e.g. slope-intercept relations or the notorious compensation effect. It is easy to prove that such a relation is a consequence of random errors unavoidably present in the measurement process. However, such a relation can be useful that a certain phenomenon belongs to the same process. Just the physical significance is questionable.

248

249 2.4 Suggestions for future works

Apolar or medium polar phases are recommended for further studies. Use the most persistent ones methyl- and phenylsilicones (OV-1, DB-5, etc.).

Alcohols are particularly recommended as model compounds because all major interactions can take place between alcohol molecules and molecules of the stationary phases. A possible association is concentration dependent. The alcohols participate in dispersive and polar (dipole) interactions and they exert to hydrogen bond donating and accepting abilities.

The correlation coefficient is not a particularly good indicator for the model performance. It should be emphasized that its value says nothing without the degrees of freedom (r=0.997 is not significant at the 5% level if n=3! On the other hand r=0.300 is significant, i.e. the

correlation is not due to random effects, if n=100.) Therefore, phrases as 'satisfactory' or even 'excellent' correlation should be avoided. The readers should evaluate the performance and not the authors themselves.

262 Generally, simpler models are better according to the principle of parsimony.

263 Way of giving correlation equations should contain the predictive equation and indicators 264 for the model performance (n, R, F, S) both for training and external test sets. The indicators 265 are n - number of solutes involved, R - multiple correlation coefficient, F - overall Fisher 266 statistics, and S - the residual error. R and F are indeed linear indicators, but they can be 267 calculated for the Y(measured) vs. Y(calculated) linear relationship even if the calculated Y268 was derived from a nonlinear model (ANN, SVM, etc.) (Y can be any form of retention data, 269 response factor, etc.) Residual analysis, too, is strongly recommended; residual plots are more 270 useful than plots of measured and calculated values. If curvature, trend can be seen in the 271 residua (against Y(calculated)) the model is not adequate. Either further, nonlinear descriptors 272 should be involved or a nonlinear relationship.

The domain of application should be given within the models are able to predict properly (compound classes, congener series, limits, polarity of columns, etc.).

275

276 2.5 Summary of QSRR papers in gas chromatography

The QSRR papers in gas chromatography are gathered in table 1 covering the period of1996-2006.

279

Table 1

280 "Isomer cluster[ing] phenomena" have been observed for a variety of monofunctional and 281 some multi-functional compounds, i.e. isomers containing the same carbon numbers are 282 always located on parallel lines (different numbers of methylene groups are found on

different lines) if the Kovats indices of homologous compounds are plotted on two stationaryphases of different polarity [15].

285 Deviations from the linear boiling point correlations indicate host-guest interactions on 286 cyclodextrin stationary phases [24,72]; e.g. bicyclic camphene is retained behind myrcene 287 though its boiling point is appreciably smaller.

The elution orders and coelutions of all 209 PCB congeners can be predicted using a data base and structure retention correlations and congener substitution patterns [28].

290 Prediction of the retention indices of any organic compounds with known boiling points291 became possible using a three-parameter non-linear equation:

$$\log I = a \log T_{\rm b} + b(n_1 + \Sigma k_{\rm i} n_{\rm i}) + c \tag{1}$$

where n_1 is the serial number of homologue within corresponding series and n_1 is the number of other structural fragments in the molecules. The coefficients k_i in this equation reflect the relative alterations of molecular polarizabilities and may be estimated as ratios of refractions $k_i = R(D)(X)/R(D)(CH_2)$, (X are variable structural fragments within a group of congeners, $R(D)(CH_2) = 4.647 \text{ cm}^3 \text{mol}^{-1}$) [5].

Factor analysis (FA) was performed to interpret the meaning of the descriptors included in the models [26]. Hydrocarbons were successfully classified into paraffins (P), olefins (O), naphthenes (N) and aromatics (A) using FA [48]. Differentiation of ketones and aldehydes has been carried out by principal component analysis (PCA) [49]. PCA, a factorial design was applied for selecting 21 representative congeners, PBDEs. The spacing of these congeners in the physicochemical domain maximizes the coverage of key factors such as molecular size and substitution pattern [94].

305 Using the same QSRR methodology response factors can also be predicted [39].

Theoretical prediction of gas-chromatographic retention indices could be used as an additional method for the identification of organic substances during gas-chromatographic separation [40].

309 The thermodynamic interpretation were given to retention time-boiling point correlations 310 using the Trouton's rule, i.e. physical significance can be attributed to empirical QSRR 311 equations [32]. Later the physical significance could be extended using the Trouton-Hildebrand-Everett's (THE) rule [43]. Heats of vaporization, Gibbs free energies [33] and 312 313 Gibbs free energy of vaporization of one methylene group (CH_2) of n-alkanes [46] can be 314 calculated from QSRR equations (boiling point correlations of retention indices). A 315 sophisticated relationship was elaborated between retention time and carbon atom number; 316 the related thermodynamic quantities of solvation can be calculated [41].

317 The semiempirical topological index can help in the elucidation of the molecular structure318 [47,113].

Some data sets became standards for further QSRR investigations: for apolar interactions,
methyl-alkanes [59], for polar interactions, oxo compounds [49].

Partition coefficients (Kp) in a heterogeneous system consisting of two immiscible organic solvents can be successfully used for a supplementary identification parameter in qualitative GC and GC-MS analysis of organic compounds including alkyl aromatic hydrocarbons and esters, group identification of components [72].

The correlations serve as a basis for physicochemical interpretation of the topological parameters of molecules as quantities proportional to the intramolecular vibrational and rotation energies [87].

328 If GC-MS library search "hit list" matches the retention index of the unknown, there is a 329 strong presumption that a correct identification can be made [119].

Quantitative prediction of normal boiling points for organic compounds using
chromatographic retention times on two columns of different polarity. Only hydrocarbons on
nonpolar columns gave good results with a simple linear model [126].

The only review found concerning gas chromatography was in Chinese language [146].

- 334
- 335

336 3. Quantitative structure - enantioselective retention relationships, QSERR

337

338 Enantiomer separations are difficult to predict. Present status of solution theories does not 339 make possible an unambiguous prediction. Nevertheless, enormous amount of empirical 340 knowledge was gathered. Commercial data bases (CHIRBASE and CHIRSOURCE) contain 341 more than 61 000 separation [3]. As large number of chiral stationary phases is available, the 342 success rate in enantiomer separations is quite high. The efforts to rationalize chiral 343 separation using QSRR methodology have achieved limited success only. QSERR models 344 provide some insights into the role of various interactions, but they are not able to recognize 345 chiral selectors for a particular separation. One of the crucial problems is the selection of 346 suitable molecular descriptors. The other problem is that the available congener series are small, the small number of compounds involved exclude the proper validation of models. 347 348 Even the elution order (whether R or S enantiomer elutes first) is uncertain. A QSERR can be 349 used as an alternative method to confirm the elution order of enantiomers. The prediction of 350 elution order can be considered as a classification study from a chemometric point of view.

351

352 3.1 General tendencies

353 Only one review is available in Chinese [172]. A common feature of QSERR 354 investigations is that the authors attempt to use quantumchemical and 3D descriptors in linear

355 regression. Chiral descriptors are rarely applied. The elution order of the enantiomers can be 356 predicted from the interaction energy calculated by molecular mechanics.

357

358 3.2 Misleading practice and suggestions for future works

The prediction performance of models is questionable. There is no need to give the retention data in a form of an equation, if the numbers of compounds are small. The retention data, the selectivity for enatiomeric separation (α) can be used directly for identification, for determination of absolute conformation. The conclusion that e.g. 'molecular mechanics is suitable to study chiral separation' is either trivial or not true. The small number of compounds involved in the studies cannot make proper validations feasible. Hence, validation is missing from the contributions with several exceptions.

Any model providing elution order of enantiomers has an *a priori* success rate of 50%. Sign test and other test based on binomial distribution could show whether the predicted elution order is accidental or bear definite physiochemical relevance. As the number of compounds is generally small, careful internal validation (leave-one-out, leave-multiple-out) is recommended.

371

372 3.3 Summary of QSERR papers

Table 2 gathers the QSERR examinations covering the period of 1996-2006.

374

Table 2

375 One example is emphasized, where hundreds of descriptors have encoded resolution for 376 chiral separation successfully [195].

377

4. Quantitative structure - retention relationships in planar chromatography

380

381 4.1 General tendencies

Wang and Zhang have summarized the developments till 1999 [1] Moreover, Cserhati and Forgacs have critically evaluated how to calculate quantitative relationships between molecular structure and retention data, and how to determine physicochemical parameters by TLC [2]. Only the sources not covered in these reviews are enumerated here.

386 Physicochemical parameters, topological indices, non-specific parameters, and their 387 combinations are used generally as descriptors. QSRRs in TLC are used for prediction of 388 retention and determination of lipophilicity (and other physicochemical constants).

As TLC is a rapid, low-cost, simple method, the best TLC systems are routinely selected for determination of the octanol/water partition coefficient and thus the lipophilicity of the molecules.

392

393 4.2 Misleading practice and conclusions

The prediction performance of models has not been examined. Correlations can be found frequently by chance, especially if the number of descriptors is large. As the number of substances is limited on a plate the validation of models is often missing from the contributions. The conclusions such as 'correlations can be found between lipophilicity (hydrophobicity) and retention data' are trivial or at least well-known for a long time.

399

400 *4.3 Suggestions for future works*

401 The plates are of limited magnitudes; hence, QSRRs can be developed for a limited 402 number of solutes. The mobile phases can be varied more extensively than in the case of 403 HPLC. As the number of compounds is necessarily small careful internal validation (leave-404 one-out, leave-multiple-out) is recommended.

405

406 4.4 Summary of QSRR papers in planar chromatography

407 Table 3 summarizes the solutes, methods and techniques for QSRR models in TLC.

408

Table 3

- 409
- 410

411 **5.** Quantitative structure - retention relationships in column liquid chromatography

412

Despite the ever increasing usage of HPLC for the separation and analysis of various compounds, drugs, metabolites, etc., the selection of chromatographic conditions is still a tedious, time-consuming procedure mainly governed by trial and error approaches. A priori knowledge of the retention time of a given solute simplifies the selection of conditions. No wonder that the mainstream is to rationalize and to predict retention data using available and interpretable descriptors.

Although linear solvation energy relationships have similarly been defined for gas and liquid chromatography data, LSER has not gained general usage in gas chromatography, but in liquid chromatography, where LSER is used to predict retention data, to predict physical properties of solutes and classify chromatographic columns. The LSER equation for liquid chromatography is as follows [221]:

424

Solute Property =
$$c + eE + sS + aA + bB + vV$$
 (2)

where solute property can be of any kind, e.g. $\log k'$, $\log P$, etc.; E is the excess molar refraction (R_2); S is the dipolarity/polarizability (π_2^{H}); A is the overall hydrogen bond acidity ($\Sigma \alpha_2^{\text{H}}$); B is the overall hydrogen bond basicity ($\Sigma \beta_2^{\text{H}}$); V is the McGowan volume (V_x in 428 [cc mol⁻³]); *c* is a constant (intercept, off-set, e.g. $\log k_{ref}$); *e*, *s*, *a*, *b*, *v* are regression 429 coefficients of the multilinear model. Eq. (1) has been designed to deal with transfers from 430 one condensed phase to another. In gas chromatography instead of the McGowan volume the 431 gas-hexadecane partition coefficient is used: $\log(L_{16})$, which accounts for the transfers from 432 the gas phase to a condensed phase.

433 LSER includes cavity formation/dispersive interactions (V), dipolarity/polarizability 434 interactions (S), and hydrogen bonding interactions (A and B). The outcome of a LSER 435 analysis is a set of regression coefficients which provide us with information about which 436 solute-solvent interactions significantly affect the retention process. The coefficients (e, s, a, 437 b, v) are related to the chemical nature of the mobile and stationary phases, and their values 438 can be determined easily. It should be mentioned that the regression coefficients are 439 interrelated (coupled) similarly to the Abraham descriptors (E, S, A, B, V or L) i.e. they do not 440 carry independent information. Recent (unpublished) examinations on the data of ref. [221] 441 show that two to four (on average three) independent (orthogonal) coefficient would be 442 sufficient to represent the retention phenomenon properly (depending on the method used for 443 determination of independent parameters). This finding has been supported by separate 444 examinations [222].

LSER models can be applied with very large variations in chromatographic conditions. Using a relatively small set of model compounds predictions can be made well outside of the model domain. This implies that LSER models are general and indeed the LSER explanation for partitioning is generally accepted. On the other hand LSER models are typically not accurate enough for prediction purposes. LSER models contribute mainly to the general understanding of partition processes and less to optimize separations.

451 Linear relationships were established for a set of compounds between logarithm of 452 retention factor (*k*) and volume fraction of organic modifier (φ):

$$\log k = \log k_{\rm w} - S\varphi \tag{3}$$

454 where S is the slope, and $\log k$ is the intercept. S versus $\log k$ correlations are chemically 455 meaningful for a non-homologous series of compounds.

The hydrophobic-subtraction model assumes that first the major contribution of hydrophobicity is subtracted from the retention in reversed-phase liquid chromatography (RP-HPLC). Such a way the remaining contributions to retention from other solute-column interactions can be established. The general formula for retention (k) and column selectivity (α) is given by Snyder at al.:

461
$$\log \alpha \equiv \log k/k_{\rm ref} = \eta' H - \sigma' S^* + \beta' A + \alpha' B + \kappa' C$$
(4)

where k_{ref} - non-polar reference solute. The coefficients denote properties of the solute: η' -462 463 hydrophobicity; σ' - molecular "bulkiness" or resistance to insertion of the solute into the 464 stationary phase; β' - hydrogen-bond basicity; α' - hydrogen-bond acidity κ' , approximate 465 charge (either positive or negative) on the solute molecule whereas parameters denoted by 466 capital letters are complementary properties of columns: H - hydrophobicity; S^* - steric 467 resistance to insertion of bulky solute molecules into the stationary phase; A - column hydrogen-bond acidity, B - column hydrogen-bond basicity, C - column cation-exchange 468 469 activity, (hence C is pH dependent).

470 Snyder's parameters are tabulated for more than 300 columns [223]. Eq. (4) is suitable for
471 prediction and optimization of RP-HPLC separations.

472

473 *5.1 General tendencies*

Linear solvation energy relationships (LSERs) are abundantly used for characterization of stationary phases (polymers). Another important aspect is to determine lipophilicity (hydrophobicity) parameters from retention data. The reference scale for lipophilicity (logarithm of partition coefficient denoted by log*P* and determined in the l-octanol-water 478 partition system) is accepted broadly. As the conventional determination of log*P* is tedious 479 and lacks the acceptable interlaboratory reproducibility, alternative scales based on 480 chromatographic retention have been defined to measure lipophilicity. The reversed-phase 481 high - performance liquid chromatography, i.e. the partition of a solute between a polar, 482 aqueous mobile phase and a nonpolar stationary phase appeared to be especially suitable for 483 lipophilicity determinations. Rational drug design have profited a lot using fast screening 484 HPLC methods.

485 Fundamental relationships between chromatographic parameters are reviewed from the486 point of view of convenient and reliable lipophilicity measurements [298].

487 As theoretical basis exists to rationalize the main effects of retention many colleagues do 488 not feel to be bounded to validate QSRR models for liquid chromatography. Since the 489 millennium the number of validated models is increasing.

490

491 5.2 Misleading practice and conclusions

492 Statements as "the model describes the retention of ... compounds under conditions 493 very well" says not much about the achievements. The description is not inevitably necessary 494 as the retention data for these compounds under these conditions are available in tabular 495 form. A prediction of retention data for not yet measured compounds would be a real gain. 496 However, this should be checked and proved by cross-validation or external validation. Other 497 valuable aims could be the rationalization of measured data and classification of 498 column/system properties, but we should not forget that such rationalizations for the 499 same/similar compounds are available from renowned authors abundantly. Similarly, 500 numerous classification schemes are available, but none of them achieved general usage.

501 The correlation coefficients are often given without the degrees of freedom; cross-502 validated correlation coefficients are also missing in many cases.

503 Concluding remarks as "The predicted values are in very good agreement with the 504 experimental values" say very little about the real prediction performance, they should be 505 avoided.

506 There is some ambiguity in the usage of 'test analytes' and 'test sets'. Test analytes form 507 the training set whereas a new independent series of compound serve for testing the 508 prediction performance. The prediction set is often called as test set in chemometrics.

509 The statements as "ANN predicts the retention data better than MLR method" has little 510 relevance (see the text in gas chromatography part).

511

512 5.3 Suggestions for future works

513 The domain of model applicability is rarely given for QSRR investigations in liquid 514 chromatography, neither. Although mobile phase concentrations are provided, which 515 compounds can be included and which ones should be excluded from the investigations are 516 missing.

517 Properly validated models should be recommended for prediction purposes. The same 518 performance indicators (adjusted correlation coefficients, cross-validated correlation 519 coefficients, F values, standard errors, etc) should be used for comparison.

520 Standardization of optimization strategies for chromatographic separation conditions
521 would provide great benefit if using QSRR equations.

522

523 5.4 Summary of QSRR papers in column liquid chromatography

Table 4 summarizes the solutes, methods and techniques for QSRR models in column LC
(correlation coefficients are in brackets).

526

Table 4

527 The basicity of solutes has a larger effect on the retention of the PBD-zirconia phase than 528 of conventional bonded phases. Strong hydrogen bases and highly dipolar solutes, when 529 compared to nonpolar ones, are less strongly retained on PBD-zirconia than on conventional 530 phases [224].

531 A (good) linear correlation was obtained between the gradient retention time values and 532 the isocratically determined φ_0 values for 76 structurally unrelated compounds. The constants 533 of this linear correlation can be used to calculate chromatographic hydrophobicity index, CHI 534 [238].

535 The assignment of HPLC peaks to their corresponding compounds in libraries of single 536 compounds can be made on the basis of the correlation of the retention times with the 537 different substituents in the variable positions of the molecule. The correlation is performed 538 automatically by a new algorithm which is part of the computer program LIBFINDER [244].

Lipopholicity parameters, CHI and $\log k_{50}$ are moderately correlated with $\log P$ (water/octanol), and both can be used as alternative measures of lipophilicity. Analysis using the general salvation equation of Abraham shows that the solute factors that influence CHI and $\log k_{50}$ are not entirely the same as those that influence $\log P$, so that neither CHI nor $\log k_{50}$ can be used as a direct measure of $\log P$ and *vice versa*. However, the factors that influence CHI are qualitatively and quantitatively the same as those that influence $\log k_{50}$ [251].

546 Using 3D descriptors variable-reduced models resulted in considerably better predictions, 547 although these were not as good as for those models obtained by means of classical physical-548 chemical descriptors [257].

QSRR investigations may reveal non-congeneric behavior of similar compounds [266],
but the problem remains whether an extraordinary high lipophilicity will cause outlying
biological activity or not.

Properly designed test series of analytes can be recommended for comparative studies of analytical columns. QSRRs once derived on a given column for model analytes can be used to predict the retention of other analytes of a defined structure. That in turn can facilitate the procedure of the rational optimization of chromatographic separations and can characterize modern stationary phases (systems) in an objective, quantitative manner [274].

557 The linear solvent strength (LSS) model + QSRR approach has been demonstrated to 558 provide approximate, yet otherwise unattainable, a priori predictions of gradient retention of 559 analytes based solely on their chemical formulae [302].

Solute polarity descriptor (p) is useful to transfer retention data between solvents and/or columns. The retention for any chromatographic systems (mobile phase composition) can be predicted using the five solvation descriptors (Eq. (1)), if the polarity of the column has been characterized using a small training set. Alternatively, $\log P$ and hydrogen-bond acidity data can be used for these predictions [313].

565 Numerous correlations of retention data with an octanol-water partition coefficient 566 have been reported. K. Valko has reviewed lipophilicity correlations and alternative 567 lipophilicity measures [315].

A comparison of chemometric methods based on predictive performance indicated the most important variables and that, individually, genetic algorithm selected descriptors with multiple linear regression modeling outperformed all other models [335].

- 571
- 572

573 **6.** Quantitative structure - retention relationships in micellar chromatography

574

575 Micellar liquid chromatography, micellar electrokinetic chromatography, micellar 576 electrokinetic capillary chromatography, biopartitioning micellar chromatography, liposome

577 electrokinetic chromatography, and microemulsion electrokinetic chromatography are
578 indexed under this heading. Although physicochemical principles of separation are different
579 in case of electrokinetic and non-electrokinetic methods, the two types were merged here.
580 There is no use to fragment the review further.

The separation system in micellar electrokinetic chromatography (MEKC) consists of a homogeneous distribution of charged surfactant micelles in an electrolyte solution. Provided that the velocity of the micelles in a defined direction is different to the velocity of the bulk electrolyte solution in an electric field a separation of neutral solutes is possible.

585

586 6.1 General tendencies

587 Generally correlations are searched between retention data in micellar liquid 588 chromatoghraphy (MLC) and different measures for hydrophobicity (log*P*). Diverse chemical 589 compounds, substituted benzenes, drugs, pesticides, etc. are frequently used as model 590 compounds.

591 Pharmacodynamic quantities, toxicity values, bioconcentration factors can preferably be 592 predicted with micellar chromatography. The retention often serves as independent (X) 593 variable; the method sometimes called QRAR, i.e. quantitative retention- activity 594 relationships.

595

596 6.2 Misleading practice and suggestions for future works

597 In this first phase of the research the potential of the new method is used to be revealed. 598 Hence, chemometric methods, encoding the molecular structure and cross-validation, are 599 rarely used. After the rationalization of measured data multivarate methods will be applied 600 with proper validation in the near future.

601

602 6.3 Summary of QSRR papers in micellar chromatography

Table 5 summarizes the solutes, methods and techniques for QSRR models in micellarchromatography (correlation coefficients are in brackets).

605

Table 5

A migration index (MI) concept, a novel scale for measuring the hydrophobicity of neutral solutes, was extended to anionic solutes. The MI values of anionic solutes correlated very well with $\log P$, whereas the RP-HPLC retention parameter ($\log k$ 'w), which is also used as a hydrophobicity scale, correlated very little with $\log P$ for the examined anionic solutes [341].

A measure of the hydrophobic character of such amphoteric compounds (as the studied sulfonamides), could be the values of the retention coefficient determined at pH of the isoelectric point [351].

Biopartitioning micellar chromatography (BMC) based models may be a useful to screening new chemicals in the early stage of development and to select safer chemicals [356].

The retention of compounds in MLC using Brij 35 surfactant is able to describe and predict pharmacokinetic and pharmacodynamic parameters of non-steroidal antiinflammatory drugs. QRAR model is a model which can estimate the pharmacokinetic and pharmacodynamic parameters of new compounds in vitro [359].

621 The chromatographic retention of any molecule in BMC, independently of its family, can 622 be adequately described by its hydrophobicity (expressed as $\log P$) and its anionic and 623 cationic total molar charge [363].

624

625

626

627 **7. Quantitative structure - retention relationships in affinity chromatography**

628

629 Affinity chromatography (AC) and immobilized artificial membrane (IAM) 630 chromatography are indexed under this heading. Affinity chromatography where biomacromolecules form the stationary phase became an important tool in rational drug 631 632 design. AC models the drug-receptor interactions. Structural requirements of specific binding 633 sites on biomacromolecules are also revealed. Protein based stationary phases can be used for 634 enantiomer separations (c.f. OSERR, see there) as all proteins are in fact chiral, AC can be 635 applied to elucidate the molecular mechanism of enantioseparation on natural biopolymer 636 stationary phases, hence rational selection of chiral columns for specific analytical 637 separations is enhanced.

Affinity chromatography plays an important role in rational drug design because the efficiency of finding new drugs is enhanced. Moreover, it can reduce the tedious experiments of in vivo screenings. Strictly speaking refs. [377,385] do not belong to artificial membrane chromatography as no biomacromolecules form the stationary phases. However, receptor binding, affinity is modeled; hence these references are also included.

643

644 7.1 General tendencies

AC followed by chemometric data evaluation (searching QSRRs) provides information on both the solute molecules and the macromolecules forming the stationary phases. QSRR equations derived for selected solutes (often drugs) can be interpreted in terms of structural requirements of the specific binding sites on macromolecules. Multiple linear regression of affinity-chromatographic data increases the speed of search for new drugs. Specific highperformance affinity-chromatographic separations can be optimized by rational selection of chiral columns, the characteristics of which are provided by QSRR. The main efforts concern to find lipohilicity measures from IAM chromatography, i.e. a lot of work is devoted to relate hydrophobicity parameters ($\log P$) and retention date on AIM phases.

655

656 7.2 Misleading practice and suggestions for future works

657 Chemometric analysis is over and over again limited to linear regression, to search 658 correlations. Although the way of giving correlation equations is appropriate, considerably 659 more information could be extracted if using multivariate methods.

660 Calculation of descriptors encoding of the molecular structure and cross-validation are 661 rarely used. It is easy to foreseen that multivarate methods will be applied with proper 662 validation in the near future.

663

664 7.3 Summary of QSRR papers in affinity chromatography

Table 6 summarizes the solutes, methods and techniques for QSRR models in affinitychromatography.

667

Table 6

668 Detailed reviews are available abundantly [370,374-376,383,384].

A good chromatographic model of skin permeability has been determined solely by a lipophilic property, log*k*, which was measured on an immobilized artificial membrane column [369].

672 Immobilized human serum albumin (HSA) could be used to estimate plasma protein673 binding [372].

The IAM-retention is governed by hydrophobicity factors for carboxylic compounds, followed by electronic effects due to polarizability in second place. Moreover, it can be

676 concluded that the ratio of polarizability and hydrophobic effects is not the same toward IAM677 phases and biological membranes [381].

Negatively charged compounds bind more strongly to human serum albumin than it could be expected from the lipophilicity of the ionized species at a certain pH values. Several compounds showed stronger HSA binding than could be expected solely from their lipophilicity [382].

It is possible to classify potential drug molecules on the basis of QSRR analysis of retention data. Artificial neural network models utilize structural descriptors and predict pharmacological properties. Such a way diminishing the number of biological assays in the search for new drugs becomes possible [385].

686

687

688 8. Remaining quantitative structure - (chromatographic) retention relationship studies689

Mainly ion exchange systems are gathered under this heading. Other studies cannot be easily classified into the preceding groups: supercritical chromatography, fragmental approach, etc. Therefore, general tendencies, etc. have no relevance here. In ion exchange chromatography protein retention data are predicted in several cases with advanced chemometric methods e.g. with support vector machines. Whether simpler tools would do remains unknown.

Table 7 summarizes the solutes, methods and techniques for QSRR studies, which cannoteasily be categorized in the former groups.

698

Table 7

699

701 9. References

- R. Kaliszan, Quantitative structure-chromatographic retention relationships, Wiley,
 New York, 1987.
- R. Kaliszan, Structure and retention in chromatography. A chemometric approach,
 Harwood, Amsterdam, 1997.
- 706 [3] C. F. Poole, The essence of chromatography, Elsevier, Amsterdam, 2003.
- K. Heberger, Discrimination between linear and non-linear models describing retention
 data of alkylbenzenes in gas-chromatography, Chromatographia, 29 (1990) 375-84.
- 709 [5] I. G. Zenkevich, Reciprocally unambiguous conformity between GC retention indices
- and boiling points within two- and multidimensional taxonomic groups of organic
 compounds, J. High Res. Chromatogr. 21 (1998) 565-568.
- 712 [6] A. J. Miller, Subset selection in regression, Chapman and Hall, London, 1990, pp. 43713 82.
- 714 [7] D.M. Hawkins, Assessing model fit by cross validation, J. Chem. Inf. Comput. Sci. 43
 715 (2003) 579-586.
- K. Baumann, Chance correlation in variable subset regression, influence of the
 objective function, the selection mechanism, and ensemble averaging, QSAR Comb.
 Sci. 24 (2005) 1033-1046.
- A. Tropsha, P. Gramatica, V. K. Gombar, The importance of being earnest: Validation
 is the absolute essential for successful application and interpretation of QSPR models,
 QSAR Comb. Sci. 22 (2003) 69-77.
- 722 [10] R. Vanyur, K. Heberger, I. Kovesdi J. Jakus, Prediction of photosensitizer properties
- 723 affecting tumoricidal effect in photodynamic therapy using artificial neural network,
- 724 *Photochem. Photobiol.* **75** (2002) 471-478 cf. Table 3.

- V. E. F. Heinzen, R. A. Yunes, Using topological indices in the prediction of gas
 chromatographic retention indices of linear alkyl-benzene isomers, J. Chromatogr. A 719
 (1996) 462-467.
- [12] W. H. Donovan, G. R. Famini, Using theoretical descriptors in structure-activity
 relationships: retention indices of sulfur vesicans and related compounds. J. Chem. Soc.
 Perkin Trans. 2 1996, 83-89.
- [13] I. G. Zenkevich, Structural analogy principle for estimating gas chromatographic
 retention indices, J. Struct. Chem. 37 (1996) 674-682 {Zh. Struct. Khim. 37 (1996) 784733 795}.
- I. G. Zenkevich, A. A. Chupalov, R. Khertsshu, Correlation dependence of increments
 of chromatic retention indexes and differences in internal molecular energies of reagents
 and product in chemical reactions, Zh. Org. Khim. 32 (1996) 1685-1691.
- 737 [15] X. Zhang, P. Lu, Unified equation between Kovats indices on different stationary
 738 phases for select types of compounds, J. Chromatogr. A 731 (1996) 187-199.
- M. Righezza, A. Hassani, B. Y. Meklati, J. R. Chretien, Quantitative structureretention relationships (QSRR) of congeneric aromatics series studied on phenyl OV
 phases in gas chromatography, J. Chromatogr. A 723 (1996) 77-91.
- 742 [17] P. Andersson, P. Haglund, C. Rappe, M. Tysklind, Ultraviolet absorption
 743 characteristics and calculated semi-empirical parameters as chemical descriptors in
 744 multivariate modelling of polychlorinated biphenyls, J. Chemometr. 10 (1996) 171-185.
- 745 [18] Z. Kiraly, T. Kortvelyesi, L. Seres, Structure-retention relationship in the gas
 746 chromatography of N,N-dialkylhydrazones, Chromatographia, 42 (1996) 653-659.
- 747 [19] M. Gorgenyi, Z. Kiraly, T. Kortvélyesi, H. Van Langenhove, L.Seres, Structure748 retention relationship in the gas chromatography of hydrazones | [Szerkezet és retencio

kapcsolata a hidrazonok gazkromatografiajaban] Magy. Kem. Folyoirat, Kem. Kozl. 103
(1997) 576-581.

[20] N. Dimov, A. Osman, Selection of molecular descriptors used in quantitative
structure-gas chromatographic retention relationships II. Isoalkanes and alkenes, Anal.
Chim. Acta 323 (1996) 15-25.

- P. Mnuk, L. Feltl, V. Schurig, Gas chromatographic study of the inclusion properties
 of calixarenes II. Selective properties of cyclic tetra- to octamers derived from phenol,
 and some problems associated with the use of calixarenes in capillary gas
 chromatography, (1996) J. Chromatogr. A 732 (1) 63-74.
- M. P. Elizalde-Gonzalez, M. Hutfließ, K. Hedden, Retention index system, adsorption
 characteristics, and structure correlations of polycyclic aromatic hydrocarbons in fuels, J
 High Res. Chromatogr. 19 (1996) 345-352.
- [23] C. G. Georgakopoulos, J. C. Kiburis, Quantitative structure-retention relationships in
 doping control, J. Chromatogr. B 687 (1996) 151-156.
- T. J. Betts, Plots of relative retention against solute boiling points may indicate hostguest interactions with modified cyclodextrin gas chromatographic phases, J.
 Chromatogr. A 732 (1996) 408-413.
- M. Pompe, M. Razinger, M. Novic, M. Veber, Modelling of gas chromatographic
 retention indices Using Counterpropagation Neural Networks. Anal. Chim. Acta 348
 (1997) 215-221.
- J. M. Sutter, T. A. Peterson, P. C. Jurs, Prediction of gas chromatographic retention
 indices of alkylbenzenes, Anal. Chim. Acta 342 (1997) 113-122.
- J. Olivero, T. Gracia, P. Payares, R. Vivas, D. Diaz, E. Daza, P. Geerlings, Molecular
 structure and gas chromatographic retention behavior of the components of Ylang-Ylang
- 773 oil, J. Pharm. Sci. 86 (1997) 625-630.

- P. Payares, D. Diaz, J. Olivero, R. Vivas, I.Gomez, Prediction of the gas
 chromatographic relative retention times of flavonoids from molecular structure, J.
 Chromatogr. A 771 (1997) 213-219.
- N. Dimov, A. Osman, Influence of conformation on the accuracy of quantitativestructure retention relationship calculations in gas chromatography, J. Chromatogr. A 773
 (1997) 368-371.
- [30] G. M. Frame, A collaborative study of 209 PCB congeners and 6 aroclors on 20
 different HRGC columns: 1. Retention and coelution database Fresenius' J. Anal. Chem.
 357 (1997) 701-713.
- [31] V. Isidorov, I. G. Zenkevich, T. Sacharewicz, Calculation of gas chromatographic
 retention indices for monoterpenes and terpenoids from their physico-chemical constants,
 Chem. Anal. (Warsaw) 42 (1997) 627-634.
- [32] G. I. C. Simpson, Y. A. Jackson, Predictive strategies for determining retention
 indices of some allylic alcohols and their eaters by gas chromatography, J. Chromatogr. A
 766 (1997) 141-146.
- [33] K. Heberger, T. Kowalska, Thermodynamic properties of alkylbenzenes from
 retention Boiling point correlations in gas chromatography, Chromatographia 44 (1997)
 179-186.
- [34] K. Heberger, T. Kowalska, Determination of heats of vaporization and Gibbs free
 energies of alkylbenzenes on GC stationary phases of different polarity, Chromatographia
 48 (1998) 89-94.
- [35] Q. Shen, L. Xu, H. Li, Orthogonalized molecular descriptors and prediction of gas
 chromatographic rentention values of aliphatic alcohols, aldehydes, acids and amines,
 Fenxi Huaxue 25 (1997) 471.

- A. Yan, R. Zhang, M. Liu, Z. Hu, M. A. Hooper, Z. Zhao, Large artificial neural networks applied to the prediction of retention indices of acyclic and cyclic alkanes, alkenes, alcohols, esters, ketones and ethers, Comp. Chem. 22 (1998) 405-412.
- [37] J. Kang, C. Cao, Z. Li, Quantitative structure-retention relationship studies for
 predicting the gas chromatography retention indices of polycyclic aromatic hydrocarbons:
 Quasi-length of carbon chain and pseudo-conjugated system surface, J. Chromatogr. A
 799 (1998) 361-367.
- [38] P. Gramatica, N. Navas, R. Todeschini, 3D-modelling and prediction by WHIM
 descriptors. Part 9. Chromatographic relative retention time and physico-chemical
 properties of polychlorinated biphenyls (PCBs), Chemometrics Intell. Lab. Syst. 40
 (1998) 53-63.
- 809 [39] M. Jalali-Heravi, M. H. Fatemi, Prediction of flame ionization detector response
 810 factors using an artificial neural network, J. Chromatogr. A 825 (1998) 161-169.
- [40] M. Pompe, M. Novic, Prediction of gas-chromatographic retention indices using
 topological descriptors, J. Chem. Inf. Comput. Sci. 39 (1999) 59-67.
- 813 [41] F. R. Gonzalez, J. L. Alessandrini, A. M. Nardillo, Revision of a theoretical
 814 expression for gas-liquid chromatographic retention, J. Chromatogr. A 852 (1999) 583815 588.
- [42] K. Heberger, T. Kowalska, Quantitative structure-retention relationships VI.
 Thermodynamics of Kovats retention index-boiling point correlations for alkylbenzenes
 in gas chromatography, Chemometrics Intell. Lab. Syst. 47 (1999) 205-217.
- [43] K. Heberger, T. Kowalska, Thermodynamic significance of boiling point correlations
 for alkylbenzenes in gas chromatography. Extension of Trouton's rule, J. Chromatogr. A
 821 845 (1999) 13-20.

- [44] X. Zhu, L. Zhang, J. Chen, L. Wang, X. Che, The application quantitative structureretention relationship of GC to aid MS qualitative analysis, Se Pu 17 (1999) 351-353.
- [45] J. Olivero, K. Kannan, Quantitative structure-retention relationships of
 polychlorinated naphthalenes in gas chromatography, J. Chromatogr. A 849 (1999) 621627.
- [46] K. Heberger, T. Kowalska, M. Gorgenyi, Determination of the Gibbs free energy of
 one methylene unit from Kovats retention index boiling point correlations on DB-210
 stationary phase, Acta Chromatogr. 9 (1999) 25-37.
- [47] V. E. F. Heinzen, M. F. Soares, R.A. Yunes, Semi-empirical topological method for
 the prediction of the chromatographic retention of cis- and trans-alkene isomers and
 alkanes, J. Chromatogr. A 849 (1999) 495-506.
- [48] X.h. Zhu, L.-f. Zhang, X. Che and L.-x. Wang, The classification of hydrocarbons
 with factor analysis and the PONA analysis of gasoline, Chemometrics Intell. Lab. Syst.
 45 (1999)147-155.
- K. Heberger, M. Gorgenyi, Principal component analysis of Kovats indices for
 carbonyl compounds in capillary gas chromatography, J. Chromatogr. A 845 (1999) 2131.
- E. Estrada, Y. Gutierrez, Modeling chromatographic parameters by a novel graph
 theoretical sub-structural approach, J. Chromatogr. A 858 (1999) 187-199.
- [51] M. De Freitas Soares, F. Delle Monache, V. E. F. Heinzen, R. A. Yunes, Prediction of
 Gas Chromatographic Retention Indices of Coumarins, J. Braz. Chem. Soc. 10 (1999)
 189-196.
- R. Zhang, A. Yan, M. Liu, H. Liu, Z. Hu, Application of artificial neural networks for
 prediction of the retention indices of alkylbenzenes, Chemometrics Intell. Lab. Syst. 45
 (1999) 113-120.

- [53] I. G. Zenkevich, Dependence of chromatographic retention indices on the dynamic
 characteristics of molecules, Russian J. Phys. Chem. 73 (1999) 797-801 {Zh. Fiz. Khim.
 73 (1999) 905-910}.
- B. Lucic, N. Trinajstic, S. Sild, M. Karelson, A. R. Katritzky, A new efficient
 approach for variable selection based on multiregression: Prediction of gas
 chromatographic retention times and response factors, J. Chem. Inf. Comput. Sci. 39
 (1999) 610-621.
- T. R. Rybolt, D. L. Logan, M. W. Milburn, H. E. Thomas, A. B. Waters, Correlations
 of Henry's law gas-solid virial coefficients and chromatographic retention times for
 hydrocarbons and halocarbons adsorbed on carbopack C carbon, J. Colloid Interface Sci.
 220 (1999) 148-156.
- R. Acuna-Cueva, F. Hueso-Urena, N.A. Illan Cabeza, S.B. Jimenez-Pulido, M.N.
 Moreno-Carretero, J. M. Martinez Martos, Quantitative structure-capillary column gas
 chromatographic retention time relationships for natural sterols (trimethylsilyl ethers)
 from olive oil, JAOCS, J. Am. Oil Chem. Soc. 77 (2000) 627-630.
- K. Heberger, M. Gorgenyi, M. Sjostrom, Partial least squares modeling of retention
 data of oxo compounds in gas chromatography, Chromatographia 51 (2000) 595-600.
- 864 [58] H. Kato, Y. Ueda, M. Nakata, Calibration method for the gas-chromatographic
 865 retention time of polychlorinated biphenyl congeners, Anal. Sci. 16 (2000) 693-699.
- [59] A. R. Katritzky, K. Chen, U. Maran, D. A. Carlson, QSPR correlation and predictions
 of GC retention indexes for methyl- branched hydrocarbons produced by insects, Anal.
 Chem. 72 (2000) 101-109.
- [60] X. Liang, W. Wang, K.-W. Schramm, Q. Zhang, K. Oxynos, B. Henkelmann, A.
 Kettrup, A new method of predicting of gas chromatographic retention indices for
 polychlorinated dibenzofurans (PCDFs), Chemosphere 41 (2000) 1889-1895.

- [61] A. Yan, G. Jiao, Z. Hu, B.T. Fan, Use of artificial neural networks to predict the gas
 chromatographic retention index data of alkylbenzenes on carbowax-20M, Comp. Chem.
 24 (2000) 171-179.
- [62] M. Jalali-Heravi, F. Parastar, Development of comprehensive descriptors for multiple
 linear regression and artificial neural network modeling of retention behaviors of a variety
 of compounds on different stationary phases, J. Chromatogr. A 903 (2000) 145-154.
- [63] O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, A. T. Balaban, Comparison of weighting
 schemes for molecular graph descriptors: application in quantitative structure-retention
 relationship models for alkylphenols in gas-liquid chromatography, J. Chem. Inf.
 Comput. Sci. 40 (2000) 732-743.
- 882 [64] S. Liu, Molecular distance-edge vector (μ) and chromatographic retention index of
 883 alkanes, J. Chin. Chem. Soc. 47 (2000) 455-460.
- [65] S.-S. Liu, Y. Liu, Z.-L. Li, S.-X. Cai, A novel molecular electronegativity-distance
 vector (MEDV), J. Chin. Chem. Soc. 58 (2000) 1353-1357.
- 886 [66] Y. Qi, J. Yang, L. Xu, Correlation analysis of the structures and gas-liquid
 887 chromatographic retention indices of amines, Fenxi Huaxue 28 (2000) 226-227.
- [67] J. Ruther, Retention index database for identification of general green leaf volatiles in
 plants by coupled capillary gas chromatography-mass spectrometry, J. Chromatogr. A
 890 (2000) 313-319.
- [68] J. M. Santiuste, Relationship between GLC retention data and topological indices for
 a wide variety of solutes on five stationary phases of different polarity, Chromatographia
 52 (2000) 225-232.
- [69] J. M. Santiuste, J. A. García-Domínguez, Study of retention interactions of solute and
 stationary phase in the light of the solvation model theory, Anal. Chim. Acta 405 (2000)
 335-346.

- [70] K. Sielex, J. T. Andersson, Prediction of gas chromatographic retention indices of
 polychlorinated dibenzothiophenes on non-polar columns, J. Chromatogr. A 866 (2000)
 105-120.
- 900 [71] M. Jalali-Heravi, M.H. Fatemi, Prediction of thermal conductivity detection response
 901 factors using an artificial neural network, J. Chromatogr. A 897 (2000) 227-235.
- 902 [72] T. J. Betts, The use of linear expressions of solute boiling point versus retention to
 903 indicate special interactions with the molecular rings of modified cyclodextrin phases in
 904 gas chromatography, J. Chromatogr. Sci. 38 (2000) 357-364.
- 905 [73] M. M. C. Ferreira, Polycyclic aromatic hydrocarbons: A QSPR study, Chemosphere
 906 44 (2001) 125-146.
- 907 [74] T. Kortvelyesi, M. Gorgenyi, K. Heberger, Correlation between retention indices and
 908 quantum-chemical descriptors of ketones and aldehydes on stationary phases of different
 909 polarity, Anal. Chim. Acta 428 (2001) 73-82.
- [75] L. P. Zhou, Z. N. Xia, B. Y. Li, S. S. Liu, H. Li, M. He, Z. L. Li, Estimation of gas
 chromatographic retention index for polycyclic aromatic hydrocarbons using VMDE, Se
 Pu 19 (2001) 25-31.
- 913 [76] O. Ivanciuc, T. Ivanciuc, D. J. Klein, W. A. Seitz, A. T. Balaban, Quantitative
 914 structure-retention relationships for gas chromatographic retention indices of
 915 alkylbenzenes with molecular graph descriptors, SAR QSAR Environ. Res. 11 (2001)
 916 419-452.
- 917 [77] A. Yan, Z. Hu, Linear and non-linear modeling for the investigation of gas
 918 chromatography retention indices of alkylbenzenes on Cit.A-4, SE-30 and Carbowax
 919 20M, Anal. Chim. Acta 433 (2001) 45-154.
- [78] C.-S. Yin, W.-M. Guo, W. Liu, W. Zhao, Z.-X. Pan, Estimation and prediction of gas
 chromatography retention indices of hydrocarbons in straight-run gasoline by using

922 artificial neural network and structural coding method, Chem. Res. Chinese Univ. 17923 (2001) 31-40.

[79] Z.H. Lin, S. S. Liu, Z. L. Li, Quantitative structure-retention relationship (QSRR) studies of polychlorinated dibenzofurans (PCDFs) on diverse gas chromatographic stationary phases on a set of novel molecular distance edge vector, Se Pu 19 (2001) 116123.

- [80] C. Yin, W. Liu, Z. Li, Z. Pan, T. Lin, M. Zhang, Chemometrics to chemical modeling:
 Structural coding in hydrocarbons and retention indices of gas chromatography, J. Sep.
 Sci. 24 (2001) 213-220.
- [81] M. Jalali-Heravi, M. H. Fatemi, Artificial neural network modeling of Kovats
 retention indices for noncyclic and monocyclic terpenes, J. Chromatogr. A 915 (2001)
 177-183.
- [82] V. A. Isidorov U. Krajewska, E. N. Dubis, M. A. Jdanova, Partition coefficients of
 alkyl aromatic hydrocarbons and esters in a hexane-acetonitrile system, J. Chromatogr. A
 923 (2001) 127-136.
- 937 [83] T. Ivanciuc, O. Ivanciuc, Quantitative structure-retention relationship study of gas
 938 chromatographic retention indices for halogenated compounds, Internet Electron J. Mol.
 939 Des. 1 (2002) 94-107.
- 940 [84] C. J. Feng, X. H. Du, Topological research of Kovats indices for amines Se Pu 19
 941 (2001) 124-127.
- 942 [85] T. R. Rybolt, D. N. Hooper, J. B. Stensby, H. E. Thomas, M. L. Baker Jr, Molar
 943 refractivity and connectivity index correlations for Henry's law virial coefficients of
 944 odorous sulfur compounds on carbon and for gas-chromatographic retention indices, J.
 945 Colloid Interface Sci. 234 (2001) 168-177.

- W. Guo, Y. Lu, X. M. Zheng, The predicting study for chromatographic retention
 index of saturated alcohols by MLR and ANN, Talanta 51 (2000) 479-488 and in chinese:
 W. Guo, Y. Lu, X. M. Zheng, The application of artificial neural networks in the study of
 quantitative structure-retention relationships for saturated alcohols, Fenxi Huaxue 29
 (2001) 420.
- 951 [87] I. G. Zenkevich, A. N. Marinichev, Comparison of the topological and dynamic
 952 characteristics of molecules for calculating retention indices of organic compounds, J.
 953 Struct. Chem. 42 (2001) 747-754.
- 954 [88] I. G. Zenkevich, Interpretation of retention indices in gas chromatography for
 955 establishing structures of isomeric products of alkylarenes radical chlorination, Russian J.
 956 Org. Chem. 37 (2001) 270-280.
- [89] A. R. Katritzky, R. Petrukhin, D. Tatham, S. Basak, E. Benfenati, M. Karelson, U.
 Maran, Interpretation of quantitative structure property and activity relationships, J.
 Chem. Inf. Comput. Sci. 41 (2001) 679-685.
- [90] Z. Lin, J. Xu, S. Liu, Z. Li, Estimation and prediction of gas chromatography
 retention index for polycyclic aromatic hydrocarbons, Fenxi Huaxue 29 (2001) 889.
- 962 [91] M. Randic, S.C. Basak, M. Pompe, M. Novic, Prediction of gas chromatographic
 963 retention indices using variable connectivity index, Acta Chim. Sloven. 48 (2001) 169964 180.
- [92] C. Yin, W. Guo, T. Lin, S. Liu, R. Fu, Z. Pan, L. Wang, Application of wavelet neural
 network to the prediction of gas chromatographic retention indices of alkanes, J. Chin.
 Chem. Soc. 48 (2001) 739-749.
- [93] E. J. Delgado, A. Matamala, J. B. Alderete, Predicting gas chromatographic retention
 time of polychlorinated dibenzo-p-dioxins from molecular structure, Z. Phys. Chem. 216
 (2002) 451-457.

- 971 [94] M. Harju, P. L. Andersson, P. Haglund, M. Tysklind, Multivariate physicochemical
 972 characterisation and quantitative structure-property relationship modelling of
 973 polybrominated diphenyl ethers, Chemosphere 47 (2002) 375-384.
- 974 [95] M. Jalali-Heravi, Z. Garkani-Nejad, Prediction of relative response factors for flame
 975 ionization and photoionization detection using self-training artificial neural networks, J.
 976 Chromatogr. A 950 (2002) 183-194.
- 977 [96] B. S. Junkes, R. D. M. C. Amboni, V. E. F. Heinzen, R. A. Yunes, Quantitative
 978 structure retention relationships (QSRR), using the optimum semi-empirical topological
 979 index, for methyl-branched alkanes produced by insects, Chromatographia 55 (2002) 707980 713.
- [97] B. S. Junkes, R. D. M. C. Amboni, V. E. F. Heinzen, R. A. Yunes, Use of a semiempirical topological method to predict the chromatographic retention of branched
 alkenes, Chromatographia 55 (2002) 75-80.
- [98] Z. Lin, S. Liu, Z. Li, Molecular modeling of quantitative structure retention
 relationship studies: Retention behavior of polychlorinated dibenzofurans on gas
 chromatographic stationary phases of varying polarity by a novel molecular distance edge
 vector, J. Chromatogr. Sci. 40 (2002) 7-13.
- M. Jalali-Heravi, Z. Garkani-Nejad, Use of self-training artificial neural networks in
 modeling of gas chromatographic relative retention times of a variety of organic
 compounds, J. Chromatogr. A 945 (2002) 173-184.
- [100] S. Liu, C. Yin, S. Cai, Z. Li, Molecular structural vector description and retention
 index of polycyclic aromatic hydrocarbons, Chemometrics Intell. Lab. Syst. 61 (2002) 315.

- [101] M. H. Fatemi, Simultaneous modeling of the Kovats retention indices on OV-1 and
 SE-54 stationary phases using artificial neural networks, J. Chromatogr. A 955 (2002)
 273-280.
- 997 [102] X. Yao, X. Zhang, R. Zhang, M. Liu, Z. Hu, B. Fan, Prediction of gas
 998 chromatographic retention indices by the use of radial basis function neural networks,
 999 Talanta 57 (2002) 297-306.
- [103] Y. Wang, X. Yao, X. Zhang, R. Zhang, M. Liu, Z. Hu, B. Fan, The prediction for gas
 chromatographic retention indices of saturated esters on stationary phases of different
 polarity, Talanta 57 (2002) 641-652.
- [104] R. D. M. C. Amboni, B. D. S. Junkes, R. A. Yunes, V. E. F. Heinzen, Quantitative
 structure-property relationship study of chromatographic retention indices and normal
 boiling points for oxo compounds using the semi-empirical topological method, J. Mol.
 Struct: THEOCHEM 586 (2002) 71-80.
- [105] S.-Y. Li, C. Sun, Y. Wang, S.-F. Xu, S.-C. Yao, L.-S. Wang, Quantitative structure
 retention relationship studies for predicting relative retention times of chlorinated phenols
 on gas chromatography, J. Environ. Sci. 14 (2002) 418-422.
- 1010 [106] S. S. Liu, C. S. Yin, L. S. Wang, MEDV-13 for QSRR of 62 polychlorinated 1011 naphthalenes, Chin. Chem. Lett. 13 (2002) 791-794.
- 1012 [107] Y. Du, Y. Liang, D. Yun, Data mining for seeking an accurate quantitative
 1013 relationship between molecular structure and GC retention indices of alkenes by
 1014 projection pursuit, J. Chem. Inf. Comput. Sci. 42 (2002) 1283-1292.
- 1015 [108] I. G. Zenkevich, Chemometric characterization of differences in chromatographic
 1016 retention indices on standard polar and nonpolar phases as a criterion for the group
 1017 identification of organic compounds, J. Anal. Chem. 58 (2003) 99-109.

- 1018 [109] A. Krawczuk, A. Voelkel, J. Lulek, R. Urbaniak, K. Szyrwinska, Use of topological
 1019 indices of polychlorinated biphenyls in structure-retention relationships, J. Chromatogr. A
 1020 1018 (2003) 63-71.
- [110] Y. Gao, Y. Wang, X. Yao, X. Zhang, M. Liu, Z. Hu, B. Fan, The prediction for gas
 chromatographic retention index of disulfides on stationary phases of different polarity,
 Talanta 59 (2003) 229-237.
- 1024 [111] J. M. Santiuste, J. Harangi, J. M. Takacs, Mosaic increments for predicting the gas
 1025 chromatographic retention data of the chlorobenzenes, J. Chromatogr. A 1002 (2003)
 1026 155-168
- 1027 [112] J. M. Santiuste, J. M. Takacs, Relationships between retention data of benzene and
 1028 chlorobenzenes with their physico-chemical properties and topological indices,
 1029 Chromatographia 58 (2003) 87-96.
- 1030 [113] B. Ren, Atom-type-based AI topological descriptors for quantitative structure1031 retention index correlations of aldehydes and ketones, Chemometrics Intell. Lab. Syst. 66
 1032 (2003) 29- 39.
- [114] B. S. Junkes, R. D. M. C. Amboni, R. A. Yunes, and V. E. F. Heinzen, Semiempirical
 topological index: A novel molecular descriptor for quantitative structure-retention
 relationship studies, Internet Electron. J. Mol. Des. 2003, 2, 33-49 and supplementary
 material S1-S12.
- 1037 [115] Y.-R. Jiang, Z.-G. Liu, J.-Y. Liu, Y.-H. Hu, D.-Z.Wang, Application of a novel 1038 moledular topological index, Acta Phys. Chim. Sinica 19 (2003) 198-202.
- 1039 [116] D. Xihua, F. Changjun, A molecular topological research on the gas chromatography
 1040 retention index of alcohols, Fenxi Huaxue 31 (2003) 486-489.

- 1041 [117] I. G. Zenkevich, B. Kranicz, Choice of nonlinear regression functions for various
 1042 physicochemical constants within series of homologues, Chemometrics Intell. Lab. Syst.
 1043 67 (2003) 51-57.
- 1044 [118] Y. Du, Y. Liang, Data mining for seeking accurate quantitative relationship between
 1045 molecular structure and GC retention indices of alkanes by projection pursuit, Comput.
 1046 Biol. Chem. 27 (2003) 339-353.
- 1047 [119] W. P. Eckel T. Kind Use of boiling point-Lee retention index correlation for rapid
 1048 review of gas chromatography-mass spectrometry data, Anal. Chim. Acta 494 (2003)
 1049 235-243.
- 1050 [120] B. S. Junkes, R. D. M. C. Amboni, R. A. Yunes, V. E. F. Heinzen, Prediction of the
 1051 chromatographic retention of saturated alcohols on stationary phases of different polarity
 1052 applying the novel semi-empirical topological index, Anal. Chim. Acta 477 (2003) 29-39.
- 1053 [121] D. Wang, X. Xu, S. Chu, D. Zhang, Analysis and structure prediction of chlorinated
 1054 polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride,
 1055 Chemosphere 53 (2003) 495-503.
- 1056 [122] C. Yin, S. Liu, X. Wang, D. Chen, L. Wang, An efficient and simple approach to
 1057 predict Kovats indexes of polychlorinated naphthalenes in gas chromatography, J. Chin.
 1058 Chem. Soc. 50 (2003) 875-879.
- [123] F. Hueso-Ureña, N. I. Cabeza, S. B. Jiménez-Pulido, M. N. Moreno-Carretero, and J.
 M. Martínez-Martos, A recalculation of quantitative structure chromatographic retention
 time relationships on natural phenols and sterols found in olive oil, Internet Electron. J.
 Mol. Des. 2004, no 6 (without page number).
- 1063 [124] B. D. S. Junkes, R. D. De. M. C. Amboni, R. A. Yunes, V. E. F. Heinzen, Application1064 of the semi-empirical topological index in quantitative structure-chromatographic

- retention relationship (QSRR) studies of aliphatic ketones and aldehydes on stationary
 phases of different polarity, J. Braz. Chem. Soc. 15 (2004) 183-189.
- 1067 [125] M. Pompe, J. M. Davis, C. D. Samuel, Prediction of thermodynamic parameters in
 1068 gas chromatography from molecular structure: Hydrocarbons, J. Chem. Inf. Comput. Sci.
 1069 44 (2004) 399-409.
- 1070 [126] X. Shao, G. Wang, Quantitative prediction of normal boiling points for organic
 1071 compounds using chromatographic retention times on two columns of different polarity,
 1072 Chromatographia 59 (2004) 615-620.
- 1073 [127] A. G. Fragkaki, M. A. Koupparis, C. G. Georgakopoulos, Quantitative structure-1074 retention relationship study of α -, β 1-, and β 2-agonists using multiple linear regression 1075 and partial least-squares procedures, Anal. Chim. Acta 512 (2004) 165-171.
- 1076 [128] M. R. Hodjmohammadi, P. Ebrahimi, F. Pourmorad, Quantitative structure-retention
 1077 relationships (QSRR) of some CNS agents studied on DB-5 and DB-17 phases in gas
 1078 chromatography, QSAR Comb. Sci. 23 (2004) 295-302.
- 1079 [129] O. Farkas, K. Heberger, I. G. Zenkevich, Quantitative structure-retention relationships
 1080 XIV: Prediction of gas chromatographic retention indices for saturated O-, N-, and S-
- 1081 heterocyclic compounds, Chemometrics Intell. Lab. Syst. 72 (2004) 173-184.
- 1082 [130] B. Skrbic, N. Djurisic-Mladenovic, J. Cvejanov, Discrimination between linear and
 1083 non-linear models for retention indices of polycyclic aromatic hydrocarbons in the so1084 called Lee's scale, Chemometrics Intell. Lab. Syst. 72 (2004) 167-171.
- [131] X.-H. Du, Prediction of gas chromatography retention index of sulfides by the method
 of novel molecular connectivity index and topological index, Nanjing Li Gong Daxue
 Xuebao 28 (2004) 524-527.

- 1088 [132] H. Du, Z. Ring, Y. Briker, P. Arboleda, Prediction of gas chromatographic retention
 1089 times and indices of sulfur compounds in light cycle oil, Catalysis Today 98 (2005) 2171090 225
- 1091 [133] T. R. Rybolt, V. E. Janeksela, D. N. Hooper, H. E. Thomas, N. A. Carrington, E. J.
- Williamson, Predicting second gas-solid virial coefficients using calculated molecular
 properties on various carbon surfaces, J. Colloid Interface Sci. 272 (2004) 35-45.
- 1094 [134] I. G. Zenkevich, M. Moeder, G. Koeller, S. Schrader, Using new structurally related
 additive schemes in the precalculation of gas chromatographic retention indices of
 polychlorinated hydroxybiphenyls on HP-5 stationary phase, J Chromatogr A 1025
 (2004) 227-236.
- 1098 [135] M. Jalali-Heravi, A. Kyani, Use of computer-assisted methods for the modeling of the
 1099 retention time of a variety of volatile organic compounds: A PCA-MLR-ANN approach,
 1100 J. Chem. Inf. Comput. Sci. 44 (2004) 1328-1335.
- [136] M. Jalali-Heravi, E. Noroozian, M. Mousavi, Prediction of relative response factors of
 electron-capture detection for some polychlorinated biphenyls using chemometrics, J.
 Chromatogr. A 1023 (2004) 247-254.
- 1104 [137] J. M. Pérez-Parajón, J. M. Santiuste, J. M Takacs, Sensitivity of the methylbenzenes
 and chlorobenzenes retention index to column temperature, stationary phase polarity, and
 number and chemical nature of substituents, J Chromatogr A 1048 (2004) 223-232.
- 1107 [138] Z. Garkani-Nejad, M. Karlovits, W. Demuth, T. Stimpfl, W. Vycudilik M. Jalali-
- Heravi, K. Varmuza, Prediction of gas chromatographic retention indices of a diverse set
 of toxicologically relevant compounds, J Chromatogr A, 1028 (2004) 287-95.
- 1110 [139] H. Deng, P. Huang, Y. Hu, N. Ye, Z. Li, A novel molecular distance edge vector as1111 applied to chemical modeling of quantitative structure-retention relationships: Various

- gas chromatographic retention behaviors of polychlorinated dibenzofurans on different
 polarity-varying stationary phases, Chinese Sci. Bull. 50 (2005) 1683-1687.
- 1114 [140] X. Yu, D. Yang, Predicting the Kovats retention index for alkoxyl silicon chlorides
 1115 and sulfides on stationary phases of different polarities using novel definition of
 1116 molecular topological index, Fenxi Huaxue 33 (2005) 101-105.
- 1117 [141] J. Shi, F. Jiang, W. Yan, J. Wang, G. Wang, Quantitative structure-chromatographic
 1118 retention relationships of hydrocarbons on different polar stationary phases, Fenxi
 1119 Huaxue 33 (2005) 181-186.
- 1120 [142] P. Korytar, A. Covaci, J. De Boer, A. Gelbin, U.A.Th. Brinkman, Retention-time
- database of 126 polybrominated diphenyl ether congeners and two Bromkal technical
 mixtures on seven capillary gas chromatographic columns, J. Chromatogr. A 1065 (2005)
 239-249.
- [143] O. Farkas, K. Heberger, Comparison of ridge regression, partial least-squares,
 pairwise correlation, forward- and best subset selection methods for prediction of
 retention indices for aliphatic alcohols, J. Chem. Inf. Model. 45 (2005) 339-346.
- [144] X. Du, J. Gu, A modified topological index and its application in the chromatography,
 Fenxi Huaxue 33 (2005) 553-556.
- [145] Y. Song, J. Zhou, S. Zi, J. Xie, Y. Ye, Theoretical analysis of the retention behavior
 of alcohols in gas chromatography, Bioorg. Med. Chem. 13 (2005) 3169-3173.
- 1131 [146] C. Zhao, Y. Liang, Q. Hu, T. Zhang, Review on gas chromatographic retention index,
- 1132 Fenxi Huaxue 33 (2005) 715-721.
- 1133 [147] B. S. Junkes, A. C. S. Arruda, R. A. Yunes, L. C. Porto, V. E. F. Heinzen, Semi-
- empirical topological index: A tool for QSPR/QSAR studies, J. Mol. Model. 11 (2005)
 1135 128-134.

- [148] H. Can, A. Dimoglo, V. Kovalishyn, Application of artificial neural networks for the
 prediction of sulfur polycyclic aromatic compounds retention indices, J. Mol. Struct:
 THEOCHEM 723 (2005) 183-188.
- 1139 [149] Z. Zhai, Z. Wang, L. Wang, Quantitative structure-property relationship study of GC
- 1140 retention indices for PCDFs by DFT and relative position of chlorine substitution, J. Mol.
- 1141 Struct: THEOCHEM 724 (2005) 115-124.
- [150] G.H. Ding, J.W. Chen, X.L. Qiao, L.P. Huang, J. Lin, X.Y. Chen, Comparison of
 subcooled liquid vapor pressures of polychlorinated dibenzo-p-dioxins and dibenzofurans
 predicted by QSPR and GC-RI methods, SAR QSAR Environ. Res. 16 (2005) 301-312.
- 1145 [151] K. Zarei, M. Atabati, Prediction of GC retention indexes for insect-produced methyl-
- substituted alkanes using an artificial neural network and simple structural descriptors, J.
- 1147 Anal. Chem. 60 (2005) 732-737.
- 1148 [152] X. Du, Correlation between group modify index and chromatographic retention value
 of PCDFs, Huagong Xuebao 56 (2005) 1955-1961.
- [153] F. Safa, M. R.Hadjmohammadi, Use of topological indices of organic sulfur
 compounds in quantitative structure-retention relationship study, QSAR Comb. Sci. 24
 (2005) 1026-1032.
- 1153 [154] H. Wang, X. Wang, J. Zhao, C. Sun, L.Wang, Holographic QSRR of polychlorinated
 1154 dibenzofurans, Chinese Sci. Bull. 50 (2005) 961-964.
- 1155 [155] R.-J. Hu, H.-X. Liu, R.-S. Zhang, C.-X. Xue, X.-J. Yao, M.-C. Liu, Z.-D. Hu, B.-T.
- Fan, QSPR prediction of GC retention indices for nitrogen-containing polycyclic
 aromatic compounds from heuristically computed molecular descriptors, Talanta 68
 (2005) 31-39.
- 1159 [156] L. Liu, C.-Z. Cao, B. Xie, L.-K. Zou, Research of QSRR on chromatography retention
- 1160 index of sulfides and mercaptans, J Hunan Univ. Sci. Technol. 20 (2005) 74-80.

- [157] S. Sremac, B. Skrbic, A.Onjia, Artificial neural network prediction of quantitative
 structure retention relationships of polycyclic aromatic hydocarbons in gas
 chromatography, J. Serb. Chem. Soc. 70 (2005) 1291-1300.
- 1164 [158] F. Luan, C. Xue, R. Zhang, C. Zhao, M. Liu, Z. Hu, B. Fan, Prediction of retention
- time of a variety of volatile organic compounds based on the heuristic method and support vector machine, Anal. Chim. Acta 537 (2005) 101-110.
- 1167 [159] C. Nie, Y. Dai, S. Wen, Z. Li, Molecular topological study on gas chromatographic
 1168 retention indices of alkane series, Se Pu 23 (2005) 1-6.
- [160] Z.-C. Zhai, Z.-Y. Wang, S.-D. Chen, Quantitative structure-retention relationship for
 gas chromatography of polychlorinated naphthalenes by ab initio quantummechanical
- 1171 calculations and a Cl substitution position method, QSAR Comb. Sci. 25 (2006) 7-14.
- 1172 [161] J. Acevedo-Martinez, J. C. Escalona-Arranz, A. Villar-Rojas, F. Tellez-Palmero, R.
 1173 Perez-Roses, L. Gonzalez, R. Carrasco-Velar, Quantitative study of the structure-
- retention index relationship in the imine family, J. Chromatogr. A 1102 (2006) 238-244.
- 1175 [162] Y. Wang, S.-S. Liu, J.-S. Zhao, X.-D. Wang, L.-S. Wang, Prediction of gas
- chromatographic retention indices of organophosphates by electrotopological state index,
 Acta Chim. Sinica 64 (2006) 1043-1050.
- 1178 [163] Y. Wang, A. Li, H. Liu, Q. Zhang, W. Ma, W. Song, G. Jiang, Development of
 1179 quantitative structure gas chromatographic relative retention time models on seven
 1180 stationary phases for 209 polybrominated diphenyl ether congeners, J. Chromatogr. A
 1103 (2006) 314-328.
- 1182 [164] M.-J. Li, C.-J. Feng, Topological indices of gas chromatographic retention indices for
 1183 aliphatic alcohols, Shiyou Huagong Gaodeng Xuexiao Xuebao 19 (2006) 28-33.

- [165] C. Lu, W. Guo, C. Yin, Quantitative structure-retention relationship study of the gas
 chromatographic retention indices of saturated esters on different stationary phases using
 novel topological indices, Anal. Chim. Acta 561 (2006) 96-102.
- [166] V. Isidorov, A. Purzynska, A. Modzelewska, M. Serowiecka, Distribution coefficients
 of aliphatic alcohols, carbonyl compounds and esters between air and
 Carboxen/polydimethylsiloxane fiber coating, Anal. Chim. Acta 560 (2006) 103-109.
- 1190 [167] B. Skrbic, A. Onjia, Prediction of the Lee retention indices of polycyclic aromatic
 1191 hydrocarbons by artificial neural network, J. Chromatogr. A 1108 (2006) 279-284.
- [168] F. Liu, Y. Liang, and C. Cao, Prediction of gas chromatographic retention indices of
 methylalkanes produced by insects, Internet Electron. J. Mol. Des. 5 (2006) 102-115.
- 1194 [169] S. A. Mjos, Prediction of equivalent chain lengths from two-dimensional fatty acid
 1195 retention indices, J. Chromatogr. A 1122 (2006) 249-254.
- [170] A. S. Mjos, O. Grahl-Nielsen, Prediction of gas chromatographic retention of
 polyunsaturated fatty acid methyl esters, J. Chromatogr. A 1110 (2006) 171-180.
- [171] T. Schade, J. T. Andersson, Speciation of alkylated dibenzothiophenes through
 correlation of structure and gas chromatographic retention indexes, J. Chromatogr. A
 1117 (2006) 206-213.
- [172] R.-Y. Gao, H.-F. Wang, The quantitative structure Enantioselective retention
 relationships and the application in the chiral recognition mechanism in the
 chromatography, Chinese J. Org. Chem. 19 (1999) 139-140.
- [173] T. D. Booth, I. Wainer, Investigation of the enantioselective separations of aalkylarylcarboxylic acids on an amylose tris(3,5-dimethylphenylcarbamate) chiral
 stationary phase using quantitative structure-enantioselective retention relationships
 identification of a conformationally driven chiral recognition mechanism, J. Chromatogr.
 A 737 (1996) 157-169.

- [174] T. D. Booth, I. W. Wainer, Mechanistic investigation into the enantioselective
 separation of mexiletine and related compounds, chromatographed on an amylose
 tris(3,5-dimethylphenylcarbamate) chiral stationary phase, J. Chromatogr. A 741 (1996)
 205-211.
- 1213 [175] C. Altomare, S. Cellamare, A. Carotti, M.L. Barreca, A. Chimirri, A.-M. Monforte, F.
- Gasparrini, C. Villani, M. Cirilli, F. Mazza, Substituent effects on the enantioselective
 retention of anti-HIV 5-aryl-2-1,2,4-oxadiazolines on R,R-DACH-DNB chiral stationary
- 1216 phase, Chirality 8 (1996) 556-566.
- 1217 [176] V. Andrisano, T. D. Booth, V. Cavrini, I. W. Wainer, Enantioselective separation of
- 1218 chiral arylcarboxylic acids on an immobilized human serum albumin chiral stationary1219 phase, Chirality 9 (1997) 178-183.
- [177] T. D. Booth, K. Azzaoui, I. W. Wainer, Prediction of chiral chromatographic
 separations using combined multivariate regression and neural networks, Anal. Chem. 69
 (1997) 3879-3883.
- [178] T. D. Booth, W. J. Lough, M. Saeed, T. A. G. Noctor, I. W. Wainer, Enantioselective
 separation of enantiomeric amides on three amylose- based chiral stationary phases:
 Effects of backbone and carbamate side chain chiralities, Chirality 9 (1997) 173-177.
- [179] Z. Chilmonczyk, H. Ksycinska, M. Mazgajska, J. Cybulski, R. Kaliszan, Non-linear
 structure-enantioselective retention relationships in a homologous series of 1,4disubstituted piperazine derivatives, J. Chromatogr. A 788 (1997) 81-85.
- [180] L. I. Nord, S. P. Jacobsson, A novel method for examination of the variable
 contribution to computational neural network models, Chemometrics Intell. Lab. Syst. 44
 (1998) 153-160.
- 1232 [181] H. Chen, X.-Y. Lu, R.-Y. Gao, J.-M. Huang, H.-Z. Yang, Q.-S. Wang, Investigation 1233 of retention and chiral recognition mechanism using quantitative structure-

- 1234 enantioselectivity retention relationship in high performance liquid chromatography,1235 Chin. J. Chem. 18 (2000) 194-197.
- [182] C. A. Montanari, Q. B. Cass, M. E. Tiritan, A. L. S. D. Souza, A QSERR study on
 enantioselective separation of enantiomeric sulphoxides, Anal. Chim. Acta 419 (2000)
 93-100.
- [183] J. Huang, H. Chen, R. Gao, Q. Wang, R. Chen, Retention and chiral recognition
 mechanism of organo-phosphorus compounds in high-performance liquid
 chromatography, Science in China, Series B: Chemistry 44 (2001) 147-153.
- 1242 [184] T. Suzuki, S. Timofei, B. E. Iuoras, G. Uray, P. Verdino, W. M. F. Fabian,
 1243 Quantitative structure-enantioselective retention relationships for chromatographic
 1244 separation of arylalkylcarbinols on Pirkle type chiral stationary phases, J. Chromatogr. A
 1245 922 (2001) 13-23.
- I246 [185] J.-M. Huang, H. Chen, R.-Y. Gao, Q.-S. Wang, Investigation of retention and chiral
 recognition mechanism of the derivative β-cyclodextrin bonded stationary phase (II), Kao
 Teng Hsueh Hsiao Hua Heush Hsueh Pao 22 (2001) 1842.
- [186] J.-M. Huang, H. Chen, Q.-S. Wang, R.-Y. Gao, R.-Y.Chen, Investigation of retention
 and chiral recognition mechanism of the a-aminophosphonate compounds on the
 derivative β-cyclodextrin bonded stationary phase, J. Chin. Chem. Soc. 59 (2001) 2991305.
- [187] J.-M. Huang, H. Chen, Q.-S. Wang, R.-Y. Gao, R.-Y. Chen, Study of retention and
 chiral recognition mechanisms of diphenyl 1-(n-benzyloxycarbonyl)-aminoalkanephosphonates organophosphorus compounds in HPLC, J. Chin. Chem. Soc. 59 (2001) 19751256 1981.

- [188] E. Calleri, E. De Lorenzi, D. Siluk, M. Markuszewski, R. Kaliszan, G. Massolini,
 Riboflavin binding protein chiral stationary phase: Investigation of retention
 mechanism, Chromatographia 55 (2002) 651-658.
- [189] I. G. Zenkevich and R. R. Kostikov, Prediction of gas-chromatographic elution
 sequence of diastereomers and enantiomers using the molecular dynamics methods,
 Russian J. Org. Chem. 39 (2003) 1057-1063.
- [190] W. M. F. Fabian, W. Stampfer, M. Mazur, G. Uray, Modeling the chromatographic
 enantioseparation of aryl- and hetarylcarbinols on ULMO, a brush-type chiral stationary
 phase, by 3D-QSAR techniques, Chirality 15 (2003) 271-275.
- 1266 [191] B. Zhang, Z.-C. Shang, W.-N. Zhao, J.-W. Zou, G.-X. Hu, Q.-S. Yu, Quantitative
 1267 structure-enantioselective retention relationships study of 5-arylhydantoins, Acta Physico
- 1268 Chimica Sinica 19 (2003) 938-943.
- [192] G.-S. Yang, S.-L. Yuan, X.-J. Lin, Z.-N. Qi, C.-B. Liu, H.Y. Aboul-Enein, G. Felix,
 The study of chiral discrimination of organophosphonate derivatives on pirkle type chiral
 stationary phase by molecular modeling, Talanta 64 (2004) 320-325.
- [193] C. Yang, C. Zhong, Chirality factors and their application to QSAR studies of chiral
 molecules, QSAR Comb. Sci. 24 (2005) 1047-1055.
- 1274 [194] G. Massolini, G. Fracchiolla, E. Calleri, G. Carbonara, C. Temporini, A. Lavecchia,
- S. Cosconati, E. Novellino, F. Loiodice, Elucidation of the enantioselective recognition
 mechanism of a penicillin G acylase-based chiral stationary phase towards a series of 2-
- 1277 aryloxy-2- arylacetic acids, Chirality 8 (2006) 633-643.
- [195] S. Caetano, Y. Vander Heyden, Modelling the quality of enantiomeric separations
 based on molecular descriptors, Chemometrics Intell. Lab. Syst. 84 (2006) 46-55.
- 1280 [196] Q. S. Wang, L. Zhang, Review of research on quantitative structure-retention
- relationships in thin-layer chromatography, J. Liq. Chrom. Rel. Technol. 22 (1999) 1-14.

- [197] T. Cserhati, E. Forgacs, Structure-retention relationships and physicochemical
 characterization of solutes in thin-layer chromatography, Journal of AOAC International
 81 (1998) 1105-1107.
- [198] T. Cserhati, G. Oros, Determination of hydrophobicity parameters of antibiotics by
 reversed-phase chromatography. The effect of support, Biomed. Chromatogr. 10 (1996)
 117-121.
- [199] J. Novakovic, V. Pacakova, J. Sevcik, T. Cserhati, Quantitative structurechromatographic retention relationship study of six underivatized equine estrogens, J.
 Chromatogr. B 681 (1996) 115-123.
- [200] E. Forgacs, T. Cserhati, R. Kaliszan, P. Haber, A. Nasal, Reversed-phase thin-layer
 chromatographic determination of the hydrophobicity parameters of nonsteroidal antiinflammatory drugs, J. Planar Chromatogr. Modern TLC 11 (1998) 383-387.
- [201] T. Cserhati, A. Kosa, S. Balogh, Comparison of partial least-square method and
 canonical correlation analysis in a quantitative structure-retention relationship study, J.
 Biochem. Biophys. Methods 36 (1998) 131-141.
- 1297 [202] W. Yuesong, L. Leming, Z. Jun, Prediction of the thin-layer chromatographic
 1298 retention of amino acids, J. Planar Chromatogr. Modern TLC 11 (1998) 300-304.
- [203] H. Celkova, J. Cizmarik, R. Mlynarova, K. Hrobonova, J. Lehotay, Relationships
 between the lipophilicity of some 1,4-piperazine derivatives of aryloxyaminopropanols
 and their β-andrenolytic activity, Acta Poloniae Pharmaceutica Drug Research 55 (1998)
 449-452.
- [204] G. A. Csiktusnadi-Kiss, E. Forgacs, M. Markuszewski, S. Balogh, Application of
 multivariate mathematical-statistical methods to compare reversed-phase thin-layer and
 liquid chromatographic behaviour of tetrazolium salts in Quantitative Structure-Retention
 Relationships (QSRR) studies, Analusis 26 (1998) 400-406.

- [205] J. K. Rozylo, A. Niewiadomy, A. Zabinska, J. Matysiak, RPTLC investigation of the
 hydrophobicity and biological activity of new fungicidal compounds J. Planar
 Chromatogr. Modern TLC 11 (1998) 450-456.
- 1310 [206] W. Maciejewicz, E. Soczewinski, Chemometric characterization of TLC systems of
 1311 the type silica-binary non-aqueous mobile phase in the analysis of flavonoids,
 1312 Chromatographia 51 (2000) 473-477.
- 1313 [207] L. Zhang, G.-Z. Tang, X.-D. Xing, Q.-S. Wang, Quantitative structure-retention
 1314 relationships of O-alkyl, O-(1-methylthioethylideneamino) phosphoramidates in
 1315 RPHPTLC, J. Planar Chromatogr. Modern TLC 13 (2000) 231-234.
- [208] X. Zhou, L. M. Lin, J. Zhang, J. P. Chen, L. X. Wang, A preliminary study of the
 quantitative structure-retention relationship of ginsenosides in normal phase thin-layer
 chromatography. Se Pu 18 (2000) 206-211.
- 1319 [209] A. Pyka, Investigation of the correlation between $R_{\rm M}$ values and selected topological 1320 indexes for higher alcohols, higher fatty acids and their methyl esters in RPTLC, J. Planar 1321 Chromatogr. Modern TLC 14 (2001) 439-444.
- 1322 [210] T. Djakovic-Sekulic, M. Acanski, N. Perisic-Janjic, Evaluation of the predictive
- power of calculation procedure for molecular hydrophobicity of some estradiol derivates,
- 1324 J. Chromatogr. B 766 (2002) 67-75.
- [211] A. Pyka, K. Bober, Prediction of the *R*_M values of selected methyl esters of higher
 fatty acids in RPTLC, J. Planar Chromatogr. Modern TLC 15 (2002) 59-66.
- [212] I. Baranowska, M. Zydron, Quantitative structure-retention relationships (QSRR) of
 biogenic amine neurotransmitters and their metabolites on RP-18 plates in thin-layer
 chromatography, J. Planar Chromatogr. Modern TLC 16 (2003) 102-106.
- 1330 [213] A. Pyka, Use of structural descriptors to predict the $R_{\rm M}$ values of *m* and *p*-
- alkoxyphenols in RP TLC, J. Planar Chromatogr. Modern TLC 16 (2003) 131-136.

- [214] A. Pyka, E. Kepczyńska, J. Bojarski, Application of selected traditional structural
 descriptors to QSRR and QSAR analysis of barbiturates, Ind. J. Chem. A. 42 (2003)
 1405-1413
- [215] E. Brzezinska, G. Koska, K. Walczynski, Application of thin-layer chromatographic
 data in quantitative structure-activity relationship assay of thiazole and benzothiazole
 derivatives with H -antihistamine activity, J. Chromatogr. A 1007 (2003) 145-155 and
 Part II J. Chromatogr. A 1007 (2003) 157-164.
- 1339 [216] C. Sarbu, D. Casoni, M. Darabantu, C. Maiereanu, Quantitative structure retention
- and retention activity relationships of some 1,3-oxazolidine systems by RP-HPTLC and
 PCA, J. Pharm. Biomed. Anal. 35 (2004) 213-219.
- [217] N. U. Perisic-Janjic, T. Lj. Djakovic-Sekulic, L. R. Jevric, B. Z. Jovanovic, Study of
 quantitative structure-retention relationships for s-triazine derivatives in different RP
 HPTLC systems, J. Planar Chromatogr. Modern TLC 18 (2005) 212-216.
- 1345 [218] A. Pyka, W. Klimczok, Study of lipophilicity and application of selected structural
 1346 descriptors in QSAR analysis of nicotinic acid derivatives. Investigations on RP18WF254
- 1347 plates. Part II, J. Planar Chromatogr. Modern TLC 18 (2005) 300-304.
- [219] T. Lj. Djakovic-Sekulic, C. Sarbu, N. U. Perisic-Janjic, A comparative study of the
 lipophilicity of benzimidazole and benztriazole derivatives by RPTLC, J. Planar
 Chromatogr. Modern TLC 18 (2005) 432-436.
- 1351 [220] M. Kostecka, A. Niewiadomy, R. Czeczko, Evaluation of N-substituted 2,4-
- 1352 dihydroxyphenylthioamide fungicide lipophilicity using the chromatographic techniques
- 1353 HPLC and HPTLC, Chromatographia 62 (2005) 121-126.
- 1354 [221] M. H. Abraham, A. Ibrahim, A. M. Zissimos, Determination of sets of solute
 1355 descriptors from chromatographic measurements, J. Chromatogr. A 1037 (2004) 29-47.

- 1356 [222] K. Héberger, Evaluation of polarity indicators and stationary phases by principal
 1357 component analysis in gas-liquid chromatography, Chemometrics Intell. Lab. Syst. 47
 1358 (1999) 41-49.
- 1359 [223] L. R. Snyder, J. W. Dolan, P. W. Carr, The hydrophobic-subtraction model of
 reversed-phase column selectivity, J. Chromatogr. A 1060 (2004) 77-116.
- 1361 [224] J. Li, P. W. Carr, Characterization of polybutadiene-coated zirconia and comparison
- to conventional bonded phases by use of linear solvation energy relationships, Anal.Chim. Acta 334 (1996) 239-250.
- 1364 [225] A. Nasal, P. Haber, R. Kaliszan, E. Forgacs, T. Cserhati, M. H. Abraham,
 1365 Polyethylene-coated silica and zirconia stationary phases in view of quantitative
 1366 structure-retention relationships, Chromatographia 43 (1996) 484-490.
- 1367 [226] Z. L. Sun, L. J. Song, X. T. Zhang, Z .D. Hu, Study on the relationship between
 1368 retention behavior and molecular structure parameters of substituted benzene derivatives
 1369 in RPLC, Chromatographia 42 (1996) 43-48.
- 1370 [227] H. S. Kim, D. W. Lee, Retention behavior of quinolones in reversed-phase liquid
 1371 chromatography, J. Chromatogr. A 722 (1996) 69-79.
- 1372 [228] E. R. Collantes, W. Tong, W. J. Welsh, W. L. Zielinski, Use of moment of inertia in
- 1373 comparative molecular field analysis to model chromatographic retention of nonpolar1374 solutes, Anal. Chem. 68 (1996) 2038-2043.
- 1375 [229] V. Casal, P. J. Martin-Alvarez, T. Herraiz, Comparative prediction of the retention
 1376 behaviour of small peptides in several reversed-phase high-performance liquid
 1377 chromatography columns by using partial least squares and multiple linear regression,
 1378 Anal. Chim. Acta 326 (1996) 77-84.
- 1379 [230] Y. He, L. Wang, Quantitative structure-activity relationships for studying alkyl (1-
- phenylsulfonyl) cycloalkane-carboxylates, J. Environ. Sci. 8 (1996) 157-166.

- 1381 [231] H. S. Kim, D. W. Lee, Application of quantitative structure-retention relationships for
 reversed-phase liquid chromatographic separation of pesticides, Anal. Sci. 12 (1996) 3491383 353.
- 1384 [232] M. H. Abraham, H.S. Chadha, A. R. E. Leitao, R. C. Mitchell, W. J. Lambert, R.
- 1385 Kaliszan, A. Nasal, P. Haber, Determination of solute lipophilicity, as log*P*(octanol) and
- 1386 log*P*(alkane) using poly(styrene-divinylbenzene) and immobilised artificial membrane
- 1387 stationary phases in reversed-phase high-performance liquid chromatography, J.
 1388 Chromatogr. A 766 (1997) 35-47.
- [233] H. Hong, L. Wang, G. Zou, Retention in RP-HPLC: lipophilicity determination of
 substituted biphenyls by reversed-phase high performance liquid chromatography, J. Liq.
 Chrom. Rel. Technol. 20 (1997) 3029-3037.
- 1392 [234] H. S. Kim, S. K. Lee, D. W. Lee, Study of retention behavior of pesticides for
 1393 reversed-phase liquid chromatographic separation by quantitative structure-retention
 1394 relationships, J. Liq. Chrom. Rel. Technol. 20 (1997) 871-885.
- [235] A. Nasal, A. Bucinski, L. Bober, R. Kaliszan, Prediction of pharmacological
 classification by means of chromatographic parameters processed by principal component
 analysis, Int. J. Pharm. 159 (1997) 43-55.
- [236] E. Grimvall, A. Colmsjo, K. Wrangskog, C. Ostman, M. Eriksson, Quantitative
 structure-retention relationships for polychlorinated biphenyls and chlorobenzenes on
 selected normal-phase liquid chromatographic stationary phases, J. Chromatogr. Sci. 35
 (1997) 63-70.
- [237] Z. L. Sun, L. J. Song, X. T. Zhang, J. Huang, M. L. Li, J. E. Bai, Z. D. Hu,
 Relationship between retention behavior of substituted benzene derivatives and properties
 of the mobile phase in RPLC, J. Chromatogr. Sci. 35 (1997) 105-116.

- [238] K. Valko, C. Bevan, and D. Reynolds, Chromatographic hydrophobicity index by
 fast-gradient RP-HPLC: A high-throughput alternative to log*P*/log*D*, Anal. Chem. 69
 (1997) 2022-2029.
- 1408 [239] B. Buszewski, R. M. Gadzala-Kopciuch, M. Markuszewski, R. Kaliszan, Chemically
 1409 bonded silica stationary phases: Synthesis, physicochemical characterization, and
 1410 molecular mechanism of reversed-phase HPLC retention, Anal. Chem. 69 (1997) 32771411 3284.
- 1412 [240] E. Forgacs, T. Cserhati, Use of cluster and principal component analysis in
 1413 quantitative structure-retention relationship study, Anal. Chim. Acta 348 (1997) 481-487.
- 1414 [241] J. Chen, L. Yang, L. Wang, Quantitative relationship between molecular structure and
 1415 chromatographic retention of alkyl(1-phenylsulfonyl)-cycloalkane-carboxylates, Fenxi
 1416 Huaxue 25 (1997) 192.
- 1417 [242] L.-J. Luan, S. Zeng, Z.-Q. Liu, X.-C. Fu, Studies on the RP-HPLC retention behavior
 1418 relationship between the structure of hydroxy compounds and their glucuronides, Kao
 1419 Teng Hsueh Hsiao Hua Heush Hsueh Pao / Chemical Journal of Chinese Universities 18
 1420 (1997) x10-45.
- 1421[243] T. Hanai, K. Koizumi, T. Kinoshita, R. Arora, F. Ahmed, Prediction of $pK_{(a)}$ values of1422phenolic and nitrogen-containing compounds by computational chemical analysis1423compared to those measured by liquid chromatography, J. Chromatogr. A 762 (1997) 55-142461.
- 1425 [244] E. G. Von Roedern, A new method for the characterization of chemical libraries 1426 solely by HPLC retention times, Molecular Diversity 3 (1997) 253-256.
- 1427 [245] B. Buszewski, R. Gadzala-Kopciuch, R. Kaliszan, M. Markuszewski, M. T. Matyska,
- 1428 J. J. Pesck, Polyfunctional chemically bonded stationary phase for reversed phase high-
- 1429 performance liquid chromatography, Chromatographia 48 (1998) 615-622.

- [246] E. Forgacs, A. Kosa, Csiktusnadi G. Kiss, T. Cserhati, R. Kaliszan, P. Haber, A.
 Nasal, Use of a modified nonlinear mapping method in quantitative structure retention
 relationship study, J. Liq. Chrom. Rel. Technol. 21 (1998) 2523-2534.
- [247] S. Ounnar, M. Righezza, B. Delatousche, J. R. Chretien, J. Toullec, Study of the
 influence of electronic effects on the retention of substituted N-benzylideneanilines in
 normal-phase liquid chromatography, Chromatographia 47 (1998) 164-170.
- 1436 [248] S. Ounnar, M. Righezza, J. R. Chretien, Quantitative structure retention relationships
 1437 of chloro-n-benzylideneanilines in normal phase liquid chromatography, J. Liq. Chrom.
 1438 Rel. Technol. 21 (1998) 459-474.
- [249] G. Robertsson, G. Andersson, P. Kaufmann, The use of an optimized RP-HPLC
 system as a molecular probe in QSPR studies of selected lipid classes, Chromatographia
 47 (1998) 643-648.
- [250] F. Hueso-Urena, S. B. Jimenez-Pulido, M. N. Moreno-Carretero, J. Rodriguez-Avi,
 Quantitative structure-liquid chromatographic retention time relationships on natural
 phenols found in olive oil, JAOCS, J. Am. Oil Chem. Soc. 75 (1998) 793-799.
- 1445 [251] Chau My Du, K. Valko, C. Bevan, D. Reynolds, M. H. Abraham, Rapid gradient RP-
- HPLC method for lipophilicity determination: A solvation equation based comparisonwith isocratic methods, Anal. Chem. 1998, 70, 4228-4234.
- 1448 [252] K. Valko, M. Plass, C. Bevan, D. Reynolds, M. H. Abraham, Relationships between
 1449 the chromatographic hydrophobicity indices and solute descriptors obtained by using
 1450 several reversed-phase, diol, nitrile, cyclodextrin and immobilised artificial membrane
 1451 bonded high-performance liquid chromatography columns, J. Chromatogr. A 797 (1998)
 1452 41-55.

- [253] A. Sandi, L. Szepesy, Characterization of various reversed-phase columns using the
 linear free energy relationship. I. Evaluation based on retention factors, J. Chromatogr. A
 818 (1998) 1-17 and II. Evaluation of selectivity, J. Chromatogr. A 818 (1998) 19-30.
- 1456 [254] R. Kaliszan, M. Markuszewski, P. Haber, A. Nasal, T. Cserhati, E. Forgacs, R. M.
 1457 Gadzala-Kopciuch, B. Buszewski, Application of quantitative structure-retention
 1458 relationships (QSRR) to elucidate molecular mechanism of retention on the new
 1459 stationary phases for high-performance liquid chromatography, Chem. Anal. (Warsaw) 43
 1460 (1998) 547-559.
- [255] S. K. Lee, Y. H. Park, C. J. Yoon, D. W. Lee, Investigation of relationships between
 retention behavior and molecular descriptors of quinolones in PRP-1 column, J.
 Microcolumn Sep. 10 (1998) 133-139.
- 1464 [256] Q.-S. Wang, L. Zhang, H.-Z. Yang, H.-Y. Liu, Quantitative structure-retention
 1465 relationship for photosystem II inhibitors in RP-HPLC, Chin. J. Chem. 16 (1998) 5141466 520.
- [257] L. I. Nord, D. Fransson, S. P. Jacobsson, Prediction of liquid chromatographic
 retention times of steroids by three-dimensional structure descriptors and partial least
 squares modeling, Chemometrics Intell. Lab. Syst. 44 (1998) 257-269.
- 1470 [258] A. Niewiadomy, J. Matysiak, A. Zabinska, J. K. Rozylo, B. Senczyna, K. Jozwiak,
 1471 Reversed-phase high-performance liquid chromatography in quantitative structure1472 activity relationship studies of new fungicides, J. Chromatogr. A 828 (1998) 431-438.
- 1473 [259] M. A. Al-Haj, R. Kaliszan, A. Nasal, Test analytes for studies of the molecular
 1474 mechanism of chromatographic separations by quantitative structure-retention
 1475 relationships, Anal. Chem. 71 (1999) 2976-2985.

- 1476 [260] J. Dai, S. Yao, Y. Ding, L. Wang, Retention of substituted indole compounds on RP1477 HPLC: Correlation with molecular connectivity indices and quantum chemical
 1478 descriptors, J. Liq. Chrom. Rel. Technol. 22 (1999) 2271-2282.
- 1479 [261] Q. S. Wang, L. Zhang, M. Zhang, X. D. Xing, G. Z. Tang, A system for predicting the
- retentions of O-alkyl, n-(1-methylthioethylideneamino) phosphoramidates on RP-HPLC,
 Chromatographia 49 (1999) 444-448.
- 1482 [262] R. Kaliszan, M. A. Van Straten, M. Markuszewski, C. A. Cramers, H. A. Claessens,
 1483 Molecular mechanism of retention in reversed-phase high-performance liquid
 1484 chromatography and classification of modern stationary phases by using quantitative
 1485 structure-retention relationships, J. Chromatogr. A 855 (1999) 455-486.
- 1486 [263] B. Herbreteau, C. Graff, F. Voisin, M. Lafosse, L. Morin-Allory, Interpretation of the
 1487 chromatographic behavior of perhydrogenated and perfluorinated polyoxyethylene
 1488 surfactants by molecular modeling, Chromatographia 50 (1999) 490-496.
- 1489 [264] N. Dimov, K. Chervenkova, B. Nikolova-Damyanova, Retention of iridoid glucosides
 1490 on octadecylsilane and diol columns, J. Liq. Chrom. Rel. Technol. 23 (2000) 935-947.
- 1491 [265] M. Jezierska, I. Cendrowska, M. Markuszewski, R. Kaliszan, B. Buszewski,
 1492 Comparative study of surface topography of high performance liquid chromatography
 1493 columns in terms of hydrophobicity, Chromatographia 51 (2000) 111-118.
- 1494 [266] K. Jozwiak, H. Szumilo, B. Senczyna, A. Niewiadomy, RP-HPLC as a tool for
 1495 determining the congenericity of a set of 2,4-dihydroxythiobenzanilide derivatives,
 1496 Chromatographia 52 (2000) 159-161.
- 1497 [267] M. P. Montana, N. B. Pappano, N. B. Debattista, J. Raba, J. M. Luco, High1498 performance liquid chromatography of chalcones: Quantitative structure-retention
 1499 relationships using partial least-squares (PLS) modeling, Chromatographia 51 (2000)
 1500 727-735.

- [268] M. L. C. Montanari, Q. B. Cass, C. A. Montanari, Quantitative structure-retention
 relationships of antimicrobial hydrazides evaluated by reverse-phase liquid
 chromatography, Chromatographia 51 (2000) 722-726.
- 1504 [269] L. Zhang, M. Zhang, G. Z. X. D. Tang, Xing, Q. S. Wang, Retention prediction
- 1505 system of o-aryl, o-(1-methylthioethylidene-amino)phosphates on RP-HPLC, J. High Res.
- 1506 Chromatogr. 23 (2000) 445-448.
- [270] A. Sandi, M. Nagy, L. Szepesy, Characterization of reversed-phase columns using the
 linear free energy relationship. III. Effect of the organic modifier and the mobile phase
 composition, J. Chromatogr. A 893 (2000) 215-234.
- 1510 [271] E. B. Ledesma, M. J. Wornat, QSRR prediction of chromatographic retention of
 1511 ethynyl-substituted PAH from semiempirically computed solute descriptors, Anal. Chem.
 1512 72 (2000) 5437-5443.
- 1513 [272] Y. L. Loukas, Artificial neural networks in liquid chromatography: Efficient and
 1514 improved quantitative structure-retention relationship models, J. Chromatogr. A 904
 1515 (2000) 119-129.
- 1516 [273] Y. L. Loukas, Radial basis function networks in liquid chromatography: Improved
 1517 structure-retention relationships compared to principal components regression (PCR) and
 1518 nonlinear partial least squares regression (PLS), J. Liq. Chrom. Rel. Technol. 24 (2001)
 1519 2239-2256.
- 1520 [274] M. A. Al-Haj, R. Kaliszan, B. Buszewski, Quantitative structure-retention 1521 relationships with model analytes as a means of an objective evaluation of 1522 chromatographic columns, J. Chromatogr. Sci. 39 (2001) 29-38.
- [275] J. Dai, L. Jin, S. Yao, L. Wang, Prediction of partition coefficient and toxicity for
 benzaldehyde compounds by their capacity factors and various molecular descriptors,
 Chemosphere 42 (2001) 899-907.

- 1526 [276] M. Turowski, T. Morimoto, K. Kimata, H. Monde, T. Ikegami, K. Hosoya, N.
 1527 Tanaka, Selectivity of stationary phases in reversed-phase liquid chromatography based
 1528 on the dispersion interactions, J. Chromatogr. A 911 (2001) 177-190.
- [277] K. Magnus Aberg, S. P. Jacobsson, Pre-processing of three-way data by pulsecoupled neural networks an imaging approach, Chemometrics Intell. Lab. Syst. 57
 (2001) 25-36.
- [278] L. B. Yan, B. R. Xiang, Application of molecular similarity method in the study of
 quantitative structure-retention relationship for reversed-phase high performance liquid
 chromatography of drugs, Se pu 19 (2001) 427-432.
- [279] S. Yao, C. Sun, D. Chen, Y. Dong, L. Wang, Study on quantitative structure-retention
 relationships for pyrethroid pesticides compounds, Zhongguo Huanjing Kexue/China
 Environmental Science 21 (2001) 309-312.
- 1538 [280] K. Valko, C. M. Du, C. Bevan, D.P. Reynolds, M. H. Abraham, Rapid method for the 1539 estimation of octanol/water partition coefficient $(\log P_{oct})$ from gradient RP-HPLC 1540 retention and a hydrogen bond acidity term $(\sum \alpha_2^{H})$, Current Med. Chem. 8 (2001) 1137-1541 1146.
- 1542 [281] A. R. Katritzky, S. Perumal, R. Petrukhin, E. Kleinpeter, CODESSA-based theoretical
- QSPR model for hydantoin HPLC-RT lipophilicities, J. Chem. Inf. Comput. Sci. 41(2001) 569-574.
- [282] G. P. Romanelli, L. R. F. Cafferata, E. A. Castro, Application of improved
 quantitative structure-retention relationships to study the molecular mechanism of
 stationary phases for HPLC, Chem. Phys. Reports 19 (2001) 1767-1775. {Khim. Fiz. 19
 (2000) 105-109}.

- 1549 [283] I. Baranowska, M. Zydron, Quantitative structure-retention relationships of xanthines
- in RP HPLC systems with the new Chromolith RP-18e stationary phases, Anal. Bioanal.
 Chem. 373 (2002) 889-892.
- [284] A. Jakab, M. Prodan, E. Forgacs, Influence of physico-chemical parameters of some
 barbituric acid derivatives on their retention on an amide embedded RP silica column, J.
- 1554 Pharm. Biomed. Anal. 27 (2002) 913-921.
- 1555 [285] A. Jakab, G. Schubert, M. Prodan, E. Forgacs, Study of the retention parameters of
 1556 barbituric acid derivatives in reversed-phase HPLC by using quantitative structure1557 retention relationships, Chromatographia 56 (2002) S55-S59.
- [286] A. Jakab, G. Schubert, M. Prodan, E. Forgacs, PCA, followed by two-dimensional
 nonlinear mapping and cluster analysis, versus multilinear regression in QSSR, J. Liq.
 Chrom. Rel. Technol. 25 (2002) 1-16.
- [287] A. Jakab, G. Schubert, M. Prodan, E. Forgacs, Determination of the retention
 behavior of barbituric acid derivatives in reversed-phase high-performance liquid
 chromatography by using quantitative structure-retention relationships, J. Chromatogr. B
 770 (2002) 227-236.
- [288] X.-h. Liu, C.-d. Wu, S.-k. Han, L.-s. Wang, Prediction of liquid chromatography
 retention factors for a-branched phenylsulfonyl acetates using quantum chemical
 descriptors, J. Environ. Sci. 14 (2002) 151-155.
- [289] S. Y. Tham, S. Agatonovic-Kustrin, Application of the artificial neural network in
 quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino
 acids derivatives, J. Pharm. Biomed. Anal. 28 (2002) 581-590.
- 1571[290]M. Bartolini, C. Bertucci, R. Gotti, V. Tumiatti, A. Cavalli, M. Recanatini, V.1572Andrisano, Determination of the dissociation constants (pK_a) of basic acetylcholinesterase
- 1573 inhibitors by reversed-phase liquid chromatography, J. Chromatogr. A 958 (2002) 59-67.

- 1574 [291] R. Kaliszan, P. Haber, T. Baczek, D. Siluk, K. Valko, Lipophilicity and p*K* estimates
 1575 from gradient high-performance a liquid chromatography, J. Chromatogr. A 965 (2002)
 117-127.
- 1577 [292] N. S. Wilson, M. D. Nelson, J. W. Dolan, L. R. Snyder, R. G. Wolcott, P. W. Carr,
- Column selectivity in reversed-phase liquid chromatography: I. A general quantitative
 relationship, J. Chromatogr. A 961 (2002) 171-193.
- 1580 [293] T. Hanai, H. Homma, Computational chemical prediction of the retention factor ofaromatic acids, J. Liq. Chrom. Rel. Technol. 25 (2002) 1661-1676.
- 1582 [294] T. Baczek, R. Kaliszan, Combination of linear solvent strength model and quantitative
 1583 structure-retention relationships as a comprehensive procedure of approximate prediction
 1584 of retention in gradient liquid chromatography, J. Chromatogr. A 962 (2002) 41-55.
- 1585 [295] Y. Wang, X. Zhang, X. Yao, Y. Gao, M. Liu, Z. Hu, B. Fan, Prediction of logk_w of
 1586 disubstituted benzene derivatives in reversed-phase high-performance liquid
 1587 chromatography using multiple linear regression and radial basis function neural network,
 1588 Anal. Chim. Acta 463 (2002) 89-97.
- 1589 [296] J. Jiskra, H. A. Claessens, C. A. Cramers, R. Kaliszan, Quantitative structure-
- 1590 retention relationships in comparative studies of behavior of stationary phases under high-
- 1591 performance liquid chromatography and capillary electrochromatography conditions, J.
- 1592 Chromatogr. A 977 (2002) 193-206.
- [297] T. Moon, M. W. Chi, S. J. Park, C. N. Yoon, Prediction of HPLC retention time using
 multiple linear regression: using one and two descriptors, J. Liq. Chrom. Rel. Technol. 26
 (2003) 2987-3002.
- [298] A. Nasal, D. Siluk, R. Kaliszan, Chromatographic retention parameters in medicinal
 chemistry and molecular pharmacology, Current Med. Chem. 10 (2003) 381-426.

- 1598 [299] T. Hanai, Quantitative structure-retention relationships of phenolic compounds
 1599 without Hammett's equations, J. Chromatogr. A 985 (2003) 343-349.
- 1600 [300] T. Baczek, R. Kaliszan, Predictive approaches to gradient retention based on analyte
 1601 structural descriptors from calculation chemistry, J. Chromatogr. A 987 (2003) 29-37.
- 1602 [301] R. Put, C. Perrin, F. Questier, D. Coomans, D. L. Massart, Y. Vander Heyden,
- 1603 Classification and regression tree analysis for molecular descriptor selection and retention
- prediction in chromatographic quantitative structure-retention relationship studies, J.
 Chromatogr. A 988 (2003) 261-276.
- [302] R. Kaliszan, T. Baczek, A. Bucinknski, B. Buszewski, M. Sztupecka, Prediction of
 gradient retention from the linear solvent strength (LSS) model, quantitative structureretention relationships (QSRR), and artificial neural networks (ANN), J. Sep. Sci. 26
 (2003) 271-282.
- [303] R. Bosque, J. Sales, E. Bosch, M. Roses, M. C. Garcia-Alvarez-Coque, J. R. TorresLapasio, A QSPR study of the p solute polarity parameter to estimate retention in HPLC,
 J. Chem. Inf. Comput. Sci. 43 (2003) 1240-1247.
- 1613 [304] T. Djakovic-Sekulic, N. Perisic-Janjic, A. Pyka, Correlation of retention of anilides
 1614 and some molecular descriptors. Application of topological indexes for prediction of log*k*1615 values, Chromatographia 58 (2003) 47-51.
- 1616 [305] E. C. Vonk, K. Lewandowska, H. A. Claessens, R. Kaliszan, C. A. Cramers,
 1617 Quantitative structure-retention relationships in reversed-phase liquid chromatography
 1618 using several stationary and mobile phases, J. Sep. Sci. 26 (2003) 777-792.
- 1619 [306] F. A. L. Ribeiro, M. M. C. Ferreira, QSPR models of boiling point, octanol-water 1620 partition coefficient and retention time index of polycyclic aromatic hydrocarbons, J.
- 1621 Mol. Struct: THEOCHEM 663 (2003) 109-126.

- 1622 [307] S. K. Lee, Y. Polyakova, K. H. Row, Interrelation of retention factor of amino-acids
 by OSPR and linear regression, Bull. Korean Chem. Soc.24 (2003) 1757-1762.
- [308] S. K. Lee, Y. Polyakova, K. H. Row, Evaluation of predictive retention factors for
 phenolic compounds with QSPR equations, J. Liq. Chrom. Rel. Technol. 27 (2004) 629639.
- [309] K. A. Lippa, L. C. Sander, S. A. Wise, Chemometric studies of polycyclic aromatic
 hydrocarbon shape selectivity in reversed-phase liquid chromatography, Anal. Bioanal.
 Chem. 378 (2004) 365-377.
- 1630 [310] J. Matysiak, A. Niewiadomy, B. Senczyna, A. Zabinska, J. K. Rozylo, Relationships
- 1631 between LC retention, octanol-water partition coefficient, and fungistatic properties of 2-
- 1632 (2,4-dihydroxyphenyl)benzothiazoles, Journal of AOAC International 87 (2004) 579-586.
- [311] J. Li, Prediction of internal standards in reversed-phase liquid chromatography,
 Chromatographia 60 (2004) 63-71.
- [312] J. Li, Prediction of internal standards in reversed-phase liquid chromatography: IV.
 Correlation and prediction of retention in reversed-phase ion-pair chromatography based
 on linear solvation energy relationship, Anal. Chim. Acta 522 (2004)113-126.
- [313] J. R. Torres-Lapasió, M. C. García-Alvarez-Coque, M. Rosés, E. Bosch, A. M,
 Zissimos, M. H. Abraham, Analysis of a solute polarity parameter in reversed-phase
 liquid chromatography on a linear solvation relationship basis, Anal. Chim. Acta 515
 (2004) 209-227.
- 1642 [314] T. Hanai, R. Miyazaki, A. Koseki, T. Kinoshita, Computational chemical analysis of
 1643 the retention of acidic drugs o a pentyl-bonded silica gel in reversed-phase liquid
 1644 chromatography, J. Chromatogr. Sci. 42 (2004) 354-360.

- 1645 [315] K. Valkó, Application of high-performance liquid chromatography based
 1646 measurements of lipophilicity to model biological distribution, J. Chromatogr. A 1037
 1647 (2004) 299-310.
- 1648 [316] H. X. Liu, C. X. Xue, R. S. Zhang, X. J. Yao, M. C. Liu, Z. D. Hu, B. T. Fan,
 1649 Quantitative prediction of log*k* of peptides in high-performance liquid chromatography
 1650 based on molecular descriptors by using the heuristic method and support vector machine,
 1651 J. Chem. Inf. Comput. Sci. 44 (2004) 1979-1986.
- 1652 [317] S. Schefzick, C. Kibbey, M. P. Bradley, Prediction of HPLC conditions using QSPR
- 1653 techniques: An effective tool to improve combinatorial library design, J. Comb. Chem. 61654 (2004) 916-927.
- 1655 [318] Z.-T. Jiang, Y.-M. Zuo, R. Li, J. C. Yu, Chromatographic retention of polybutadiene
- 1656 coated titania stationary phase using quantitative structure-retention relationships, Chem.
 1657 Anal. (Warsaw) 49 (2004) 551-559.
- [319] W. Longxing, Z. LeFeng, W. Shisheng, X. Hongbin, L. Xinmiao, Discriminating the
 xanthones in an extract of Swertia franchetiana by retention parameters, Phytochem.
 Anal. 16 (2005) 34-38.
- [320] Y. Xia, Y. Guo, H. Wang, Q. Wang, Y. Zuo, Quantitative structure-retention
 relationships of benzoylphenylureas on polystyrene-octadecene-encapsulated zirconia
 stationary phase in reversed-phase high performance liquid chromatography, J. Sep. Sci.
 28 (2005) 73-77.
- 1665 [321] R. Kaliszan, T. Baczek, A. Cimochowska, P. Juszczyk, K. Wisniewska, Z. Grzonka,
 1666 Prediction of high-performance liquid chromatography retention of peptides with the use
- 1667 of quantitative structure-retention relationships, Proteomics 5 (2005) 409-415.

- [322] T. Baczek, P. Wiczling, M. Marszall, Y. V. Heyden, R. Kaliszan, Prediction of
 peptide retention at different HPLC conditions from multiple linear regression models, J.
 Proteome Res. 4 (2005) 555-563.
- 1671 [323] T. Baczek, R. Kaliszan, K. Novotna, P. Jandera, Comparative characteristics of HPLC
- 1672 columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-
- 1673 subtraction model, J. Chromatogr. A 1075 (2005) 109-115.
- 1674 [324] P. Zhuang, R. A. Thompson, T. P. O'Brien, A retention model for polar selectivity in
 1675 reversed phase chromatography as a function of mobile phase organic modifier type, J.
- 1676 Liq. Chrom. Rel. Technol. 28 (2005) 1345-1356.
- 1677 [325] F. Ruggieri, A. A. D'Archivio, G. Carlucci, P. Mazzeo, Application of artificial neural
 1678 networks for prediction of retention factors of triazine herbicides in reversed-phase liquid
 1679 chromatography, J. Chromatogr. A 1076 (2005) 163-169.
- 1680 [326] T. Hanai, Chromatography in silico, basic concept in reversed-phase liquid
 1681 chromatography, Anal. Bioanal. Chem. 382 (2005) 708-717.
- [327] Z.-Y. Wang, X.-Y. Han, L.-S. Wang, Quantitative correlation of chromatographic
 retention and acute toxicity for alkyl(1-phenylsulfonyl) cycloalkane carboxylates and
 their structural parameters by DFT, Jiegou Huaxue 24 (2005) 851-857.
- 1685 [328] Z. Wu, N. J. Medlicott, M. Razzak, I. G. Tucker, Development and optimization of a
- rapid HPLC method for analysis of ricobendazole and albendazole sulfone in sheepplasma, J. Pharm. Biomed. Anal. 39 (2005) 225-232.
- [329] T. Hanai, Chromatography in silica, quantitative analysis of retention mechanisms of
 benzoic acid derivatives, J. Chromatogr. A 1087 (2005) 45-51.
- 1690 [330] T. Hanai, Chromatography in silico, quantitative analysis of retention of aromatic acid
- 1691 derivatives, J. Chromatogr. Sci. 44 (2006) 247-252.

- [331] B. Buszewski, S. Kowalska, K. Krupczynska, New generation of chromatographic
 packings and columns for determination of biologically active compounds, Crit. Rev.
 Anal. Chem. 35 (2005) 89-116.
- 1695 [332] H. Luo, Y.-K.Cheng, Quantitative structure-retention relationship of nucleic-acid
 1696 bases revisited. CoMFA on purine RPLC retention, QSAR Comb. Sci. 24 (2005) 9681697 975.
- [333] C. Stella, A. Galland, X. Liu, B. Testa, S. Rudaz, J.-L. Veuthey, P.-A. Carrupt, Novel
 RPLC stationary phases for lipophilicity measurement: Solvatochromic analysis of
 retention mechanisms for neutral and basic compounds, J. Sep. Sci. 28 (2005) 2350-2362.
- [334] T. M. G. Almeida, A. Leitao, M. L. C. Montanari, C. A. Montanari, The molecular
 retention mechanism in reversed-phase liquid chromatography of meso-ionic compounds
 by quantitative structure retention relationships (QSRR), Chemistry and Biodiversity 2
 (2005) 1691-1700.
- 1705 [335] T. Hancock, R. Put, D. Coomans, Y. Vander Heyden, Y. Everingham, A performance
 1706 comparison of modern statistical techniques for molecular descriptor selection and
 1707 retention prediction in chromatographic QSRR studies, Chemometrics Intell. Lab. Syst.
 1708 76 (2005) 185-196.
- [336] Q. Zheng, Z.-Y. Wang, L. Sun, B. Yu, Correlation between chromatographic capacity
 factors and structural parameters of indole derivatives, Jiegou Huaxue 24 (2005) 13811711 1386.
- 1712 [337] Y. Polyakova, M. J. Long, H. R. Kyung, Linear regression based QSPR models for
- the prediction of the retention mechanism of some nitrogen containing heterocycles, J.
- 1714 Liq. Chrom. Rel. Technol. 29 (2006) 533-552.

- 1715 [338] Y. Polyakova, M. J. Long, H. R. Kyung, QSPR models for chromatographic retention
 1716 of some azoles with physicochemical properties, Bull. Korean Chem. Soc.27 (2006) 2111717 218.
- [339] P. Ghosh, B. Chawla, P. V. Joshi, S. B. Jaffe, Prediction of chromatographic retention
 times for aromatic hydrocarbons, Energy and Fuels 20 (2006) 609-619.
- 1720 [340] M. Salo, H. Siren, P. Volin, S. Wiedmer, H. Vuorela, Structure-retention relationships
- of steroid hormones in reversed-phase liquid chromatography and micellar electrokinetic
 capillary chromatography, J. Chromatogr. A 728 (1996) 83-88.
- 1723 [341] Y. Ishihama, Y. Oda, N. Asakawa, A hydrophobicity scale based on the migration
 1724 index from microemulsion electrokinetic chromatography of anionic solutes, Anal. Chem.
- 1725 68 (1996) 1028-1032.
- [342] H. Zou, H. Wang, R. Li, Y. Zhang, Separation mechanism of micellar-electrokinetic
 capillary chromatography studied by quantitative-structure retention relationship, Progr.
 Nat. Sci. 6 (1996) 689-691.
- [343] J. M. Sanchis Mallols, R. M. Villanueva Camanas, S. Sagrado, M. J. MedinaHernandez, Quantitative retention structure and retention activity relationship studies
 of ionic and non-ionic catecholamines by micellar liquid chromatography,
 Chromatographia 46 (1997) 605-612.
- [344] L. Escuder-Gilabert, S. Sagrado, R. M. Villanueva-Camanas, M. J. MedinaHernandez, Quantitative retention-structure and retention-activity relationship studies of
 local anesthetics by micellar liquid chromatography, Anal. Chem. 70 (1998) 28-34.
- 1736 [345] H.-R. Liang, H. Vuorela, P. Vuorela, R. Hiltunen, M.-L. Riekkola, The statistical
 1737 evaluation of migration parameters of flavonoids in capillary electrophoresis with
 1738 reference to structural descriptors, J. Liq. Chrom. Rel. Technol. 21 (1998) 625-643.

- [346] M. Cuenca-Benito, S. Sagrado, R. M. Villanueva-Camanas, M. J. Medina-Hernandez,
 Quantitative retention-structure and retention-activity relationships of barbiturates by
 micellar liquid chromatography, J. Chromatogr. A 814 (1998) 121-132.
- 1742 [347] L. Escuder-Gilabert, J. M. Sanchis-Mallols, S. Sagrado, M. J. Medina-Hernandez, R.
- 1743 M. Villanueva-Camanas, Chromatographic quantitation of the hydrophobicity of ionic
- 1744 compounds by the use of micellar mobile phases, J. Chromatogr. A 823 (1998) 549-559.
- [348] R. Zhao, Y. Shan, Z. Liu, H. Zou, Y. Zhang, Application of the artificial neural
 network in a study of the relationship between retention index and molecular structure
 parameters in MECC, American Laboratory 32 (2000) 13-14.
- 1748 [349] A. Detroyer, Y. Vander Heyden, I. Cambre, D. L. Massart, Chemometric comparison
 1749 of recent chromatographic and electrophoretic methods in a quantitative structure1750 retention and retention-activity relationship context, J. Chromatogr. A 986 (2003) 2271751 238.
- [350] L. Escuder-Gilabert, S. Sagrado, R. M. Villanueva-Camanas, M. J. MedinaHernandez, Development of predictive retention-activity relationship models of nonsteroidal anti-inflammatory drugs by micellar liquid chromatography: Comparison with
 immobilized artificial membrane columns, J. Chromatogr. B 740 (2000) 59-70.
- [351] W. Szczepaniak, A. Szymanski, Relationship between hydrophobic properties of
 amphoteric sulfonamides and their retention in micellar reversed-phase liquid
 chromatography, J. Liq. Chrom. Rel. Technol. 23 (2000) 1217-1231
- 1759 [352] S. Yang, J. G. Bumgarner, L. F. R. Kruk, M. G. Khaledi, Quantitative structure-1760 activity relationships studies with micellar electrokinetic chromatography: Influence of
- surfactant type and mixed micelles on estimation of hydrophobicity and bioavailability, J.
- 1762 Chromatogr. A 721 (1996) 323-335.

- [353] A. Detroyer, Y. Vander Heyden, S. Carda-Broch, M. C. Garcia-Alvarez-Coque, D. L.
 Massart, Quantitative structure-retention and retention-activity relationships of β-blocking
 agents by micellar liquid chromatography, J. Chromatogr. A 912 (2001) 211-221.
- 1766 [354] Y. Martin-Biosca, L. Escuder-Gilabert, M. L. Marina, S. Sagrado, R. M. Villanueva-
- Camanas, M. J. Medina-Hernandez, Quantitative retention- and migration-toxicity
 relationships of phenoxy acid herbicides in micellar liquid chromatography and micellar
 electrokinetic chromatography, Anal. Chim. Acta 443 (2001) 191-203.
- [355] C. Quinones-Torrelo, S. Sagrado, R. M. Villanueva-Camanas, M. J. MedinaHernandez, Retention pharmacokinetic and pharmacodynamic parameter relationships of
 antihistamine drugs using biopartitioning micellar chromatography, J. Chromatogr. B 761
- 1773 (2001) 13-26.
- [356] L. Escuder-Gilabert, Y. Martin-Biosca, S. Sagrado, R. M. Villanueva-Camanas, M. J.
 Medina-Hernandez, Biopartitioning micellar chromatography to predict ecotoxicity, Anal.
 Chim. Acta 448 (2001) 173-185.
- 1777 [357] S. T. Burns, M. G. Khaledi, Rapid determination of liposome-water partition
 1778 coefficients (*K*_{lw}) using liposome electrokinetic chromatography (LEKC), J. Pharm. Sci.
 1779 91 (2002) 1601-1612.
- [358] A. Detroyer, Y. Vander Heyden, K. Reynaert, D. L. Massart, Evaluating "fast"
 micellar monolithic liquid chromatography for high-throughput quantitative structureretention relationship screening, Anal. Chem. 76 (2004) 1903-1908.
- [359] L.-M. Ye, T. Ma, G. Chen, Y. Chen, Study on predictive quantitative retentionactivity relationship models of non-steroidal anti-inflammatory drugs by micellar liquid
 chromatography, Chinese Pharm. J. 40 (2005) 1737-1740.

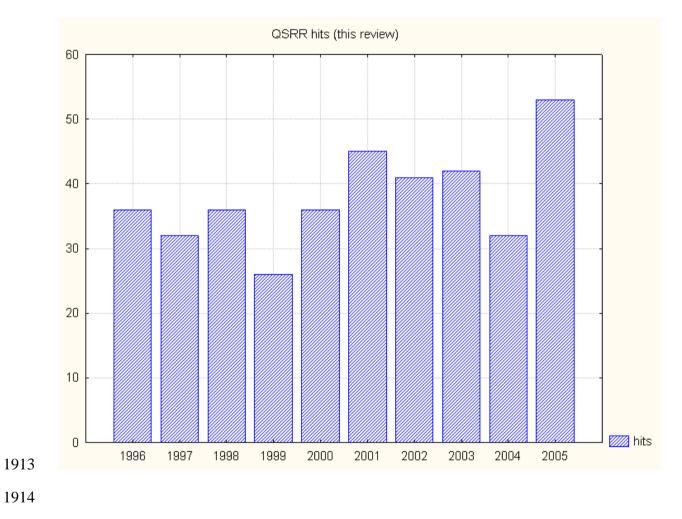
- [360] J. M. Bermudez-Saldana, L. Escuder-Gilabert, M. J. Medina-Hernandez, R. M.
 Villanueva-Camanas, S. Sagrado, Chromatographic evaluation of the toxicity in fish of
 pesticides, J. Chromatogr. B 814 (2005) 115-125.
- [361] J. M. Bermudez-Saldana, L. Escuder-Gilabert, M. J. Medina-Hernandez, R. M.
 Villanueva-Camanas, S. Sagrado, Modelling bioconcentration of pesticides in fish using
 biopartitioning micellar chromatography, J. Chromatogr. A 1063 (2005) 153-160.
- 1792 [362] M. J. Ruiz-Angel, S. Carda-Broch, M. C. Garcia-Alvarez-Coque, A. Berthod, Effect
 1793 of ionization and the nature of the mobile phase in quantitative structure-retention
 1794 relationship studies, J. Chromatogr. A 1063 (2005) 25-34.
- [363] L. Escuder-Gilbert, S. Sagrado, R. M. Villanueva-Camanas, M. J. Medina-Hernandez,
 Quantitative structure-retention relationships for ionic and non-ionic compounds in
 biopartitioning micellar chromatography, Biomed. Chromatogr.19 (2005) 155-168.
- [364] H. Golmohammadi, M. H. Fatemi, Artificial neural network prediction of retention
 factors of some benzene derivatives and heterocyclic compounds in micellar
 electrokinetic chromatography, Electrophoresis 26 (2005) 3438-3444.
- [365] H. Liu, X. Yao, M. Liu, Z. Hu, B. Fan, Prediction of retention in micellar
 electrokinetic chromatography based on molecular structural descriptors by using the
 heuristic method, Anal. Chim. Acta 558 (2006) 86-93.
- [366] W. Ma, F. Luan, H. Zhang, X. Zhang, M. Liu, Z. Hu, B. Fan, Quantitative structureproperty relationships for pesticides in biopartitioning micellar chromatography, J.
 Chromatogr. A 1113 (2006) 140-147.
- 1807 [367] R. Kaliszan, A. Nasal, M. Turowski, Quantitative structure-retention relationships in
- 1808 the examination of the topography of the binding site of antihistamine drugs on α 1-acid
- 1809 glycoprotein, J. Chromatogr. A 722 (1996) 25-32.

- [368] T. Salminen, A. Pulli, J. Taskinen, Relationship between immobilised artificial
 membrane chromatographic retention and the brain penetration of structurally diverse
 drugs, J. Pharm. Biomed. Anal. 15 (1997) 469-477.
- 1813 [369] M. Turowski, R. Kaliszan, Keratin immobilized on silica as a new stationary phase
 1814 for chromatographic modelling of skin permeation, J. Pharm. Biomed. Anal. 15 (1997)
- 1815 1325-1333.
- 1816 [370] R. Kaliszan, Retention data from affinity high-performance liquid chromatography in
 1817 view of chemometrics, J. Chromatogr. B 715 (1998) 229-244.
- 1818 [371] M. A. Al-Haj, P. Haber, R. Kaliszan, B. Buszewski, M. Jezierska, Z. Chilmonzyk,
 1819 Mechanism of separation on cholesterol-silica stationary phase for high-performance
 1820 liquid chromatography as revealed by analysis of quantitative structure-retention
 1821 relationships, J. Pharm. Biomed. Anal. 18 (1998) 721-728.
- [372] F. Beaudry, M. Coutu, N. K. Brown, Determination of drug-plasma protein binding
 using human serum albumin chromatographic column and multiple linear regression
 model, Biomed. Chromatogr. 13 (1999) 401-406.
- [373] K. Valko, Chau My Du, C. D. Bevan, D. P. Reynolds, M. H. Abraham, Rapidgradient HPLC method for measuring drug interactions with immobilized artificial
 membrane: Comparison with other lipophilicity measures, J. Pharm. Sci. 89 (2000) 10851096.
- [374] R. Kaliszan, Chromatography and capillary electrophoresis in modelling the basic
 processes of drug action, TrAC Trends in Anal. Chem. 18 (1999) 400-410.
- [375] T. Baczek, R. Kaliszan, Quantitative structure/retention relationships in affinity
 chromatography, J. Biochem. Biophys. Methods 49 (2001) 83-98.
- 1833 [376] M. Markuszewski, R. Kaliszan, Quantitative structure-retention relationships in
- affinity high-performance liquid chromatography, J. Chromatogr. B 768 (2002) 55-66.

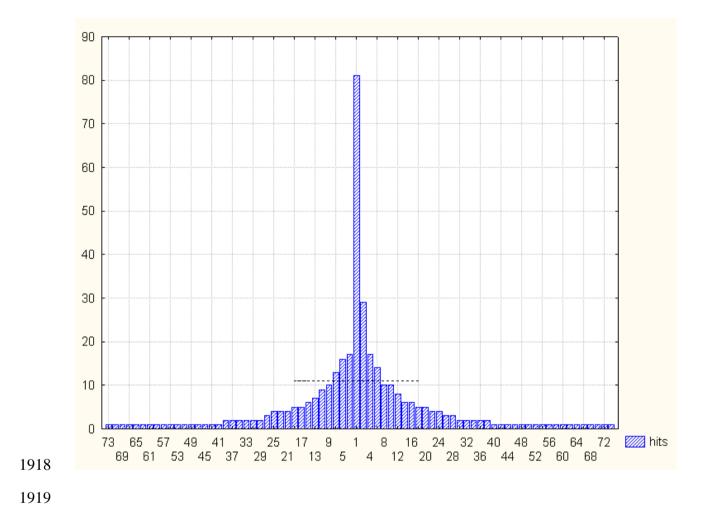
- [377] A. Nasal, A. Wojdelko, T. Baczek, R. Kaliszan, M. Cybulski, Z. Chilmonczyk,
 Relationship between chromatographic behavior and affinity to 5-HT1A serotonin
 receptors of new buspirone analogues, J. Sep. Sci. 25 (2002) 273-279.
- 1838 [378] R. Kaliszan, M. J. Markuszewski, Studies on correlation between structure of solutes
 1839 and their retention, Chem. Anal. (Warsaw) 48 (2003) 373-395.
- 1840 [379] M. Reta, L. Giacomelli, M. Santo, R. Cattana, J. J. Silber, C. Ochoa, M. Rodriguez,
- 1841 A. Chana, Determination of lipophilic descriptors of antihelmintic 6,7-diaryl-pteridine
 1842 derivatives useful for bioactivity predictions, Biomed. Chromatogr.17 (2003) 365-372.
- [380] F. Pehourcq, C. Jarry, B. Bannwarth, Potential of immobilized artificial membrane
 chromatography for lipophilicity determination of arylpropionic acid non-steroidal antiinflammatory drugs, J. Pharm. Biomed. Anal. 33 (2003) 137-144.
- [381] J. M. Luco, A. P. Salinas, A. A. J. Torriero, R. N. Vazquez, J. Raba, E. Marchevsky,
 Immobilized artificial membrane chromatography: quantitative structure-retention
 relationships of structurally diverse drugs, J. Chem. Inf. Comput. Sci. 43 (2003) 21292136.
- [382] K. Valko, S. Nunhuck, C. Bevan, M. H. Abraham, D. P. Reynolds, Fast gradient
 HPLC method to determine compounds binding to human serum albumin. Relationships
 with octanol/water and immobilized artificial membrane lipophilicity, J. Pharm. Sci. 92
 (2003) 2236-2248.
- [383] G. Massolini, E. Calleri, Survey of binding properties of fatty acid-binding proteins:
 Chromatographic methods, J. Chromatogr. B 797 (2003) 255-268.
- 1856 [384] B. Buszewski, T. Welerowicz, Stationary phases with special structural properties for
 1857 high-throughput separation techniques: Preparation, characterization and applications,
- 1858 Comb. Chem. High Throughput Screen. 7 (2004) 291-312.

- [385] A. Nasal A. Bucinski T. Baczek A Wojdelko, Prediction of the affinity of the newly
 synthesised azapirone derivatives for 5-HT1A receptors based on artificial neural network
 analysis of chromatographic retention data and calculation chemistry parameters, Comb.
 Chem. High Throughput Screen. (2004) 313-325.
- [386] M. Jalali-Heravi, Z. Garkani-Nejad, Prediction of electrophoretic mobilities of
 sulfonamides in capillary zone electrophoresis using artificial neural networks, J.
 Chromatogr. A 927 (2001) 211-218.
- [387] G. P. Romanelli, J. L. Jios, J. C. Autino, L. F. Cafferata, E. A. Castro, Relationships
 between Kovats retention indices and molecular descriptors of 1-(2-hydroxy)-3arylpropane-1,3-diones, The Scientific World Journal [electronic resource] 1 (2001) 897905.
- [388] C. B. Mazza, N. Sukumar, C. M. Breneman, S. M. Cramer, Prediction of protein
 retention in ion-exchange systems using molecular descriptors obtained from crystal
 structure, Anal. Chem. 73 (2001) 5457-5461.
- [389] C. B. Mazza, C. E. Whitehead, C. M. Breneman, S. M. Cramer, Predictive
 quantitative structure retention relationship models for ion-exchange chromatography,
 Chromatographia 56 (2002) 147-152.
- 1876 [390] T. Cserhati, E. Forgacs, Z. Deyl, I. Miksik, A. Eckhardt, Modification of nonlinear
 1877 mapping technique for quantitative structure-retention relationship studies, Croatica
 1878 Chemica Acta 75 (2002) 13-24.
- 1879 [391] G. P. Romanelli, J. Jios, J. C. Autino, L. F. R. Cafferata, D. Ruiz, E. A. Castro,
- 1880 Application of quantitative structure-retention relationships to calculate chromatographic
- retention times of o-acethylphenyl esters, Chem. Anal. (Warsaw) 47 (2002) 205-217.

- [392] G. P. Romanelli, J. C. Autino, E. A. Castro, Application of quantitative structureretention relationships (QSRR) to a set of organic bromo and nitrile derivatives, Turkish
 J. Chem. 26 (2002) 335-343.
- 1885 [393] N. S. Zefirov, V. A. Palyulin, Fragmental approach in QSPR, J. Chem. Inf. Comput.
 1886 Sci. 42 (2002) 1112-1122.
- [394] M. Song, C. M. Breneman, J. Bi, N. Sukumar, K. P. Bennett, S. Cramer, N. Tugcu,
 Prediction of protein retention times in anion-exchange chromatography systems using
 support vector regression, J. Chem. Inf. Comput. Sci. 42 (2002) 1347-1357.
- [395] N. Tugcu, M. Song, C. M. Breneman, N. Sukumar, K. P. Bennett, S. M. Cramer,
 Prediction of the effect of mobile-phase salt type on protein retention and selectivity in
 anion exchange systems, Anal. Chem. 75 (2003) 3563-3572.
- [396] A. Ladiwala, K. Rege, C. M. Breneman, S. M. Cramer, Investigation of mobile phase
 salt type effects on protein retention and selectivity in cation-exchange systems using
 quantitative structure retention relationship models, Langmuir 19 (2003) 8443-8454.
- [397] M. H. Fatemi, E. Baher, Prediction of retention factors in supercritical fluid
 chromatography using artificial neural network, J. Anal. Chem. 60 (2005) 860-865.
- [398] T. Hanai, Y. Masuda, H. Homma, Chromatography in silico; retention of basic
 compounds on a carboxyl ion exchanger, J. Liq. Chrom. Rel. Technol. 28 (2005) 30873097.
- [399] G. Malmquist, U. H. Nilsson, M. Norrman, U. Skarp, M. Stromgren, E.Carredano,
 Electrostatic calculations and quantitative protein retention models for ion exchange
 chromatography, J. Chromatogr. A 1115 (2006) 164-186.
- [400] A. Ladiwala, F. Xia, Q. Luo, C. M. Breneman, S. M. Cramer, Investigation of protein
 retention and selectivity in HIC systems using quantitative structure retention relationship
- 1906 models, Biotechn. Bioeng. 93 (2006) 836-850.


1907 Standard English transliteration was applied for names, e.g. $\dot{a} \rightarrow a$, $\tilde{n} \rightarrow n$, etc.

1908


1909

- 1910 **Captions to figures**
- 1911 Figure 1

1912 Number of scientific papers dealing with QSRR within 1996 - 2006.

1915 Figure 2

1916 Occurrence (frequency) of QSRR papers versus rank ordering of scientific journals within

Table 1 QSRR in gas chromatography 1996-2006

Solutes	Descriptors	Model building	Stationary phase (SP)	Validation	Source
Linear alkylbenzene isomers with C_{10} - C_{14} linear alkyl chains	Balaban, Wiener, Electrotopological state and molecular shape indices	<i>I</i> , MLR	()	No	[11]
37 organosulfur compounds (vesicants)	Quantumchemical MNDO, PM3, AM1	MLR	three	No	[12]
Various examples	Homomorphic factors, topochemically equivalent increments	<i>I</i> , Additive schemes		No	[13]
Alkyl groups	Internal molecular energies of reactants and products	I, increments			[14]
Homologous series and their branched-chain isomers (1000)	Retention data on other SPs	Ι	Two various	'Relative higher accuracy'	[15]
Congener series of substituted benzenes, benzaldehydes and acetophenones	Different set of topological parameters	<i>I</i> , Correspondence factor analysis CFA	Six OV (Ohio Valley) i.e. (methyl-phenyl- siloxanes)	-	[16]
Polychlorinated biphenyls (PCBs)	Physicochemical descriptors (52): ultraviolet (UV) absorption spectra, semiempirical parameters (AM1): heat of formation, dipole moments, ionization potential and the barrier of internal rotation, GC retention times	PCA		No	[17]
N,N-Dialkylhydrazones	$T_{\rm b}$, homomorphic factors, bond angle and electron density {I(oxo)}, volumes, van der Waals' surface.	I, Simple linear	HP-1, HP-5	Visual	[18, 19]
38 isoalkanes and 24 alkenes	substantial, important, likely and	I, MLR	Squalane,	1.6 < SD < 9.7	[20]

Aromatic analytes, positional isomers of xylenes, ethyltoluenes	specific parameters, (quantumchemical)	RRT	citroflex, carbon black Fused-silica with calixarene		[21]
and diethylbenzenes PAHs (70)	$T_{\rm b}$, vaporization enthalpy, molecular total energy	<i>I</i> , linear, nonlinear (Etot)	oligomers Methylsilicone, Carbopack	No	[22]
Anabolic steroids, stimulants and narcotics	Molecular characteristics	× ,	1		[23]
Low-polarity solutes (9) e.g. camphene, α -terpinene, myrcene	T _b	RRT, linear (0.994)	Six different modified α -, β - and γ - cyclodextrin	No	[24]
Cyclic alkanes, alkenes, alcohols, esters, ketones (C4-C10, O1-O2)	Topological (8), chemical (4)	<i>I</i> , CP-ANN (0.892 – 0.928), SOM	Squalane, OV-1	Training and test set, 35 <rms<43< td=""><td>[25]</td></rms<43<>	[25]
Alkylbenzenes (150)	Topological, geometric, electronic, no physical descriptor	I, BP-ANN	Carbowax 20M	Training and test set, RMS(MLR)=22, RMS(ANN)=19	[26]
Compounds from Ylang-Ylang essential oil (48)	Topological, geometric, electronic	I, MLR, PCA	DB-1, DB-wax		[27]
Flavonoids (49: flavones, Flavonols, flavanones, a chalcone)	Topological, geometric, electronic	Reciprocal RRT, MLR (0.975),	Apolar column	SD=0.12	[28]
Alkenes	Conformational E, no of quaternary C atoms	<i>I</i> , MLR (0.9957- 0.9987)	Graphitized carbon black	7 <sd<14< td=""><td>[29]</td></sd<14<>	[29]
All PCB congeners (209) Monoterpenes, monoterpenoids homologues and isomers	Congener substitution pattern $T_{\rm b}$	<i>I</i> , biparameter linear		Error< interlaboratory scatter	[30] [31]
Allylic alcohols and unsaturated esters	Fragments increments $n-\pi$ orbital overlap of lone pairs	<i>I</i> , Additive schemes	Polar and non- polar	Deviation<3.00%	[32]

Alkylbenzenes (18)	C=C bonds $T_{\rm b}$, reciprocal $T_{\rm b}$	RRT, exponential (0.9585-0.9967)	Silicon oil 550, dinonylphtalate, PEG4000, Bentone 34	0.047 <sd<0.42< th=""><th>[33]</th></sd<0.42<>	[33]
Alkylbenzenes (18)	$T_{ m b}$,	Ι	_ " _	Theoretical derivation	[34]
Aliphatic alcohols, aldehydes, acids and amines	Ortogonalized descriptors	PCA		No	[35]
Organic compounds, homologues, congeners	$T_{\rm b}$, structural fragments, molecular polarizabilities	<i>I</i> , linear- logarithmic	Dimethylpoly- siloxane	<i>I</i> ~5/10 i.u.	[5]
Acyclic and cyclic alkanes, alkenes, alcohols, esters, ketones and ethers (184)	Molar volume, $T_{\rm b}$	I, BP-ANN	Not given	Cross-validation and leave-20%-out	[36]
PAHs (100)	Pseudo-conjugated π -system surface (S(π)) and quasi-length of carbon chain (N')	<i>I</i> , bilinear (0.9968)	SE-52	7.1 <s<10.3< td=""><td>[37]</td></s<10.3<>	[37]
PCBs	3D WHIM,	RRT, solubility, logKow, MLR, GA	Not given	Leave-one-out, leave-multiple-out, SEC= SEP=0.023	[38]
Various organic compounds	Total energy, relative effective mass and number of carbon atoms, minimum valency on H atoms, etc	RF (0.956), MLR, BP-ANN		Two prediction sets, 5.0 <sep<7.1< td=""><td>[39]</td></sep<7.1<>	[39]
Acyclic, cyclic alkanes, alkenes, dienes, ketones aldehydes ethers, aromatic hydrocarbons C3-C11 O1-O2 (381)	Informational and topological structural descriptors (16)	<i>I</i> , MLR (0.987), BP-ANN (0.990), CP-ANN (0.969)	Squalene	LOO, 10 fold CV, average RMS: 19 (BP-ANN), 22.5 (MLR), 36.1 (CP- ANN)	[40]
n-Alkanes	Backbone carbon atom number	k, exponential		Theoretical derivation	[41]
Alkylbenzenes (18)	$T_{\rm b}, 1/T_{\rm b}, {\rm T}/T_{\rm b}, (T_{\rm b}\text{-}{\rm T}), (1 - T_{\rm b}/{\rm T}), T_{\rm b}^{2}, (T_{\rm b} - {\rm T})^{2}, (1 - T_{\rm b}/{\rm T})^{2}$	<i>I</i> , linear (0.9692-0.9992)	Silicon oil 550, dinonylphtalate,	4.3 <sd<47.9< td=""><td>[42]</td></sd<47.9<>	[42]

Alkylbenzenes (18)	$T_{\rm b}$, reciprocal $T_{\rm b}$	RRT, exponential (0.9455-0.9977)	PEG4000, Bentone 34 Silicon oil 550, dinonylphtalate, PEG4000, Bentone 34	0.028 <sd<0.079< th=""><th>[43]</th></sd<0.079<>	[43]
Polysubstituted alkylbenzene isomers	Indices of benzene, monsubstituted alkylbenzenes and disubstituted alkylbenzenes	Ι			[44]
Polychlorinated naphthalenes (62)	Number of chlorine substitutions, heat of formation, maximum value for atomic valence, the minimum value for electronic orbital population	RRT, MLR (0.9975)	DB-5	SE=16.7	[45]
Aldehydes, ketones	$T_{\rm b}$, ln $T_{\rm b}$, $T_{\rm b}$ *ln $T_{\rm b}$	<i>I</i> , linear, (0.9976-0.99994)	DB-210	11.5 <sd<12.1< td=""><td>[46]</td></sd<12.1<>	[46]
Alkanes (157), cis- and trans-n- alkene isomers (79)	Semiempirical topological index, increments	<i>I</i> , linear (0.9901), (0.99996)	Squalane	2.35 <sd<26.2 Cross-validation Comparison with prediction by Wiener, Randic indices</sd<26.2 	[47]
Hydrocarbons (191)	Oblique factors	FA, varimax, promax rotations	DB-1, DB-5, SE- 54, OV-1	GC/MS identification	[48]
Aldehydes, ketones	$T_{\rm b}$, M _w , $V_{\rm m}$, $R_{\rm m}$, log P , Ind,	<i>I</i> , scores, PCA, MLR (0.99901)	HP-1, HP-50, DB-210, HP- Innowax	SD=0.0491	[49]
Alkanes (156) oxygen-containing organic molecules (81)	Weighted fragments, spectral moments	Additive schemes	Squalane, OV-1		[50]
Coumarins	Total surface area (AT), electrotopological state index,, oxygen in position 1, HOMO,	MLR	Low polarity phases	Cross-validation	[51]

Alkylbenzenes (32)	Boiling point, molar volume, stationary phase	I, BP-ANN	Squalane, SE- 30, PEG,	Training and test sets, Relative error 3%	[52]
isoalkanes, dialkyl sulfates, and aliphatic amines and	$T_{\rm b}$, NC, $V_{\rm m}$, $R_{\rm m}$, sum of internal rotational and vibrational energies	<i>I</i> , structural fragments		Molecular dynamic caculations	[53]
Diverse chemical compounds (152)	CODESSA descriptors (296), linear selection	Retention time, RF, MLR, nonlinear models		Comparison with earlier results	[54]
Halocarbons C1-C4, hydrocarbons C4-C6 (17)	Retention time, $R_{\rm m}$	Virial coefficients Interaction energies (0.973, 0.982)	Carbopack C		[55]
Trimethylsilyl ether derivatives of natural sterols (16)	Conventional, topological, quantum-chemical (60)	<i>I</i> , MLR (>0.9880)	SE-54, SE-52	Relative mean errors 2.88%,3.24%.	[56]
Aldehydes, ketones	$T_{\rm b}$, M _w , $V_{\rm m}$, $R_{\rm m}$, log P , Ind,	<i>I</i> , scores, PLS, (0.990-0.995)	HP-1, HP-50, DB-210, HP- Innowax	Cross-validation 0.975 <q^2<0.990< td=""><td>[57]</td></q^2<0.990<>	[57]
Polychlorinated biphenyl (PCB) congeners,	New QSRR descriptors for selectivity correction	Retention time	various	SDs are 'within a chromatographic peak width'	[58]
Methylalkanes produced by insects (178)	Mainly topological descriptors	<i>I</i> , MLR	DB-1	Internal (LOO, leave-33%-out) and external (30) cross- validation, SD=4.6 (overall) SD= 4.3 (truncated)	[59]
Polychlorinated dibenzofurans (PCDFs),	Substitution pattern, positions	<i>I</i> , MLR (>0.9995)	DB-5	SD<7 i.u.	[60]
Alkylbenzenes (129)	molecular graph descriptors, sequential orthogonalization	I, MLR		calibration and prediction sets	[61]
Diverse sets	Abraham type solvatochromic	gas-liquid	EGAD, THPED,	Residual analysis,	[62]

	parameters (6),	partition coefficient, K(L), MLR, BP-ANN, nonlinear function	Ucon 50 HB 660 DEHPA,QBES	training, prediction sets	
Alkylphenols	Wiener, hyper-Wiener, minimum and maximum eigenvalue, Ivanciuc-Balaban, and information on distance operators	<i>I</i> , MLR	Not given	S=37-38 i.u. (biparametric); S=15-19 (5-4 parametric)	[63]
Alkanes (64)	Novel molecular distance-edge vector (10 elements)	<i>I</i> , MLR (0.9988 - 0.9992)		Cross validation RMS(training) = 5.9, RMS(test) = 7.1	[64]
Alkanes, alcohols and polycyclic aromatic hydrocarbons.	Electronegativity-distance vector (MEDV),	I, MLR			[65]
Amines	Topological indices Aml, Am2, Am3, gravitational index G1.	I, MLR	Phase of various polarity (3)		[66]
Saturated and monounsaturated six- carbon aldehydes, alcohols and esters	$T_{\rm b}$	Ι	DB-5, DB- 1701, DB-Wax		[67]
Hydrocarbons and derivatives containing oxygen, nitrogen and halogens	Valence connectivity indices, $1(\chi)(v)$ Wiener, W, and Balaban, J, indices	logV(g), <i>I</i> , linear, non-linear (0.9597-0.99999)	Various, PDMS, PEA, PBD, TFPS15, XF- 1150	No	[68]
Alkanes, diverse compounds	LSER	Specific retention volumes, MLR	18 polymers	No	[69]
Polychlorodibenzothiophenes PCDTs (19)	Structural features	MLR	DB-5 and DB- 5ms		[70]
Hydrocarbons, benzene derivatives, esters, alcohols, aldehydes, ketones and heterocyclics (110)	Molecular mass, number of vibrational modes of the molecule, molecular surface area and Balaban index	RF, MLR, BP- ANN		Mean absolute error = 0.02	[71]
Diverse C10 polar solutes from	$T_{ m b}$	RRT, linear	12 modified	SD<5.5	[72]

volatile oils PAHs (unsubstituted six- membered fused aromatic rings, 48)	Electronic, geometric, topological (e.g. electron affinity, the difference between electron affinity and ionization potential (GAP), Wiener, and connectivity indexes, volume, surface area, length-to-breadth ratio, enthalpy	(>0.990) I	cyclodextrin		[73]
Aldehydes, ketones	of formation Quantum-chemical method PM3. HOMO, LUMO, polarizability, dipole moment, solvent accessible surface area	<i>I</i> , MLR, (0.9930- 0.9975) PCA, CA	OV-1, HP-50, DB-210 and HP- Innowax	12 <sd<19< td=""><td>[74]</td></sd<19<>	[74]
100 polycyclic aromatic hydrocarbons (PAH)s	Novel molecular distance-edge vector (6 parameters)	<i>I</i> , linear (0.988), to the gas		Comparison with results of molecular polarizability index	[75]
Alkylbenzenes (129)	Molecular graph descriptors (5)	I, MLR		Calibration and prediction sets	[76]
46 alkylbenzenes them.	Simple set of six numeric codes McReynolds' constant of the different stationary phases, temperature	<i>I</i> , MLR, BP-ANN	Cit.A-4, SE-30 and Carbowax 20M	1	[77]
Hydrocarbons	Molecular structure	<i>I</i> , BP-ANN (0.9934)		Leave-10%-out, SD=16.5	[78]
Polychlorinated dibenzofurans PCDFs	Molecular distance-edge vector	MLR, (>0.98)	DB-5, SE-54, OV-101	Cross-validation (0.97)	[79]
Hydrocarbons (150)	Numeric structural codes	<i>I</i> , MLR (0.9874 - 0.9901)		20.2 <sd<22.9 leave-one-out cross-validation</sd<22.9 	[80]
Noncyclic and monocyclic terpenes (53)	One electronic, two geometric, two topological and one physicochemical descriptors	<i>I</i> , MLR, BP-ANN	Carbowax 20 M	Training and prediction (1.88%) sets, SD=38	[81]

Alkyl aromatic hydrocarbons and esters (252)	Partition coefficients (K_p) , group identification	<i>I</i> , linear	HP-5	Visual	[82]
207 halogenated hydrocarbons	CODESSA descriptors: Kier-Hall connectivity index, number of F atoms, gravitation index	<i>I</i> , MLR (0.994 - 0.993)	Methylsilicone	Leave-one-out cross-validation 0.991 <q<0.992< td=""><td>[83]</td></q<0.992<>	[83]
22 amines	Novel connectivity index, mQ	<i>I</i> , MLR (0.9734 - 0.9733)	OV-101, OV-225 and NGA	Modified Jackknife's test	[84]
Malodorous organic sulfur compounds, thiols and thioethers 373 organic compounds	Molar refractivity and connectivity index values	Second gas-solid virial coefficient <i>I</i> , (0.975 - 0.994)	Carbopack C	Visual	[85]
Linear, branched alcohols with hydroxyl group on a primary, secondary, or tertiary carbon atom.	Molecular connectivity indices	<i>I</i> , MLR, BP-ANN	OV series columns	Cross-validation	[86]
Several groups of isomeric organic compounds	Topological (Wiener and Hosoya indices) and dynamic parameters	<i>I</i> , MLR			[87]
Chlorinated alkylarenes	Molecular dynamic parameters,	<i>I</i> , additivity schemes	Nonpolar		[88]
Various	topological	Retention times, PCA	Various		[89]
Polycyclic aromatic hydrocarbons PAHs (94)	Molecular distance-edge vector (VMDE)	<i>I</i> , MLR (0.9928 - 0.9946)		Leave-one-out cross validation 8.15 <rms<9.35< td=""><td>[90]</td></rms<9.35<>	[90]
Alkanes (48), alcohols (31) Alkanes	Variable connectivity index 1 χ f Molecular distance edge vector (MDEV)-consisting of ten elements	<i>I</i> , MLR (0.9933) <i>I</i> , Wavelet NN (0.9996) BP-ANN		SD=14.2 SD=5.06	[91] [92]
Polychlorinated dibenzo-p- dioxins	Molecular descriptors: Randic index (order 3), the Kier shape index (order 3)	Retention time (0.9950)	DB-5	SD=0.2550.	[93]
Polybrominated diphenyl ethers PDBEs	Physicochemical descriptors (40) AM1 quantumchemical, molecular	RRT, PCA, PLS	Four capillary columns	CPSil-8, HP-1701, SP-2380,SB-	[94]

	mechanics, heats of formation, frontier molecular orbital energies, atomic charges, dipole moments, log <i>P</i> values, and molecular surface areas,			Smectic	
Organic compounds with various functional groups	$T_{\rm b}$, α , heat of formation, density, various indices, inertia, HOMO. Etc.	RF, MLR, BP- ANN	Not given	Training, prediction sets; residual analysis	[95]
Methylalkanes produced by insects (178)	Semi-empirical topological index	<i>I</i> , MLR (0.99999)	DB-1	SD=3.20 External SD=4.6	[96]
Branched alkenes	Semi-empirical topological index	<i>I</i> , MLR	Squalane, 1- octadecene, Apiezon-L, OV- 1, DB-1	Cross-validation (0.9985)	[97]
polychlorinated dibenzodioxins PCDDs	molecular distance edge vector (VMDE)	MLR	DB-5, SP-2100, SE-54, OV-1701	leave-one-out	[98]
13 different classes of organic compounds	molecular density, Wiener number, boiling point, polarizability and square of polarizability	RRT, MLR, BP- ANN	Rtx-5	Training, prediction sets;	[99]
Polycyclic aromatic hydrocarbons PAHs (209)	Molecular electronegativity- distance vector (MEDV)	<i>I</i> , MLR (0.9812)	SE-52	RMS=15.5	[100]
Esters, alcohols, aldehydes ketones	HOMO, molecular values, number of atoms, molecular shadow area on the xy plane,	<i>I</i> , BP-ANN	OV-1, SE-54	Training, prediction sets; average percentage deviation 2.5 - 3.0%	[101]
Alkanes, alkenes, alcohols, esthers, ketones, ethers	$T_{\rm b}, V_{\rm m}$	<i>I</i> , RBF-NN (0.9910)	Not given, as in ref. [36]	Test set, RMS=14.1	[102]
Saturated esters (98)	PM3 descriptors (Hyperchem 4.0), topological, degree of branching	<i>I</i> , MLR, PCA	SE-30, OV-7, DC-710, OV-25, 100% phenyl,	SE=13.1-23.0	[103]

			DC-230 and DC- 530		
Oxo compounds (54)	Semiempirical topological index	<i>I</i> , linear (0.999)	HP-1, HP-50, DB-210, HP- Innowax	SD=5.0	[104]
Chlorinated phenols		RRT, MLR (0.985)	DB-5	SD=0.0472	[105]
Polychlorinated naphthalenes (62)	Molecular electronegativity distance vector	<i>I</i> , MLR (0.9912),		RMS=31.4, leave-one-out (0.9898) RMS=33.8	[106]
Alkenes	Class distance variable (information about the branch, position of the double bonds, the number of double bonds)	<i>I</i> , projection pursuit	Squalane	Training and prediction sets	[107]
226 series of compounds		ΔI , additivity scheme		theoretical	[108]
Polychlorinated biphenyls, PCBs (30)	Topological parameters (Balaban index and electrotopological index	RRT, R <i>I</i> , linear (0.78-0.99) nonlinear	PE-5MS	Relative error=2.8%-24.4%	[109]
Disulfides (50)	Semi-empirical quantum chemical (AM1) HYPERCHEM 4.0	<i>I</i> , MLR (0.976- 0.995), RBF-NN	Apiezon M, OV- 17, Triton X-305 and PEG-1000	Training and validation sets	[110]
Benzene and 12 chlorobenzenes	Mosaic and bond increments	k, I, additivity schemes	Agilent 6850, HP-5, HP-5890, HP-5840, SE-30, SPB-1, Wax-10	Training (6) test (8) absolute deviation=1.7 i.u. relative errors=0.9% 3.5%	[111]
Benzene and 12 chlorobenzenes	topological indices (first-order connectivity index, Wiener's index and Balaban index) physico- chemical properties (freezing point, boiling point, refraction	<i>I</i> , MLR (0.9976- 0.9998), PCA	Various (7)		[112]

	index, dipole moment, density, molecular mass and vapor pressure				
Aldehydes, ketones	Xu index, atom-type-based AI topological indices (fragments)	<i>I</i> , MLR (r>0.995)	HP-1, HP-50, DB-210, HP- Innowax	Theoretical considerations	[113]
Alkanes, alkenes, esters, ketones, aldehydes, and alcohols (548)	Semi-empirical topological index, IET	<i>I</i> , MLR (1.0000)		Test set (182), SD=7.7	[114]
Alkoxyl silicon chlorides Alcohols (25) homologues	molecular topological index mXY hydrogen connectivity index number of carbon atoms nC, reciprocal $T_{\rm b}$	<i>I</i> , <i>I</i> , MLR nonlinear		52-1.1	[115] [116] [117]
branched alkanes	class distance variable	projection pursuit (PP)			[118]
Various (20 chemical classes) Saturated alcohols	<i>T</i> _b Semi-empirical topological index	Lee's <i>I</i> <i>I</i> , linear (0.9978)	Not given OV-1, SE-30, OV-3, OV-7, OV- 11, OV-17, OV- 25	SD=9.54	[119] [120]
Chlorinated polycyclic aromatic hydrocarbons, Cl-PAHs (18)	MNDO quantumchemical: total energy, dipole moment, net atomic charge on Cl	RRT (0.9968), Cl- atom position	HP-5ms		[121]
Polychlorinated naphthalenes (62)	Structural parameters	<i>I</i> , MLR (0.9839- 0.9880)		Leave-one-out cross-validation	[122]
Trimethyl silyl derivatives of natural phenols and sterols	Descriptors generated with the HYPERCHEM 4.0, AMPAC 6.7 and CODESSA 2.3	RRT, MLR(>0.99)	SE-54 and SE-52	Relatieve errors: 0.01% 0.37%.	[123]
Aldehydes, ketones	Semi-empirical topological index, IET	<i>I</i> , MLR (>0.9995)	HP-1, HP-50, DB-210, HP- Innowax	SD=5.5	[124]
n-alkanes, 1-alkenes, and 2- alkenes homologous series	Hyperchem, MOPAC,	ΔH, RT, MLR	DB-1	S(ΔH)=161 cal/mol; cross-	[125]

271 organic compounds of diverse structures	Retention data on two phases of different polarity	$T_{\rm b}$, bilinear(0.9724)	DB1-60W, DBWAX-30N	validation SD=16.1 K	[126]
α -, β 1-, and β 2-agonists	Diverse connectivity and electrotopological indices	RRT, MLR, PCA, PLS	Crosslinked methylsilicone gum,	Training and prediction set	[127]
CNS agents (benzodiazepines, barbiturates, phenytoin)	Calculated descriptors	<i>I</i> , MLR (0.983- 0.988)	DB-5, DB-17	Leave-one-out cross validation (0.967) and external prediction set (0.954)	[128]
O-, N-, and S-heterocyclic compounds	<i>T</i> _b , WHIM, GETAWAY, connectivity indices, 0D constitutive descriptors	I, MLR, PLS	Nonpolar dimethyl polysiloxane	Cross validation	[129]
Polycyclic aromatic hydrocarbons, PAHs	$T_{\rm b}$, molecular mass and connectivity index	<i>I</i> (Lee's scale), linear, quadratic exponential	DB-5	SD=1.9, external SD=2.4; 3.3	[130]
Sulfides	Atomic structure parameters molecular connectivity index topological index	<i>I</i> , MLR (>0.97)	Different polarity		[131]
Mercaptans, sulfides, thiophenes (34)	Molecular descriptors (7,8)	RT, <i>I</i> , MLR		S = 0.61 and 1.63,	[132]
Methane, ethane, propane, chloromethane, chlorodifluoro- methane, dimethyl ether, and sulfur hexafluoride, (65)	$R_{\rm m}$, connectivity index, surface area, surface energy contribution (r2=0.952) of the 65 different lnB2s values. T	Second gas-solid virial coefficient, B2s (0.9757)	Carboxen-1000 carbon molecular sieve		[133]
Polychlorinated hydroxybiphenyls (839)	Simpler structural analogues of target compounds	Additivity scheme arithmetical operations of <i>I</i> s	HP-5		[134]
149 C3 - C12 volatile organic compounds	Total information index of atomic composition IAC, Wiener number, W, solvation connectivity index,	PCA, MLR for variable selection BP-ANN	DB-1		[135]

	Xlsol, number of substituted aromatic C(sp2), nCaR,				[12]
118 polychlorinated biphenyls, PCBs	Ionization potential (molecules and molecular ions), topological indices, inertia	RF (ECD), MLR for variable selection BP- ANN	DB-5	Training and prediction sets	[136]
Methylbenzenes, chlorobenzenes	Methyl/chlorine substitution pattern, number of substituents	Ι,	HP-5, ZB-WAX		[137]
846 diverse organic compounds	Dragon descriptors (529)	MLR, PLS	Apolar phases, HP1, OV-101	Training and prediction (SD=80) sets.	[138]
Polychlorinated dibenzofurans, PCDFs	Modified molecular distance-edge (MDE) vector	MLR (0.958- 0.995)	DB-5, SE-54, OV-101, OV- 1701, SP-2300	Leave-one out (0.834-0.992)	[139]
22 alkoxyl silicon chlorides, 61 sulfides and 74 alkanes	Molecular structure information connectivity index mY	<i>I</i> , MLR		'Clear physical significance'	[140]
Saturated hydrocarbons, olefines and dienes	Quantum chemistry parameters HOMO, LUMO, ElcE, <i>R</i> _m	<i>I</i> , MLR	Various	'Good stability and prediction'	[141]
126 polybrominated diphenyl ethers, PBDEs	Congener substitution patterns	Elution order, nonlinear	DB-1, DB-5, HT- 5, DB-17, DB- XLB, HT-8, CP- Sil19	-	[142]
Aliphatic alcohols	Hyperchem 4.0, Dragon descriptors (109)	<i>I</i> , PCA, MLR, RR, PLS (0.9712 – 0.9950)	OV-1	Leave-33%-out cross validation (0.9052-0.9900)	[143]
142 molecules (10 series of compounds)	Modified Topological Index mT	I, RRT, MLR			[144]
Alcohols	Quantum chemical descriptors AM1, Hartree-Fock (HF) Gaussian 98	<i>I</i> , MLR	Superox 20M- diglycerol		[145]
Polyaromatics, polychlorobiphenyls		Ι			[146]

Aliphatic alcohols	Semi-empirical topological index (IET),	Linear (>0.98)		Cross-validation leave-one-out	[147]
Polycyclic aromatic sulfur heterocyclic compounds, PASHs	μ, Constitutional, geometric, topological, molecular walks	<i>I</i> , nonlinear	BPX5	Cross-validation	[148]
136 polychlorinated dibenzofurans, PCDFs	Number and position of chlorine substitutions, quantumchemical	<i>I</i> , (0.993-0.998)	DB-5	Cross-validation	[149]
Polychlorinated dibenzo-p- dioxins, PCDDs .dibenzofurans, PCDFs	Ι	Subcooled liquid vapor pressures (PL)			[150]
Methyl-substituted alkanes produced by insects	Total number of carbons in the backbone, the number of the multiple methyl groups attached to the carbon chain, their relative positions	<i>I</i> , BP-ANN	DB-1	Average relative error=3.3%.	[151]
Polychlorinated dibenzofurans, PCDFs	Molecular structure index, group modify index	I, RRT, MLR,	DB-5, SE-54 and OV-101	Relative deviation=1.09%	[152]
Organic sulfur compounds	Topological descriptors, temperature	I, MLR		Leave-one-out (0.978) leave-two- out (0.976)	[153]
Polychlorinated dibenzofurans, PCDFs (135) PCDFs.	Molecular hologram	<i>I</i> , PLS (0.999)		Training and prediction set	[154]
Nitrogen-containing polycyclic aromatic compounds, N-PACs	Codessa descriptors (3)	<i>I</i> , MLR (0.9923)	SE-52	Cross-validation	[155]
Sulfides and mercaptans	Molecular polarizability effect index (MPEI), the effective topological steric effect index (ETSEI), the number of carbon (N), Wiener three-walk path (P3)	<i>I</i> , MLR (>0.98)	Various		[156]
Polycyclic aromatic hydrocarbons, PAHs	$T_{\rm b}$, connectivity indices and molecular weights	I, BP-ANN		Test sets	[157]
149 volatile organic compounds (VOCs).	Five molecular descriptors (CODESSA)	RT, SVM	DB-1	Training and prediction set	[158]

Alkanes, organic compounds	Topological index based on distance matrix and branch vertex of the atoms	<i>I</i> , MLR (0.9919 - 0.9922)	Squalane, SE-30	SD=13.7, 12.0	[159]
Polychlorinated naphthalenes PCNs	Quantumchemical (HF/6-31G* and B3LYP/6-31G* levels), relative position of chlorine substitution	<i>I</i> , MLR (0.9907 - 0.9978), 0.9983		Cross-validation (0.9885-0.9974) 0.9979	[160]
Aromatic imines	Topologic, topographic and quantum-chemical	<i>I</i> , MLR (0.987), BP-ANN (0.940)	DB-1	external set (0.911- 0.985), leave-one- out (LOO) and the leave.multiple-out (LMO)	[161]
Organophosphates (35)	Electrotopological state index for atom types, ETSI	<i>I</i> , MLR (>0.99)		Calibration, validation (0.98) sets	[162]
Polybrominated diphenyl ethers (209)	Wiener index, Randic index, polarity parameter,	RRT, MLR (0.983-0.996)	DB-1 DB-5MS, HT-5, DB-17, DB-XLB, HT-8, CP-Sil 19	Cross-validation (0.979-0.995)	[163]
Aliphatic alcohols (35)	Electrotopological state index (En) the molecule connectivity index (MCI)	<i>I</i> , MLR (0.994), PLS		Leave-one-out	[164]
Saturated esters (90)	Lu index, distance-based atom- type DAI topological indices	I, MLR	SE-30, OV-7, DC-710, OV-25, XE-60, OV-225, Silar-5CP	SD=10-19.3 i.u- (cross validated)	[165]
Aliphatic carbonyl compounds, esters and alcohols	$T_{\rm b}$, linear temperature programmed retention index	$K_{\rm fg}$, bilinear	Carboxen/polydi methylsiloxane	No	[166]
PAHs	$T_{\rm b}$, molecular mass, connectivity index, Schabron molecular size	<i>I</i> (Lee scale), BP- ANN (0.9381)	SE-52, DB-5	validation and two testing sets (0.8939- 0.9460)	[167]
177 methylalkanes (insects)	Molecular tightness index, MTI,	<i>I</i> , MLR (0.99999)	DB-1	Leave-one-out	[168]

	polarizability effect index, PEI, number of carbon atoms in backbone, NC, number of the 2- methyl groups (N2-CH3) number of methyl groups attached to the carbon backbone (NCH3)			cross validation, external data set. 3.7>SD>4.6	
Fatty acid methyl esters (FAME)	Two-dimensional fatty acid retention index system, 2D-FAI	Equivalent chain lengths, ECL, MLR	BPX-70	Test sets 0.002 <rms<0.012 ECL units</rms<0.012 	[169]
Methylene-interrupted polyunsaturated fatty acids	Chain length, number of double bonds, position of the double bond system	Retention indices as equivalent chain lengths (ECL)	Cyanopropyl column	RMS=0.03 ECL units	[170]
Polycyclic aromatic sulfur heterocycles, PASH alkylated dibenzothiophenes (43)	Substitution pattern	Ι	Methylphenylsilo xane (5% and 50% phenyl groups): DB5ms, DB17ms	New synthesized compounds	[171]

Notations ANN - artificial neural network α - polarizability **BP** - back-propagation CFA - correspondence factor analysis CP - counter-propagation DB-1 - 100% dimethylpolysiloxane DB-5 - 5% diphenyl and 95% dimethylpolysiloxane DB-210 - trifluoropropylmethyl polysiloxane DB-wax - polyethyleneglycol DEHPA - di(2-ethylhexyl)phosphoric acid EGAD - polyethylene glycol adipate, ECL - eqivalent chain length FA - factor analysis GA - genetic algorithm HP-1 - 100% dimethylpolysiloxane, HP-5 - 5% diphenyl and 95% dimethylpolysiloxane HP-50 - 50% diphenyl and 50% dimethylpolysiloxane HP-Innowax - polyethyleneglycol *I* - Kovats retention index k - retention coefficient, (capacity factor) $K_{\rm fg}$, distribution coefficients between fiber coating and gas phase LOO - leave-one-out (internal) cross-validation

LMO - leave-multiple-out (internal) cross-validation PAH - polycyclic aromatic hydrocarbon PCA - principal component analysis PCB - polychlorinated biphenyls PCDF - polychlorinated dibenzofuran PDMS - dimethylpolysiloxane PP - projection pursuit PPEG - poly(ethylene glycol) (Ucon 50 HB 660) (U50HB), QBES - tetra-n-butylammonium N.N-(bis-2-hydroxylethyl)-2aminoethanesulfonate RBF-NN - radial basis function neural network **RF** - response factors $R_{\rm m}$ - molar refraction RR - ridge regression RRT - relative retention time SD - standard deviation SE, SEC, SEP, standard error, calibration, prediction SOM - self-organizing map, (Kohonen network) $T_{\rm b}$ - boiling point THPED - N,N,N',N'-tetrakis(2-hydroxypropyl) ethylenediamine $V_{\rm m}$ - molar volume

Table 2 QSERR examinations between 1996-2006.

Solutes Chiral α-alkyl arylcarboxylic	Descriptors Hydrogen bonding ability and	Model building Retention data	Stationary phase (SP) AD-CSP	Source
acids (28) Mexiletine and a series of structurally related compounds	aromaticity Presence or absence of secondary hydrogen-bonding group,	Retention data, MLR	AD-CSP	[173]
Racemic 3-phenyl-4-(1- adamantyl)-5-X-phenyl-?2-	nonempirical descriptors Aromatic ring substituents, electronic and bulk parameters or	MLR, CoMFA	Pirkle-type N,N'-(S.S- dinitrobenzoyl)-1(R),2(R)-	[174]
1,2,4-oxadiazolines 12 chiral arylcarboxylic acids	CoMFA descriptors Hydrophobicity and steric volume	MLR	diaminocyclohexane Immobilized human serum	[175]
			albumin chiral stationary phase (HSA-CSP).	[176]
29 aromatic acids	Charge transfer, electrostatic, lipophilic, and dipole interactions	MLR, BP-ANN	Amylosic CSP	[177]
Enantiomeric amides	Chirality of the amylose backbone	Elution order	Amylosic CSP	[178]
Homologous series of 1,4- disubstituted piperazine	Carbon number of the alkyl substituent (max. C4-C5)	Nonlinear	Chiral cellulose tris(4- methylbenzoate)	[179]
Nonlinear data set for chiral separation	Mass (m/z)	PLS, ANN	Pirkle-type CSP	[180]
14 O-ethyl O-(substituted) phenyl N-isopropyl-phosphoro- amidothioates	Molecular descriptors (7) significant descriptors (4)	MLR		[181]
Chiral sulphoxides	Molecular connectivity indices, similarity and holistic descriptors (3D-WHIM)	RRT, MLR	Cellulose and amylose tris- phenylcarbamates coated onto 3-aminopropyl mesoporous silica	[182]
O-ethyl O-(substituted) phenyl N-isopropyl phosphoroamidothioate	LUMO, interaction of hydrogen bond, π - π interaction, log <i>P</i> and	MLR	Pirkle-type CSPs, Sumichiral OA4700	[183]
42 chiral arylalkylcarbinols	2D and 3D molecular descriptors	logα, MLR, ANN, CoMFA	Pirkle-type CSP	[184]

	quantum chemical (LUMO) hydrophobicity.			
α-aminophosphonates	Molecular parameters (4)	k, MLR, FA	Phenyl carbamate derivative β-cyclodextrin bonded	[185]
Diphenyl 1-(N- benzyloxycarbonyl)- aminoalkanephosphonates	log <i>P</i> , Angle, HOMO and LUMO	k, MLR, FA		[186]
Diphenyl 1-(N- benzyloxycarbonyl)- aminoalkanephosphonates	log <i>P</i> , Angle, loc <i>D</i> and TE	MLR	Pirkle-type	[187]
Various drugs, phenoxy propionic acid derivatives	Molecular descriptors (4)	MLR	Riboflavin Binding Protein (RfBP)	[188]
Diastereomers and enantiomers	Molecular dynamics	Addition of chiral substituents	Cyclodextrin derivatives	[189]
Aryl- and hetaryl-carbinols (22)	3D descriptors descriptor based on normal mode eigenvalues (EVA)	logα, CoMFA, CoMSIA, PLS, (0.97-0.99) validation (0.85-0.91)	(SS)-3,5- dinitrobenzoylated 1,2- diphenylethane-1,2- diamine	[190]
5-arylhydantoins (50)	2D and 3D molecular descriptors quantum chemical	MLR	Pirkle-type	[191]
Organophosponates	$V_{\rm m}, M_{\rm w},$ H-bond acceptor, dipole-Z	Elution order	N-(3,5-dinitrobenzoyl)-S- leucine	[192]
Hydroxy acids (8) amino acids (10)	Chiral topological indices	I (HP-TLC)		[193]
2-aryloxy-2-arylacetic acids (1- 3, 5-16), thioisostere derivative (4)	Polar, charge-transfer interactions, steric effects	k, Elution order, enantioseparation factors $(\alpha > 2)$	Penicillin G Acylase chiral stationary phase (PGA- CSP)	[194]
5-arylhydantoins (50)	Dragon descriptors (557)	Selectivity, resolution, PCA, PP, UVE-PLS MLR, CART	3R,4S-Welk-O-1	[195]

Notations

AD-CSP - amylose tris(3,5-dimethylphenylcarbamate) AR-CSP - amylose tris(R-phenylethyl-carbamate) AS- CSP - amylose tris(S-phenylethylcarbamate) ANN - artificial neural network α - chiral separation factor BP - back-propagation CART - classification and regression trees CoMFA - comparative molecular field analysis CoMSIA - comparative molecular similarity indices analysis CSP - chiral stationary phase. FA- factor analysis HSA-CSP - immobilized human serum albumin CSP *k* - retention coefficient, (capacity factor) LOO - leave-one-out (internal) cross-validation LUMO - energy of lowest unoccupied molecular orbital $M_{\rm w}$ - molecular mass MLR - multiple linear regression

PCA - principal component analysis PGA-CSP - Penicillin G Acylase CSP PLS - partial least squares PP - projection pursuit RfBP - riboflavin binding protein UVE-PLS - uninformative variable elimination-PLS $V_{\rm m}$ - molar volume Table 3 QSRR examinations in TLC between 1996-2006.

Solutes 29 antibiotics	descriptors Hydrophobicity parameters, surface areas	model building Weak or no correlations	Method Impregnated silica and	source [198]
Estrone, equilin, equilenin, their 17α-diols, 17α-estradiol, 17α- dihydroequilin (DHEQ), 17α- dihydroequilenin	Dipole moments, Randic's connectivity indices, number of H atoms	PCA, NLM	alumina supports TLC, RP-HPLC, capillary GC	[199]
18 nonsteroidal anti- inflammatory drugs	Lipophilicity and specific hydrophobic surface area	NLM	RP-TLC, methanol (acetic acid, sodium acetate, or sodium chloride)	[200]
7 monotetrazolium and 9 ditetrazolium salts	Physicochemical parameters (hydrophobic, electronic, steric)	PLS, CCA	Alumina and reversed- phase (RP) alumina layers using n-hexane-1-propanol and water-1-propanol	[201]
15 amino acids	Ttopological indexes, physicochemical properties (15)	<i>R</i> _f , MLR	Silica gel layers	[202]
Aryloxyaminopropanol derivatives of 1,4-piperazine	Lipophilic Hansch's constants π , the number of carbon atoms in R1 substituent	$R_{\rm m}$, linear, β -adrenolytic activity vs. logk is parabolic	TLC, HPLC	[203]
7 mono- and 9 ditetrazolium salts	Steric and electronic parameters	PČA, NLM	TLC, HPLC	[204]
Dihydroxythiobenzanilides	Hydrophobicity, antimycotic activity, lipophilicity Hansch parameter	logk, limited linear	RPTLC, acetone-water methanol-water	[205]
18 flavonoids	Number of hydroxyl groups	Selectivities, sequences	Silica-diluent + polar modifier	[206]
O-alkyl, O-(1-methylthioethyl- ideneamino) phosphoramidates	17 structural parameters: topologic indices, physicochemical	MLR	RPTLC,	[207]
10 ginsenosides	Topologic indices, physicochemical properties, novel	MLR	Silica gel layers (chloroform-ethyl acetate,	[208]

Homologous series of higher fatty acids, their methyl esters, higher alcohols	parameter "E" Topological indexes based on adjacency matrix, distance matrix	$R_{\rm M}$, log P (Rekker), simple linear	methanol-water)	[209]
Estradiol derivates	logP	Various chromatographically obtained hydrophobicity parameters (R_{M0} , $logk_w$ and φ_0)	HPTLC, HPLC, methanol- water and acetonitrile- water	[210]
Methyl laurate, -myristate, - palmitate, -isostearate, -stearate, - arachidate	Dipole moments of the mobile phases, percentage impregnation of SP, topological index	$R_{\rm M}$, log <i>P</i> for methyl isostearate	Kieselguhr F254 impregnated with different amounts of paraffin oil	[211]
Biogenic amine neurotransmitters, their metabolites	Semi-empirical quantumchemical	Retention data, linear, CA	RP-18 plates	[212]
Meta- and para-alkoxyphenols	Topological indexes based on adjacency matrix, distance matrix, electrotopological states	$R_{ m M}$	Cellulose impregnated with ethyl oleate	[213]
13 barbiturates	Partition coefficients, dipole moments, permittivities, topological indices	$R_{\rm M}$, bilinear	13 mobile phases	[214]
Thiazole and benzothiazole derivatives,	H -antihistamine 1 activity	Retention data, logP	Silica gel RP2 60F silanised precoated impregnated with amino acid mixtures	[215]
1,3-oxazolidine derivatives	PC, Theoretical molecular descriptors (ALCHEMY 2000), lipophilicity	$R_{\rm M0}$, PCA	C18 silica gel bonded, methanol	[216]
s-triazines	partition coefficients, Alog P, IAlog P, Clog P, Xlog P, log PKowin, and ACDlog P	Retention factors R_{M0} ,	methanol-water, acetone- water, acetonitrile-water, 2-propanol-water, tetrahydrofuran-water	[217]

Nicotinic acid, its derivatives Alkyl nicotinates (MN), nicotinamide, N-methylnicotin-	Measured and calculated partition coefficients, logPexp, AlogPs, IAlogP, ClogP, logPKowin,	$R_{ m M0}$,	RP18WF254, methanol- water	[218]
amide	xlog <i>P</i> , topological indices			[010]
Benzimidazole and benztriazole derivatives	Molecular descriptors, scores	$R_{\rm f}$ and $R_{\rm M0}$, PCA	paraffin oil-impregnated silica gel plates, methanol-	[219]
			water	
2,4-Dihydroxyphenylthioamide derivatives	Antifungal activity	R_{Mw} and $\log k_w$, linear dependence, parabolic	RPLC, TLC, Methanol- water	[220]

Notations

CA - cluster analysis FA- factor analysis HPTLC - high-pressure TLC *k* - retention coefficient, (capacity factor) MLR - multiple linear regression NLM - non-linear mapping PAH - polycyclic aromatic hydrocarbons PC - principal components PCA - principal component analysis PLS - partial least squares $R_{\rm m}$, $R_{\rm M}$ - TLC retention parameter, $R_{\rm m}$ =log(1/R_f-1) RPTLC - reversed phase TLC TLC - thin layer chromatography Table 4 QSRR examinations in column liquid chromatography between 1996-2006.

Solutes Substituted aromatic	Descriptors S, A, B, V	Models LSER	Column, mobile phase Polybutadiene (PBD)-coated zirconia	Source 224
hydrocarbons 25 structurally diverse solutes	E, S, A, B, V; and water accessible V_w , μ , atomic electron excess charge	LSER, logk'	Polyethylene-coated silica (PECSiO(2)) polyethylene- coated zirconia (PECZrO(2)),	225
Substituted benzenes	Substituent constant (π) and the total solubility parameter (δ T)	MLR,	Various columns in several different eluents	226
Quinolones	S_{w} , y-component of μ , MM+ and AM1	MLR, CA of solutes	PRP-1 column and aqueous organic solvent system	227
31 unsubstituted 3-6-ring PAHs	Moment of inertia,	CoMFA (0.973), cross- validated (0.930)	Polymeric C18 reversed- phase column	228
Small peptides	Sum of the hydrophobic contributions of respective amino acid residues	MLR, PLS, retention times	Ultrasphere Octyl, Ultrasphere ODS, Polymeric reversed phase PLRP-S, Nova-pak C-18	229
28 alkyl (1-phenylsulfonyl) cycloalkane-carboxylates	Octanol/water partition coefficients	LSER	RP-HPLC	230
Carboxamides and oxadiazoles	MM+ and AM1 descriptors for intermolecular interaction, isomeric effect and substituent effect: S_w , x component of μ , logP and μ	MLR, Bilinear,	RP-HPLC	231
LSER solutes (nitroalkanes, substituted benzenes)	LSER descriptors: E, S, A, B, V;	log <i>k</i> ' or log <i>k</i> (w), log <i>P</i> (octanole or alkane)	Poly(styrene-divinylbenzene) and immobilized artificial membrane, PRP-1	232
25 substituted biphenyls	Solute volume (V) and hydrogen bond basicity (B)	<i>S</i> , log <i>k</i> _w (>0.99)	C18 column, methanol/water	233

Pesticides; triazines,	MM+ and AM1 descriptors solvation energy of specific site of solute solvation energy and polarizability, S_w	t _R	RP, methanol-water acetonitrile-water.	234
Series of xenobiotics, 83 drugs	Physicochemical parameters	LSER, classification, PCA, similarity analysis	8 systems	235
PCBs and Chlorobenzenes, non- ortho-substituted chlorobiphenyls	Polarizability, LUMO, third order valence path molecular connectivity index	logk, linear, bilinear (values are 0.994 and 0.992	PGC: porous graphitic carbon PYE: 2-(1- pyrenyl)ethyldimethyl silica)	236
Substituted benzenes	$S, \delta T, \log P$ molecular structure parameters	$\log k_{w}$, linear, nonlinear, $\log P$	RP-HPLC	237
76 structurally unrelated compounds	CHI,	$\log k_{\rm c}$, t _R , $\log P$	Fast gradient RP-HPLC, acetonitrile-water	238
Test series of structurally diverse solutes	Structurally specific dipole- dipole and charge transfer interactions	MLR	C18 and AP (N- acylaminopropylsilica)	239
42 barbituric acid derivatives	Hydrophobicity parameters (e.g. hydrophobicity)	logk, PCA, NLM	PGC porous graphitized carbon, water-acetonitrile.	240
Heteroatom containing compounds	Quantumchemical, AM1 Hamiltonian, average molecular polarizability, net atomic charges on oxygen atoms that connect with the sulfur atoms, µ	logk, LSER	Not given	241
Hydroxy compounds, glucuronides	Physico-chemical constants, Parent compound	logk,	Not given	242
Phenolic and nitrogen- containing aromatics	Quantumchemical, Hammett's constants	p <i>K</i> _a	Acetonitrile, water, sodium phosphate buffer	243
Library	Different substituents in various positions	RT	HPLC	244
Finasteride, N-methylfinasteride	Polar functionalities on the surface of adsorbent, log <i>P</i>	$\log k_{ m w}$	Chemically-bonded-silica (SG-MIX), with hydroxyl (-	245

			OH), amino (-NH2), cyano (- CN), phenyl (-Ph), octyl (- C8) and octadecyl (- C18) groups	
20 nonsteroidal anti- inflammatory drugs	Physicochemical. parameters	PCA, NLM, CA	RP-HPLC	246
72 substituted N-benzylidene anilines	Solute polarity, Hammett's constants	CA, CFA	NP: heptane and three modifiers, tetrahydrofuran, 1-octanol and ethyl acetate	247
Disubstituted N-benzylidene anilines	μ , Hammett's constants, σ_X , σ_Y LSER descriptors	logk,	NP-HPLC	248
Selected phospholipid classes	Configurational + conformational descriptors	Nonlinear, ANN-PLS	RP-HPLC	249
Natural phenols in olive oils	62 molecular descriptors: conventional, topological, and quantum-chemical	MLR (0.9825 -0.9974)	RMSE 6.8% - 2.6 %	250
Very diverse set of 55 compounds	CHI, log <i>P</i>	$\log k_{50}$	ODS column and acetonitrile mobile phase	251
29 compounds were examined under conditions using automated fast gradient methods.	CHI, LSER descriptors: E, S, A, B, V	$\log k_{\rm c}$, t _R , $\log P$	20 different RP-HPLC, fast gradient	252
Homologous series	LSER descriptors	Hydrophobic selectivity and polar selectivities	Widely different RP-HPLC	253
34 solutes of widely different type	LSER descriptors	PCA	Nine prepacked narrow-pore and six wide-pore RP-HPLC various ligands (C18, C8, C4, CN)	254
Quinolones studied. At pH 3, was mainly affected by two descriptors,	HOMO µ, MM+, AM1 semiempirical	logk'	PRP-1 columns, MeOH, THF	255
2-cyano-3-methylthio-3-	10 structural parameters	logk', PCA, MLR	Not given	256

substituted amino-acrylates (25)				
Steroids	3D field descriptors	RT, SOM, PLS calibration set, test set (0.65-0.89)	NP, RP	257
2,4-dihydroxythiobenzanilides (fungicides)	φ	$\log k'$, $\log k_w$, linear, parabolic	RP, methanol-water or acetonitrile-water	258
58 diverse analytes	LSER descriptors, logP	$\log k', \log k_{w},$	Inertsil ODS3, symmetry C8, IAM.PC.C10/C3, methanol	259
18 substituted indoles	Molecular connectivity indices and quantum chemical descriptors	k'	RP-HPLC, C18 column	260
O-alkyl, O-(1- methylthio-ethyl- ideneamino) phosphoramidate	Solute-related structural parameters	k', FA, CA, MLR	Not given	261
25 structurally diverse analytes	log <i>P</i> , LSER descriptors, simple structural descriptors	log <i>k</i> _w , column classification	18 RP-HPLC	262
Perhydrogenated and Perfluorinated polyoxyethylene surfactants	Length of alkyl chain, the number of oxyethylene residues, the presence of an oxygen or sulfur atom in the molecule, Molecular electrostatic potential, molecular lipophilic potential, $\log P$ calc, V_m	logk, log $k_{\rm w}$	RP-HPLC, methanol - water	263
Iridoid glucosides	Free rotation around σ -bonds		C18, normal diol SPs	264
Benzene and phenol derivatives, indazol, tiophene, caffeine, etc.	log <i>P</i> , structural- and LSER descriptors	logk', chromatographic indices	SG-AP,Supelcosil ABZ + Plus Waters Symmetry- Shield(TM) RP8. C18 Symmetry(TM)	265
2,4-dihydroxythiobenzanilides	logP,	Outlier detection	RP-HPLC	266
17 chalcones	Molecular descriptors, LSER	PLS (0.976) test set (0.933)	RP-HPLC, methanol-water	267
Antimicrobial hydrazides	3D-fields	logk, CoMFA	C-8, methanol-water	268

O-aryl,O-(1-methylthioethyli- dene-amino)phosphates (13)	8 solute-related structural parameters	<i>k</i> ', FA, MLR	RP-HPLC	269
233 very different compounds	4 structural descriptors, log <i>P</i>	Solute polarity parameter (p), MLR (0.977)	RP-HPLC	270
12 ethynyl-substituted PAHs	Polarizability and subpolarity,	RT (0.967-0.984)	C18, RP-HPLC,	271
and unsubstituted counterparts	AM1; PM3		water/acetonitrile	
25 substances	Structural descriptors	logk', ANN (MLP), PLS	Polyethylene-silica and polyethylene-alumina	272
25 substances	Structural descriptors	ANN (RBF), GRNN,	Polyethylene-silica and	273
		PCR, polynomial PLS	polyethylene-alumina	
Three test series of analytes	Reduced LSER, logP	RT	RP-HPLC	274
14 substituted benzaldehydes	Molecular connectivity	logk	C18, RP-HPLC, methanol-	275
	indices, LSER and quantum		water	
	chemical parameters			
Alkylbenzenes, halobenzenes,	LSER, structural	α , $\log k$	C8, C18, PBB, PYE	276
xylenes, alkanes, isoalkanes				
24 steroids	3D image	Pulse-coupled neural network: PCNN, PLS	RP-HPLC, cross-validation	277
162 drugs	Molecular similarity	logk, ANN (0.992-0.996)	RP-HPLC, cross-validation	278
pyrethroid pesticides	logk',	$\log k$, $\log P$	RP-HPLC, LOO	279
86 diverse compounds:	CHI(ACN, MeOH), hydrogen bond acidity	log <i>P</i> (0.943-0.970)	Fast gradient RP-HPLC	280
Hydantoin derivatives	CODESSA descriptors, AM1	Lipophilicity (S)	RP-HPLC	281
-	main structural factors, LFER		RP-HPLC	282
	descriptors			
Xanthines and derivatives	Semiempirical	logk', MLR	Chromolith RP-18e	283
	quantumchemical			
45 barbituric acid derivatives	φ, substituents steric parameters	logk, MLR, PCA, NLM	Amide embedded RP silica column (Discovery RP- AmideC16), water- acetonitrile	284
45 barbituric acid derivatives	ϕ , - ϕ_0 , conventional and	logk, MLR, asymmetry	Amide embedded RP silica	285

45 barbituric acid derivatives	quantum chemical structural ϕ , - ϕ_0 , conventional and quantum chemical structural	factor (AF5) theoretical plate (N) log <i>k</i> , MLR, 6 retention related parameters, PCA, NLM	column (Discovery RP- AmideC16), methanol-water Amide embedded RP silica column (Discovery RP- AmideC16), tetrahydrofuran- water	286
45 barbituric acid derivatives	ϕ , - ϕ_0 , conventional and quantum chemical structural	log <i>k</i> , MLR, 6 retention related parameters, PCA, NLM	Amide embedded RP silica column (Discovery RP- AmideC16), dioxan-water	287
20 new α-branched phenylsulfonyl acetates	Geometric and electronic descriptors, surface area (S), ovality (O), the charge of carboxyl group (Qoc), surface area	$\log k_w$ (0.981 adjusted)	Li Chrosorb RP-18 column	288
18 selected amino acids, phenylthiocarbamyl (PTC) amino acid derivatives	36 molecular descriptors, log <i>P</i> , molecular size, shape (topological indices)	RT, GA-ANN	ODS column	289
Basic compounds related to caproctamine, dibenzylamine- diamide (reversible inhibitor of acetylcholinesterase)	Hammett σ (electronic properties of the orthosubstituents)	pK _a ,	C18, C4, RP-HPLC, acetonitrile	290
Drugs and model compounds	Lipophilicity and acidity	RT, p K_a , log k_w	Inertsil ODS3, XTerra RP- 18, Aluspher 100 RP-select B	291
67 neutral, acidic and basic solutes	LSER descriptors, and variants	<i>k</i> ,	10 different C18 (alkylsilica) columns	292
Aromatic acids	$\log P$, p K_a (partial charges of atoms)	<i>k</i> ,	RP-HPLC	293
Model series, 15 analytes	Total μ , electron excess charge of the most negatively charged atom water-accessible surface area	Rt, log <i>k</i> _w , S	Gradient RP-HPLC	294

54 disubstituted benzenes	8 molecular descriptors, PM3 semiempirical	logk _w , MLR, RBF-ANN	RP-HPLC	295
25, mainly substituted benzenes	LSER descriptors, $S_{\rm w}$,	$\log k_{\rm w}$, MLR, PCA	8 RP-HPLC, CE	296
PAHs	Molecular connectivity, µ	RT, bilinear, MLR,	Training, test sets, HPLC	297
Xenobiotics	Chromatographic parameters	logP, PCA	RP-HPLC	298
phenols	pK_a , atomic partial charges by AM1 and PM3	RT	RP-HPLC	299
15 diverse aromatics (training)	$\log P$, μ , S_w , electron excess	RT, MLR (0.8953-	Supelcosil LP18	300
47 diverse compounds (test)	charge on the most negatively charged atom	0.9870)		
83 structurally diverse drugs	266 descriptors, hydrophobi- city (log <i>P</i> and Hy), the size (TPC) of the molecules	$logk_w$, CART	Unisphere PBD column isocratic elution	301
15 diverse aromatics (training)	$\log P$, μ , S_w , electron excess charge on the most negatively	RT, MLR, ANN,	RP-HPLC, methanol-water	302
233 very different compounds	charged atom 4 descriptors, log <i>P</i> , hydrogen	Solute polarity parameter	RP-HPLC,	303
233 very different compounds	bond acidity	p, MLR, (0.977)	Kr-IIFLC,	303
Para substituted anilides of 2,2-	Physicochemical parameters,	RT, MLR	RP-18 HPLC, methanol-	304
dimethylpropanoic, benzoic and α -phenylacetic acid	μ , ϵ , topological indexes log <i>P</i> , logS, hydrogen-bond acceptor indicator (HA) and molecular mass	,	water	
Test solutes	LSER descriptors	MLR	C18, C8 columns methanol, acetonitrile, and tetrahydrofuran	305
PAHs	AM1: HOMO, LUMO, GAP hardness, polarizability, atomic charges, connectivity index,	<i>T</i> _b , log <i>P</i> , <i>I</i> , PCR, PLS (0.898-0.995)	RP-HPLC	306
18 L-amino acids	volume and surface area Binding energy (Eb), log <i>P</i> , molecular refractivity (MR),	<i>k</i> , MLR (>0.9)	RP-HPLC	307

	polarizability (α), total energy (Et), water solubility (logS),			
	connectivity index (χ) of			
	different orders and Wiener			
	index (W)			200
16 phenols	As above + hydrophilic- lipophilic balance (HLB),	k, MLR		308
PAHs, methyl substituted PAHs	Spatial and topological	PLS, structural	Monomeric and polymeric	309
	descriptors	differences, nonplanarity	C18 stationary phases	
2-(2,4-dihydroxyphenyl) benzothiazoles	Specific hydrophobic surface area (S), and isocratic CHI (φ_0)	$\log k$, $\log k_{w}$, $\log P$	RP-18, methanol-water	310
60 solutes (neutral, acidic and basic)	Retention from neutral components,	RT, MLR	C18, RP-HPLC, RP-IPC, Acetonitrile-water	311
60 solutes (neutral, acidic and basic)	LSER descriptors extended by ionization and ion-pair terms	RT, MLR	C18, RP-HPLC, RP-IPC, Acetonitrile-water	312
200 different compounds	LSER descriptors, acidity	p, log k , log P	RP-HPLC, Acetonitrile- water, methanol-water	313
19 Acidic drugs	Molecular mechanics, interaction energies	RT (0.878)	Pentyl bonded phase	314
Diverse	log <i>P</i> , various types of lipophilicity	Retention data	RP-HPLC, biomimetic stationary phases	315
75 peptides	CODESSA, seven molecular descriptors	logk, linear, nonlinear, SVM, prediction set (0.9801)	Carbonex microspherical carbon	316
Structurally diverse solutes	1000 molecular descriptors	RT, MLR (0.927), GA, prediction (0.79-0.87)	15 HPLC columns, 5 gradients	317
Aromatic compounds	9 structural descriptors, logP	logk, PCA, CA, MLR	Polybutadiene coated titania SP (PBD-TiO2), HPLC, methanol-water	318
Xanthones, aglycones, glucosides	S	$\log k_{\mathrm{w}},$	Gradient HPLC,	319
Benzoylphenylureas,	μ, MR, log <i>P</i>	k, MLR	polystyrene-octadecene-	320

18 Dihalogeno			encapsulated zirconia,	
benzoylphenylureas			Kromasil-C18-SiO2	
101 peptides	Sum of RTs of amino acids, logV _w , logP	RT, MLR	Gradient HPLC,	321
98 peptides	Sum of RTs of amino acids, logV _w , logP	RT, MLR	Gradient HPLC,	322
Series of test analytes	$\log P$, μ , δ , S_w , hydrophobic subtraction LSER model	RT, classification	9 representative RP-HPLC column	323
Steroid analogues		De novo mathematical model	RP-HPLC, methanol, acetonitrile, tetrahydrofuran	324
Triazine herbicides, metabolites	4descriptors	<i>k</i> , MLR, ANN	Methanol – water, Spherisorb ODS2, precolumn LC 8	325
Unsaturated alkenes, phenols, acidic and basic drugs	Alkyl-chain length, atomic partial charge, p <i>K</i> a	<i>k</i> ,	Graphitic carbon	326
28 alkyl(1-phenylsulfonyl) cycloalkane carboxylates	Ab initio quantum chemical, B3LYP/6-31G*, AM1	log <i>k</i> , bilinear, (0.9747, 0.9741)	LOO	327
Ricobendazole and albendazole sulfone	logP	logk _w , logk, Internal standard selection by QSRR	C-18 column, rapid HPLC	328
Aromatic acid derivatives	Interaction energies, MM, pK_a	log <i>k</i> ,	RP-HPLC,	329
benzoic acid derivatives	Interaction energies, MM, pK_a	$\log k$,	RP-HPLC,	330
Model series of test analytes	Structural parameters of stationary phases	Retention data	NP, RP, CE	331
33 purine nucleobases	3D field descriptors	CoMFA (0.969) validation (0.832)	C18 column	332
Neutral and basic compounds	logP,	$\log k_{\rm w}, \log k,$	Supelcosil ABZ+Plus, Discovery RP Amide C16, and Zorbax Extend C18	333
Antiprotozoal meso-ionic 1,3,4- thiadiazolium-3-aminides	VolSurf descriptors, hydropho- bic (DRY), amide N-atom (N(1)) and carbonyl O-atom	RT,	Supelcosil ABZ+ Plus column methanol-water acetonitrile-water	334

	(O) probes			
83 basic drugs	1272 molecular descriptors.	CART, stochastic gradient boosting random forest, GA-MLR (0.964), UVE-PLS	Unisphere PBD column	335
16 indole derivatives	Ab initio B3LYP/6-311G**	$\log k$, $\log k_w$ (0.9796), S (0.9874)		336
29 nitrogen containing heterocycles	Molecular connectivity, Wiener, Kier flexibility, Harary, Balaban, Zagreb indices	logk, simple linear (0.9- 1.0)	LC	337
24 nitrogen-containing heterocycles	α , MR, log <i>P</i> , μ , Etot, Δ Hf, molecular surface area (SM), binding energy (Eb)	logk, simple linear (0.8- 1.0), multilinear (1.000)		338
Single- and multi-ring aromatic hydrocarbons (AH)	Substituent effect, electronic and geometric descriptors, IP, EA	RT, PLS, GA,	[3-(2,4- dinitroanilino)]propyl-silica column	339
Notations		EA - electron affin Etot total energy	ity	
ANN - artificial neural network		ε - permittivity		
α - polarizability		FA - factor analysi		
CA - cluster analysis		φ - volume fraction	n of mobile phase	

CA - cluster analysis ϕ - volume fractionCART - classification and regression treeGA - genetic algoritCE capillary electrophoresisGRNN - generalizeCFA - correspondence factor analysisHOMO - energy ofCHI - chromatographic hydrophobicity indexindex of hydrophobicCoMFA - comparative molecular field analysisIP - ionization pote δ - electron excess charge of the most negatively charged atomIPC - ion pair chrom ΔH_f - heat of formationk, k' - retention coercitation

 δT - total solubility parameter

EA - electron affinity Etot total energy ε - permittivity FA - factor analysis φ - volume fraction of mobile phase GA - genetic algorithm GRNN - generalized regression neural networks HOMO - energy of highest occupied molecular orbital index of hydrophobicity φ_0 =-log k_w /S IP - ionization potential IPC - ion pair chromatography k, k' - retention coefficient, (capacity factor) $\log k_w$ - intercept of the plot for $\log k'$ vs. φ (extrapolated to mobile phase without water) $\log P$, $\log k_{o/w}$ - octanol/water partition coefficient LOO - leave-one-out cross validation LUMO - energy of the lowest unoccupied molecular orbital MLR - multiple linear regression MLP - multilayer perceptron neural networks MR - molar refraction μ – dipole moment NLM - non-linear mapping NP - normal phase ODS - octadecil silica p - solute polarity parameter (eq(1)) PAH - polycyclic aromatic hydrocarbons PCA - principal component analysis PCR - principal components regression pK_a – dissociation constant PLS - partial least squares RBF - radial basis function RP - reversed phase

RT - retention time S - slope of the plot for logk' vs. volume fraction of mobile phase (φ) SOM - self-organizing map, Kohonen network SP - stationary phase S_w - solvent-accessible surface area T_b - boiling point UVE-PLS - uninformative variable elimination-PLS V_m - molar volume V_w - van der Waals volume Table 5 QSRR examinations in micellar liquid chromatography between 1996-2006.

Solutes	Descriptors	Models	Column, mobile phase, surfactant	Source
Congener series of steroid hormones	Topological i.e., connectivity indices, X, steric factors	RT, linear, multilinear	ODS column (RP-HPLC,) sodium dodecyl sulfate (SDS)- borate system and with a mixed micellar solution of SDS and sodium cholate	340
Anionic solutes	Migration index, $logk_w$	logP	Sodium dodecyl sulfate/1- butanol/heptane/buffer, CE	341
	$\log P$, $\log k_w$, LSER descriptors	I, linear	SDS surfactant no such a linear relationship with CTAB, DTAB	342
Catecholamines	Physico-chemical parameters	logk, logP, MLR, PLS	1	343
Local Anesthetics	molar fraction of the charged form, log <i>P</i> ,	logk,, MLR,	Nonionic surfactant solution	344
14 flavonoids	183 structural descriptors, electrotopological state indices (Si) of skeletal carbons	Mobility, effective mobility CA, FA, logk, migration	38 buffer conditions, CZE, MEKC	345
Barbiturates	Hydrophobic and electrostatic $(\log P, \delta')$ PC	$\log k$, $\log k = a \log P + b\delta' + c$	C18, surfactant: Brij 35, SDS and CTAB	346
Catecholamines, local anesthetics, diuretics and o-phthalaldehyde-N- acetyl-l-cysteine amino acid derivatives	Hydrophobic and electrostatic forces	$\log k = a \log P + b\alpha' + c$	Brij35, SDS	347
	log <i>P</i> , molecular structure parameters	log <i>k'</i> , ANN, MLR (>0.998)	MECC	348
21 basic pharmaceutical substances	$-0.026 < \log P < 6.45)$	PCA, drug classification	MLC, MEKC, IMC, HPLC	349
Non-steroidal anti- inflammatory drugs	Retention data	Biological activity, pharmacokinetic	MLC,RP-HPLC, Brij35	350

		parameters		
10 amphoteric sulfonamides	logP,	logk	MLC, SDS	351
60 aromatic compounds and 9 corticosteroids	logP, LSER descriptors	logk'	MEKC, SDS, SC, LiPFOS, C14TAB	352
16 β-blocking agents	log <i>P</i> ,	logk	MLC, SDS, n-propanol (organic modifier)	353
Phenoxy acid herbicides	Migration parameters	Toxicity	MLC, MEKC, Brij35	354
Antihistamine drugs	Hydrophobic, electronic and steric, k in BMC	Pharmacokinetic parameters	BMC, Brij35	355
66 organic pollutants	logk, structural parameters	ecotoxicity parameters, log <i>P</i> , PCA	BMC, Cross-validation, calibration set	356
Neutral aromatic compounds, β-blockers, and other drugs	logP, LSER descriptors	$\log k, K_{lw},$	LEKC, CE, liposomes are in a buffer solution (pseudostationary phase)	357
Basic pharmaceutical substances	$pK_a, \log D$	Fast logP, PCA	MLC, monolithic silica	358
Non-steroidal anti- inflammatory drugs	log <i>P</i> , IC50 (concentration required to 50% inhibition), $t_{1/2}$ (half-life time)	<i>V</i> _d (volume of distribution), CL (clearance), log <i>k</i>	MLC, Brij 35	359
85 pesticides	logk,	Acute toxicity pLC50	BMC,	360
85 pesticides	$\log k$, $\log P$,	BCF, log <i>k</i> ,	BMC,	361
10 β-blockers, 7 tricyclic antidepressants (TA), 8 steroids 12 sulfonamides	$\log P$, $\log P_{apparent}$	log <i>k</i> ,	RPLC acetonitrile, MLC	362
151 structurally unrelated solutes	log <i>P</i> , molecular size, hydrogen bonding properties, ionization degrees	logk, MLR	BMC, Brij35	363
Benzene derivatives, heterocyclic compounds	Molecular surface area, maximum value of electron density, path four connectivity index, Mw, sum of atomic	logk, MLR, ANN	MEKC, Training set	364

	polarizability						
Substituted benzenes	LSER, hydrophobic, H-bond, polar interactions	$\log K_{\rm mw}$ (0.9)	979) MLR,	MEKC	365		
79 heterogeneous	LSER descriptors	logk, MLR	, SVM	BMC	366		
pesticides	L	(09755)					
Notations			LiPFOS - lith	ium perfluorooctane	e sulfonate		
ANN - artificial neural net	twork		1	ome electrokinetic o			
α - polarizability			0	1 I	gk' vs. φ (extrapolated to mobile		
	compound at a given pH value		phase witho				
BMC - biopartitioning mic				- octanol/water part			
C14TAB - cationic surfact	tant			ar liquid chromatog			
CA - cluster analysis					apillary chromatography		
CART - classification and	regression tree		MEKC - micellar electrokinetic chromatography				
CE capillary electrophores		MI - migration index, a general hydrophobicity scale					
CHI - chromatographic hy		MLR - multiple linear regression					
CoMFA - comparative mo	blecular field analysis	MLP - multilayer perceptron neural networks					
0	of the most negatively charged atom	MR - molar refraction					
	harged form of the compound	μ – dipole moment					
δT - total solubility parameters	eter	NP - normal phase					
EA - electron affinity			ODS - octadecil silica				
Etot total energy			p - solute polarity parameter (eq(1))				
ε - permittivity			PAH - polycy	clic aromatic hydro	carbons		
FA - factor analysis			PCA - princip	al component analy	vsis		
φ - volume fraction of mol	bile phase		pK_a – dissocia	ation constant			
GA - genetic algorithm			PLS - partial	least squares			
GRNN - generalized regre	ession neural networks		RP - reversed	phase			
index of hydrophobicity φ	$_0 = -\log k_w/S$		RT - retention	n time			
IPC - ion pair chromatogra	aphy		S - slope of th	e plot for logk' vs. v	volume fraction of mobile phase (ϕ)		
k, k' - retention coefficient	t, (capacity factor)		SC - sodium c	cholate			
$K_{\rm mw}$ - micelle-water partition	ion coefficient		SDS - sodium	n dodecyl sulfate			
K _{lw} - liposome-water parti	tion coefficients						

Table 6 QSRR examinations in affinity chromatography between 1996-2006.

Solutes	Descriptors	Models	Column, protein	Source
Antihistamine drugs	log <i>k</i> (IAM), electron excess charge on thealiphatic N	log <i>k</i> (AGP)	α1-acid glycoprotein (AGP), IAM	367
56 acidic, basic and neutral drugs	log <i>k</i> (IAM), log <i>P</i> , ionization of acidic groups	Brain/blood concentration,	Commercial IAM.PC.DD	368
Xenobiotics	$M_{\rm w}$, μ , log P , log k (IAM)	$\log k(\text{keratin}), \log K_p$	IAM, physical immobilization of keratin on silica support	369
Test series of drug analytes	log <i>P</i> , structural descriptors from molecular modeling	Drug-macromolecule binding	AGP, keratin, collagen, melanin,	370
24 test analytes	log <i>P</i> , LSER descriptors	$\log k$, $\log k_w$, MLR	Immobilized cholesterol on spherical silica gel, RP-HPLC, C18, IAM	371
40 structurally unrelated drug	Percentage of binding	Retention	Immobilized human serum albumin (HSA)	372
Set of standards	LSER descriptors	logk(IAM), CHI, CHI(IAM)	Fast gradient, IAM	373
drugs	log <i>P</i> , log <i>k</i> ,	$\log k(\ldots),$	HPLC, CE, biomacromolecules	374
Drugs, standards	QSRR descriptors	Retention	Macromolecules as SP	375
Appropriately designed	$\log k(AGP), \log k_w$	$\log K_{\rm p}$, $\log k$ (KER, COLL,	HAS, AGP, keratin, collagen,	376
sets	- 6 · (- 7) - 6 · w	MEL, etc.)	melanin, amylose tris(3,5-	
			dimethylphenylcarbamate) basic fatty acid binding protein	
Series of analytes, 65 new		Diverse and mutually	9 carefully designed HPLC systems,	377
buspirones		interrelated retention parameters, PCA	5-HT1A serotonin receptors	
	log <i>P</i> , molecular structural parameters	logk	C18, C8, IAM, AGP, PBCA, PGC	378
Antihelmintic 6,7-diaryl- pteridine derivatives	$\log P$, $\log k$ (IAM),	logk(IAM), IC50	ODS, IAM.PC.DD2	379
11 arylpropionic acid derivatives	$\log P$, $\log D$	$\log k_{w}(IAM), \log k_{w}(ODS)$	ODS, IAM.PC.MG	380

32 structurally diverse drugs	log <i>P</i> , log <i>D</i> , log <i>P</i> app	log <i>k</i> (IAM), MLR, P	LS Phospholipids, IAM	381		
68 drug molecules.	CHI (IAM), logP, LSER,	log <i>K</i> (HAS)	Fast gradient HPLC, HSA	382		
Long fatty acids	log <i>P</i> , total lipole	$\log k$,	Immobilized liver basic FABP	383		
<i>8</i> ,			"Embedded" phases: aminopropylated silica gel, e.g. phospholipids and	384		
			cholesterol, IAM's			
Azapirone derivatives	Molecular structural	Retention parameter BP-ANN	rs, Rat brain serotonin 5-HT1A receptors, 14 HPLC systems	385		
Notations $\log P$, $\log k_{o/w}$ - octanol/water partition coefficient $\log P$ apparent $\log P$						
BP-ANN - back propagation	on artificial neural network		ER - linear solvation energy relationships			
C18 - bonded octadecil sili		MI	MLR - multiple linear regression			
C8 - bonded octyl silica		μ –	μ – dipole moment			
CHI - chromatographic hydrographic hydrograp	drophobicity index	NF	NP - normal phase			
φ - volume fraction of mot	bile phase	OI	ODS - octadecil silica, C18			
FABP - fatty acid binding	protein	PC	PCA - principal component analysis			
HSA - human serum albun	nin	p <i>K</i>	pK_a – dissociation constant			
index of hydrophobicity φ_0	$_{0}$ =-log $k_{\rm w}$ /S	PB	PBCA - polybutadiene-coated alumina			
IAM - immobilized artifici	ial membrane	PG	PGC - porous graphitic carbon			
k, k' - retention coefficient	, (capacity factor)	RP	RP - reversed phase			
$K_{\rm p}$ - human skin permeation coefficient			<i>S</i> - slope of the plot for $\log k'$ vs. volume fraction of mobile phase (φ)			
$\log D - \log P$ for ionisable c	compounds					
$\log k_{\rm w}$ - intercept of the plo	t for $\log k'$ vs. φ (extrapolated t	o mobile				
phase without water)						

Table 7 remaining QSRR examinations between 1996-2006.

Solutes	descriptors	models	Column, method	Source
Series of sulfonamides		Electrophoretic mobility, MLR, BP-ANN	CZE, cross-validation	386
20 beta-diketones	6 descriptors	I, MLR, polynoms		387
Proteins	Descriptors, from protein structure	RT (0.969-0.952)	Ion exchange systems, cross and external validation	388
Probe molecules	Traditional and novel molecular property descriptors	GA, PLS	Ion-exchange chromatography (IEC)	389
19 solutes (Ala, Gly, Lys, Phe, homopeptides)	log <i>P</i> and specific hydrophobic surface area	PCA, NLM	TLC, impregnated alumina layers	390
o-Acetylphenyl esters	Topological	RT	Not given	391
1-bromo-2-aryiloxyetanes and 3- aryloxypropiononitrile derivatives	5 quantumchemical	RT, polynoms	Not given	392
	Set of fragmental descriptors	<i>I</i> , <i>T</i> _b	GC	393
Proteins	Topological, subdivided surface area, TAE, electron-density- based descriptors	RT, SVM	Anion exchange chromatography, training and validation sets	394
Proteins	Molecular descriptors	RT, SVM (0.943 - 0.994) cross-validated	Anion exchange chromatography salt-in	395
Proteins		RT, SVM (0.919 - 0.980)	Cation-exchange systems, counterions,	396
	Number of single bonds, of double bonds, hydrophilic factor	Retention factors, BP- ANN, MLR	Supercritical fluid chromatography, cross- validation	397
Basic compounds (drugs)	Molecular interaction energies	Elution order	Ion-exchange chromatography	398
Proteins, human lactoferrin	New protein descriptors, ASP l	RT	Ion-exchange chromatography	399
Set of model proteins	New hydrophobicity descriptors,	RT, SVM	Hydrophobic interaction	400

 $S_{\rm w}$

Notations

ASP - average surface potential BP-ANN - back propagation artificial neural network CHI - chromatographic hydrophobicity index CZE - capillary zone electrophoresis FABP - fatty acid binding protein GA - genetic algorithm HSA - human serum albumin *I* - Kovats retention index IAM - immobilized artificial membrane IEC - ion-exchange chromatography chromatography, 4 resins

LSER - linear solvation energy relationships MLR - multiple linear regression NLM – nonlinear mapping ODS - octadecil silica, C18 PCA - Principal Component Analysis PLS - partial least squares RT - retention time SFC - supercritical fluid chromatography SVM - support vector machines S_w - solvent accessible surface area TAE - transferable atom equivalent