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Abstract

In bacterial genomes, gene order is not random. This is most evident when looking at operons, these often encoding
enzymes involved in the same metabolic pathway or proteins from the same complex. Is gene order within operons
nonrandom, however, and if so why? We examine this issue using metabolic operons as a case study. Using the metabolic
network of Escherichia coli, we define the temporal order of reactions. We find a pronounced trend for genes to appear in
operons in the same order as they are needed in metabolism (colinearity). This is paradoxical as, at steady state, enzymes
abundance should be independent of order within the operon. We consider three extensions of the steady-state model that
could potentially account for colinearity: (1) increased productivity associated with higher expression levels of the most 59
genes, (2) a faster metabolic processing immediately after up-regulation, and (3) metabolic stalling owing to stochastic
protein loss. We establish the validity of these hypotheses by employing deterministic and stochastic models of enzyme
kinetics. The stochastic stalling hypothesis correctly and uniquely predicts that colinearity is more pronounced both for
lowly expressed operons and for genes that are not physically adjacent. The alternative models fail to find any support.
These results support the view that stochasticity is a pervasive problem to a cell and that gene order evolution can be
driven by the selective consequences of fluctuations in protein levels.
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Introduction

It is well established that the chromosomal distribution of genes is

not random, and in many genomes, genes that need to be

coexpressed tend to cluster [1–4]. The coexpression of adjacent

genes can be enforced by the action of bidirectional promoters [5],

simultaneous opening and closing of chromatin [6,7], transcrip-

tional spill-over [8], or by inclusion within the same operon [9,10].

Given that prokaryotic operons generally contain functionally

related genes that need to be expressed together [3], gene order

evolution in bacteria is often considered to be driven by

coexpression (although other scenarios have also been proposed to

explain the origin of operons [11,12]). Such coexpression models do

not obviously predict that within an operon there need be selection

on gene order. However, a relationship between bacterial

morphology and the relative order of genes in a cluster involved

in cell division [13] provides some evidence for adaptive gene

organization within an operon. Furthermore, a prior comparative

genomics study found that horizontal transfer of operonic genes

often involves in situ gene displacement by an ortholog from a

distant organism without change of the local gene organization [14],

hinting at the presence of selection on intraoperonic gene order per

se. Nevertheless, it remains unclear whether these phenomena are

restricted to certain gene clusters only or whether they could be a

more general property of bacterial operons, and most importantly,

what selective forces might be responsible for these genomic

patterns. Here, then, we ask whether gene order within operons is

under selection and if so why? In particular, we investigate whether

gene order within metabolic operons of E. coli reflect the functional

order of the encoded enzymes, i.e., colinearity (Figure 1).

Results

Excess of Colinearity in Metabolic Operons
To examine whether gene order within metabolic operons

reflect the functional order of the encoded enzymes, we focused on

E. coli, where high-quality and high-coverage data are available on

both biochemical pathways and operon structures. We compiled

data on operons encoding at least two enzymes in the same

biochemical pathway according to EcoCyc [15], resulting in a list

of 70 operons and 321 intraoperonic gene pairs (Methods). For

each intraoperonic enzymatic gene pair, we recorded whether

their relative position in the operon corresponds to their functional

order and hence displays colinearity. Approximately 60% of the

321 gene pairs showed colinearity, compared to 50% expected if

intraoperonic gene order was random (p = 0.0011, from randomi-

sation, see Methods).

Theories to Explain Colinearity
At first sight, the above result is unexpected as gene order

should not affect the steady-state pathway productivity under the
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most simplistic scenario (hypothesis 0, see below). To confirm this,

we built general mathematical models of operon expression and a

linear metabolic pathway with four enzymes (E1…E4) based on

previous studies [16,17]. We used realistic model parameters (see

Methods and Table S1) and assigned identical enzyme kinetic

parameters and a standard Michaelis-Menten rate law to all four

enzymes. Thus, the metabolite concentrations are expressed as

follows (Equation 1) for the first three products (i = 1...3):

dSi

dt
~kcat

:Ei
: Si{1

Si{1zKm

{kcat
:Eiz1

: Si

SizKm

{D:Si ð1Þ

Where kcat is the enzyme turnover number, D is the dilution rate

(i.e., growth rate of the cell), and Km is the Michaelis constant (see

Table S1 for values). Concentration of the first substrate (S0) was

fixed at 1 mM, and the initial concentrations of the other

metabolites were set to zero. Metabolic pathway productivity

was defined as the amount of end product synthesized during a

given time period after operon induction. End product (S4)

formation is given by Equation 2 (dilution of the end product is not

considered as we are interested only in the total amount of S4

synthesized):

dS4

dt
~kcat

:E4
: S3

S3zKm

ð2Þ

Operon expression was modelled following the ‘‘read-through’’

operon model of Swain [17], in which ribosomes move directly

from one gene to the next, hence translation events are completely

correlated across intraoperonic genes. The formalization includes

transcription initiation (RNA polymerase binding and isomerisa-

tion), transcription elongation, mRNA degradation and dilution,

ribosome binding (ribosomes are bound to the first cistron, hence

translation is read-through), translation, and protein degradation

and dilution (see Figure 2). The rate of translation was fine tuned

to achieve a delay between the appearances of consecutive gene

products (Ei) that reflects empirically observed values, i.e., 60 s (see

[18,19]). See Table S1 for model parameters.

Our simulations confirm that at steady state, flux through the

pathway is independent of gene order (Table S2). However, the

Author Summary

In bacteria, different enzymes from the same metabolic
pathway are often encoded within one transcriptional unit,
an operon. There is also, we show, a tendency for the
enzymes that are needed earlier in the pathway to feature
earlier in the operon, so-called colinearity. Why might this
be? We test three ideas, one old and two new. The prior
suggestion supposes that proteins of genes early in
operons will be at a higher dose. Although some operons
are like this, in general, we see no relationship of protein
dose with colinearity. We also find no evidence that
operons that frequently need up-regulation are any more
likely to be colinear. A third model is, however, supported.
If an operon is rarely expressed, then all the proteins for
this part of metabolism can be lost by chance. Rebooting
such metabolism is fastest if the operon is colinear. This
model predicts, correctly, that colinearity should be more
frequent in operons that are expressed at a low level. This
result is important for at least two reasons. First, it
supports the view that chance events (such as protein
loss) within cells are important on a day-to-day basis.
Second, it challenges the supposition that natural selection
will be weakest on lowly expressed genes. Where chance
events are concerned, natural selection can be strong on
genes expressed at a low level.

Figure 1. The concept of colinearity between positional sequence of operonic genes and enzymatic steps in a hypothetical
metabolic pathway. The first gene arrangement is perfectly colinear, whereas in the second case, two of the six intraoperonic gene pairs have
colinear enzymatic orders; therefore, the degree of colinearity is one-third. m0, m1, …, m4 denote metabolites.
doi:10.1371/journal.pbio.1000115.g001

Stochasticity and Gene Order in Operons
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excess of colinear metabolic operons indicates that the above

model is missing something. We now consider three hypotheses,

one old and two new, that have the potential to explain colinearity.

In brief, the hypotheses suppose that colinearity is favoured

because (1) it increases productivity associated with higher

expression levels of the genes 59 in operons [20], (2) it provides

a transient advantage immediately after up-regulation, and (3) it

minimizes metabolic stalling owing to stochastic protein loss.

Hypothesis 1: Increased Steady-State Flux Due to Higher
Expression Levels of 59 Genes

The first hypothesis [20] proposes that increased productivity

of a colinear arrangement could be attributed to a monotonically

decreasing mRNA abundance profile along the operon, so-called

polarity [21]. That a higher expression level of the first enzyme

in the pathway might increase product yield has been

experimentally verified in an engineered operon [20]. It has

also been shown theoretically that, when the total amount of

enzymes within the pathway is fixed (i.e., there is an upper limit

of enzyme concentrations), maximal steady-state flux through

unbranched pathways can be obtained by a monotonic decrease

of enzyme concentrations along the path under some circum-

stances [22]. In a linear pathway where equilibrium constants of

reactions are larger than unity and all enzymes have the same

catalytic efficiency, mathematical models predict a decrease of

flux control coefficients from the upper end to the lower end of

the chain, and therefore, an accumulation of enzyme concen-

trations at the upper end of the pathway when flux is maximized

[22]. If so, and if gene expression levels are not uniformly

distributed within operons, then colinearity might confer an

advantage by increasing steady-state flux. Indeed, our mathe-

matical model of operon expression coupled with a chain of

irreversible enzymatic steps confirms this expectation (Table S3)

when the effect of polarity is included in the model (i.e., by

introducing degradation of ribosome-bound mRNA intermedi-

ates; see Table S3 legend for details). We should then observe

higher colinearity in operons with an mRNA abundance profile

decreasing from 59 to 39.

Figure 2. Model of operon expression. Reaction scheme for modelling gene expression of a polycistronic operon. We constructed a model of a
four-gene operon and a linear metabolic pathway, containing 5 metabolites and 4 enzymes encoded by the operonic genes. Operon expression was
modelled following the ‘‘read-through’’ operon model of Swain [17]. Transcription is modelled as reversible binding of RNAP to promoter (D) with
rates: f0 (association) and b0 (dissociation). Isomerization from closed to open complex and initiation of transcription are approximated as a first-order
process (with rate k0). Only the leader region of the mRNA, M, is tracked in the model, which is made by transcribing polymerase, T, at rate v0. mRNA
molecules are degraded with rate mf0, and diluted with rate D. Ribosomes compete with degradosomes for leader mRNA and bind reversibly (rates
mf1 for association and mb1 for dissociation). Translation is started from the mC2 state with rate k1, which then frees M for further ribosome or
degradasome binding. Enzymes are translated in the mT state with rate v1, and decay and dilute with rate a (a= D+kdegr). In case of a ‘‘read-through’’
operon, only the first cistron has a ribosome binding site; thus, a translating ribosome, mT2, releases enzyme E1 before translating the next protein (in
the state mT3). The translation rate parameter was fine tuned to achieve realistic time delays between the appearances of consecutive gene products
(approximately 60 s, on average). See Table S1 for parameter values and constants.
doi:10.1371/journal.pbio.1000115.g002

Stochasticity and Gene Order in Operons
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Hypothesis 2: Transient Advantage After Up-Regulation
We extend our formalization to identify two further conditions

under which colinearity will be under selection (hypotheses 2 and

3). One possibility is that colinearity presents a transient advantage

after up-regulation prior to steady state. Consider a simple

pathway with two enzymes, A and B. If the order in the operon is

AB, then enzyme A can start processing its substrate while B is

being synthesized. Conversely, if the order is BA, metabolism

cannot start until translation of the second gene is finished, thus

slowing the processing of a new metabolite. Our simulations

support this possibility (Figure 3 and Table S4). Indeed, a

comparison of different simulated intraoperonic gene orders

showed that colinearity can increase pathway productivity by up

to 8.49% within one cell-generation time following operon

induction (comparing the most colinear, ABCD, and least

colinear, DCBA, arrangements) owing to the temporal delay

between the appearances of consecutive gene products [18,19],

which modulates substrate turnover when total enzyme amount is

limited [16,23]. Moreover, we found that, on average, the effect of

swapping the position of two intraoperonic genes depends on their

chromosomal distance: swapping adjacent genes had the smallest

effect on pathway productivity (see Figure S1).

Hypothesis 3: Minimized Stochastic Stalling of
Metabolism

The above deterministic simulations fail to capture the fact that

small numbers of molecules are frequently involved in the process

of gene expression and could lead to significant stochasticity in

protein abundance [24]. Whereas enzymes encoded in a highly

expressed operon are likely to be always present in the cell

whenever the operon is induced, stochasticity might play an

important role in weakly expressed operons as enzymes could

either decay or be diluted by cell division between two expression

episodes [25], hence recurrently stalling metabolism. Colinearity

could minimize the effect of such stochastic enzyme losses by

speeding up the reinitiation of stalled metabolic transformations, in

a similar manner as it provides a transient advantage after up-

regulation of an inactive pathway (see hypothesis 2).

To formally examine this verbal argument, we also simulated

stochastically our model to explore how gene order affects pathway

productivity as a function of expression level. Different expression

levels were simulated by varying the rate of RNA polymerase

dissociation from DNA (see Table S1). First, we observe that

whereas enzyme molecule numbers fluctuate at both low and high

expression levels, enzyme levels frequently drop to zero only when

the rate of expression is low (Figure 4A). Importantly, typically all

four enzymes are lost between expression bursts at very low

transcription rates, which results in the complete stalling of the

pathway. Second, we simulated the behaviour of two linear

pathways encoded by the same operon, one of which was colinear

with the operonic gene order and the other was anti-colinear (thus

the metabolic productivity of the two arrangements were directly

comparable despite the stochastic nature of the simulations).

Pathway performance was assessed after 50 cell-generation times

following operon induction. Our analysis showed (Figure 4B) that

whereas colinearity in a very lowly expressed operon (mean6

standard deviation [SD] protein copy number per cell = 2.466.1)

can increase pathway productivity by 4.65%, this figure drops to

0.1% for a highly expressed operon (3,959.46232 protein copies per

cell). The effect can be attributed to stochasticity as the advantage of

colinearity diminishes when low-expression simulations are run

deterministically (i.e., average protein levels are controlled for), and

closely resembles the high-expression stochastic simulation scenario

with a minute 0.07% increase in pathway performance. Moreover,

at low expression levels, even gene orders with an intermediate level

of colinearity provide a clear advantage when compared to an anti-

colinear arrangement (2.42%, on average).

Thus, based on the above simulations, which appear robust

against parameter variations (see Table S5), we expect that

colinearity should primarily be a property of lowly expressed

operons and of nonadjacent intraoperonic gene pairs. This is an

unusual prediction, as more classically, the strength of selection is

considered to be greater on more highly expressed genes because

these present more opportunity for selection. Such a logic explains,

for example, why highly expressed genes evolve slowly [26,27].

Empirical Tests of Model Predictions
We can test the three theoretically viable hypotheses by reference

to the data on which operons show colinearity. To test hypothesis 1,

we gathered a set of microarray expression data on wild-type E. coli

grown on glucose minimal medium under aerobic and anaerobic

conditions (Methods). First, we asked whether operons in general

display a decreasing level of mRNA abundances from the 59 to 39

end, as observed in the engineered zeaxanthin biosynthesis operon

[20] and in the native lactose operon [21]. Indeed, we found an

excess of intraoperonic gene pairs in which the gene located closer

to the transcription start site has a higher mRNA abundance

compared to those located more downstream (p,1026; Methods),

although we still see many individual operons in which such a trend

cannot be detected. This pattern also holds when only metabolic

operons are investigated (p,0.03). From the above hypothesis, we

would expect colinear arrangement only in those operons in which

the 59 genes have higher transcript levels than those located

downstream. We hence asked whether the degree of colinearity

differs between operons with and without a significantly decreasing

mRNA abundance profiles. Using linear trend analysis [28], we

identified 26 and 23 operons showing a significantly decreasing

mRNA abundance profile under aerobic and anaerobic conditions,

respectively (see Methods). Contradicting the prediction of the

hypothesis, however, we failed to find an increased colinearity in

Figure 3. The relative advantage of colinearity decreases with
elapsed time after operon induction according to deterministic
simulations of the model. Bars represent the relative excess of end
product synthesized by a colinear operon (ABCD) compared to an
operon with anti-colinear arrangement (DCBA). The operon is induced
at t = 0. Cell generation time is set to 60 min. See Table S4 for simulation
results with different parameter values.
doi:10.1371/journal.pbio.1000115.g003
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these operons, neither using the aerobic (p = 0.97) nor the anaerobic

(p = 0.36) expression dataset.

To test the prediction of the stochastic stalling hypothesis that

colinearity should be found predominantly in lowly expressed

operons, we split the set of metabolic operons into two groups

based on their mRNA expression levels: operons with average or

higher log expression levels and operons with lower than average

log expression levels. As predicted, we found (Figure 5) that highly

expressed operons have significantly lower degrees of colinearity

than those expressed at lower levels (mRNA measured under

aerobic condition: p = 0.0011, degrees of colinearity: 44.8% vs.

71.6%, anaerobic condition: p = 0.0006, degrees of colinearity:

45% vs. 70.8%,; see Methods). Indeed, for the highly expressed

operons, there is no significant deviation from null (Figure 5A). It

should be noted that in the absence of genome-wide data on

protein copy number fluctuations in E. coli, we used a population-

averaged mRNA level as an inverse proxy for stochasticity in

protein concentrations, an assumption that holds in yeast [29] and

mammals (L. D. Hurst, unpublished data).

The fact that colinearity is most profoundly seen in low-

abundance operons might also be compatible with hypothesis 1

and 2, hence, independent of gene expression noise. First, the

advantage of colinearity in the presence of polarity (hypothesis 1)

might be more profound in lowly expressed operons. However,

simulating the model without stochastic effects predicts the

opposite: polarity provides more advantage to colinearity when

the expression level is high (Table S3). Furthermore, as explained

above, we failed to find any empirical evidence for higher

colinearity in operons with significant polarity effects. Second, in

hypothesis 2, the variation in expression intensity across conditions

is what drives colinearity (i.e., it provides a transient advantage

after up-regulation following an environmental shift). Operons

that are highly expressed on average might also likely be

constitutive in the expression, hence, potentially explaining a

connection with abundance. If what matters is the rapid

processing of metabolism on up-regulation of the operon, then

variation per se may be what matters rather than mean dose. To

examine this issue, we used an index of relative variability of

mRNA levels measured under 213 conditions as a proxy for gene

expression variability across different environments (see Methods).

In contrast to expectations, we find that the gene expression level

of operons correlates positively, albeit weakly, with their

Figure 4. Stochastic simulation results. (A) Temporal fluctuations of enzyme molecule numbers in a lowly and a highly expressed operon
(according to stochastic simulations of the model; see Table S1 for model parameters). (B) Calculated average relative advantage of colinearity for a
highly and a lowly expressed operon after 50 cell generations (180,000 s) according to stochastic simulations of the model. Mean values of 1,000
repeated simulations and 95% confidence intervals are shown. Colinearity in a lowly expressed operon has a significantly higher advantage than in a
highly expressed operon (p,2.2610216, Brunner-Munzel test; a rank-based heteroscedastic method to compare two groups [43]). Error bar indicates
95% confidence interval.
doi:10.1371/journal.pbio.1000115.g004
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expression variability (r = 0.347, p = 0.004 and r = 0.267,

p = 0.0268 under aerobic and anaerobic conditions, respectively).

Moreover, no significantly increased colinearity can be detected in

operons with high expression variability when controlling for

expression level, and if there is any trend, it is in the opposite

direction (p = 0.057 and p = 0.128; see Methods). In contrast, the

effect of mRNA abundance on colinearity remains significant

when expression variability is controlled for (p = 0.01 and p = 0.016

under aerobic and anaerobic conditions, respectively). We

conclude that variation in the environmental specificity of operon

expression cannot explain the higher incidence of colinearity in

lowly expressed operons.

Colinearity Depends on Gene Distance
The above mathematical analyses also predict that the impact of

gene order rearrangement on metabolic pathway productivity

should be most pronounced when the position of genes located

distantly within the operon is interchanged (Figure S1). Therefore,

one would expect to see more colinearity for distantly located gene

pairs compared to those located adjacent in lowly expressed

operons. We observe that in support of this expectation, in lowly

expressed operons, gene pairs separated by a physical distance of

at least one gene length show higher colinearity than those located

closer (Fisher exact test, p,0.005; the median gene length is 1,070

bp in our dataset). Thus, colinearity is more pronounced for

distant enzymatic genes in the operon.

Intraoperon Metabolite-Level Regulation Does Not Affect
Colinearity

All of the above tests presume that if selection favours a given

gene order, that order should match the metabolic order. But is it

necessarily the case that colinearity is always optimal for metabolic

operons? The presence of within-pathway regulatory interactions

(i.e., when one enzyme is regulated allosterically or competitively

by a product of another enzyme in the same pathway) might

impose additional requirements on gene order. If such regulation

was more common for abundantly expressed operons, this could

explain why colinearity is more common in lowly expressed

operons. More specifically, it has been proposed that spatial

colocalization of enzymes interacting via small molecule metab-

olites might enable faster feedback regulation and could be

achieved by a closer physical proximity of the enzyme-coding

genes within the operon [30]. Thus, there might be selection to

place genes of interacting enzymes close to each other in the

operon even if they are not colinear with the metabolic pathway.

To test this possibility, we collected data on metabolite-level

within-pathway enzymatic interactions from EcoCyc [15] and

from a published dataset [31] based on the BRENDA database

[32] (Methods). In contrast to the above prediction, we found that

the observed average gene distance between interacting enzyme

pairs was not significantly different from that expected by chance

(p = 0.234, n = 19 gene pairs), suggesting an absence of clustering of

metabolically interacting genes in operons. To further investigate

whether the presence of intraoperonic regulatory interactions has

an effect on the extent of colinearity, we compared the degree of

colinearity in operons with known regulatory interactions (11

operons) to the rest of the dataset (59 operons). A randomisation

test showed that the degree of colinearity is not lower in the set in

which intraoperon regulations have been reported (p = 0.089; see

Protocol S1). A similar result was obtained when we controlled for

expression-level differences between the two groups (p = 0.35, for

both aerobic and anaerobic conditions; see Protocol S1). Thus, we

failed to find evidence in support of the idea that within-pathway

intraoperon metabolic regulation has an influence on gene order

and might interfere with colinearity.

Discussion

To our knowledge, the present study on E. coli metabolic

operons provides the first systematic evidence that intraoperonic

gene order is not random, but rather correlates with the functional

order of the encoded enzymes. This is true, however, exclusively

for lowly expressed operons, an otherwise curious result given that

we usually expect selection to be strongest on highly expressed

genes. Our analyses did not find support to the ideas (1) that

Figure 5. Distribution of the number of colinear gene pairs in randomised samples of highly (A) and lowly (B) expressed operons.
Red line indicates the number of colinear gene pairs observed in the E. coli genome ([A] 67/143, [B] 127/178 gene pairs). mRNA levels measured under
aerobic glucose minimal condition were used to define highly and lowly expressed operons (see Methods). Intraoperonic gene orders were
randomised 100,000 times.
doi:10.1371/journal.pbio.1000115.g005
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colinear gene arrangement might be an adaptation to enable high

steady-state pathway flux as a result of a decreasing mRNA

abundance along the operon [20], or (2) that colinearity presents a

transient advantage following up-regulation of the operon in a

changed environment. In contrast, the evidence supports the

hypothesis that colinearity minimizes stochastic stalling of

metabolism at low expression levels: constitutively, but lowly

expressed operons are under stronger selection for optimal order

as gene expression occurs in random episodes [25], and enzymes

from prior expression events might have been lost by decay or by

cell division, potentially stalling metabolism. Colinear organization

of operonic gene order could minimize any such stalling. This

result underscores both the importance of stochastic events to

cellular functioning and provides a further case history in which

gene order appears to be an adaptation to ensure resilience to

stochasticity [33].

An issue that we have not addressed is the potential role of

horizontal transfer in establishing colinearity. According to the

selfish operon hypothesis [11], novel metabolic functions can be

gained by horizontal transfer that moves sets of genes in unison.

This hypothesis, the validity of which is questionable as an

explanation for which genes reside in operons [4,10], does not, as

far as we can tell, have any specific prediction as to whether an

operon should be colinear or not. Consider a pathway with

enzymatics steps A R B R C. If all three genes are needed for

successful horizontal transfer, then it should not matter whether the

order is ABC, CBA, or any other variant. If transfer of two

successive enzyme is selectively favourable (e.g., A and B, but not C),

then transfer of AB from the operon ABC should be as viable as

transfer of BA from operon BAC. Thus, there is no obvious reason

why horizontal transfer of operons should impose any filter on

colinearity. This accords with observation. Operons containing at

least one gene gained by horizontal gene transfer (69% colinearity)

are not significantly more ordered than all other operons (53%

colinearity), p = 0.13. Conversely, operons with essential genes are

unlikely to be gained by horizontal transfer according to the selfish

operon hypothesis. As then expected, operons containing at least

one essential gene (61.8% colinearity) are not less ordered than the

rest of operons (60% colinearity), p = 0.9 (see Methods).

The finding that operonic gene order could be an adaptation

against noise in protein levels leaves at least one paradoxical problem:

although we see evidence for selection on gene order in operons, gene

order within operons shows especially high evolutionary conserva-

tion, indicating strong purifying selection on local gene organization

[34]. Indeed, a comparison of E. coli metabolic operons with

information on operon structure and orthology in Bacillus subtilis (see

Methods) revealed that 70% of E. coli operons could not be matched

to conserved B. subtilis operons, either due to the absence of orthologs,

or due to the fact that the orthologs are no longer located in the same

transcription unit. In another 22% of the operons, the relative order

of the orthologs was completely conserved, and we detected only five

operons (8%) in which the relative position of orthologs had been

rearranged. This freezing of gene order within operons may reflect

the fact that intraoperonic inversions will place genes on the wrong

strand. How can the two apparently contradictory findings be

resolved? We speculate that the selection is not on order within the

operon per se, but rather selection on successful establishment of

operons. Imagine that A and B reside next to each other and a

mutation occurs that permits them to be coded in a polycistronic

transcript, i.e., operonization. If the operon is lowly expressed, our

results suggest that selection for operonization will be stronger if the

order is AB than if it is BA. Hence, a selective filter on operonization

can explain the findings and be consistent with frozen operons after

their establishment.

Methods

Mathematical Modelling
We considered a four-enzyme irreversible linear metabolic

pathway coupled with operonic gene expression. The enzymes

were assumed to operate according to standard Michaelis-Menten

equations. All enzymes had the same velocities, turnover numbers,

and Km values based on experimentally measured values of

aspartate kinase I (Table S1). Cell generation time was 60 min,

and all metabolites and enzymes were diluted accordingly (D).

Initially, all metabolites had zero concentrations except for the

substrate of the first enzyme, which was fixed at 1 mM. Operonic

gene expression was modelled following the read-through operon

model by Swain [17]; see Figure 2. Copasi version 4.4.28 was used

to perform all simulations [35]. Stochastic simulations were carried

out using a hybrid deterministic–stochastic simulation algorithm

built into Copasi (‘‘Hybrid Runge-Kutta’’) to simulate gene

expression and enzymatic reactions within one model (default

parameter values were used with the exception of Runge-Kutta

step size, which was set to 0.1).

Dataset Compilation
Operonic gene order and metabolic pathways were extracted

from EcoCyc [15] v10.5. We compiled a list of metabolic gene

sets, in which each set consisted of genes belonging to the same

pathway and encoded in the same operon. To enable the

quantification of the extent of colinearity, we generated a list of

nonredundant intraoperonic gene pairs with unambiguous

metabolic pathway order (cyclic pathways were excluded),

resulting in 321 gene pairs from 70 operons and 73 pathways

(see Protocol S2). Data on B. subtilis operon structures were

obtained from BioCyc [36] and DBTBS [37] (where information

on a large number of experimentally characterized B. subtilis

operons is available). Cross-species comparison of orthologs and

chromosomal positions was performed using EcoCyc [15].

Measuring Colinearity
Colinearity of a set of operons was measured as the ratio of the

number of colinear pairs to the total number of gene pairs across

all investigated operons. A gene pair was considered colinear if the

gene located closer to the 59 end of the operon encodes an enzyme

operating earlier in the same pathway compared to the

downstream gene.

To assess the statistical significance of colinearity in our dataset,

we compared the observed level of colinearity to a distribution of

colinearity values generated by randomizing gene order within

each operon 100,000 times (p-values were calculated by p = (R+1)/

(N+1), where R is the number of cases when the randomized level

of colinearity is equal or greater than the observed level, and N is

the number of randomizations).

mRNA Abundance Profiles
Affymetrix microarray gene expression data were obtained from

ref [38]. We used log2-transformed normalized expression profiles of

wild-type K-12 MG1655 strain grown on M9 glucose medium under

aerobic and anaerobic conditions [38]. For each gene, we calculated

the average expression value based on three (aerobic) and four

(anaerobic) data points. Transcript abundance level of operons was

defined as the mean of expression values of the constituent genes.

To examine whether operons display a decreasing level of

mRNA abundances from 59 to 39 end, we compiled a

nonoverlapping set of gene strings from the whole E. coli genome,

in which genes associated with a given string are always

transcribed together. This resulted in 386 gene strings (2,199
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within-string pairs) containing at least two genes with expression

data. We counted the number of cases where the 59 member of a

gene pair has a higher expression level than the downstream gene

(aerobic dataset: 1,274 pairs, anaerobic: 1,293 pairs) and

compared those cases to the values obtained by randomizing the

positions of within-string genes (p,1026 for both conditions). A

similar analysis was performed on our filtered set of metabolic

operons (270 gene pairs in 65 operons; p = 0.0295 and p = 0.0224

for aerobic and anaerobic conditions, respectively).

We also determined for each operon whether its mRNA

abundance profile shows a significant monotonic decrease from 59

to 39 end. The presence of a monotonically changing abundance

was tested by linear trend analysis [28] (using gmodels R package).

The direction of change was inferred from the Spearman rank

correlation. After Bonferroni correction, we found 26 and 23

operons showing a significantly decreasing mRNA expression

profile under aerobic and anaerobic conditions, respectively.

To quantify gene expression variability across environmental

conditions, we used compiled expression data for 213 conditions

[39]. We calculated the SD of the log2-transformed expression

values for each gene, which is invariant under a multiplicative

change [40]. Expression variability of operons was defined as the

mean of SD values of the constituent genes. To examine whether

expression variability of operons correlates with the degree of

colinearity when controlling for mRNA abundance levels (as

measured under aerobic and anaerobic glucose conditions), we

used residuals from the linear regression of SD on expression level

to classify operons into groups with higher or lower than average

gene expression variability. Randomisation was employed to test

whether the colinearity of these two groups were different. A

similar procedure was followed to examine whether mRNA

abundance of operons is associated with colinearity when

expression variability is controlled for.

Data on Horizontally Transferred Genes and Gene
Essentiality

Genes that have undergone horizontal transfer into the E. coli

lineage since its split from the Vibrio lineage were previously identified

using parsimony analysis of gene presence and absence data [41].

Data on gene essentiality were obtained from a recent functional

genomic study in E. coli K12, in which a systematic collection of in-

frame, single-gene deletion mutants was constructed [42].

Supporting Information

Figure S1 The impact on pathway productivity of swapping the

position of two intraoperonic genes depends on their physical

distance. The metabolic performance of every possible gene order

of a four-gene operon was calculated by simulating the model

deterministically, and three groups were defined based on the

physical distance of the swapped genes (only those gene orders

were compared in a pair-wise manner, which can be rearranged

by swapping the position of one gene pair). Metabolic perfor-

mance was defined here as the amount of end product

accumulated during one cell-generation time after operon

induction. Mean values and 95% confidence intervals are shown

on the plot. We employed a randomization protocol to test

whether the differences between mean values for groups 2 and 1,

and for groups 3 and 2 are significant (p = 0.0001 based on

100,000 permutations of individual productivity differences

between the groups).

Found at: doi:10.1371/journal.pbio.1000067.s001 (0.07 MB TIF)

Protocol S1 Compiling data on enzyme–enzyme regulatory

interactions mediated by small molecules.

Found at: doi:10.1371/journal.pbio.1000067.s002 (0.03 MB

DOC)

Protocol S2 Generation of a list of nonredundant intraoperonic

gene pairs with unambiguous metabolic pathway order.

Found at: doi:10.1371/journal.pbio.1000067.s003 (0.03 MB

DOC)

Table S1 Parameters and constants used in the mathematical

models of metabolism and gene expression.

Found at: doi:10.1371/journal.pbio.1000067.s004 (0.05 MB

DOC)

Table S2 Steady-state pathway flux with different operonic gene

orders.

Found at: doi:10.1371/journal.pbio.1000067.s005 (0.03 MB

DOC)

Table S3 Steady-state pathway flux with different operonic gene

orders in the presence of polarity effects.

Found at: doi:10.1371/journal.pbio.1000067.s006 (0.03 MB

DOC)

Table S4 Robustness of the deterministic simulation results to

variations in substrate concentration and Km.

Found at: doi:10.1371/journal.pbio.1000067.s007 (0.04 MB

DOC)

Table S5 Robustness of the stochastic simulation results to

variations in substrate concentration.

Found at: doi:10.1371/journal.pbio.1000067.s008 (0.03 MB

DOC)
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