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Abstract:  It is shown how to prevent or decrease the residual welding distortions by means 

of structural optimization. The investigated conical roof structure is constructed from one 

circular and more radial stiffeners of rectangular hollow section. The deck plate elements are 

welded to stiffeners by two SMAW fillet welds. The cost function to be minimized contains 

the costs of material and fabrication. The design constraints relate to the maximum bending 

stresses due to snow load and to the allowable radial displacement of the roof periphery due to 

shrinkage of circular and radial welds. In the calculation of radial displacements the angular 

deformations of the inner ringbeam of box section are also considered. In the optimization the 

dimensions of stiffeners and the inner ring as well as the number of radial stiffeners are sought 

which minimize the cost function and fulfil the design constraints. 

 

Keywords: residual welding distortions, distortion prevention, structural optimization, 

minimum cost design, design of welded structures, ringbeam deformations 

Jármai Károly
Bélyegző



 - 2- 

1.  Introduction 

Residual welding stresses and distortions play an important role in structural integrity. 

Residual stresses affect the static brittle fracture, the fatigue strength and the overall and local 

buckling phenomena of welded structures. Residual distortions cause initial imperfections 

significantly affecting the safety against instability. Residual distortions affect the quality of 

fabrication, therefore they should be limited to guarantee the easy assembly and serviceability 

of structures. 

     The above mentioned unfavourable effects should be eliminated by research efforts to 

determine the main affecting parameters and the possibilities to decrease the residual stresses 

and distortions. The importance of this problem led to the organization of an IIW working 

group X/XV-RSDP (residual stress and distortion prevention). In the frame of this working 

group meeting in San Francisco 1997 a number of documents has been presented and 

discussed. 

     We have worked out a relatively simple method for the calculation of residual stresses and 

distortions due to longitudinal welds of beams [1]. This document has been recommended for 

publication. The aim of the present study is to apply our method to distortion calulcation of a 

structure composed from beam elements. For this purpose we have selected a shallow conical 

roof structure with one circular and more radial stiffeners of rectangular hollow section 

(RHS)(Fig.1). The deck plate elements are welded to the stiffeners by two SMAW (Shielded 

Metal Arc Welding) fillet welds. The radial stiffeners are welded to the inner ringbeam of 

welded box cross-section. 

     The circular and radial welds cause significant radial displacements of the roof periphery, 

which should be decreased by designing for sufficient stiffness of stiffeners and ringbeam to 

guarantee the easy assembly of the roof to the supporting structure. This requirement can be 

incorporated in the optimum design procedure, which enables designers to minimize the cost 

and to fulfil the design constraints. 

     The cost function contains the material and fabrication costs. For the calculation of 

fabrication cost of welded structures we have worked out a relatively simple cost function 

based on the welding times given by COSTCOMP software [2, 3]. This cost function is 

described in our book [4] and applied for several minimum cost design problems [5, 6, 7, 8]. 

      The design constraints relate to the bending stresses due to snow load and to the limitation 

of radial displacement of the roof periphery due to residual welding distortions caused by 

circular and radial welds. 
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Fig.1.  Conical roof structure with one circular and more radial stiffeners of RHS with an 

inner ring of welded box section 

2. Characteristics of the roof structure 

In the case of the roof structure shown in Fig.1 the shell effect is neglected, but it is assumed 

that the stiffeners consist of a RHS and a strip of deck plate with an effective width of be =50tf  

(Fig.3). Stiffeners form a grid consisting of a circular and more radial beams. This grid is 
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welded to the inner ring. This inner ring of box section has a sufficient torsional stiffness to 

decrease the residual distortions of the grid due to shrinkage of circular and radial welds. 

 

2.1 The inner ringbeam 

It is assumed that the dimensions of the inner ringbeam can be expressed by the only variable 

h  i.e. by the height of webs as follows:  b = 0.7h, tf0 = b/40, tw0/2 = h/70. With these 

dimensions the cross-sectional area and the torsional moment of inertia are 

  A ht bt hW f0 0 0

2 22 5357 10   . *        (1a) 

  I
h b

b t h t

h
T

f W

0

2 2

0 0

44

2 4 110





/ /
       (1b) 

     The ringbeam is loaded by bending moments due to shrinkage of circular and radial welds. 

The uniformly distributed bending moments of intensity  m  cause torsional and bending 

moments in the inner ring, which can be determined considering the equilibrium of a half ring 

(Fig.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.  Equilibrium of the half inner ringbeam 

 

From the equation 
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the bending moment is       X = mR0        (2) 
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and from M R Y mR d mR d mRA      2 10 0

2 2

0
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the torsional moment is      Y mR 0 2 /         (3) 

The angular deformation of the ringbeam due to bending moments  m  is 
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When the bending moment from a radial stiffener is  M  and the number of radial stiffeners is  

n, then 
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where  G  is the shear modulus   G = E/2.6. 

 

2.2 Formulae for stiffeners 

RHS are used according to prEN 10219-2 (1992) [9]. We select RHS with  bR,C = hR,C/2 only. 

Subscripts R and C denote radial and circular, respectively. The corner radius is taken as  2tR,C. 

For the calculation of cross-sectional area and moment of inertia the approximate formulae 

proposed by DASt Richtlinie 016 (1986) [10] are used as follows: 

 

 

 

 

 

 

 

 

 

 

Fig.3.  Cross-section of stiffeners with the effective width of deck plate 
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The characteristics of the whole stiffener cross-section are as follows (Fig.3): 

  A A b tR C RHS e f,       be = 50tf     (8) 
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and the section modulus is given by 
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2.3 Welding parameters 

For one stiffener two fillet welds of dimension  aW = 0.7tf  are used for which the heat input is 

  Q aT W 2 788 2* .    (J/mm)       (12) 

The specific shrinkage in the gravity centre for steels is [1] 
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and the curvature is given by 
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2.4  The radial displacement of the roof periphery   RB    due to shrinkage of welds 

The radial displacement   RBR   due to shrinkage of radial welds consists of the following 

parts (minus sign denotes direction to the roof centre): 

effect of    GR :     R R RB GR B GR( )    0       (15) 

since a specific shrinkage of a circular weld of radius R  causes a decrease of the radius  

R R  ,   

effect of   CR:     R C C h s sB R R B ( ) /1 2 2      (16) 

effect of angular deformation of inner ringbeam   0   due to  CR using (5)  for  M = CREIR  
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A radial force  FR acts on the circular stiffener, which can be determined from a displacement 

equation (Fig.4) expressing that the radial displacements of the radial and circular stiffeners at 

point A are the same 

       R C R R R F R FAR R AR GR AR AR R AC R( ) ( ) ( ) ( ) ( )     0    (18) 

or more detailed using the bending moment diagrams shown in Fig.4 
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Fig.4.  Moment diagrams for the calculation of  FR 

 

From (19) one obtains 
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where 
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     The radial displacement  RBC   due to shrinkage of circular welds is calculated as follows. 

The force  FC  (Fig.5)  can be calculated on the basis of a displacement equation 

     R F R R F RAC C AC GC AR C AR( ) ( ) ( ) ( )     0     (23) 

or more detailed 
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Fig.5.  Moment diagrams for the calculation of FC 

From (24) we get 
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With  FC  the value of   RBC    can be calculated     



 - 9- 

  
 

R
F h s h h

EI

nR F h h

GI
BC

C A B A

R

C A B

T

 



1 0

0

3

6 2


     (26) 

 

3. The cost function 

As mentioned in the introduction we have developed on the basis of COSTCOMP software a 

cost function containing the material and fabrication cost 
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where   is the material density, kf and km are the fabrication and material cost factors, 

respectively,    4 4n   is the number of structural elements to be assembled, V is the 

volume of the structure,   d   is the difficulty factor, C1 = 1.0 min/kg0.5. The welding time is 

given by  T C a Li Wi

n

Wi

i

2 2          (28) 

For SMAW fillet welds of dimension   aW = 2 - 5 mm 

  T L aW W2

34 10/ *     (min/mm)      (29a) 

and the weld length is, neglecting the welds of the inner ringbeam, 

    L R n s sW A  2 2 1 2         (29b) 

The volume of roof structure is 
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4. The design constraints 

The stiffeners are subject to bending due to snow load  pS  (Fig.6). 

The approximate stress constraint for radial stiffeners can be formulated as 
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where the partial safety factors are     15.    and     M1 11 . .   fy  is the yield stress. 
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Fig.6.  Forces and bending moments in a radial stiffener due to snow load 

 

Stress constraint for a circular stiffener of span length   2R nA /    is given by 
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The constraint on radial displacement of the roof periphery due to weld shrinkage can be 

expressed as   R RBR BC allow          (33) 

where    allow    is the allowable displacement. 

 

5. Optimum design procedure for a numerical example 

Data:  RB = 5000,  RA = 2750,  R0 = 500,  tf = 4, aW = 3 mm,    300 ,     785 10 6. *  kg/mm3 

,  pS = 1 kN/m2 = 10-3 N/mm2,  fy = 235 MPa,  E = 2.1*105 MPa,  d  3,   allow  30  mm;   

 h R RA A  0 1299tan ,    h R RB B  0 2598tan ,   s1 = s2 = 2598 mm.  

Variables:  hR, tR, hC, tC, h, n. Ranges of their values: hR, hC, h = 40...400,  tR, tC = 2...12 mm  

and  n = 6, 8, 10. 

     Design of deck plate segments for bending due to snow load: assume that trapezoidal plate 

segments can be approximately calculated as simply supported rectangular ones having side 

lengths of  s2 = 2598 mm and    ( ) / .R R nB A  The bending moments are given by 

Timoshenko and Woinowsky-Krieger [11]. Intensity of the uniform normal snow load is  pS = 
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l kN/m2 = 10-3 N/mm2  with a partial safety factor of 1.5. For a yield stress  fy = 235 MPa and 

bending moment   M a M qa 15 103 2 2
0 5

. * /
.

  (a is the smaller side length in m)  the required 

deck plate thickness is   t a M qaf  61885 2
0 5

. / .
.

 The thicknesses for various numbers of 

radial stiffeners are given in Table 1. 

 

 

      Table 1. Deck plate thicknesses for various numbers of radial stiffeners 

 

n 24347/n(mm) a(mm) b/a M/qa2 tf(mm) rounded tf 

6 4058 2598 1.56 0.0842 4.66 5.0 

8 3043 2598 1.17 0.0605 3.95 4.0 

10 2435 2435 1.07 0.0531 3.47 3.5 

12 2029 2029 1.28 0.0681 3.28 3.5 

14 1739 1739 1.49 0.0806 3.06 3.5 

 

 

      In the minimum cost design the optimum values of variables are sought, which minimize 

the cost function (27) and fulfil the design constraints  (31), (32) and (33). The computations 

are performed using the Rosenbrock's Hillclimb mathematical programming method. 

      It should be mentioned that in computation the size limitation of  h hR  is considered due 

to fabrication requirements. Furthermore, since the size limitations of   tR,C = hR,C/2  are also 

considered in formulae, the selection of RHS are restrained to such profiles only. 

 

     The computational results are summarized in Tables 2 and 3. 

 

 

 

Table 2. Optimization results for   allow  = 30 mm: optimum dimensions in mm and values of  

K/km in kg for cost 

 

n tf hR tR hC tC h kf/km K/km 
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6 5 160 4 80 2 160 1 4067 

8 4 120 4 80 2 140 0 1415 

8 4 120 4 80 2 140 1 3806 

8 4 120 4 80 2 140 2 6197 

10 3.5 120 3 80 2 130 1 3758 

12 3.5 120 2.5 80 2 120 1 4087 

14 3.5 120 2.5 40 2 120 1 4458 

 

 

Table 3. Optimization results for   allow  =20 mm: optimum dimensions in mm and K/km 

values in kg for cost in the case of  kf/km = 1 

 

n tf hR tR hC tC h K/km 

6 5 160 4 80 2 160 4067 

8 4 160 4 80 2 160 4009 

10 3.5 160 4 80 2 160 4178 

12 3.5 160 4 40 2.5 160 4665 

14 3.5 160 4 40 2 160 5176 

 

 

6.  Conclusions 

The results show that the optimum number of radial ribs for kf/km = 1 is nopt = 8  for both values 

of    allow  . For this optimum number, in Table 2, values for  kf/km = 0 and 2  are also given. It 

can also be seen that the costs of the structure in the case of smaller allowable displacement 

are larger, since this smaller displacement should be achieved using larger stiffeners. The cost 

difference between the best and worst solution, in the case of    allow  = 30 mm  and  kf/km = 1,  

is   100(4458-3806)/3806 = 17%, which shows that significant cost savings can be achieved 

by optimum design. 
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