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Abstract:  The cost function to be minimized expresses the material and fabrication costs. 

Design constraints are as follows: global buckling of the uniaxially compressed longitudinally 

stiffened plate, local buckling of plate and stiffener elements, torsional buckling of open-

section ribs, limitation of the thickness of cold-formed L- and trapezoidal stiffeners, limitation 

of the distortion caused by shrinkage of welds. The optimum dimensions and number of 

stiffeners are determined by a mathematical programming method. The cost comparisons 

show that, in the case of the treated illustrative numerical example, flat stiffeners give the 

cheapest solution, the cost of the plates with trapezoidal and L-stiffeners is 3.6% and 10% 

larger, respectively. The cost differences between the best and worst solutions are 6-11%, so 

the optimization results in significant cost savings. 
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1. Introduction 

Welded stiffened plates are widely used in various load-carrying structures, e.g. ships, bridges, 

bunkers, tank roofs, offshore structures, vehicles, etc. They are subject to various loadings, 

e.g. compression, bending, shear or combined load.  The shape of plates can be square 

rectangular, circular, trapezoidal, etc. They can be stiffened in one or two directions with 

stiffeners of flat, L, trapezoidal or other shape. 

From these structural versions we select here rectangular plates uniaxially compressed and 

stiffened in the direction of the compressive load. It should be mentioned that we have worked 

out minimum cost design procedure of square and rectangular orthogonally stiffened and 

cellular plates loaded in bending [1], uniaxially compressed rectangular plates with flat and L-

stiffeners [2], welded bridge decks with open- and closed-section stiffeners [3,4].  

It is well known that the instability phenomena are significantly affected by initial 

imperfections and residual welding stresses. For instance, it has been shown that a 

compression strut designed using the classical Euler method can be 30% unsafe [1]. Thus, 

these effects should be considered in all stability calculations. 

In [2] we have used the design rules of API [5]. Mikami and Niwa [6,7] have recently 

developed a calculation method for orthogonally stiffened uniaxially compressed rectangular 

plates taking into account the initial imperfections and residual welding stresses. Their 

formulae are based on experimental results. 

The aim of the present study is to apply the Mikami-Niwa method for the optimum design and 

comparison of uniaxially compressed plates stiffened with ribs of various shapes (Fig.1). In 

the minimum cost design the characteristics of the optimal structural version are sought which 

minimize the cost function and fulfil the design constraints. In recent years we have developed 

a cost function containing the material and fabrication costs [1,8] and we have included in the 

design constraints also the quality requirement, which prescribes the allowable deformation 

caused by residual welding distortions [9,10]. 

These two important aspects in the design of welded structures are included in the present 

study as well, to have a realistic basis for comparison. First the general formulae for the cost 

function and design constraints are treated, then the special calculation of flat, L- and 

trapezoidal stiffeners is described. A numerical example illustrates the differences among the 

structural versions. 

 



 - 3 - 

Fig.1. A uniaxially compressed longitudinally stiffened plate 

 

2.  Cost function 

The objective function to be minimized is defined as the sum of material and fabrication costs 

  K K K k V k Tm f m f i            (1) 

or in another form 
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where     is the material density, V  is the volume of the structure, Km  and Kf  as well as  km 

and  kf are the material and fabrication costs as well as cost factors, respectively, Ti are the 

fabrication times as follows: 

time for preparation, tacking and assembly 

  T Vd1              (3) 

where    d   is a difficulty factor expressing the complexity of the welded structure,     is the 

number of structural parts to be assembled; 

T2  is time of welding, and T3   is time of additional works such as changing of electrode, 

deslagging and chipping. T T3 20 3 .  , thus, 

  T T C a Li wi

n

wi2 3 213  .          (4) 

where  Lwi   is the length of welds, the values of   C ai wi

n

2    can be obtained from formulae or 

diagrams constructed using the COSTCOMP  software [11,12],  aw  is the weld dimension. 
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3. Design constraints 

3.1  Global buckling of the stiffened plate 

 

According to Mikami and Niwa the effect of initial imperfections and residual welding 

stresses is considered by defining buckling curves for a reduced slenderness 

     f y cr/
/1 2

         (5)  

where   cr   is the classical critical buckling stress, which does not contain the above 

mentioned effects,  fy is the yield stress. 

The classical critical buckling stress for a uniaxially compressed longitudinally stiffened plate 

(Fig.1) is 
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AS is the cross-sectional area of a stiffener,   1    is the number of stiffeners, 

   S

SEI

bD
            (10) 

IS  is the moment of inertia of a stiffener about the   axis (Fig.4). 

Knowing the reduced slenderness (Eq.5) the actual global buckling stress can be calculated as 

follows: 

  U yf/  1     for           03.       (11a) 

    U yf/ . .  1 0 63 0 3      for 03 1.         (11b) 

    U yf/ / . 1 08 2   for       1      (11c) 

This buckling curve is shown in Fig.2. It can be seen that the used buckling curve contains the 

effect of initial imperfections  ( )a0 0  and residual welding stresses   ( ) R  0 , therefore it 

gives much lower values that the classical critical buckling curve, which neglects these 

effects. 
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The global buckling constraint is defined by 

Fig.2. Global buckling curve considering the effect of initial imperfections ( )a0 0  and 

residual welding stresses ( ) R  0  
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where 

   A Bt AF S   1           (13) 

and  S

S

F

A

bt
            (14) 

 P     can be determined considering the single panel buckling of the base plate parts between 

the stiffeners. The factor      P S/ 1    expresses the effect of the effective width of the 

base plate parts. 

 

3.2  Single panel buckling 

This constraint eliminates the local buckling of the base plate parts between the stiffeners. 

From the classical buckling formula for a simply supported uniformly compressed in one 

direction 
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the reduced slenderness is 
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Fig.3. Limiting curves for local plate buckling  ( ) P  and torsional buckling of open section 

ribs ( ) T  

 

and the actual local buckling stress considering the initial imperfections and residual welding 

stresses is 

  UP yf/  1    for          P  0526.       (17a) 
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This buckling curve is shown in Fig.3. 

Then the factor    P    is as follows: 

   P  1     if   UP U      (18a) 

   P UP yf /    if   UP U      (18b) 

 

3.3  Local and torsional buckling of stiffeners 

These instability phenomena depend on the shape of stiffeners and will be treated separately 

for flat, L- and trapezoidal stiffeners. 

The torsional buckling constraint for open section stiffeners is 

 N A UT/              (19) 

The classical torsional buckling stress is [1] 
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where   G = E/2.6   is the shear modulus,  IT  is the torsional moment of inertia, IP is the polar 

moment of inertia and  I   is the warping constant. The actual torsional buckling stress can 

be calculated in the function of  the reduced slenderness 

    T y crTf /
/1 2

          (21) 

  UT yf/  1     for       T  0 45.      (22a) 
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This buckling curve is shown in Fig.3.  

It should be noted that the interaction of above treated instability phenomena (coupled 

instability) is not considered here, since it has been shown [1] that this interaction can be 

neglected when the effect of initial imperfections and residual welding stresses is taken into 

account for individual buckling modes. 

 

3.4  Distortion constraint 

In order to assure the quality of this type of welded structures large deflections due to weld 

shrinkage should be avoided. It has been shown that the curvature of a beam-like structure due 

to shrinkage of longitudinal welds can be calculated by relatively simple formulae [9]. The 

allowable residual deformations  f0 are prescribed by design rules. For compression struts 

Eurocode 3 (EC3) [13]  prescribes   f0 = L/1000, thus the distortion constraint is defined as 

  f CL f Lmax / /  2

08 1000         (23) 

where the curvature is for steels 

  C x Q y IT T x 0844 10 3. /          (24) 

QT  is the heat input, yT is the weld eccentricity 

  y y tT G F  / 2           (25) 

Ix  is the moment of inertia of the cross-section containing a stiffener and the base plate strip 

of width  b. The related formulae are given separately for each type of stiffeners. 

 



 - 8 - 

 

 

 

Fig.4. Dimensions of a flat stiffener 

 

4.  Formulae for different stiffener shapes 

4.1  Flat stiffeners  (Fig.4) 
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For  GMAW-M  (Gas Metal Arc Welding with mixed gas) welded fillet welds 

  C a x aw

n

w2

3 203258 10 .    (L in mm)     (28) 

  aW = 0.4t1,  but    aWmin = 4 mm. 

When the double fillet welds are welded in such a manner that the second weld is performed 

after the cooling of the first one 

   Q x aT w 13 59 5 2. .           (29) 

It should be noted that, in the case of simultaneous welding of the two welds, 

Q x aT w 2 5 59 5 2. . , since in this case the plastic zone is much larger than in the previous case. 

The local buckling constraint according to EC3 is 

  h t1 1 14/              (30) 

In the torsional buckling constraint the following formulae are valid: 

  I h tT  1 1

3 3/  ;    I IP S  ;      I  0        (31) 

 

4.2  L-stiffeners  (Fig.5) 
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We calculate with cold-formed thin-walled L-section stiffeners of thickness  t2  neglecting the 

the effect of the rounding of the corner. 

 

Fig.5. Dimensions of a L-stiffener 
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  aW = 0.5t2 ,   but    aWmin = 4 mm.  

Local buckling constraints according to  [14] are 

  b t1 2 30/    ;          b t2 2 12 5/ .          (35) 

These constraints can be treated as active. 

Furthermore 
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4.3  Trapezoidal stiffeners  (Fig.6) 
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According to  [15]   a1 = 90,  a3 = 300 mm, thus 
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Fig.6. Dimensions of a trapezoidal stiffener 
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  aW = 0.5t3,   but    aWmin = 4 mm. 

Local buckling of a trapezoidal stiffener is defined as 

  a t2 3 38/              (41) 

This constraint is treated as active. 

The single panel buckling constraint is given by Eqs 15-17, but, in the case of trapezoidal 

stiffeners, instead of  b  the larger value of  a3 = 300  and   b3 = b - 300  should be considered. 

Furthermore, the heat input for a stiffener is 

  Q x aT W 2 59 5 2.           (42) 

 

5. Numerical example 
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Given data:  B = 6000 mm, L = 3000 mm, N = 1.974x107 [N], fy = 235 MPa,  E = 2.1x105 

MPa,  G = E/2.6,    7 85 10 6. x  kg/mm3,  d  3.   

The variables are as follows:  , t F  as well as t1, t2 and t3 for flat, L- and trapezoidal stiffeners, 

respectively. The optima are computed using the Rosenbrock's Hillclimb mathematical 

programming method complemented by the final search for discrete rounded values [1]. The 

results are summarized in Tables 1, 2, and 3 as well as in Fig.7. The minimum costs for kf/km 

= 2 are denoted by bold numbers. 

 

Table 1. Optimum dimensions in mm of compressed plates with flat stiffeners 

kf/km (kg/min)    tF t1 K/km (kg) 

0 10 17 14 2984 

1 7 20 14 4142 

 4 26 14 5092 

2 5 22 14 4783 

 6 21 14 4930 

 7 20 14 5070 

 

Table 2. Optimum dimensions in mm of compressed plates with L-stiffeners 

kf/km (kg/min)    tF t2 K/km (kg) 

0 5 26 10 4074 

1 5 26 10 4756 

 3 30 10 5386 

2 4 27 10 5266 

 5 26 10 5439 

 6 25 10 5601 

 

Table 3. Optimum dimensions in mm of compressed plates with trapezoidal stiffeners 

kf/km (kg/min)    tF t3 K/km (kg) 

0 9 18 10 3344 

1 7 20 10 4272 

 3 31 10 5538 

2 4 25 10 4956 
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 5 23 10 4969 

 6 22 10 5127 

 

Fig.7. Cost curves in the region of the optimum number of ribs flat, L- and trapezoidal 

stiffeners 

 

It can be seen that, for this numerical example, the most efficient version is the plate with flat 

stiffeners. Comparison shows that the trapezoidal and L-stiffeners give costs for kf/km = 2 

kg/min   (4956-4783)/4783x100 = 3.6% and 10% larger, respectively. This efficiency is 

caused by the fact that flat stiffeners can be thicker than trapezoidal or L-stiffeners, since the 

thickness of these ribs is limited by cold-forming requirement. 

Fig.7 shows the curves of cost function for kf/km = 2 kg/min for different shapes of ribs. It can 

be seen that, in the regions of   illustrated in Fig.7 the cost differences between the best and 

worst versions are as follows: for flat stiffeners  (5092-4783)/4783x100 = 6%, for L-stiffeners 

6% and for trapezoidal stiffeners 11%, so it is necessary to optimize the number of stiffeners. 
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The effect of fabrication cost can be shown comparing the optimum versions for kf/km = 0, 1 

and 2. Since the optimum number of stiffeners is low, the fabrication costs are also low 

compared to the material costs. For instance, in the case of L-stiffeners, the relative cost 

difference between the versions for kf/km = 0 and 2 kg/min is (5439-4074)/5439x100 = 25%. 

Thus, the fabrication cost is 25% of the total cost. In spite of this low % the fabrication cost 

affects the optimum number of stiffeners, since it can be seen that for larger kf/km-value the 

optimum number of ribs is lower. 

 

Conclusions 

Cost comparisons of structural versions obtained for a given numerical example by minimum 

cost design show the following: 

(a) Flat stiffeners give the cheapest version, the cost of plates with  L- and trapezoidal ribs is 

10% and 3.6% larger, since their thickness is limited. 

(b) Since the optimum number of stiffeners is low, the fabrication cost is also low compared 

to the total cost. In spite of this fact, the fabrication cost affects the optimum number of ribs. 

(c) The cost difference between the best and worst solutions in the investigated region of 

stiffeners' number is significant, which emphasizes the necessity of optimization. 

(d) The active constraints are as follows: the global buckling of stiffened plate, the torsional 

buckling of open-section ribs. The distortion constraint in this case is passive. If the number of 

stiffeners would be greater, the distortion constraint could be active. 
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