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ABSTRACT 

Poly-[(R)-3-hydroxybutyrate] (PHB) films prepared by compression molding and 

solvent casting, respectively, were degraded with the intracellular depolymerase enzyme 

natively synthetized by the strain Bacillus megaterium. Quantitative analysis proved that 

practically only (R)-3-hydroxybutyric acid (3-HBA) forms in the enzyme catalyzed 

reaction, the amount of other metabolites or side products is negligible. The purity of the 

product was verified by several methods (UV-VIS spectroscopy, liquid chromatography, 

mass spectroscopy). Degradation was followed as a function of time to determine the rate 

of enzymatic degradation. Based on the Michaelis-Menten equation a completely new 

kinetic model has been derived which takes into consideration the heterogeneous nature of 

the enzymatic reaction. Degradation proceeds in two steps, the adsorption of the enzyme 

onto the surface of the PHB film and the subsequent degradation reaction. The rate of both 

steps depend on the preparation method of the samples, degradation proceed almost twice 

as fast in compression molded films than in compression molded samples. The model can 

describe and predict the formation of the reaction product as a function of time. The 

approach can be used even for the commercial production of 3-HBA, the chemical synthesis 

of which is complicated and expensive. 

 

1. INTRODUCTION 

The threat of depleting fossil fuel sources and the increasing environmental 

awareness of the public generated growing interest in polymers produced from renewable 

resources [1-4]. However, the production of synthetic polymers still exceeds by far the 

amount of bioplastics produced and used thus also the quantity of plastics waste increases 

rapidly. Accordingly, besides bioplastics, biodegradable polymers gain more and more 

interest and importance as well. Presently the biodegradable polymer available in the largest 
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quantity on the market is poly(lactic acid), but it is produced by traditional chemical 

synthesis [4-10]. However, in the past few decades, several fermentation techniques were 

developed in order to facilitate the production of microbial polyesters [11-17] and reduce 

the price of the product. One of the most important and most frequently studied microbial 

polyesters is poly-[(R)-3-hydroxybutyrate]. [18-24]. 

The biodegradation of polymers is extremely important in several fields of 

application. The composting of packaging materials of short service life is a very convenient 

and environmentally friendly way of disposal, but some medical devices are also expected 

to degrade in biological environments, often in vivo. Since the main connecting linkage of 

PHB chains is the ester bond, one needs a catalyst initiating ester hydrolysis for efficient 

degradation. Hydrolytically this reaction is generally catalyzed in acidic or basic media by 

protons or hydroxide ions. 

Because of its importance, quite a few studies have been published on the hdyrolitic 

degradation of PHB. De Roo [25] and Braunegg [26], for example, used acidic hydrolysis 

and methanolysis, respectively, for the degradation of PHB. Others, like Foster [27], 

Holland [28], and Saeki [29] degraded PHB by basic catalysts. The various methods yielded 

different products, both the monomer and longer degradation products were detected among 

the products, but racemization was also observed.  

 Enzymatic reactions are very specific and well defined thus the use of a PHB 

hydrolase enzyme natively synthetized by prokaryotes (bacteria) or eukaryotes (fungi) [30] 

would result in the more efficient degradation of the polymer. Several papers reported the 

production and characterization of extracellular PHB hydrolase enzymes produced by 

various bacterial strains, such as Alcaligenes faecalis [31, 32], Comamonas testosteroni 

[33], Pseudomonas lemoignei [34], Pseudomonas pickettii [35], while others used enzymes 

natively produced by fungi (Fusarium solani [36], Paecilomyces lilacinus [37], Penicilium 
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funiculosum [38]). As extracellular enzymes are secreted by the organism, cell disruption is 

not required as an intermediate step in protein production. Besides the simplicity of their 

synthesis, extracellular enzymes are usually not very sensitive to environmental factors like 

high temperature, acidic or basic pH, as well as the presence of oxidizing or reducing agents. 

Besides the monomer, these extracellular enzymes usually produce longer metabolites [39], 

while one of them natively produced by the strain Paucimonas lemoignei yielded 

predominantly oligomers [39]. On the other hand, as shown by Chen et al. [39], the novel 

intracellular enzyme natively produced by Bacillus megaterium yielded solely (R)-3-

hydroxybutyric acid molecules in the controlled degradation of PHB. 

The first step of every heterogeneous reaction catalyzed by an enzyme is its 

adsorption on the surface of the polymer, and adsorption usually determines the overall rate 

of the reaction. Accordingly, enzyme adsorption and the following reaction are widely 

studied and used in practice, like for the decomposition of hazardous or even toxic dyes [40-

50], or for the complete removal of toxic dyes from wastewater [51-58]. Adsorption-based 

methods make possible the removal [59] and decomposition [60-67] of a large number of 

toxic organic compounds mainly produced by the textile industry [62-64]. Besides the 

removal of dyes and further hazardous organic byproducts, heterogeneously catalyzed 

enzyme reactions can be applied for the removal of non-organic contaminations, e.g. heavy 

metal ions from aqueous media [68-74], and the technique developed was used for the 

cleaning of wastewater [75-76]. As shown by Gupta, adsorption based methods can be 

utilized also for analytical purposes, for the determination of the concentration of metal ions 

[77] and organic compounds [78]. The number of methods applying heterogeneous catalytic 

reactions clearly indicate that these techniques are gaining more and more attention, but 

their practical implementation inevitably requires the knowledge of the kinetics of the 

related processes (adsorption, reaction), which is needed for the proper planning of a 
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reaction at industrial scale. 

The same applies to the heterogeneous, enzyme-catalyzed degradation of PHB. The 

kinetics of degradation is at least as important for most practical purposes, as the outcome 

of the reaction itself. Composting technology has well-defined cycle times, while in vivo 

degradation of medical devices requires the exact knowledge of degradation rate. Although 

a number of papers have been published on enzyme-catalyzed heterogeneous reactions, 

which describe the rate of degradation as a function of enzyme concentration, like those of 

Mukai [79], Scandola [80], or Timmins [81], very little is known about the time dependence 

of heterogeneous enzyme reactions. The kinetics of enzyme-catalyzed hydrolysis is often 

described with the model proposed by Michaelis and Menten in 1913 [82]. However, the 

model was developed and is valid only for homogeneous reactions, but in practice, either in 

composting or in medical applications, degradation takes place in a heterogeneous medium 

thus the original model must be modified accordingly.  

Besides the characterization and quantitative description of the degradation of 

PHB, the proper control of the reaction also offers the possibility of producing (R)-3-

hydroxybutyric acid (3-HBA) in large purity. The production of 3-HBA is severely limited 

by the difficulties of chemical synthesis [83,84], in spite of the fact that the chiral compound 

is valuable biotechnologically and important in several application areas. It can be used for 

the synthesis of carbepenem antibiotics [85], as chiral building block for the production of 

macrolides (e.g. pyrenophorin, colletodiol and grahamimycin) [86,87] or for the synthesis 

of beta-lactones through 3-HBA dioxanone enolates  [88]. 3-HBA is the normal component 

of blood and is one of the three ketones produced endogenously by ketogenesis [89]. 3-

hydroxybutyric acid is a novel nutrition source due to its good penetration and rapid 

diffusion into peripheral tissues [90], can be used as a novel drug delivery system [91] or 

for the preparation of various modified 3-HBA based macromolecular chains [92]. 



6 

 

 It is clear that the biodegradation of PHB is very interesting and important for theory 

and practice alike. Accordingly, the goal of this work was the study of the kinetics of the 

enzyme-catalyzed degradation of the polymer, the analysis of the composition of the 

reaction product, and the quantitative description of degradation kinetics. A new model is 

proposed for kinetic analysis, which, unlike most available models, takes into account the 

heterogeneous nature of degradation. The possibility of using the reaction and its product in 

practice was also explored. 

 

2. EXPERIMENTAL 

2.1 Materials 

Poly(3-hydroxybutyrate) granules were obtained from Metabolix Ltd. (Mirel 

M2100, ≥99,5% purity) with an approximate crystallinity of 60%. HIS-tagged poly(3-

hydroxybutyrate) depolymerase enzyme molecules were produced by recombinant 

Escherichia Coli bacteria [strain: Origami DE3 (Novagen), plasmid: pGS1865 bearing the 

depolymerase gene of the bacteria Bacillus Megaterium] purified by affinity 

chromatography on a Ni-nitrilotriacedic acid (NTA) agarose column. 

 

2.2 Sample preparation 

Amorphous poly(3-hydroxybutyrate) films were prepared by compression molding 

and solvent casting, respectively. Films of 100 m thickness were compression molded 

using a Fontijne SRA 100 machine at 120 kN, 3 min, 220 °C and at a cooling rate of about 

30 °C/min. Films were cast onto a glass surface from a chloroform solution of 2 m/m% of 

the polymer and subsequently kept at constant temperature (25 °C) and relative humidity 

(50 %). 
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2.3 Methods 

The enzymatic degradation of amorphous poly(3-hydroxybutyrate) films was 

carried out in Erlenmeyer flasks, at 37 °C with continuous stirring at 200 rpm. The aqueous 

media consisted of 100 mmol/dm3 NaCl and 20 mmol/dm3 Tris/HCl buffer 

[tris(hydroxymethyl)-aminomethane hydrochloric acid salt] adjusted to pH 8.0. The 

amorphous polymer films and the enzyme solution were simultaneously added to the 

Erlenmeyer flasks, the latter in a quantity to provide 7 μg/ml enzyme concentration. The 

experimental conditions used (37 °C temperature, pH 8.0 basicity, 7 μg/ml enzyme 

concentration) were selected from previously published papers reporting the dependence of  

maximum enzyme activity on these variables [79, 80,84]. 

Enzymatic degradation was followed with UV-VIS spectrophotometry (UNICAM 

UV-500, wavelength range: 200-300 nm) and HPLC chromatography (Merck-Hitachi 

LaChrom Elite, equipped with a DAD detector set for the same 200-300 nm wavelength 

range). The HPLC column (LiChroChart 250-4) contained LiChrospher 100 RP-18 type 

end-capped silica (5 μm average pore size), the eluent was a phosphate buffer of 10 

mmol/dm3 at pH 3.0. Both the UV-VIS spectra and the HPLC chromatograms were recorded 

with a time interval of 20 min over 3 hours. Besides repetitive sampling, UV-VIS 

measurements were carried out also with an online UV-VIS spectrophotometer (PharmaTest 

PTWS 600) in order to measure the time dependent spectrum of the degrading medium, 

which is not biased by intermittent sampling. The composition of the samples degraded for 

various times were analyzed also by mass spectrometry (TA Instruments SDT 2960 MS). 

 

3. RESULTS AND DISCUSSION 

 The results of the study are reported in several sections; data obtained on the kinetics 

of enzymatic degradation are reported in the first. The kinetic model developed for the 
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quantitative analysis of degradation kinetics is presented in the next one followed by the 

estimation of parameters and the discussion of the results including their practical relevance.   

 

3.1. Degradation kinetics 

UV-VIS spectra recorded on the degradation media after various times are 

presented in Fig. 1. The absorption peak appearing at around 215 nm in the UV-Vis spectra 

was assigned by several researchers [79,80,84] to the specific absorption of the monomer, 

3-hydroxybutiric acid. Peak maximum was found to shift slightly towards smaller 

wavelengths; maximum absorbance was always determined at the corresponding 

wavelength of the maximum and not at 215 nm as done by several groups [79,80,84]. The 

shift in the position of the absorbance peak might be caused by a number of effects; one of 

them is the formation of metabolites with a specific UV absorbance close to that of the 

monomer (~215 nm). The UV spectra of different metabolites, which might form during 

degradation, is expected to be very similar to that of the monomer that makes quantitative 

analysis quite difficult. Maximum absorbance measured on both compression molded and 

solvent cast films is plotted against the time of degradation in Fig. 2.  

In order to separate the components of the solution obtained after various times of 

degradation, samples were injected onto an inverse phase liquid chromatograph. The 

chromatograms recorded on various samples are presented in Fig. 3. The first peak 

appearing at 100 s belongs to the Tris/HCl buffer cation; its concentration remained constant 

(10 mmol/dm3) in the entire timespan of the degradation experiment. The height of the 

second peak, however, depends on time proving the formation of increasing amounts of a 

product, possibly the monomer. The lack of additional peaks indicates that longer 

metabolites do not form or the HPLC column cannot separate them from the monomer.  

To exclude the latter possibility, MS spectra were recorded at the end of the 
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degradation period, after 3 hours (Fig. 4). The only peak of relevance appears at 103.15 

g/mol. The molar mass of 3-hydroxybutyric acid is 104.11 g/mol, but at pH 8.0 practically 

all molecules of the weak acid with the pKa value of 4.8 are present in ionized form. 

Deprotonation is expected to decrease the molar mass of the dimer [3-(3-hydroxybutanoyl) 

oxybutanoic acid] as well, and thus its presence should have appeared as a peak at 189.22 

g/mol. Because of the lack of any peaks in this range or above, one may safely state that the 

only product of the enzymatic degradation is the monomer. 

The results presented above clearly show the general tendency of the kinetics of 

enzymatic degradation, but the plotted values (Figs. 2 and 4) are inevitably biased by 

systematic and stochastic errors caused by the nature of repetitive intermittent sampling. In 

order to minimize these errors, additional samples were prepared and their degradation 

monitored with a fully automated on-line UV-VIS measurement system. The results of the 

measurements are plotted in Fig. 5 and they confirm those obtained by recursive sampling. 

Compression molded films degrade faster than those prepared by solvent casting, and 

degradation proceeds through an initial accelerating stage to achieve constant rate later. 

Automated sampling carried out by a software-controlled peristaltic pump has the 

undeniable advantage of providing the quasi-continuous flow of the aqueous medium 

through the measurement cell, but certain issues may arise about the accuracy of UV 

detection also here. The online UV-VIS spectrophotometer requires an initially specified 

wavelength, at which absorbance is recorded continuously as a function of time during the 

measurement. This wavelength was set to 215 nm, resulting in a systematic error, since the 

position of maximum absorption shifts towards smaller wavelengths with increasing 

degradation time (see Fig. 1). 

 

3.2 The model 
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Figs. 2 and 6 shows that the rate of degradation initially increases and eventually, 

after 40-60 min, it becomes constant. The linearity of the correlations reveals that 

degradation carried out both on compression molded and solvent cast films proceeds 

similarly with a constant rate. An appropriate kinetic model may help to explain the initial 

accelerating stage.  

Among many others, Michaelis and Menten [82] proposed a model to describe the 

kinetics of enzymatic reactions. In their original publication, they presented a two-step 

model, which included the formation of an enzyme-substrate complex first, and then its 

subsequent decomposition. This latter step may yield an unmodified substrate or a product 

molecule. Neither of them modifies the enzyme, the protein remains intact in both cases. 

The model is usually expressed as 

 

      (1) 

 

where E is the enzyme, S the substrate, ES the activated complex, and P the product. Each 

of the reaction steps has its own rate constant, i.e. k1, k-1 and kc. The determination the rate 

constants requires the knowledge of the concentration of the components and the kinetical 

order or the reaction, which, according to the original article, corresponds to the number of 

reactants participating in the respective reaction step. 

According to these assumptions, the concentration of the enzyme increases by the 

decomposition of the activated complex and decreases by the formation of the ES complex 
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The reaction is calculated similarly for the ES complex; its concentration increases by its 

formation and decreases by its decomposition, i.e. 
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The concentration of the substrate changes only in two reactions, in the formation of the ES 

complex and during its decomposition 
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Finally, the rate of the formation of the product molecules is affected only by the 

concentration of the ES complex 
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 Although the Michaleis-Menten model described above is quite simple, preliminary 

calculations based on its differential equations (Eqs. 2-5) usually provide surprisingly exact 

results. In our case, however, the model has to be modified to take into account the 

heterogeneous character of enzyme catalyzed hydrolysis.  

The first modification to be made is related to the formation of the enzyme-

substrate complex. In the degradation of polyhydroxyalkanoates the substrates are ester 

groups and only those located at the surface of the polymer film are able to participate in 

the reaction and form an activated complex. The approximate diameter of a PHB 

depolymerase molecule is about 8 ± 3 nm [93], which makes its diffusion into the polymer 
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phase practically impossible. As the surface of the PHB film placed into the aqueous media 

remains constant throughout the 3 hours of the measurement, the number of ester groups 

located on the surface can be assumed constant as well. 

The adsorption kinetics of the enzyme molecules onto the surface of the film must 

be also considered and accommodated into the model. Since the formation of an activated 

complex requires a free enzyme molecule and a free ester group on the surface, only a 

monomolecular layer of the enzyme can be active and catalyze the degradation reaction 

[93]. Accordingly, the total amount of active enzyme molecules adsorbed on the surface of 

the polymer is rather small and thus enzyme concentration ([E]) is regarded as constant in 

the model.  

 The application of the modifications described above leads to the following 

equations 

 

  
0  

d

d


t

tE
     (6) 

  
0  

d

d


t

tS
     (7) 

  
     tESktESkSEk

t

tES
c      

d

d
1001      (8) 

  
  tESk

t

tP
c 

d

d
     (9) 

 

where E0 and S0 are the constant number of enzyme molecules and ester groups located on 

the surface of the polymer film, respectively.  

 

3.3 Application of the model, parameters 
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 The differential equation system presented above (Eqs. 8 and 9) must be solved in 

order to obtain the unknown [ES](t) and [P](t) functions. The analytical solution obtained 

takes the following form 
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The graphical form of the functions expressed by Eqs. 10 and 11 are plotted in Fig. 6, which 

shows the concentration of the activated complex ([ES]) and that the product ([P]) as a 

function of time as predicted by the new model. According to the model derived above, the 

total amount of enzyme molecules adsorbed on the polymer surface approaches a constant 

value. Doi and his colleagues [93] studied the adsorption kinetics of several PHB 

depolymerase enzymes, and although none of them was the strain Bacillus Megaterium, the 

obtained enzyme-substrate complex vs. time plots were quite similar to that predicted by 

our model (Fig. 6). Accordingly, product concentration goes through an initial accelerating 

phase with increasing adsorption of enzyme molecules, but as the total number of ES 

complexes reaches its maximum, the formation rate of product molecules also converges to 

a constant value, i.e. the product concentration vs. time function becomes linear. 

While the concentration of the ES complex was not measured in our recent study, 

product formation was monitored with several independent methods. In order to be able to 

compare measured data with the prediction of the model, absorbance values must be 

converted to concentrations, and the model equation (Eq. 11) fitted to the measured data. 

The conversion was done by calibration using commercial 3-hydroxybutiric acid, while the 
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fitting was carried out with a nonlinear iterative method using the Levenberg-Marquardt 

algorithm. 

In order to facilitate the fitting procedure and the determination of the constants of 

the model, Eqs. 10 and 11 are further simplified. The merging of the rate constants k and 

the integration constant C, as well as introducing parameter  in the form  = k-1 + kc, 

simplifies the exponential part of Eq. 11 and the linear term can be modified in a similar 

way as well. Taking into consideration the initial condition of the model, i.e. [P](0) = 0, 

shows that the C' constant equals the preexponent (A) of the simplified equation. All these 

simplifications result in the final form of the equation, which can be used for fitting, and the 

estimation of the parameters, i.e. 

 

     AtptAtP       exp        (12) 

 

where  indicates the time necessary to reach the stationary state of the degradation reaction, 

p is the formation rate of the product molecules (monomer) and thus the rate of degradation 

in the stationary stage, while A is the nominal amount of monomer formed in the first, 

nonlinear stage.  

The simplified formula was fitted to the experimental results obtained both by 

intermittent sampling and on/line UV-VIS detection. The results of the fitting procedure are 

shown in Figs. 7 and 8, respectively. The fit is excellent in each case proving that the model 

is adequate for the description of the kinetics of the enzymatic degradation of PHB, but most 

probably also for that of other aliphatic polyesters. The comparison of the measured and 

predicted data also shows, especially for films prepared by compression molding that the 

rate of degradation decreases at longer times, deviates from the predicted line. A probable 

reason of the deviation is the denaturation of the enzyme, but this tentative explanation 
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needs further study and proof. Another interesting phenomenon is the slower degradation 

of solvent cast films. Only tentative explanations can be given here too. Although both were 

amorphous, the morphology of the two films might be different, compression molding at 

high temperature might result in some degradation, and finally the solvent used for casting 

might not have been removed completely and could have led to the denaturation of the 

enzyme. Although a final and unambiguous explanation cannot be given for these 

phenomena, the new model may help considerably the identification and the quantitative 

determination of the effect of factors influencing the enzymatic degradation of aliphatic 

polyesters. 

The fitting of the model to the experimental data yielded also numerical values for 

the parameters of Eq. 12, which are listed in Table 1.  The parameters clearly show, as 

mentioned above, that the degradation of solvent cast films is generally slower than that of 

the compression molded ones; the rate of the second, stationary stage (p) is significantly 

slower for solvent cast than for compression films and 3-hydroxybutyric acid concentration 

in the first, nonlinear phase (A) is also smaller. The attention must be called here to the fact 

that parameters determined by different detection methods, i.e. intermittent and online, show 

excellent agreement in spite of the inherent deficiencies of both techniques. 

Besides reaction rates, parameter fitting provided valuable information about the 

adsorption of enzyme molecules as well. The larger absolute values of the time constant (λ) 

indicates that a shorter time is required to reach the equilibrium in adsorption in the case of 

compression molded than for solvent cast films. In the latter case, the nonlinear phase seems 

to be longer implying that the adsorption kinetics of enzyme molecules dependents on the 

method used to prepare the PHB films, probably on their morphology or surface quality. 
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4. CONCLUSIONS 

 Amorphous poly(3-hydroxybutyrate) films prepared by compression molding and 

solvent casting were degraded with the hydrolase enzyme natively synthetized by the strain 

Bacillus megaterium. The results showed that the enzyme catalyzes the degradation of PHB 

indeed. Degradation proceeds in two stages, an accelerating stage during which the enzyme 

adsorbs on the surface of the film, and a steady state with constant rate. Biodegradation 

produces the (R)-3-hydroxybutiric acid monomer in high purity, no metabolites or side 

products were detected in the degradation product. The kinetics of degradation was 

described quantitatively by a modified form of Michaelis-Menten model. Modifications had 

to take into account the heterogeneous nature of the degradation reaction. The new model 

assumes constant substrate and enzyme concentration, which simplifies treatment 

considerably. The parameters determined by the fitting of the model to the experimental 

values were consistent and did not depend on the method of detection (recursive or on-line). 

On the other hand the rate of degradation depended significantly on the technique used for 

the preparation of the films indicating parameters not accounted for during the study. The 

degradation of PHB by the strain used offers a simple way for the economic production of 

3-hydroxybutyric acid, a compound used in chemical synthesis or as a component of 

biomedical systems. 
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Table 1 Parameters characterizing the enzymatic degradation of PHB obtained by the 

fitting of the new kinetic model to experimental data 

 

Preparation 

method 

Parameter 

 

Detection method 

Recursive sampling Online  measurement 

Compression 

molding 

p (mmol/dm3/min) 0.0241 0.0244 

λ (1/min) -0.0302 -0.0237 

A (mmol/dm3) 0.8311 0.9890 

Solvent casting 

p (mmol/dm3/min) 0.0133 0.0168 

λ (1/min) -0.0249 -0.0223 

A (mmol/dm3) 0.6648 0.8043 
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CAPTIONS 

Fig. 1 UV-VIS spectra recorded on aqueous media containing compression molded 

films degrading for various length of times. 

Fig. 2 Degradation kinetics of poly(3-hydroxybutyrate) films determined after 

intermittent sampling by UV-VIS spectroscopy. Symbols: () compression 

molding, () solvent casting. 

Fig. 3 Chromatograms recorded on aqueous media after various times of degradation 

on compression molded PHB film. 

Fig. 4 Mass spectrum of a reference sample containing 100 mmol/dm3 3-

hydroxybutyric acid and that recorded after 3 hour degradation on an aqueous 

solution containing a compression molded film. 

Fig. 5 Online UV-VIS monitoring of the enzymatic degradation of PHB at 215 nm 

wavelength.  

Fig. 6 Changing concentration of the intermediate complex ([ES]) and that of the 

product ([P]) as a function of time as predicted by the model modified for 

heterogeneous reaction (Eqs. 10 and 11). 

Fig. 7 Fitting of the model to the kinetics of enzymatic degradation of PHB films. 

Detection was recursive UV-VIS spectroscopy. 

Fig. 8 Fitting of the kinetic model of enzymatic degradation onto the data obtained by 

online UV-VIS measurements. 


