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Abstract 

AT1 angiotensin receptor (AT1R), a prototypical G protein-coupled receptor (GPCR), is the 

main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT1R plays 

a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the 

development of pathological conditions, such as hypertension, heart failure, cardiovascular 

remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT1R leads 

to pleiotropic signal transduction pathways generating arrays of complex cellular responses. 

Growing amount of evidence shows that AT1R is a versatile GPCR, which has multiple 

unique faces with distinct conformations and signaling properties providing new opportunities 

for functionally selective pharmacological targeting of the receptor. Biased ligands of AT1R 

have been developed to selectively activate the β-arrestin pathway, which may have 

therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors 

and angiotensin receptor blockers. In this review, we provide a summary about the most 

recent findings and novel aspects of the AT1R function, signaling, regulation, dimerization or 

oligomerization and its cross-talk with other receptors, including epidermal growth factor 

(EGF) receptor, adrenergic receptors and CB1 cannabinoid receptor. Better understanding of 

the mechanisms and structural aspects of AT1R activation and cross-talk can lead to the 

development of novel type of drugs for the treatment of cardiovascular and other diseases.  
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Introduction 

The octapeptide (Asp‒Arg‒Val‒Tyr‒Ile‒His‒Pro‒Phe) hormone angiotensin II plays a 

crucial role in the maintenance of blood pressure and fluid homeostasis. It is produced by a 

two-step cleavage process from the precursor angiotensinogen by protease enzymes, namely 

renin and angiotensin convertase enzyme (ACE). The AngII effects are mediated by two 

distinct G protein-coupled receptors (GPCRs), the AT1 and AT2 angiotensin receptors, but 

there is a substantial difference in their importance in favor of the former. The AT1R is 

expressed in numerous tissues and mediates the "classical" physiological actions of 

circulating AngII on mechanisms including blood pressure regulation, salt-water balance, 

aldosterone secretion and effects on the central nervous system, such as thirst sensation and 

regulation of sympathetic outflow [1,2]. In addition, increased AT1R activity has been 

associated with the development of several pathological conditions, including hypertension, 

heart failure, vascular remodeling, diabetic nephropathy, atherosclerosis and inflammation 

[2]. Therefore, dampening of AT1R activity has enormous therapeutic benefits and has been 

successfully exploited in the last decades using ACE inhibitors and AT1R blockers. However, 

application of these drugs also hinders the beneficial functions of AT1R. In recent years, novel 

drug compounds with different pharmacodynamic properties were discovered, which are able 

to selectively activate specific signaling pathways of AT1R. These compounds may reduce 

side effects and/or have advantageous actions in treatment of diseases and could open a new 

era in AT1R-targeted therapies. 

In addition, a substantial knowledge has been gained about the main properties of 

AT1R, such as ligand preference, signaling, regulation, and trafficking. However, it is less 

known how AT1R and other plasma membrane receptors affect each other’s function, and 

how these crosstalk mechanisms can be utilized in the clinical practice. The new results in the 

field of receptor crosstalk can reveal not just new drug targets, but can also explain certain 

interactions between pharmaceutical compounds. In this review, we highlight the traditional 

and novel features of AT1 angiotensin receptor (AT1R), which is a prototypical GPCR, and 

can be considered as paradigm for other GPCRs not only in its pleiotropic functions and 

action of mechanisms but also in its clinical importance and druggability. 

 

 

Structural aspects of AT1R functions 

AT1R is a member of the rhodopsin family of GPCRs, and shares their common structural 

architecture [1]. It possesses an extracellular N terminus, an intracellular C terminus and 

seven highly hydrophobic transmembrane α-helices (H1-7), connected by three extra- and 

intracellular loops (ECL1-3 and ICL1-3, respectively). Ligands of GPCRs can be classified as 

agonists or antagonists. Agonists are capable to induce structural rearrangements in the 

receptor, achieving an active conformation of the GPCR, whereas antagonists stabilize the 

inactive state. Our understanding of the structural aspects of GPCR activation has improved 

strikingly in recent years thanks to the growing numbers of high-resolution GPCR structures. 

Surprisingly, despite the relatively low sequence homology between GPCRs, the 

conformational features of the transmembrane helices are considerably conserved [3]. In 

contrast, the composition of ligand binding pockets is diverse among GPCRs, which ensures 

the specific recognition of receptor ligands. Accordingly, our knowledge of the interaction 

between AT1R and its specific antagonists (or more precisely: inverse agonists) has hugely 

improved by the first crystal structures of AT1R in complex with the AT1R antagonists 

ZD7155 and olmesartan [4,5]. In good agreement with the previous results of site-directed 

mutagenesis studies, the ligand binding pocket of AT1R is formed by several key residues of 

ECL2 and the transmembrane helices H1, H2, H3 and H7. With the help of docking 
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simulations, these structures could explain the different binding properties of various receptor 

blockers. For instance, losartan, an antagonist with a relatively low binding affinity, forms 

only one salt bridge with the ligand binding pocket, whereas candesartan, an antagonist with 

insurmountable binding, is speculated to engage AT1R with two additional salt bridges [4]. 

The knowledge of the antagonist-stabilized state may also help to predict the conformational 

changes of the agonist-stimulated AT1R.  

 

Signal transducers of AT1R 

Heterotrimeric G proteins initiate the first wave of GPCR signaling (Fig. 1) [6]. Upon 

agonist activation, the Gα subunit binds to the core region of active GPCRs via the opened 

cytosolic cavity. This interaction triggers nucleotide exchange of Gα from GDP to GTP and 

dissociation of Gα from Gβγ. The separated subunits modulate the activity of downstream 

effector proteins to induce robust signaling cascades. These signaling mechanisms have wide 

spectra, including second messenger generation, activation of small G proteins and 

cytoplasmic tyrosine kinases, regulation of ion channels or transactivation of growth factor 

receptors. Likewise, G protein-mediated signaling pathways are responsible for the vast 

majority of AT1R-evoked cellular responses [1]. AngII stimulation of AT1R is able to activate 

not just one but various G proteins, such as Gq/11, Gi/o, or G12/13 [7]. Gq/11 protein induces the 

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messenger inositol 

trisphosphate (IP3) and diacylglycerol (DAG) by activation of phospholipase Cβ, IP3 triggers 

intracellular Ca
2+

 mobilization via binding and opening its calcium channel receptor. Ca
2+

 is a 

central regulator of many intracellular proteins and, in co-operation with DAG, also leads to 

the activation of various protein kinase C (PKC) isoforms [1,2]. Meanwhile, the signal 

transduction via Gi/o and G12/13 proteins lead to inhibition of adenylyl cyclase, regulation of L- 

and T-type Ca
2+

 channels and activation of phospholipase D, Rho GTPases or Rho kinase. It 

seems that the Gq/11-mediated signal transduction mechanisms of AT1R prevail in the major 

physiological target tissues, including kidney, adrenal cortex, vascular smooth muscle and 

cardiac cells [2]. 

The first wave of signaling is terminated by the elimination of the GTP bound to Gα 

and by distinct mechanisms of desensitization [8]. In the course of homologous 

desensitization, GRK enzymes recognize and phosphorylate agonist-bound GPCRs on 

serine/threonine residues of the receptor C-tail and/or ICL loops. The phosphorylation 

contributes to receptor desensitization through promotion of high affinity binding of arrestin 

proteins [9]. Moreover, since GRKs have a large number of non-receptor targets, they may 

also act as effectors of GPCR signaling [10]. Although the phosphorylation target sites of the 

seven GRK isoforms show substantial overlap, there are marked differences as well. It was 

demonstrated that distinct ligands of the β2AR initiate different phosphorylation patterns in 

the cytoplasmic tail of the receptor, “barcode”, due to alternative interaction with GRK2 

and/or GRK6 [11]. Similarly, different phosphorylation barcode by GRK2/3 and GRK5/6 

were suggested in the case of AT1R [12,13]. In addition, the C-tail of AT1R contains several 

consensus PKC phosphorylation sites [14]. Phosphorylation by PKC can be induced by 

activation other plasma membrane receptors and occurs not only in the active but the inactive 

state of the receptor. This mechanism of regulation of AT1R sensitivity is termed as 

heterologous desensitization. 

GRK-phosphorylation of agonist-bound AT1R is followed by the recruitment of β-

arrestins. β-arrestins are multi-functional adaptor proteins of GPCRs. The two β-arrestins (β-

arrestin1 and β-arrestin2) are expressed ubiquitously in mammalian tissues, and show high 

sequence and structural homology [9]. Their major roles are identical, but several isoform-

specific functions were also reported (reviewed in [15]). They bind receptors in a two-step 

process [16]. First, β-arrestins interact with receptor-attached phosphates, then dock to the 
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intrahelical cavity of the activated GPCR. The binding of β-arrestin to the GPCR core 

sterically prevents the further activation of G proteins. Moreover, activated β-arrestins can 

interact with numerous adaptor proteins involved in the endocytic cargo transport [8]. 

Association of β-arrestin with the β2-appendage of adaptor protein 2 induces translocation of 

the GPCR-β-arrestin complex to clathrin-coated pits, which step is followed by internalization 

mediated by clathrin-coated vesicles. AT1R interacts with β-arrestins in sustained manner, due 

to strong interaction of β-arrestins with phosphorylated C-terminal serine/threonine clusters 

[17,18]. Because of the stable interaction, AT1R and β-arrestins internalize together as a 

complex. This allows β-arrestins to govern the intracellular trafficking of the receptor [8]. 

Basically, receptors can have two fates after endocytosis (Fig. 2). They can be degraded in 

lysosomes or be recycled to the plasma membrane via fast and/or slow recycling endosomes. 

During recycling, the receptor ligands detach from the receptor due to lower pH in 

endosomes, and the receptor is dephosphorylated by protein phosphatases. These processes 

induce resensitization of the receptor, i.e. they are able to respond to agonists again. Sustained 

β-arrestin binding of AT1R favors late endosomal and lysosomal trafficking, inducing its 

down-regulation [8]. Furthermore, β-arrestin-independent and caveolae-mediated 

internalization routes of AT1R have also been described [19]. 
Initially, β-arrestins were considered only as negative regulators of GPCR functions by 

mediating receptor desensitization and internalization. It is now widely-accepted that they 

have much broader roles, as they are central organizers of distinct signaling cascades [16]. As 

scaffolds, they orchestrate a vast array of signaling proteins, such as various mitogen-

activated protein kinases (MAPK), phosphoinositide 3-kinase, Akt or protein phosphatase 2A 

[16,20,21]. In that function, β-arrestins fine tune a second wave of GPCR signaling. This 

signaling is substantially different from the first wave regarding its temporal, spatial and 

mechanistic features [6]. One of the most known β-arrestin-mediated function is the 

modulation of MAPK activation. Various MAPK cascade members are regulated by β-

arrestins upon AT1R activation, including Raf1, MEK, ERK, p38 MAPK and JNK [16]. The 

formation of AT1R–β-arrestin–MAPK complexes alter the localization of MAPK activation. 

These complexes keep activated MAPKs away from the nucleus, thereby preventing the 

induction of their transcriptional response [20]. On the other hand, the β-arrestin-bound 

MAPK complexes can phosphorylate and regulate other target proteins, which are brought in 

proximity as well by β-arrestins. β-arrestins were shown to interact with hundreds of signaling 

proteins, indicating that β-arrestins are central regulators of complex signaling networks 

[22,23]. Among a wide range of functions, β-arrestins regulate cytoskeletal rearrangements, 

chemotaxis, or protein synthesis. In the light of these observations, it is not surprising that β-

arrestins were demonstrated to mediate a plethora of AT1R effects, such as positive inotropy 

in the heart, cardiac hypertophy or proliferation of cardiomyocytes [24–26].  

Interestingly, β-arrestins show a remarkable degree of conformational plasticity [9]. 

They can adopt multiple active conformations with distinct signaling properties. An important 

determinant of the β-arrestin conformation is the receptor C-terminal phosphorylation barcode 

[16]. Different phosphorylation motifs induce distinct β-arrestin conformational changes, 

which provides the possibility to evoke distinct AT1R induced cellular responses [12]. In 

addition, activated β-arrestins are ubiquitinated by ubiquitin ligases, such as Mdm2 [27]. 

Interestingly, the ubiquitination patterns of β-arrestin may differ in the distinct active 

conformations, which may contribute to the fine regulation of β-arrestin-mediated response 

[27].   

Recent data suggest that the β-arrestin-mediated second signaling wave is dependent 

on G proteins, suggesting that β-arrestins, in fact, broaden the signaling options of G proteins 

by governing their signaling in time and space [28]. Interestingly, several GPCRs have been 

reported to generate a third, sustained signaling wave from endosomes after internalization 
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[29,30]. Interestingly, GPCR–G protein–β-arrestin supercomplexes have been identified to be 

responsible for the sustained endosomal signaling [31]. In contrast to the generally believed 

competition between G proteins and β-arrestins, in this complex Gα binds to the receptor core 

and β-arrestin interacts with the phosphorylated C-tail of the same receptor. These results 

were obtained with Gs protein-coupled GPCRs, and it would be curious to investigate whether 

the mainly Gq-coupled AT1R could form such complexes as well. These data shed light on the 

complex interplay between the GPCR transducers and suggest that spatiotemporal features of 

signaling are more prominent than they were previously supposed.  

In addition to the above-mentioned effectors, GPCRs also have numerous other 

interacting partners. These proteins can be either plasma membrane proteins such as ion 

channels, transporters, various serine/threonine-specific protein kinases, cytoskeletal proteins, 

Src homology and PDZ domain-containing proteins, small G proteins or extracellularly 

located adhesion molecules [32]. Accordingly, AT1R was shown to interact with wide spectra 

of other proteins beside G proteins and β-arrestins, such as AT1R-associated protein 

(ATRAP), phospholipase Cγ, JAK2 or other GPCRs, just to name a few, which may also take 

important parts in the complex pleiotropic effects of AT1R in the target tissues of the renin-

angiotensin system (RAS) [1]. 

 

Biased agonism of AT1R 

β-arrestin binding and internalization of AT1R and other GPCRs does not require G 

protein activation [28,33–35]. Although recent data suggest that β-arrestin-mediated signaling 

of GPCRs requires G protein activation [28], β-arrestin binding and its effect on receptor 

regulation is G protein independent, therefore compounds that selectively activate G proteins 

and β-arrestin binding (biased or functional selective compounds) can modify the intracellular 

fate of receptors, which may have therapeutic relevance. It was speculated that AT1R may 

adopt multiple active conformations with distinct signaling properties, and conformation-

specific targeting of AT1R could offer the intriguing possibility of pathway-selective 

intervention. Evidence for this concept is the successful development of β-arrestin-biased 

peptide agonists [36]. These peptides induced no or partial activation of G proteins, while 

they triggered efficient receptor phosphorylation and β-arrestin recruitment (Fig. 3A-B) 

[7,35]. Using AT1R conformational biosensors, it was demonstrated that the conformations 

stabilized by β-arrestin-biased peptides are indeed distinct from that of the AngII-induced 

conformation [37]. These biased peptides lack the aromatic amino acid in position 8, the 

indispensable residue for adoption of the G protein-activating conformation of AT1R. The 

first such a peptide was [Sar
1
,Ile

4
,Ile

8
]-AngII, which was then followed by a series of higher-

affinity ligands including, TRV120023 or TRV120027 [38]. These peptides revolutionized 

AT1R pharmacology and unveiled new aspects of AT1R functions [39]. In addition, they show 

not only selective activation of the β-arrestin-mediated signaling pathway but change the 

intracellular trafficking of AT1R [40,41]. The altered intracellular fate upon treatment with β-

arrestin-biased compounds may be explained by the interesting finding that they also induce a 

different active conformation of the β-arrestin [42,43]. In addition, lack of Gq-dependent 

hydrolysis of PIP2, a known determinant of endocytosis [44], accelerates internalization of the 

receptor, which may have profound effects on the spatiotemporal features of signaling (Fig. 2) 

[40,45]. Moreover, these results offer the intriguing possibility that biased agonists could be 

applied in diseases where the intracellular receptor processing should be changed. The unique 

pharmacodynamic properties of biased agonists were also demonstrated in vivo, as they 

possessed beneficial effects on cardiac contractility and performance [38,46]. Unfortunately, 

although promising results were obtained with TRV120027 for the treatment of acute heart 

failure in animal studies [39,47], it failed to deliver the expected results in a Phase II clinical 

trial [48]. However, long-term treatment with another β-arrestin-biased peptide, TRV120067 
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was shown to have benefits compared to losartan treatment in a mouse model of dilated 

cardiomyopathy [49]. This suggests that chronic treatment with biased agonists could still be 

useful in the therapeutic strategies of some cardiovascular diseases. Although β-arrestin-

mediated signaling pathways were mostly suggested to be beneficial, β-arrestin activation 

could also have adverse side effects. In the treatment of certain conditions, such as 

aldosterone overproduction, the preferable medicines will still probably be the full antagonists 

of AT1R, such as candesartan or valsartan, since the use of β-arrestin-biased compounds may 

lead to aldosterone escape [50], due to the fact that the aldosterone production is partly β-

arrestin mediated in response to AngII [51].  

 

AT1R as a stretch mechano-sensor 

There is a growing number of evidence that AT1R not only behaves as a hormone 

receptor, but also serves as a sensor of membrane stretch [52–55]. In that function, AT1R is 

activated in the absence of ligand binding and shows biased signaling properties. Upon 

osmotic stretch, AT1R binds β-arrestin in a Gi/o activity dependent manner, but does not 

activate Gq/11 proteins [55]. These processes are followed by the transactivation of epidermal 

growth factor receptor (EGFR) and activation of ERK [55]. This mechanism was suggested to 

mediate the Frank-Starling law of the heart, i.e. the enhanced contraction response upon 

increased ventricular filling [56].  

 

AT1R as a signaling hub 

It was generally believed that the signal transduction of AT1R requires ligand binding 

and/or adoption of its active conformation. As reviewed above, activated AT1R induces a 

plethora of signaling pathways, in contrast to inactive AT1R, which was thought to be silent in 

terms of signaling. It has been demonstrated that pharmacological activation of PKC causes β-

arrestin2 recruitment to AT1R even in the absence of receptor agonists [57]. Moreover, 

stimulation of either epidermal growth factor receptor or a distinct Gq/11-coupled GPCR, such 

as α1A-adrenergic receptor or endogenous purinergic receptors could exert the same effect, 

proving that the interaction can be triggered at physiological levels of PKC activation (Fig. 

3C). It was also found that this heterologous mechanism of β-arrestin recruitment to AT1R 

was not sensitive to treatment with the inverse agonist candesartan, showing that this process 

does not require the active state of the receptor. However, it depends on stable association 

between the PKC-phosphorylated serine/threonine clusters in the receptor’s C-terminus and 

two conserved phosphate-binding lysines of β-arrestin2. Using β-arrestin2 conformational 

biosensors it was demonstrated that β-arrestin2 binds to PKC-phosphorylated AT1R in a 

distinct conformation. Moreover, this conformation is also active functionally, since it triggers 

MAPK recruitment and receptor internalization with altered intracellular receptor trafficking. 

Taken together, the unliganded, but phosphorylated AT1R is able to recruit β-arrestins and 

consequently, the inactive AT1R may also participate in signaling as a scaffold protein [57]. 

This mechanism could be particularly important in the cases of receptors, like α1A-adrenergic 

receptor, which do not interact with β-arrestins, since the presence of AT1R could aid them to 

initiate β-arrestin dependent signaling. Since phosphorylation of AT1R is induced by a variety 

of other receptors, the β-arrestin activation by heterologously-phosphorylated AT1R may 

represent a central cross-talk mechanism for regulation of signal transduction.  

 

Transactivation mechanisms driven by AT1R 

 

Cannabinoid receptor regulation by AT1R  

 Cannabinoid receptors (CB1 and CB2 receptors) were first recognized as the targets of 

the phytocannabinoid tetrahydrocannabinol, the active compound of marijuana [58,59]. Later 
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on, anandamide and 2-arachidonoyl glycerol (2-AG) were described as the main 

endocannabinoids produced in brain and other tissues [60]. The role of 2-AG as a cannabinoid 

receptor ligand was an intriguing finding, since it is produced from DAG by DAG lipase 

(DAGL) [61]. Since DAG is produced after Gq protein activation, and DAGL is expressed 

widely in many tissues, we have hypothesized that AT1R stimulation may lead to production 

of 2-AG. Indeed, 2-AG is produced in cell culture models after stimulation of the AT1R with 

AngII, leading to activation of the CB1 cannabinoid receptor (CB1R) in both autocrine and 

paracrine manner (Fig. 3E) [62,63]. Moreover, it has been shown later, that in different 

arteries [64–67] and central nervous system AT1R function is altered by CB1R activation, 

which effects are dependent on DAGL activity [68]. AngII itself induces contraction in rat 

and mouse aorta and coronary, renal, skeletal, muscle and pulmonary arteries, and this effect 

is attenuated through the parallel induction of 2-AG production and activation of CB1R [64–

67]. This mechanism may serve as a fine-tuning negative feedback regulation in the 

vasomotor system, dampening the effects of many Gq-coupled receptors in vascular smooth 

muscle cells (VSMCs), which may serve as a protection mechanism from overactivation. 

Although the interaction between the RAS and the cannabinoid system seems to be present in 

the arteries, identification of the precise cellular location of the individual elements requires 

additional studies.  

 AT1R‒CB1R interaction is not limited to the regulation of endocannabinoid release. In 

rat astrocytes, AngII-induced PKC-mediated phosphorylation and heterologous 

desensitization of the cannabinoid receptors [69]. In these cells, CB1R activity inhibits the 

MAP kinase pathway, and desensitization may regulate the balance between active and 

inactive receptors after activation through endocannabinoid release. Alternatively, CB1R 

receptor signaling bias might be regulated through PKC-mediated phosphorylation, although 

these aspects of the interaction have not been yet investigated. On the other hand, AT1R‒

CB1R heterodimerization has also been reported in Neuro2A cells, where AT1R-induced full 

ERK1/2 required expression of the CB1R [70]. Together, these data show that there may be 

multiple levels of interaction between RAS and the cannabinoid system, which may be 

distinct in different tissues and cell types. They also suggest that autocrine and paracrine 

activations of CB1R might be not just spatially, but also functionally different. 

 

EGFR transactivation by AT1R 

It is very characteristic for the AT1R that several cellular responses upon AngII 

stimulation are mediated by receptor tyrosine kinases, among which the EGFR plays the most 

important role in the cardiovascular system [71] and in other tissues, such as hepatocytes [72]. 

The EGFR transactivation is mediated via calcium signal and matrix metalloprotease 

(ADAM) activation, which causes the cleavage of heparin-binding epidermal growth factor-

like growth factor (HB‒EGF) resulting in agonist release for the EGFR stimulation (Fig. 3E) 

[73]. It turned out that this mechanism is crucial for several pathological effects of AngII, 

including cardiac and vascular remodeling, and the pharmacological inhibition of ADAM17 

can be promising new possibility in treatment of hypertension [74]. Although EGFR 

transactivation seems to be the most important among growth factor receptor transactivation 

pathways, other growth factor receptors including insulin-like growth factor I receptor, and 

platelet-derived growth factor receptor transactivation mechanisms in physiological target 

cells, such as VSMCs, were demonstrated in response to AngII stimulation [75].  

 

Dimer formation of AT1R with other GPCRs 

It is now widely accepted that AT1R is capable to form higher order complexes, i.e 

homodimers/oligomers and heterodimers/oligomers with other GPCRs. Several GPCR‒AT1R 

heterodimers were published, including adiponectin receptor [76], α2C-adrenergic receptor 
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(α2CAR) [77], apelin receptor [78], β2AR [79], bradykinin B2 receptor [80], CB1 cannabinoid 

receptor [70], chemokine (C-C Motif) receptor 2 [81], prostaglandin F2α receptor [82] and 

purinergic P2Y6 receptor [83]. Interestingly, several dimers have been associated with altered 

ability to activate G protein and/or β-arrestins (Fig. 3D). For instance, several studies have 

demonstrated that homodimerization has negative allosteric effect on AT1R function [84–86], 

and recently the structural requirements of homodimer formation were proposed [87]. In 

addition, heterodimerization between the mainly Gi/o-coupled α2CAR and Gq-coupled AT1R 

was shown to change their G protein preference, and switches to Gs proteins and cAMP 

signaling [77]. Furthermore, altered pharmacological profile of the heterodimerized AT1R and 

β2AR has been demonstrated. Antagonist binding of either receptor was found to induce trans-

inhibition of the other protomer, i.e. one antagonist could block the G protein activation of 

both receptors [79]. The AT1R‒β2AR heterodimer also influences the β-arrestin binding 

properties [88]. Dual agonist occupancy potentiates the β2AR‒β-arrestin recruitment without 

affecting the β-arrestin binding of AT1R. β-arrestin biased AT1R agonists, in contrast to the 

conventional AT1R antagonists, could also evoke this phenomenon [88]. These results suggest 

that some pharmacological effects of β-arrestin-biased AT1R agonists may be transmitted by 

the regulation of β2AR leading to unexpected side effects of these drugs. However, it must be 

noted that physical interaction between receptor dimer partners, was mostly demonstrated 

using methods prone to inherent errors, and several parallel independent experimental 

approaches, as well as careful experimental design [89] is needed to verify many of these 

findings.  

 

 

AT1R in diseases 

The overactivity of AT1R is detrimental, induces pathophysiological conditions, and 

frequently associated with various diseases especially in the cardiovascular system and in the 

kidney. Due to the complexity of the AT1R signaling, the various cell/tissue/organ 

dysfunctions could be promoted by several parallel mechanisms. The growth factor 

transactivation (mainly EGFR) is accounted as the key player in AngII-induced maleficent 

cardiac and vascular hyperplasia and hypertrophy [90].  In addition, excessive AngII-induced 

reactive oxygen species (ROS) production can lead to oxidative stress within the cells by 

promoting lipid, protein, and nucleic acid oxidations. Depending on the type of cells the 

oxidative stress itself can result in endothelial dysfunction, cardiovascular remodeling, 

hypertension, cardiac and vascular smooth muscle cell hypertrophy, diabetes, atherosclerosis 

[91]. AngII also induces inflammatory signals [92], and the proinflammatory actions of AT1R 

were implicated in the development of several diseases including hypertension, myocardial 

and renal fibrosis [93,94]. On top of the cardiovascular and renal symptoms, the deleterious 

AngII signaling is also implicated in metabolic diseases and diabetes based on the results of 

clinical studies using various AT1R blockers [95,96]. The mechanisms which lead to those 

conditions are not fully understood, although it is well established that insulin resistance can 

be caused by excessive AngII action and the blockade of RAS improves the insulin sensitivity 

[97].   

 

Concluding remarks 

In recent years, the high-resolution crystal structures of antagonist-bound AT1R greatly 

improved our understanding of the molecular aspects of AT1R functions. However, there is 

still an urgent need for the structures of both unbiased and biased agonist-bound AT1Rs, 

which could aid the development of biased compounds with better pharmacodynamic profile. 

Although TRV120027 failed in a trial of acute heart failure, investigation of biased drugs in 

other diseases is highly desirable to answer whether these compounds be could be applied in 
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clinical practice. The new insights of receptor cross-talk mechanisms showed that AT1R is 

much more complex than previously appreciated. Further studies are needed to answer 

whether the cross-talk mechanisms of AT1R could be successfully targeted in the treatment of 

diseases.    

 

 

Practice points: 

 Recent results of biased agonism help to understand how different drugs acting on the 

same GPCR can have different pharmacological effects. 

 The wide array of therapeutic effects of ACE inhibitors and AT1R blockers, including 

blood pressure control, renoprotection, amelioration of peripheral inflammation, and 

beneficial effects in metabolic disorders, are mediated not only by dampening RAS 

activity but most likely also by hindering the endocannabinoid and growth factor 

receptor tyrosine kinase pathways. 

 Drug interactions can be caused by receptor cross-talk mechanisms. 

 Exploitations of receptor interactions and biased agonism offer the possibility of new 

therapeutic strategies in the near future 

 

 

Research agenda: 

 Determination of high-resolution structures of unbiased and biased agonist-bound 

AT1R 

 Elucidation of the spatiotemporal properties of AT1R actions and the role of 

internalized receptors in G protein activation and signaling 

 Development of novel biased AT1R agonists with better pharmacokinetic and dynamic 

profiles 

 Investigation of the effects of biased compounds in different disease models 
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Figures: 

 

Figure 1. Signal generation of ligand stimulated GPCR 

The activation of a GPCR usually initiates multiple and complex signaling pathways in the 

target cells. The first wave of signaling depends on the G protein coupling and second 

messenger production. The β-arrestin binding not just decouple the receptor from G protein 

but serving as a signaling scaffold initiates the slightly delayed second, β-arrestin-mediated 

wave of receptor signaling. Recent evidences revealed that the internalized receptors are also 

capable to organize a third wave of signaling, which results in sustained cell response. 
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Figure 2. Intracellular trafficking of AT1R    

Agonist stimulation of AT1R leads to endocytosis predominantly via a β-arrestin- and 

dynamin-dependent mechanism. The internalized receptors can either be degraded through the 

late endosomal/lysosomal route or be resensitized and recycled to the cell surface by recycling 

endosomes. The β-arrestin-biased AT1R peptides promote distinct and accelerated trafficking 

of the receptor due to the lack of PIP2 depletion in the plasma membrane and the different β-

arrestin binding properties. 
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Figure 3. Pleiotropic functions of AT1R signaling 

AT1R acts as multifaceted organizer of signal transduction processes. (A) AT1R can interact 

with various effector proteins, including Gq/11, Gi/o, G12/13 proteins and β-arrestin molecules. 

(B) Binding of ligands with different pharmacodynamic properties or membrane stretch can 

promote distinct conformational rearrangements in the receptor, leading to alternative 

signaling outcomes: blockade or activation of distinct downstream effectors. (C) The inactive 

AT1R acts as a focal point of signaling of other plasma membrane receptors via β-arrestin 

recruitment. (D) AT1R can function in distinct molecular compositions. Homodimerization of 

AT1R induces allosteric trans-inhibition in the dimer partners, whereas the heterodimerization 

with other receptors can alter the G protein preference and/or the β-arrestin binding 

properties. (E) Transactivation mechanisms driven by AT1R. In many cell types, AT1R acts 

also via transactivation of other receptors, including growth factor receptor transactivation 

(i.e. EGFR) and GPCR transactivation (i.e. CB1R). 


