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Objective: The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid
arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is
known about the role of sensory neural factors and the complexity of neuro–immune interactions. There-
fore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-
induced arthritis with integrative methodology.
Methods: Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin
(RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity,
noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined
repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metallopro-
teinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathol-
ogical scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also
performed.
Results: In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP
and MPO activities, as well as histopathological alterations were significantly greater compared to
non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact
female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreat-
ment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive
afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher
following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in
non-pretreated, which was significantly less in RTX-pretreated mice.
Conclusions: Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later
phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least
partially through somatostatin release.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Rheumatoid arthritis (RA) is chronic autoimmune disease char-
acterized by the destruction and deformation of the joints leading
to persistent pain, movement disability and decreased life quality.
It is a great public health problem worldwide due to its high inci-
dence and prevalence, unsatisfactory therapeutic outcomes and
unfavorable life expectancy (Kourilovitch et al., 2014; Jones et al.,
2003). Despite promising novel drugs introduced recently in its
pharmacotherapy, we still have to cope with several resistant cases
and severe drug-induced adverse effects (Schett and Gravallese,
2012; Alarcón, 2000). Although our knowledge about the immuno-
logical aspects of the pathophysiological mechanisms has
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extensively increased in the last decade, the regulatory role of sen-
sory nerves and the complexity of neuro–immune interactions in
this condition are still not understood (Levine et al., 2006;
Pongratz and Straub, 2010; Meinel et al., 2013; Stangenberg
et al., 2014).

Capsaicin-sensitive peptidergic sensory nerves densely inner-
vate the joint capsule and the synovium, which do not only mediate
pain (classical afferent function), but also play an important role in
inflammation via sensory neuropeptide release (efferent function).
The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective
cation channel located on these nerves is activated and sensitized
by a variety of exogenous irritants, such as capsaicin, and resinifera-
toxin (RTX), as well as endogenous molecules like protons, bradyki-
nin, prostanoids, tumor-necrosis factor-a, nerve growth factor,
gasotransmitters or lipid peroxidase products (Yoo et al., 2014).
Many of these are crucial participants of inflammatory processes
in RA. As a result of activation of the capsaicin-sensitive nerve ter-
minals, sensory neuropeptides are released, such as the proinflam-
matory tachykinins (substance P, neurokinin A) and calcitonin-gene
related peptide (CGRP) responsible for vasodilation and inflamma-
tory cell recruitment (neurogenic inflammation) (Maggi, 1995;
Szolcsanyi, 1996), as well as somatostatin, which is a potent antiin-
flammatory and antinociceptive agent. We have provided several
lines of evidence in a variety of inflammation models that the over-
all role of these fibers depends on the functional significances of the
simultaneously released pro- and antiinflammatory peptides in the
respective pathophysiological processes (Pintér et al., 2014). We
have also shown that sensory nerve-derived somatostatin is an
important endogenous inhibitor in the adjuvant-induced arthritis
model of the rat (Helyes et al., 2004).

The pathophysiological relevance of these peptides in humans
is beyond doubt, since increased proinflammatory and decreased
antiinflammatory neuropeptide levels have been demonstrated in
the serum and/or synovial fluid of RA patients (Anichini et al.,
1997; Larsson et al., 1991; Denko and Malemud, 2004).

Investigating rheumatoid arthritis mechanisms in animals is
difficult; therefore there are many different rodent models which
can more or less mimic the main symptoms of the disease
(Bevaart et al., 2010; Zhang et al., 2012; Boettger et al., 2010).
The K/BxN serum-transfer arthritis is a widely-used translational
mouse model of RA, it shares a lot of similarities to the human dis-
ease, e.g. swelling of distal joints of all the paws with erosive syno-
vitis, caused by the activation of neutrophils, macrophages,
complement system which play a pivotal role in the induction
and maintenance of arthritis (Kouskoff et al., 1996; Korganow
et al., 1999; Fukushima et al., 2010). The immunological compo-
nents of this model have thoroughly been investigated (Németh
et al., 2010; Hickman-Brecks et al., 2011), but nothing is known
about the role of sensory neural factors and the complexity of
neuro–immune interactions. Therefore, we analyzed the involve-
ment of capsaicin-sensitive peptidergic sensory nerves in autoanti-
body-induced arthritis with integrative methodology after the
functional impairment of these fibers with high dose RTX pretreat-
ment (desensitization).
2. Material and methods

2.1. Ethics statement

Experiments were carried out according to the 1998/XXVIII Act
of the Hungarian Parliament on Animal Protection and Consider-
ation Decree of Scientific Procedures of Animal Experiments
(243/1988), complied with the recommendations of IASP, and
approved by the Ethics Committee on Animal Research of Univer-
sity of Pécs (licence: BA 02/2000-2/2012).
2.2. Experimental animals

Male and female C57Bl/6 mice (10–12-week-old; 25–30 g) bred
and kept in the Laboratory Animal House of the Department of
Pharmacology and Pharmacotherapy of the University of Pécs at
24–25 �C under a 12-h light–dark cycle were used in all studies.
Standard mouse chow and water were provided ad libitum.

2.3. Resiniferatoxin pretreatment

Pretreatment with the ultrapotent TRPV1 agonist resiniferatox-
in (RTX, Sigma–Aldrich; 30, 70, 100 lg/kg s.c. on 3 consecutive
days) leads to long-lasting defunctionalization of capsaicin-sensi-
tive nerves (desensitization) (Szolcsanyi et al., 1990). Two weeks
later the success of the pretreatment was verified by the lack of
eye-wiping after capsaicin drops (50 ll, 0.1%) (Helyes et al., 2004).

2.4. Induction of arthritis

Chronic arthritis of male and female C57Bl/6 mice was induced
by intraperitoneal (i.p.) injection of 150–150 ll of K/BxN serum on
the days 0 and 3. Control groups of intact animals were treated
with BxN (not arthritogenic/control) serum following the same
protocol.

2.5. Assessment of arthritis severity and paw edema

Hind paw volume was measured by plethysmometry (Ugo
Basile 7140, Comerio, Italy) (Helyes et al., 2004; Szabó et al.,
2005). Arthritic changes were semiquantitatively scored using a
grading scale of 0–10 (0–0.5: no change, 10: maximal inflamma-
tion) by evaluating edema and hyperemia (Németh et al., 2010).
Volumes and scores were assessed before serum injection and
every day during the 2-week period.

2.6. Measurement of mechanical and thermal hyperalgesia

Mechanonociceptive threshold of the paw was determined by
dynamic plantar aesthesiometry (Ugo Basile 37400, Comerio, Italy)
before and after serum administration. Mechanical hyperalgesia
was expressed as % of initial, control mechanonociceptive thresh-
olds (Helyes et al., 2004; Szabó et al., 2005). The thermonociceptive
threshold of the paw was determined on increasing temperature
hot plate (IITC Life Sciences, Woodland Hills, CA, USA) by nocifen-
sive reactions (lifting, licking, shaking) or reaching the maximum
value (53 �C) (Almási et al., 2003).

2.7. Assessment of joint function (grid test)

An easy and reproducible method to determine grasping ability
correlating with joint function. Mice were placed on a horizontal
wire-grid, then it was turned over and the latency to fall was deter-
mined (Németh et al., 2010).

2.8. Measurement of arthritis induced weight loss

As a typical sign of systemic effect of arthritis, mice lost weight
after serum administration. Weight measurements were per-
formed daily and weight loss was expressed in % of control values.

2.9. In vivo bioluminescence imaging of myeloperoxidase-activity

Luminol bioluminescence (BLI; 5-amino-2,3-dihydro-1,4-
phthalazine-dione) correlates with neutrophil myeloperoxidase
activity in arthritis in vivo (Chen et al., 2004; Gross et al., 2009).
Na–luminol (150 mg/kg i.p., Sigma–Aldrich) dissolved in PBS



Fig. 1. Serum-induced edema and arthritis score throughout the 2 weeks experimental period. Data points represent the percentage increase of the paw volume of male (A)
and female (B) mice compared to the initial control values and the absolute values of arthritis scores for male (C) and female animals (D) (n = 4–5/non-inflamed groups, n = 6–
8/arthritic groups; ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001 vs. non-pretreated; two-way ANOVA + Bonferroni’s modified t-test).
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(20 mg/ml) was injected on days 0, 2 and 6. Images were acquired
10 min later with IVIS Lumina II (PerkinElmer, Waltham, USA; 60 s
acquisition, F/Stop = 1, Binning = 8). Identical Regions of Interests
(ROIs) were applied around the ankles and luminescence was
expressed as total radiance (total photon flux/s).

2.10. In vivo fluorescence imaging of matrix-metalloproteinase activity

Matrix-metalloproteinase (MMP) activity was assessed in vivo
on days 5 and 8 using MMPSense680 (PerkinElmer), an activatable
fluorescent imaging probe for MMP-2, -3, -9 and -13 according to
the manufacturer’s instructions (2 nmol/subject i.v.). Measure-
ments were performed with the FMT 2000 fluorescence molecular
tomography system 24 h later (PerkinElmer). Three-dimensional
reconstructions of the ankles were made, isocontour ROIs were
applied, and MMP was expressed as pmol fluorophore.

2.11. In vivo micro-computed tomography (micro-CT) analysis of the
periarticular bone structure

The right tibiotarsal joints were repeatedly (days 0, 7, 14)
scanned by SkyScan 1176 in vivo micro-CT (Bruker, Kontich, Bel-
gium) with 17.5 lm voxel size. Changes of bone structure were
evaluated by CT Analyser� software. Standard size ROIs were
applied around the periarticular tibia and fibula regions, and
around the tibiotarsal and tarsometatarsal joints. Bone volume
(lm3) was quantified and expressed as a percentage of the total
ROI volume.

2.12. Histological processing and assessment of joint inflammation

Ankle joints excised on day 14 were fixed, decalcified and dehy-
drated, embedded in paraffin, sectioned (3–5 lm) (Helyes et al.,
2004; Szabó et al., 2005) and stained with hematoxylin–eosin or
Safranin O for detecting collagen deposition and fibroblasts. Histo-
pathological changes were scored by a pathologist blinded from
the study on the basis of (1) areolar tissue size and mononuclear
cell infiltration, (2) synovial cell proliferation, (3) fibroblast num-
ber and collagen deposition to create composite arthritis scores
(between 0 and 9) (Botz et al., 2014).

2.13. Determination of somatostatin-like immunoreactivity (SOM-LI)
in tissue homogenates

Separate groups of mice were sacrificed in deep anesthesia on
day 10 when both swelling and hyperalgesia were remarkable.
The tibiotarsal joints were homogenized in a solution containing
20 mM KH2PO4 and K2HPO4 for 2 min at 24,000 rpm with Miccra
D-9 Digitronic device (Art-moderne Laborteknik, Germany).
Homogenates were centrifuged for 10 min at 4000 rpm afterwards



Fig. 2. Serum-induced hyperalgesia throughout the 2 weeks experimental period. Data points represent the percentage decrease of mechanonociceptive threshold for male
(A) and female (B) mice, and the absolute values of noxious heat threshold for male (C) and female animals (D) (n = 4–5/control non-inflamed groups, n = 6–8/arthritic groups;
⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001 vs. non-pretreated; two-way ANOVA + Bonferroni’s modified t-test).

Fig. 3. Change of neutrophil-derived myeloperoxidase activity. Panel (A) shows representative pretreatment control images, whereas panels (B and C) demonstrate
inflammatory neutrophil activity on day 2 and 6 following arthritis induction, respectively. (D) Quantification of luminol bioluminescence in the diseased ankle joints. (n = 6–
8 male mice/group, ###p < 0.001 vs. controls, ⁄⁄⁄p < 0.001 vs. non-pretreated; Student t-test).
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for 15 min at 10,000 rpm and the supernatants were collected for
SOM-LI determination with a specific and sensitive radioimmuno-
assay (RIA) (Németh et al., 1996).

2.14. Statistical analysis

All functional, histopathological and CT results were presented
and evaluated separately for male and female mice, data points
represent means ± SEM. Hyperalgesia, edema and weight loss were
evaluated by repeated measures two-way analysis of variance
(ANOVA) + Bonferroni’s modified t-test, semiquantitative clinical
and composite histopathological scores by non-parametric Krus-
kal–Wallis test + Dunn’s post-test, micro-CT results by two-way
ANOVA + Dunnett and Tukey post-tests to evaluate the time-
dependent self-control changes and the different groups, respec-
tively. Bioluminescence and fluorescence imaging, as well as
somatostatin-LI were analyzed by Student’s t-test for unpaired
comparisons. p < 0.05 was considered to be significant.

3. Results

3.1. Increased joint edema after desensitization of capsaicin-sensitive
sensory nerves

In non-pretreated arthritic mice an approximately 45% edema
developed in both males and females, which was maintained till



Fig. 4. Matrix-metalloproteinase activity in the diseased hind limbs. (A) Represen-
tative pretreatment control images, (B and C) demonstrate inflammatory matrix-
metalloproteinase activity on day 5 and 8 following arthritis induction. (D)
Quantification the amount of fluorophore in the inflamed ankle joints (n = 3–4
male mice/group, ⁄p < 0.05 vs. non-pretreated, + indicates that the probe was tested
in intact mice in a self-control manner before the induction of the inflammation,
but remained below the detection threshold; Student t-test).
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the end (day 11) of the experiment. In RTX-desensitized arthritic
animals this swelling was significantly higher in both genders dur-
ing the whole study with a maximum of 90–95% (Fig. 1A and B).
Similarly, arthritis scores reached a maximum of 7 in mice without
pretreatment and 9 in RTX-pretreated animals showing that the
significant increase in paw volume was visible on all limbs
between days 2 and 7–8 in male female mice, respectively
(Fig. 1C and D).
3.2. Attenuated late mechanical hyperalgesia in RTX-desensitized mice

Mechanical hyperalgesia (nociceptive threshold decrease) in
non-pretreated arthritic mice reached an approximately 25–30%
after 5 days, which further increased to 45% by days 10 in both
male and female mice (Fig. 2A and B). Significant reduction of
mechanical hyperalgesia was measured in RTX-desensitized ani-
mals from day 10. Despite the development of mechanical hyper-
algesia, the noxious heat threshold was not influenced by the
arthritis. However, the thermonociceptive threshold of RTX-pre-
treated animals was significantly higher compared to mice without
pretreatment between days 1 and 5 (Fig. 2C and D).

3.3. Similar weight loss and impaired joint function in non-
desensitized and RTX-desensitized mice

Arthritis resulted in a 10–15% weight loss and 50% decrease of
time spent on the grid by days 4 and 5, respectively, both in the
non-pretreated and RTX-pretreated groups (Supplementary data).

3.4. Greater neutrophil-activity in desensitized mice in the acute
arthritis phase

Luminol-BLI revealed a remarkable increase in neutrophil-
derived MPO activity in the arthritic ankle joints of both groups,
being significantly higher in RTX-pretreated mice in the early
phase (day 2). This difference ceased during the later phase by
day 6 (Fig. 3).

3.5. Increased MMP activity in RTX-pretreated animals

Fluorescent molecular tomography revealed that a considerable
increase in MMP activity occurred in the inflamed ankle joints of
arthritic animals similarly on days 5 and 8, but no signal could
be detected in intact, non-inflamed mice. MMP activity signifi-
cantly enhanced after functional impairment of the capsaicin-sen-
sitive afferents on day 5 when the differences in swelling and
arthritis severity scores of the two groups were the greatest
(Fig. 4).

3.6. Altered inflammation-induced structural changes in the bone of
RTX-pretreated female mice

There were considerable differences on the micro-CT scans
between bone volume/total volume ration of male and female mice
under normal, intact conditions, the basal bone mass in both the
tibiotarsal and distal tibial regions was lower in the female group
as compared to age-matched males.

RTX-desensitization alone did not induce any change in the
bone mass in male animals, it evoked a moderate, but significant
decrease in females. Self-control quantitative analysis of the bone
structure revealed minimal, but statistically significant increase
in the ankle joint of non-pretreated both males and females
already on day 7 due to pathological new bone formation, which
was not observed in the distal tibia. Meanwhile, in RTX-pretreated
arthritic females bone mass gradually and significantly increased
in the ankle and the tibia reaching a remarkable, 20% gain by day
14 compared to the initial control values of the same animals
(Fig. 5).

3.7. More severe arthritic histopathological alterations after RTX
pretreatment

There was no histopathological difference between the intact
joints of untreated and RTX-pretreated animals in either males or
females (Fig. 6A and B). In non-pretreated arthritic mice character-
istic chronic arthritic changes developed by day 14, such as syno-
vial hyperplasia with a minimal mononuclear infiltration,
moderate fibroblast formation and collagen deposition (Fig. 6C
and D). In desensitized arthritic animals these changes were more
pronounced with significantly greater synovial swelling, higher
number of fibroblasts and more collagen (Fig. 6E and F). Semiquan-
titative scoring of these parameters showed remarkable worsening



Fig. 5. Bone structural changes in the inflamed region. (A) Representative micro-CT images of the same mice, in intact state and on day 14. (B and C) Bone volume/total
volume ratio in the ankle joint, expressed as raw data and as percentage of the initial self-controls. (D and E) Bone volume/total volume ratio in the distal tibia, expressed as
raw data and as percentage of the initial self-controls (n = 6/group, #p < 0.05, ##p < 0.01, ###p < 0.001 vs. controls, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001 vs. non-pretreated; two-way
ANOVA + Dunnett and Tukey post-tests).
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effect of RTX pretreatment on these characteristic histopatholo-
gical features in both sexes (Fig. 6G and H).
3.8. RTX desensitization decreases arthritis-induced elevation of
somatostatin-LI in the tissue homogenates

Somatostatin-LI significantly increased to 75.54 ± 3.07 fmol/g
wet tissue in the arthritic paws of non-pretreated mice compared
to their intact controls (25.19 ± 1.53 fmol/g wet tissue), while in
RTX-desensitized arthritic animals its inflammation-induced
elevation was significantly smaller, from 28.43 ± 1.19 to
62.39 ± 2.58 fmol/g wet tissue (p = 0.0059; Student’s t-test for
unpaired comparisons).
4. Discussion

We provided here the first evidence that capsaicin-sensitive
peptidergic sensory nerves play an important and complex regula-
tory role in a primarily autoimmune arthritis model of the mouse.
Inactivation of these fibers results in significantly more severe
characteristics of arthritis, such as increased swelling, MMP-activ-
ities and ROS production, inflammatory cell accumulation and his-
topathological alterations, but despite the enhanced inflammation
decreased late mechanical hyperalgesia (Table 1.).

Peptidergic afferents densely innervate the synovium and the
joint capsule and are involved in the pathophysiology of RA through
the release of sensory neuropeptides and consequent modulation of
cytokine production (Konttinen et al., 2006). Increasing evidence
suggests that modulating the function of these nerves might open
new perspectives in arthritis therapy (Helyes et al., 2004; Szabó
et al., 2005). The present results are perfectly supported by our rev-
olutionary findings obtained in the adjuvant arthritis rat model
10 years ago, when we described a potent protective function of
capsaicin-sensitive afferents via somatostatin release (Helyes
et al., 2004). However, that time we had no experimental tools to
have a deeper insight into the underlying mechanisms. Our optical
in vivo imaging methods provide a great opportunity to investigate
the cellular components of the arthritic process and provide direct
evidence for the importance of sensory–immune interactions. Acti-
vation of the capsaicin-sensitive afferents inhibits both MPO and
MMP activities, decreases leukocyte activity, and interestingly, in
females even attenuates pathological new bone formation.
Although there was no difference between male and female mice
in any inflammatory parameters, our unique finding obtained by
quantification of the self-control micro-CT scans is that there was
in fact a decreased bone mass in females compared to age-matched
males. Furthermore, in females inactivation of the capsaicin-sensi-
tive afferents resulted in basically decreased bone volume, but the
arthritis-induced pathological bone formation was more severe.
These results are supported by recent data showing remarkably
lower BV/TV morphological parameter and higher histopathological
osteophyte score in old female C57Bl/6 mice compared to the age-
matched males (Cai et al., 2014). Additionally, the same BV/TV
parameter determined in the human radius also provided similar
results; this value was lower in all age groups of women compared
to men (Vanderschueren et al., 2014). Since unlike in female mice, in
RTX-pretreated males we could not detect a significantly increased
pathological bone formation as compared to the non-pretreated
animals, it can be suggested that the androgens might have a pro-
tective role on the bones particularly under inflammatory condi-
tions. It is clear that sex steroids are important influencing factors
in osteoclast/osteocyte/chondrocyte functions and that in men not
only the bone mineral density, but also the bone structure (bone
length, width and rigidity) differs from these in women
(Vanderschueren et al., 2014). However, the precise mechanisms
of peptidergic sensory nerve activation and bone turnover regula-
tion are still unclear, because there are very few data about the
importance of afferents/TRP channels in chondrocyte–osteoclast–
osteoblast functions. Desensitization itself is reported to affect only
the nerve-endings and not the non-neural TRPV1 channels (Czikora
et al., 2013; Kun et al., 2012; Bíró et al., 1998), but influencing the
endovanilloid/endocannabinoid system in chondro- and osteocytes
can be involved in bone formation and resorption, although these
data are available only on osteoclasts from osteoporosis patients
(Rossi et al., 2011).

It is well-known that in the early stage of the inflammatory reac-
tion in this model, the activation of neutrophils is a predominant
component (Bevaart et al., 2010) and MPO is the major constituent
of neutrophil azurophilic granules. Moreover, it is recently shown
that in patients with active rheumatoid arthritis a very high concen-
tration of MPO can be detected and it positively correlates with IgM
levels (Wang et al., 2014). Similarly to what we found in this arthri-
tis model, elevated MPO-levels in RTX-desensitized mice were pre-



Fig. 6. Histopathological changes of the ankle joints. Panels (A and B) show representative histopathological pictures of an intact tibiotarsal joint (ti: tibia, ta: tarsus, s:
synovium), panels (C and D) demonstrate the joint structure of a non-pretreated mouse on day 14 after arthritogenic serum administration, panels (E and F) show the
significantly pronounced arthritic changes of RTX-pretreated animals. (G and H) Semiquantitative histopathological scoring on the basis of synovial enlargement (white
arrows), inflammatory cell accumulation (black arrows), fibroblast formation with collagen deposition (two headed arrows). Box plots represent the composite scores for
male and female animals (n = 4–5/control non-inflamed groups, n = 6–8/arthritic groups; ##p < 0.01, ###p < 0.001 vs. controls, ⁄p < 0.05 vs. non-pretreated; Kruskal–Wallis
followed by Dunn’s post-test).
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Table 1
Summary of functional, morphological and immunological alterations in RTX-
pretreated mice compared to the non-pretreated animals. Edema formation, arthritis
score, neutrophil activity, matrix-metalloproteinase activity and histopathological
changes were significantly aggravated, while paw somatostatin level and mechanical
hyperalgesia were significantly attenuated in RTX-pretreated animals. Noxious heat
threshold, weight loss and joint function did not differ between the two groups.

Arthritis parameters Effect of RTX-pretreatment
on arthritis changes

Paw edema "
Arthritis score "
Neutrophil-activity "
Matrix-metalloproteinase activity "
Pathological bone formation (in females) "
Histopathological changes "
Mechanical hyperalgesia ;
Paw somatostatin level ;
Heat threshold –
Joint function –
Weight loss –
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viously detected in LPS-induced acute airway inflammation (Elekes
et al., 2007). Our MMP results are also in good correlation with spo-
radic earlier evidence demonstrating that TRPV1 receptor activation
results in decreased MMP-9-secretion (Tauber et al., 2012). Both
MPO and MMP are important, but not the exclusive participants
of this complex inflammatory process, and their correlation with
either edema formation, pain or bone pathophysiology is only indi-
rect. Although we do not have data obtained from later phase of the
model, the activation of these enzymes leads to a variety of patho-
physiological alterations including the recruitment of different
inflammatory cells, as well as activation of other enzymes (e.g.
NOS; Arnhold and Flemmig, 2010), which can result in a propaga-
tion of the inflammatory processes or even deformation of bones,
despite lower MPO or MMP levels.

To understand the mechanisms involved in the inhibitory action
of capsaicin-sensitive afferents, somatostatin was determined in
the tibiotarsal joint homogenates. Somatostatin and its receptors
(sst1–5) are widely distributed throughout the body and show a
prominent expression in the sensory nerve endings (Pintér et al.,
2006), but they are also present on immune cells suggesting its
important regulatory function in inflammatory diseases (Pintér
et al., 2014). Somatostatin ameliorates RA symptoms not only in
murine models (Imhof et al., 2011), but also as a chronic intra-artic-
ular treatment in humans (Fioravanti et al., 1995; Paran et al., 2001).
We found that it was increased in the arthritic joints, but signifi-
cantly decreased after RTX-pretreatment. Therefore, its inflamma-
tion-evoked elevation is likely to be derived from the capsaicin-
sensitive fibers, and be involved the protective actions of these
nerves. The MMP-activity increase in desensitized mice is also con-
sistent with these results, since somatostatin was reported to
reduce MMP-1, -2 and -9 mRNA expression and MMP-1 production
by synovial cells of RA patients (Takeba et al., 1997).

Intriguingly, in contrast to our earlier findings in RTX-pretreated
rats in the adjuvant arthritis model (Helyes et al., 2004), the
increased inflammation was not accompanied by a proportionally
enhanced mechanical hyperalgesia. In the late phase, when inflam-
matory signs were attenuated, but mechanical hyperalgesia was
still present, it was even significantly milder in RTX-pretreated
mice. Compared to the greater severity of inflammation, mechani-
cal hyperalgesia is clearly smaller in the RTX-pretreated group.
Therefore, capsaicin-sensitive nerves might participate in arthritic
mechanical hyperalgesia during the whole process, but the differ-
ence was only manifest when the degree of inflammation was equal
in both groups. Capsaicin-sensitive nociceptors are polymodal, i.e.
activated by noxious heat, chemical and mechanical stimuli, and
their role is proven in vivo in thermonociception (Almási et al.,
2003; Cavanaugh et al., 2009; Mishra and Hoon, 2010; Danigo
et al., 2014; Bölcskei et al., 2010). In contrast, mechanonociceptive
thresholds were not different in desensitized mice if von Frey fila-
ments were used (Cavanaugh et al., 2009; Mishra and Hoon,
2010), but increased mechanical thresholds were found with the
Randall–Selitto pressure test (Danigo et al., 2014). It is likely, that
the latter method, as well as our aesthesiometer activated a differ-
ent mechanonociceptive neurone subset, which explains the differ-
ence after RTX pretreatment. Furthermore, recent data showed that
in the chronic phase of the K/BxN arthritis, when swelling and
hyperemia disappeared, neuropathic pain developed. It was only
relieved by gabapentin, a typical adjuvant analgesic for neuropathy
(Christianson et al., 2010). In heat and mechanical hyperalgesia
TRPV1 channels are the most important participants (Sousa-
Valente et al., 2014; Hulse et al., 2014). In agreement with these
results we detected a significantly attenuated mechanical hyperal-
gesia in RTX-pretreated animals only in the late phase (from day
10). This strongly suggests that TRPV1 channels play a pivotal role
in pain mediation, as described in neuropathy (Brito et al., 2014)
and arthritis models (Fernandes et al., 2011; Kelly et al., 2013),
but the time course-dependent involvement of these channels has
never been proven. Thermal hyperalgesia is neither characteristic
in K/BxN arthritis, nor in RA patients (Edwards et al., 2009; Leffler
et al., 2002). However, we found a significant difference in the
RTX-pretreated group during the 1st week, which is probably due
to the well-known heat threshold increasing effect of RTX (Almási
et al., 2003), but arthritis did not alter thermosensitivity.

Based on all these data capsaicin-sensitive peptidergic sensory
nerves and sensory–immune interactions are important regulators
of immune-mediated arthritis. Their activation inhibits the charac-
teristic arthritis symptoms (edema, inflammatory cell activation
and functions) at least partially through somatostatin release, but
despite this potent anti-inflammatory role, they mediate the later
pain response. These results are in agreement with our previous
results obtained from LPS-induced pneumonitis, where the inacti-
vation of the capsaicin-sensitive nerves leads to greater inflamma-
tion (cell accumulation, edema), but decreased bronchial
hyperreactivity (Elekes et al., 2007). In contrast, it has very recently
been published that both RTX-desensitization and TRPV1 receptor
deficiency ameliorate the clinical severity in the IL-23-mediated,
T-cell dependent psoriasiform dermatitis model (Riol-Blanco et al.,
2014).

It can be concluded that neuropeptide-containing sensory
nerves exert a complex regulatory function in inflammatory condi-
tions, and the overall effect of their activation depend on the tis-
sues and the pathophysiological mechanisms of the disease.
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Appendix A. Supplementary data

Serum-induced weight loss and impaired joint function: data
points represent the percentage change of weight loss of male
(A) and female (B) mice compared to the initial control values
and the absolute values of time spent on the grid for male (C)
and female animals (D) (n = 4–5/control groups, n = 6–8/arthritic
groups; two-way ANOVA + Bonferroni’s modified t-test).

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.bbi.2014.12.012.
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