
Designing chess pairing mechanisms

Péter Biró1

Institute of Economics, Research Centre for
Economic and Regional Studies,

Hungarian Academy of Sciences, H-1112,
Budaörsi út 45, Budapest, Hungary, and
Department of Operations Research and

Actuarial Sciences, Corvinus University of
Budapest

peter.biro@krtk.mta.hu

Tamás Fleiner2

Department of Computer Science and
Information Theory

Budapest University of Technology and
Econimics

1117 Budapest, Magyar tudósok körútja 2.,
Hungary

fleiner@cs.bme.hu

Richárd Palincza

Department of Computer Science and
Information Theory

Budapest University of Technology and
Econimics

1117 Budapest, Magyar tudósok körútja 2.,
Hungary

richard.palincza@gmail.com

Abstract: The Swiss system is the most popular chess tournament system that is recognised
and regulated by the World Chess Federation (FIDE). Chess pairings in each round of a Swiss
tournament are conducted by sophisticated matching algorithms. The matching mechanisms
are precisely defined in the FIDE guidebook [3], currently four different variants are allowed.
The descriptions of the matching procedures are such that every arbiter should be able to
conduct the pairings, even without computer assistance. However, many parts of these proce-
dures are very inefficient, as they may terminate in highly exponential time in the number of
players due to their exhaustive search nature. We demonstrate how the main priority rules of
the Dutch variant can be replaced by efficient matching algorithms. These efficient algorithms
can serve as the base of software tools used for pairings.

Keywords: maximum weight matching, mechanism design, roommates problem,
tournaments

1 Introduction

The Swiss system is a pairing system invented by Dr. Julius Müller of Brugg, Switzerland. It was first
used in a chess tournament at Zurich in 1895. It has been used in the Unites States since 1942 and also
the team chess world championship, the so-called Olympiad was first organised with the Swiss system
in Buenos Aires in 1978. The World Chess Federation (FIDE) allow currently four variants of the Swiss
system to be used in individual tournaments, namely the Dutch system, Lim, Dubov and Burnstein
systems. In this paper we focus on the Dutch system, which is the most classical one among the four.

1Research is supported by the Hungarian Academy of Sciences under its Momentum Programme (LP2016-3/2016), and
by OTKA grant no. K108673.

2Research is supported by OTKA grant no. K108383.

77

The corresponding matching procedures are precisely described in the FIDE guidebook [3], with a new
guidance published very recently on the Dutch system to be implied from 1 July 2017. We note that
the latest version of the Dutch system is much clearer than the previous one, the requirements and the
priorities on the aimed pairing are described in a mathematically more structured way. We include the
most important part of the pairing rule in the Appendix.

Yet, these matching procedures are still rather complicated and their descriptions contain some ex-
haustive search routines which can make the pairing very slow, i.e. highly exponential in the number
of players. In this research we investigate whether some of these routines can be replaced by efficient
matching algorithms, e.g. by the maximum size and maximum/minimum weight matching algorithms of
Edmonds. A similar investigation has been done by Ólafsson [5], but his study was concerned with an
older and simpler version of the Swiss system. In particular, the transposition and exchanges rules were
not considered in his work, which are two highly exponential routines in the current versions (both in
the currently used rule and also in the new one valid from 1 July 2017).

Finally, let us note that even if the translation of the current rules to efficient algorithms is possible
for some routines, it can be still reasonable to keep the exhaustive search descriptions in the official
descriptions as some arbiters might still do the pairings by hand (and it would be too demanding for the
arbiters if FIDE would request them to conduct the Edmonds’ algorithm by hand). However, in most
tournaments the pairing are conducted by some software, and in their pairing algorithm it would be indeed
useful to replace the inefficient routines with efficient algorithms. By our mathematical investigation we
also aim to understand the priorities used in the matching process which implies the properties of the
matchings obtained, as these are not obvious from the current descriptions of the matching rules.

First we describe the basic notions, rules and goals of the pairings, and then we investigate the
particular routines used in the Dutch variant.

2 Basic description of the Swiss pairings

In this section we summarise the basic features of the Swiss pairings, the concepts, definition, rules and
common priorities used in all of the four variants.

2.1 The basic rules and goals

The general goal of a chess tournament is to select the winner and rank the others. The most important
requirement of the pairing is that everyone should play in each round of the tournament (except one
player if the number of players is odd). Thus, in mathematical terms, the matching obtained should
be (almost) complete. In the case of odd number of players one player will remain unmatched in every
round, and gets a bye (i.e. 1 point) without colour. This cannot happen twice with any player during a
tournament.

The second common criterion in the Swiss tournament is that no pair of players can play twice. Thus
when considering a pairing problem these pairs are not eligible.

Finally, since playing a game with white or black can have significant effect on the result, a tournament
is considered fair if every player has played approximately the same number of times with white and black.
These colour rules are a bit softer and used differently in the four variants, but a common strict rule is
not to let any player to play with the same colour three times in a row, and also not to let any player to
have a colour difference greater than two. There are however some exceptions with regard to these rules
in the very last round of a tournament.

2.2 Implementation of the goals

The basic concept of the Swiss pairing is to rank the players after each tournament according to their
scores, and to match them from the strongest ones to the weakest ones sequentially according to their
scores. To understand the procedure, first we have to describe the scoring rules of an individual chess
tournament for the general readership. In a chess tournament with individual players a player gets score

78

1 if she wins, score half is she draws and zero score if she looses. A typical Swiss tournament has nine
rounds, and after that the players are primarily ranked according to their total scores. The pairing
procedure considers the players according to their scores and tries to match everyone to someone with
the same score, starting with the strongest players. Thus after, say, five rounds of a Swiss tournaments,
the process is to consider those players first those who have 5 points, and then of those with 4.5 points,
and so on. The pairing process is described for players within each score-group.

Sometimes it is not possible to match everyone within the score group, as not all the pairs are eligible
and also because we may have an odd number of players. In this case the task is to match as many
players as possible, and the rest will be moved to the subsequent score group. These players are called
downfloaters. In order to avoid the further downgrade of downfloaters when considering the subsequent
score-group, the downfloaters must be all matched, if possible. Their opponents will be called upfloaters.
As a weak rule, we may also want to avoid to select the same players to become down- or upfloaters,
so we shall try not to give an identical float to any player in two consecutive rounds or twice in three
consecutive rounds.

2.3 Mathematical notions

We describe the pairing problem of a chess tournament as a matching problem in a nonbipartite graph
G(N,E) with node set N = {1, 2, . . . n} and edges set E = {e1, e2, . . . , em}. The players correspond to
nodes and we have an edge ij ∈ E(G) if players i and j are eligible to play with each other. A matching is
a set of independent edges in E, i.e. every node is incident with at most edge in a matching. An (almost)
complete matching has size bn2 c in G.

Finding a maximum size or maximum weight matching in a nonbipartite graph can be done efficiently
by Edmonds’ algorithm. The best implementation for the maximum size algorithm has running time
O(
√
n ·m) according to [6], and the best currently known running time for the maximum weight matching

algorithm is O(nm+ n2 log n) due to [2].
The selection of the pairing is based on various priority rules. As we will demonstrate, finding the right

pairings can be done by using exponentially decreasing weights, or equivalently to do the optimisation
with weight-vectors on the edges. We choose the latter technique to make the description simpler. In
particular, for each edge e = ij we will introduce a weight vector we of O(n) length. The implementation
of the pairing rule will be equivalent to finding a matching on the graph with a lexicographically maximal
weight. Note that using the weight-vectors will increase the running time of the classical Edmonds
algorithm by a factor of n, but still remains strongly polynomial in the number of players (n).

3 The Dutch system

The official description of the currently used Dutch system describes the subroutine used in the most
inner cycle of the pairing process, and the exhaustive search method are then extended for the case
when no ideal pairing is possible. However, in the new description (to be applied from 1 July 2017) these
subroutines are only suggested to use after satisfying the main criteria and goals. Thus we will also follow
the new description (partly included in the Appendix) and first describe the main criteria and then the
transposition and exchange rules. After providing the short description we show how the subroutines can
be implemented with efficient matching algorithms.

3.1 Summary of the FIDE description

Suppose that we consider a score-group S during the pairing process. If this is not the highest score-group
then there may be some downfloaters, denoted by F . First we divide S into two subgroups S1 and S2
of approximately the same size, where F ⊆ S1, and |S1| ≤ |S2| ≤ |S1| + 1, if possible. In the running
example of the official guide we have S = {1, 2, . . . , 11} and S1 = {1, 2, . . . , 5}, S2 = {6, 7, . . . , 11}.

79

Eligibility criteria

As described in points C1-C3 in the Appendix, some players are not eligible to be paired. Essentially
no two players can be matched twice, no player can become unmatched and thus get a bye twice, and
the absolute color preference of a non-topscorer player must be obeyed, so we can never match two
non-topscorer players with the same absolute color preference.

Priorities for selecting the pairing

The new version of the FIDE Dutch system rules includes a clear prioritisation order over the pairing
selected, which is included in the Appendix.

First, we have to note that slightly different rules are applied for score groups at the end of the process.
The so-called completion criteria C4 requires that in the score group before the last one we shall choose
the downfloaters in such a way that the last group will admit a complete matching.

The further criteria (C5-C19) are called quality criteria, and indeed these provide the sequential goals
that the best pairing should satisfy, see them in the Appendix. The first criterion (C5) is to maximise
the size of the pairing within the score group considered. The second criterion (C6) is to maximise the
number of downfloaters paired, and among them match the ones with the highest scores. The following
rule C7, was not present in the previous version of the Dutch rule, and it is a forward looking rule that
requires the selection of the downfloaters in the considered score group such that in the subsequent score
group the pairing has maximum size and matches the most downfloaters. The remaining rules C8-C19
provides a specific order how the colour preferences and the repetition of the downfloter and upfloater
selection are considered. (Note that here do not consider the exceptions that apply for the very last
score group, the first and the last rounds of the tournament, or in case of some other unusual events, e.g.
withdrawal or addition of players, unfinished games.)

Tie-breaking by transpositions and exchanges

When the above described priority rules do not provide a unique solution (which is typically the case at
the beginning of the tournaments, where the score groups are large and the eligibility and priority criteria
are easier to satisfy) the rule suggest a particular order among the possible matchings. The transposition
order describes the rankings of the matchings when the set of players to be matched, S1 and S2, are
already fixed. The exchange rules describe in which order one shall try to exchange the players among S1
and S2 in when the satisfaction level of the priority criteria is already fixed. Thus, in fact the exchange
order is more important and we should consider that first, but below we follow the description of the
FIDE Handbook and we start describing the transposition orders.

Transposition orders. The most inner process of the Dutch pairing algorithm will select the first
feasible pairing between S1 and S2 as follows. The pairings are sorted according to a lexicographic order
considering the first player in S1 first, then the second player in S1, and so on. For our running example,
the players in S1 in their order shall get the following opponents, the first suitable pairing from the list
described in Table 1.

Exchange orders. If neither of these pairings is eligible then we need to try to exchange players
between sets S1 and S2 in a predefined order, as described in part D2-D3 in the Appendix. For instance,
if we can find a suitable pairing by exchanging one pair of players then we should check the pairs to be
exchanged in the order described in Table 2.

If more than one pair of players are needed to be exchanged then the rule requires to

1. minimise the number of players exchanged

2. minimise the index differences between the players exchanged

3. lexicographically maximise the indices of the players moved from S1 to S2

80

0. 6-7-8-9-10-11
1. 6-7-8-9-11-10
2. 6-7-8-10-11-9
3. 6-7-8-11-9-10
4. 6-7-8-11-9-10
5. 6-7-9-8-10-11
... ...
12. 6-7-10-8-9-11
... ...
24. 6-8-7-9-10-11
... ...
719. 11-10-9-8-7-6

Table 1: Transposition order when pairing S1 = {1, 2, 3, 4, 5} and S2 = {6, 7, 8, 9, 10, 11}.

5 4 3 2 1
6 1 3 6 10 15
7 2 5 9 14 20
8 4 8 13 19 24
9 7 12 18 23 27
10 11 17 22 26 29
11 16 21 25 28 30

Table 2: Priority order when exchanging one pair of players between S1 = {1, 2, 3, 4, 5} and S2 =
{6, 7, 8, 9, 10, 11}.

4. lexicographically minimise the indices of the players moved from S2 to S1

For instance, when considering the exchange of two players from each group, we shall use the following
priority order described in Table 3.

3.2 Translating the rules into efficient algorithms

In this section we describe how to translate the selection rules into a maximum weight matching algo-
rithm. Note that here, we focus on the regular cases.

Eligibility requirements. The eligibility requirements (C1-C3) can be easily satisfied by not hav-
ing edges between the nodes representing these agents in the eligibility graph GS(N,E) for score group S.

Completion criterion. The completion criterion (C4) is only applied for the score group that is
considered before the last one, and as a first priority we have to make it sure that the last score group
will have a complete matching. So essentially we have to find a complete matching for the last two score
groups. (It is not mentioned in the latest version of the rule what would happen if there exist no complete
matching for the last two groups, but in the earlier version they recommend to enlarge the set of players
considered with the previous score group(s).)

Quality criteria. Each of the quality criteria (C5-C17) can be translated into a maximum weight
matching problem with weight-vectors. For each selection criterion we define a new index for the weight-
vector we for every edge e = ij as follows.

1. For (C5) we simply set weight 1 for each edge. Maximising this index will ensure that the matching

81

5,4 5,3 5,2 5,1 4,3 4,2 4,1 3,2 3,1 2,1
6,7 1 3 7 14 8 16 28 29 45 65
6,8 2 6 13 24 15 27 43 44 64 85
6,9 4 11 22 37 25 41 60 62 83 104
6,10 9 20 35 53 39 58 79 81 102 120
6,11 17 32 50 71 55 76 96 99 117 132
7,8 5 12 23 38 26 42 61 63 84 105
7,9 10 21 36 54 40 59 80 82 103 121
7,10 18 33 51 72 56 77 97 100 118 133
7,11 30 48 69 90 74 94 113 115 130 141
8,9 19 34 52 73 57 78 98 101 119 134
8,10, 31 49 70 91 75 95 114 116 131 142
8,11 46 67 88 108 92 111 126 128 139 146
9,10 47 68 89 109 93 112 127 129 140 147
9,11 66 87 107 123 110 125 137 138 145 149
10,11 86 106 122 135 124 136 143 144 148 150

Table 3: Priority order when exchanging two pairs of players between S1 = {1, 2, 3, 4, 5} and S2 =
{6, 7, 8, 9, 10, 11}, as given in the FIDE Handbook.

in maximum size.

2. For (C6) we set weight 1 if either i or j is a downfloater, and 0 otherwise. (Note that there cannot
be an edge between two downfloaters, since in that we would had matched them before). This
weighting will ensure that we match as many downfloaters as possible.

3. Still corresponding to (C6), we need to match first those downfoaters who have the highest scores
and continue with the second highest ones. This can be achieved by adding a weight-vector for
every eligible pair containing a downfloater, which is a zero-one vector as long, as the number of
different scores of the downfloaters. For instance, if the score group considered contains players
with score 4 and there are downfloaters with scores 5.5 and 4.5 then we add a vector of length two,
and first we put a value 1 to those players with score 5.5 and then a value 1 for those with score
4.5, leaving the other values zero.

4. Rule (C7) is a special one, as we will need to ensure the maximality of the matching in the subsequent
score group, denoted by S′, and also the number of downfloaters matched there. For this rule, we
extend graph GS to graph GS∪S′ , and we only define weights with regard to this index for edges
between S and S′ and within S′. Let the weight of these edges be 1, ensuring first the maximality
of the matching in the subsequent score group.

5. To ensure that the number of downfloaters matched is also maximal when matching the subsequent
group S′, according to (C7), we add weight 1 of each edge between S and S′.

6. Rules (C8)-(C9) only apply for the topscorers and their opponents in the last round (i.e. ”players
who have a score of over 50% of the maximum possible score when pairing the final round of the
tournament”), as a relaxation of eligibility criteria (C3). In case we are considering these players
we add weight -1 for those edges where both players have the same absolute colour preference, first
by the fact that either they both have +2 or -2 colour difference.

7. Continuing the above rule by part (C9), we also add weight -1 for those pairs who both played with
the same colour two times in a row.

82

8. To ensure that most player get their colour preferences according to (C10), we add weight -1 if both
players have the same colour preference.

9. Similarly, we can minimise the number of player who do not get their strong colour preference, as
required in (C11), by adding weight -1 if both players have the same strong colour preference.

10. To satisfy (C12), if either of the two players involved was a downfloater in the previous round then
we add weight 1, so the algorithm will try to match as many of them as possible, and avoid to select
them to become downfloaters again.

11. Minimising the selections of the same players for becoming upfloaters, as described in (C13), we
add weight -1 for edge ij if i is a current downfloater (i.e. i was unmatched in the previous score
group), and j was an upfloater in the previous round.

12. Selection rule (C14) can be treated in the same way as rule (C12).

13. Selection rule (C15) can be treated in the same way as rule (C13).

14. In rule (C16) we need to minimise the score differences for the players who receive the same
downfloat as in the previous round. So, if for pair ij, i ∈ S was a downfloater in the previous
round and j ∈ S′ then we add −k as the weight if k is the difference between the scores of player i
and j.

15. Similarly, in rule (C17) we minimise the score differences from the point of view of the repeated
upfloaters, by adding weight −k if the difference between the scores of downfloater i and previous
upfloater j is k.

16. Rule (C18) can be treated as rule (C16).

17. Rule (C19) can be treated as rule (C17).

Finding a lexicographically weight-maximal matching with the above weighting on GS∪S′ will provide
us a matching that we would select when sequentially maximising criteria (C5-C19). After optimising
with regard to the quality criteria, we need to choose the pairing according to the transposition and
exchange rules. Since the exchange rules are superior, we start the translation with that.

Exchange rule. We extend the above weight-vectors with the following components, responsible for
enforcing the exchange selection. Here we describe the translation for so-called homogenous score groups
(where no downfloaters are present), but the heterogenous case can be treated similarly.

1. To minimise the number of players exchanged we add weights -1 for every edge within S1 and within
S2. Our optimal matching will use as few edges as possible, which also means that the number of
players exchanged is minimal.

2. To minimise the index differences between the players exchanged we add the following negative
weights. Let ri be the index of player i, and let aS denote the index between the highest index
in S1 and the lowest index in S2 (this is 5.5 in our running example). For every edge ij, where
i, j ∈ S1 and ri < rj let the weight of ij in the vector be rj − aS . Similarly, for every edge ij,
where i, j ∈ S2 and ri < rj let the weight of ij in the vector be aS − ri. E.g. for edge {2, 4} in our
running example this weight is -1.5 and for edge {8, 9} this weight is -2.5.

3. To lexicographically maximise the indices of the players moved from S1 to S2, we add a weight-
vector of length |S1| and with one nonzero element, as follows. If i, j ∈ S1 with ri < rj then we add
a weight 1 to the daS − rje-th coordinate. For instance, in our running example when considering
edge {2, 4}, the added weight-vector is [0, 1, 0, 0, 0]. This weighting will ensure that we will move
player 5 to S1 whenever it is possible, and if not then player 4, and so on.

83

4. To lexicographically minimise the indices of the players moved from S2 to S1 we further extend
the weight-vector with a new component of length |S2| and with one nonzero element. If i, j ∈ S2
with ri < rj then we add a weight 1 to the dri− aSe-th coordinate. For instance, when considering
edge {8, 9} in the running example, the added vector is [0, 0, 1, 0, 0, 0]. Thus we move player 6 first,
if possible, then player 7, and so on.

Finally, for choosing the first pairing among the so far optimal ones, we translate the selection ac-
cording to the transposition order into a maximum weight matching problem.

Transposition rule. With the transposition rule, we assume that the partition S1 ∪ S2 is already
fixed and we would like to ensure that the among the possible pairings we first select the partner of the
player with the smallest index in S1 to be the player with the smallest index in S2, and if this is not
possible then the player with the second smallest index in S2, and so on. After selecting the partner of the
highest ranked player in S1, we continue with selecting a partner for the second highest ranked player in
S1, and so on. To achieve this, we add another weight-vector component to each edge of length |S|−1 as
follows. For ij, where ri < rj we add weight −rj on the ri-th position in this vector and we keep the other
position zero-valued. For instance, for edge {2, 7} in our example, we add vector [0,−7, 0, 0, 0, 0, 0, 0, 0, 0].

4 Further notes

In this paper we discussed how to replace the priority rules in the Swiss pairing systems by efficient
algorithms. However, we have only studied the Dutch variant, and we have not considered some special
cases (last round, heterogenous score groups, new or leaving players, etc). Nevertheless, we believe that
all of the variants of the Swiss pairings can be completely conducted by efficient algorithms, so our first
future plan is to investigate the remaining details of the Dutch rule and the three other systems.

If we succeed to translate the official pairing procedures into sophisticated efficient algorithms then we
can incorporate them into a software and conduct further studies. In particular, it would be interesting
to simulate tournaments and compare the performance of the four variants with respect to their success
of ranking the players according to their real strength within the same number of rounds. This would
follow up the research of Csató [1], who compared the final rankings of some particular tournaments
organised by Swiss pairings with other ranking methods.

In a future research one could also investigate the performance of these variants from a more general
point of view, by considering the utilities of the players. A player in a Swiss tournament may not be
really interested in her final ranking, and the ranking of the others, as perhaps she just wishes to play
with opponents of similar strength. Note that such preferences are not likely to be satisfied in the most
widely used Dutch variant if a tournament has many participants, since according to the exhaustive search
procedure (dividing a score group based to the ELO point of the players and then trying to match them
according to their order in their subgroups), a typical player will either play with much stronger of with
much weaker players in the first 5-6 rounds of the 9-round tournament. One alternative pairing method
would consider the preferences of the players and match them e.g. with a stable matching algorithm, as
proposed in [4]. Thus the four variants could be compared with respect to such preferences, namely how
large is the gap between the strengths of the paired players in average during a tournament. Finally,
it would also be interesting to see what kind of alternative pairings could be used to better satisfy the
preferences of the players when the classical goal of selecting a winner and ranking the others is ignored.

References

[1] L. Csató. Ranking in Swiss system chess team tournaments. Corvinus Economics Working Papers
(CEWP) 2015/01, Corvinus University of Budapest, 2015.

[2] H.N. Gabow. Data structures for weighted matching and nearest common ancestors with linking. In
proceedings of SODA-1990: The first annual ACM-SIAM symposium on Discrete algorithms, 1990.

84

Gabow, Harold N. ”Data structures for weighted matching and nearest common ancestors with
linking.” Society for Industrial and Applied Mathematics, 1990.

[3] World Chess Federation (FIDE) Website. www.fide.com/fide/handbook. Accessed on 14 February
2016.

[4] E. Kujansuu, T. Lindberg, E. Mäkinen. The Stable Roommates Problem and Chess Tournament
Pairings. Divulgaciones Matemáticas, 7(1):19–28, 1999.

[5] S. Ólafsson. Weighted Matching in Chess Tournaments. The Journal of the Operational Research
Society, 41(1):17–24, 1990.

[6] S. Micali, V.V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum matching in general

graphs. In: Proceedings of FOCS 1980: the 21st Annual Symposium on Foundations of Computer
Science, 17–27, 1980.

Appendix

FIDE Handbook, the Dutch system (to be applied from 1 July 2017)

C Pairing Criteria

Absolute Criteria

No pairing shall violate the following absolute criteria:
C.1 see C.04.1.b (Two players shall not play against each other more than once)
C.2 see C.04.1.d (A player who has already received a pairing-allocated bye, or has already scored a
(forfeit) win due to an opponent not appearing in time, shall not receive the pairing-allocated bye).
C.3 non-topscorers (see A.7) with the same absolute colour preference (see A6.a) shall not meet (see
C.04.1.f and C.04.1.g).

Completion Criterion
C.4 if the current bracket is the PPB (see A.9): choose the set of downfloaters in order to complete the
roundpairing.

Quality Criteria
To obtain the best possible pairing for a bracket, comply as much as possible with the following criteria,
given in descending priority:
C.5 maximize the number of pairs (equivalent to: minimize the number of downfloaters).
C.6 minimize the PSD (This basically means: maximize the number of paired MDP(s); and, as far as
possible, pair the ones with the highest scores).
C.7 if the current bracket is neither the PPB nor the CLB (see A.9): choose the set of downfloaters in
order first to maximize the number of pairs and then to minimize the PSD (see C.5 and C.6) in the
following bracket (just in the following bracket).
C.8 minimize the number of topscorers or topscorers’ opponents who get a colour difference higher than
+2 or lower than -2.
C.9 minimize the number of topscorers or topscorers’ opponents who get the same colour three times in
a row.
C.10 minimize the number of players who do not get their colour preference.
C.11 minimize the number of players who do not get their strong colour preference.
C.12 minimize the number of players who receive the same downfloat as the previous round.
C.13 minimize the number of players who receive the same upfloat as the previous round.
C.14 minimize the number of players who receive the same downfloat as two rounds before.
C.15 minimize the number of players who receive the same upfloat as two rounds before.

85

C.16 minimize the score differences of players who receive the same downfloat as the previous round.
C.17 minimize the score differences of players who receive the same upfloat as the previous round.
C.18 minimize the score differences of players who receive the same downfloat as two rounds before.
C.19 minimize the score differences of players who receive the same upfloat as two rounds before.

D Rules for the sequential generation of the pairings

Before any transposition or exchange take place, all players in the bracket shall be tagged with consecu-
tive in-bracket sequence-numbers (BSN for short) representing their respective ranking order (according
to A.2) in the bracket (i.e. 1, 2, 3, 4, ...).

D.1 Transpositions in S2
A transposition is a change in the order of the BSNs (all representing resident players) in S2.
All the possible transpositions are sorted depending on the lexicographic value of their first N1 BSN(s),
where N1 is the number of BSN(s) in S1 (the remaining BSN(s) of S2 are ignored in this context, because
they represent players bound to constitute the remainder in case of a heterogeneous bracket; or bound to
downfloat in case of a homogeneous bracket - e.g. in a 11-player homogeneous bracket, it is 6-7-8-9-10,
6-7-8-9-11, 6-7-8-10-11, ..., 6-11-10-9-8, 7-6-8-9-10, ..., 11-10-9-8-7 (720 transpositions); if the bracket is
heterogeneous with two MDPs, it is: 3-4, 3-5, 3-6, ..., 3-11, 4-3, 4-5, ..., 11-10 (72 transpositions)).

D.2 Exchanges in homogeneous brackets or remainders (original S1 ⇐⇒ original S2)
An exchange in a homogeneous brackets (also called a resident-exchange) is a swap of two equally sized
groups of BSN(s) (all representing resident players) between the original S1 and the original S2. In order
to sort all the possible resident-exchanges, apply the following comparison rules between two resident-
exchanges in the specified order (i.e. if a rule does not discriminate between two exchanges, move to the
next one).
The priority goes to the exchange having:
a) the smallest number of exchanged BSN(s) (e.g exchanging just one BSN is better than exchanging two
of them).
b) the smallest difference between the sum of the BSN(s) moved from the original S2 to S1 and the sum
of the BSN(s) moved from the original S1 to S2 (e.g. in a bracket containing eleven players, exchanging 6
with 4 is better than exchanging 8 with 5; similarly exchanging 8+6 with 4+3 is better than exchanging
9+8 with 5+4; and so on).
c) the highest different BSN among those moved from the original S1 to S2 (e.g. moving 5 from S1 to
S2 is better than moving 4; similarly, 5-2 is better than 4-3; 5-4-1 is better than 5-3-2; and so on).
d) the lowest different BSN among those moved from the original S2 to S1 (e.g. moving 6 from S2 to S1
is better than moving 7; similarly, 6-9 is better than 7-8; 6-7-10 is better than 6-8-9; and so on).

D.3 Exchanges in heterogeneous brackets (original S1 ⇐⇒ original Limbo) An exchange
in a heterogeneous bracket (also called a MDP-exchange) is a swap of two equally sized groups of BSN(s)
(all representing MDP(s)) between the original S1 and the original Limbo. In order to sort all the possible
MDP-exchanges, apply the following comparison rules between two MDP-exchanges in the specified order
(i.e. if a rule does not discriminate between two exchanges, move to the next one) to the players that are
in the new S1 after the exchange.
The priority goes to the exchange that yields a S1 having:
a) the highest different score among the players represented by their BSN (this comes automatically in
complying with the C.6 criterion, which says to minimize the PSD of a bracket).
b) the lowest lexicographic value of the BSN(s) (sorted in ascending order).
Any time a sorting has been established, any application of the corresponding D.1, D.2 or D.3 rule, will
pick the next element in the sorting order.

86

