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Introduction

The null-hypothesis testing is a widely used statistical ap-
proach in ecology. However, it is often criticized because it 
allows only a dichotomous decision: reject or fail to reject the 
null-hypothesis. Indeed, it does not provide information re-
garding the magnitude of an effect of interest (Nakagawa and  
Cuthill 2007). One possible way to overcome this limitation 
is to calculate effect size, i.e., the magnitude of an effect (e.g., 
mean difference from the control or between two groups). 
Effect sizes can be subsequently used in a meta-analysis for a 
quantitative synthesis of the primary results (Harrison 2011, 
Koricheva et al. 2013). Furthermore, even within a study, 
regressing plot-level effect sizes against environmental fac-
tors can provide additional and meaningful information (e.g., 
Schamp and Aarssen 2009). This approach is widely used 
in community assembly studies (e.g., Bernard-Verdier et al. 
2012, Mason et al. 2012, Astor et al. 2014, Lhotsky et al. 
2016), when the strength of trait convergence/divergence was 
studied along an environmental gradient.

Textbooks of meta-analysis (e.g., Koricheva et al. 2013, 
Rothstein et al. 2013) demonstrate how test-statistics of the 
traditional tests (e.g., t-test, ANOVA, regression) can be 
transformed into an effect size measure. However, in com-
munity ecology, the use of randomization tests (Gotelli and 
Graves 1996) has become common because they allow the 
user to choose the statistic that best discriminates between 
the hypothesis and alternative; regardless of whether its dis-

tribution is known or not. This paper focuses on measuring 
effect size in studies where the randomization test is applied, 
which is a large and growing field within community ecol-
ogy (Appendix 1). Although similar problems may appear in 
other applications of the meta-analysis, the proposed solution 
is specific to this field.

If null-hypothesis is tested by randomization test, de-
parture from the random expectation is often measured as 
a standardized effect size (SES; Gotelli and McCabe 2002). 
SES measures the deviation from the random expectation in 
standard deviation units, which allows the comparison of val-
ues between studies:

SES = (Iobs – Irand) / s

where Iobs = the observed value of the index, Irand = the mean 
of the index in the random communities, σ = standard de-
viation of the index in the random communities (Gotelli and 
McCabe 2002). Alternative naming of the same formula is 
z-score (e.g., Heino et al. 2015, Stoll et al. 2016) or z-val-
ue (e.g., Briscoe Runquist et al. 2016). Nearest taxon index 
(Webb et al. 2002) and β deviation (Kraft et al. 2011, Bennett 
and Gilbert 2016) are special forms of SES, where the index 
I refers to (A) the phylogenetic distance to the nearest taxon 
and (B) the beta diversity, respectively. 

The formula of SES can be derived from the d statistic 
(often referred to as Hedges' g or Cohen's d in the literature). 
Observed and random values are the two groups. Because we 
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have only one value in the observed group, the formula for 
the pooled standard deviation reduces to s. 

SES is widely used in community ecology because (until 
now) it is the only proposed way to calculate effect size when 
a randomization test needs to be applied. The index could be 
a co-occurrence based statistic (Gotelli and McCabe 2002), 
nestedness (Ulrich and Gotelli 2007), functional diversity 
(Mason et al. 2012) or any other measure that is appropriate 
to the studied question. 

Unfortunately, most users of SES do not acknowledge 
that normality (or at least symmetry) of the null-distribution 
is required when calculating SES (Ulrich and Gotelli 2010, 
Veech 2012). To illustrate that the normality assumption is 
widely neglected, I have collected 63 papers (published since 
2015 and that calculated SES; see details in Appendix 1) and 
assessed if such an assumption was mentioned. Only eight 
papers mentioned the normality assumption and seven of 
them assumed that normality was satisfied without testing 
this assumption.

Therefore, the aims of this paper are (1) to illustrate that 
SES values are misleading if the null-distribution is asym-
metric; and (2) to show an alternative way to calculate effect 
size that works properly, even if the null-distribution is asym-
metric (skewed).

Field data used for illustration 

All illustrative examples come from the field of trait-based 
community assembly studies (Götzenberger et al. 2012), but 
their messages can be easily generalized to other fields that 
utilize randomization tests. The primary hypothesis of these 
studies is that communities are not randomly assembled from 
the regional species pool; therefore, their functional diversity 
is considerably different from the functional diversity of a 
random assemblage. Departure from the random expectation 
is possible in both directions. Co-occurring species need to 
survive and reproduce in the same environment; therefore, 
in traits related to environmental tolerance, they are more 
similar to each other than members of a random assemblage. 
Thus, functional diversity may be lower than expected. On 
the other hand, according to the niche theory (MacArthur and 
Levins 1967, Pásztor et al. 2016), co-occurring species have 
to differ in resource use; therefore, they are more different 
in the related traits than members of a random assemblage. 
Thus, functional diversity may be higher than expected. The 
situations when observed functional diversity is lower/high-
er than random expectation are referred to as trait conver-
gence/divergence. It is not only the existence of significant 
departure from the random expectation (hereafter referred as 
significant convergence/divergence) that is informative, but 
also the magnitude of the departure (hereafter referred to as 
strength of convergence/divergence). In such studies SES is 
often used as a standardized measure of the departure from 
random expectation. Standardized means that the potential 
effect of the confounding factors (e.g., species richness, di-
versity) were removed. It is supposed that the absolute value 
of SES measures the strength of convergence/divergence. For 

example, SES = 2 and SES = –2 are interpreted as trait di-
vergence and trait convergence, respectively, with the same 
strength (and same related p-value). 

The dataset used for illustration was derived from the pa-
per of Lhotsky and colleagues (2016) and is publicly avail-
able in the Dryad repository (http://datadryad.org/resource/
doi:10.5061/dryad.5r62f). In this example, I considered only 
five quantitative traits: canopy height, leaf size, specific 
leaf area (SLA), leaf dry matter content (LDMC) and seed 
weight. Two functional diversity indices were used to quan-
tify trait convergence or divergence: Rao's quadratic entropy, 
Q (Botta-Dukát 2005) and generalized functional diversity, 
with q = 2, 2D (Leinster and Cobbold 2011). Rao's quadratic 
entropy was chosen because it is a widely used measure of 
functional diversity. 2D is a simple, monotonic transforma-
tion of Rao's Q: 

2D = 1 / (1 – Q)

2D is advantageous because it allows for the partitioning of 
gamma diversity into independent alpha and beta compo-
nents (Leinster and Cobbold 2011, Botta-Dukát 2018). A ran-
domization test was done by reshuffling trait values among 
species (Stubbs and Wilson 2004, Botta-Dukát and Czúcz 
2016). Test statistics and effect sizes were calculated for each 
plot separately.

The problem

As discussed above, SES was developed under the as-
sumption of Gaussian distribution of test statistic if the null-
hypothesis is true. If the normality assumption is valid, SES 
values and the cumulative distribution function (CDF) of the 
standard normal distribution (hereafter denoted by F) can 
be used to calculate p-values, instead of the cumulative dis-
tribution function of the test statistic (see its mathematical 
background in Appendix 2). The advantage of calculating the 
p-value from SES instead of the empirical CDF is that an ac-
curate estimation of CDF requires a much larger sample size 
(i.e., more randomized communities) than the accurate esti-
mation of expected value and standard deviation (the param-
eters of the normal distribution). It is obvious that p-values 
calculated from SES are valid only if the null-distribution ap-
proximates to a Gaussian. Figure 3 of Veech (2012) illustrates 
that if the normality assumption is violated, the estimate of 
the p-value based on SES may be strongly biased and results 
in increased Type I error or decreased power of the test.

The assumption of normality and symmetry is intermixed 
in the literature. For example, Ulrich and Gotelli (2010) 
wrote: "The use of SES is based on the assumption of an ap-
proximately normal error distribution. This was indeed the 
case: the mean skewness of all null-model distributions was 
only 0.004 with a standard deviation of 0.37". They mention 
normal distribution; however, by calculating skewness they 
have checked only for symmetry of the distribution. The null-
distribution may be symmetric, even if it significantly departs 
from normal distribution (e.g., the uniform distribution is 
symmetric). In this case SES values cannot be used for hy-
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pothesis testing, but they are useful as measure of departure 
from the random expectation. However, if the null-distribu-
tion is asymmetric (skewed), SES values become misleading. 
For symmetric distributions – including Gaussian distribution 
– cumulative distribution function (CDF) is 0.5 at the expect-
ed value (mean), that is in a one-sided test the corresponding 
p-value is 0.5 too. Irand is an unbiased estimate of the expected 
value. Therefore, SES = 0 implies that a one-sided p-value 
is 0.5 if the distribution is symmetric (Fig. 1a). Moreover, 
the absolute value of the SES determines the p-value of the 
two-sided test.

These relationships are not maintained in skewed distri-
butions, i.e., the mean is higher or lower than the median in 
the right or left skewed distribution, respectively. Therefore, 

SES values that differ only in sign may be related to markedly 
different p-values (Fig. 1b). 

Figure 2 shows a real data example that illustrates the 
problem originating from the violation of the symmetry as-
sumption. As mentioned above, SES = 2 and SES = –2 should 
indicate the same strength of trait divergence or convergence, 
respectively. In the fi gure whiskers indicate the range of non-
signifi cant SES values in a two-sided test when signifi cance 
level is 5% (α = 0.05). SES = –2 is outside the non-signifi cant 
region and is far from the border of the region in all commu-
nities. Thus, this value indicates strong and signifi cant trait 
convergence. On the other hand, SES = 2 (i.e., the same ab-
solute effect size, but with opposite sign) is often non-signifi -
cant (i.e., it is inside the whiskers), and even if signifi cant this 
happens near the border of the non-signifi cant region. Thus, 

Figure 1. Position of three standardized effect size (SES) values (-2, 0, 2) and the related p-values in two-sided tests for (a) a symmetric 
(normal) and (b) right skewed (lognormal) distribution.

a b

Figure 2. Whiskers plots indicate the range of non-signifi cant SES values in two sided tests at α = 5% signifi cance levels (i.e., borders 
of the region are 2.5% and 97.5% quantiles of the null-distribution) in the fi rst 25 communities from a dataset reported in Lhotsky et 
al. (2016). The applied test statistic was functional diversity based on leaf size data calculated by 2D. For symmetric null-distribution 
whiskers would be placed symmetrically around the zero-line. Due to right skewness, the same absolute value with a negative sign may 
reveal highly signifi cant trait convergence, while the positive sign may indicate no signifi cant departure from randomness.

 

Figure 2. Whiskers plots indicate the range of non-significant SES values in two sided tests at 

= 5% significance levels (i.e. borders of the region are 2.5% and 97.5% quantiles of the 

null-distribution) in the first 25 communities from a dataset reported in Lhotsky et al. (2016). 

The applied test statistic was functional diversity based on leaf size data calculated by 2D. For 

symmetric null-distribution whiskers would be placed symmetrically around the zero-line. 

Due to right skewness, the same absolute value with a negative sign may reveal highly 

significant trait convergence, while the positive sign may indicate no significant departure 

from randomness. 
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it indicates weak and often non-significant trait divergence. 
In this example, comparing the strength of trait convergence 
and trait divergence measured by SES would be misleading. 

Symmetry of distribution can be visually checked us-
ing histograms of values in random communities, although 
for small number of random communities it cannot lead to 
a reliable decision (Fig. 3). Therefore, I suggest estimat-
ing skewness from data (possible estimators are reviewed 
by Joanes and Gill 1998). Symmetry has to be checked for 
each null-distribution separately. Therefore, if the number of 
null-distributions that are generated is high, estimating skew-
ness is the only feasible option. Information of the calculated 
skewness values can be summarized using a boxplot (Fig. 4).

Possible solutions

Two possible ways to avoid the above mentioned draw-
backs of SES are to apply a transformed test statistic and to 
use probit-transformed p-values to measure effect size. Any 
monotonous transformation of the test statistic that consider-
ably decreases the skewness may be applied. Unfortunately, 
there is no generally applicable transformation that can re-
duce the skewness to an acceptable level in all instances. If 
the distribution is right skewed, a log-transformation is often 

applied. Figure 4 illustrates that the log-transformation may 
be effective in some cases but ineffective in others. 

As mentioned above, under the assumption of Gaussian 
null-distribution, p-values can be calculated from SES by ap-
plying the cumulative distribution function of the standard 
normal distribution (F). For example, in a one-sided test of 
trait convergence p-values can be estimated as 1 – F (SES) 
(see Appendix 2 for the deduction of this formula and for-
mulae for a one-sided test of divergence and two-sided test). 
This approach is used by Sanders et al. (2003), Schamp and 
Aarssen (2009), or de Bello (2012).

In randomization tests, p-values are generally estimated 
using a direct approach (Veech, 2012) as: 

p = (b + 1) / (n + 1)

where n = number of random communities, b = number of 
random communities, where the test statistic is more extreme 
than the observed value (e.g., Manly 1997). This estimation 
does not assume any specific distribution. Thus, if the null-
distribution is not Gaussian we know the p-value but do not 
know the effect size (in this case, SES calculated by Gotelli 
and Grave's formula is not suitable). We are looking for an 
effect size measure (denoted by ES) that is equal to SES if 

   
a) observed skewness 0.41 

(95% conf. int.: -1.55, 2.00) 

b) observed skewness 0.22 

(95% conf. int.: -0.21, 0.73) 

c) observed skewness 0.03 

(95% conf. int.: -0.11, 0.17) 

   
d) observed skewness 0.51 

(95% conf. int.: -0.25, 1.57) 

e) observed skewness 1.45 

(95% conf. int.: 0.88, 2.17) 

f) observed skewness 1.48 

(95% conf. int.: 1.10, 2.04) 

 326 

Figure 3: Histograms and estimated skewness with 95% confidence intervals in brackets for 327 

normally (a-c) and lognormally (d-f) distributed random numbers with different sample sizes 328 

(n). Parameters of both distributions were set to  an expected value = 8 and standard deviation 329 

= 3. Skewness values were estimated using the Skew function of DescTools package 330 

(Signorell 2015) in R environment (R Core Team, 2013) 331 
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the normality assumption is satisfied, while preserving the 
advantages of SES if this assumption is violated. I suggest 
that we can find such an ES using two simple steps. First, 
recall the formula used in calculating p-value from SES, but 
replace SES with the desired ES: p = 1–F (ES). Then we can 
solve this equation for ES: ES = F–1(1 – p). F–1 is the inverse 
of F, thus F–1 is the quantile function of the standard normal 
distribution. It is often called a probit-function, or probit-
transformation. Hereafter I will use this name and abbreviate 
it by probit(1-p).

There are two advantages of SES over probit(1-p): the 
former is less sensitive to the number of random communi-
ties. If the normality criterion is satisfied, SES gives an ac-
curate estimation of the effect size even if only a few random 
communities are generated. An additional important advan-
tage of SES is that it is unbounded. Thus, it can differentiate 
even between large effect sizes. Using a traditional approach, 
the lowest p-value, and consequently the highest probit(1-
p) depends on the number of generated random communi-
ties. The possible minimum of p is 1/(n+1) (c.f. formula for 

calculating p above). Thus, it is possible that two estimated 
probit(1-p) may be the same simply because both equal the 
possible maximum. Knijnenburg et al. (2009) provided a so-
lution to this problem. Their approach allows exact estima-
tion of p-values, even if the observed value is more extreme 
than any value in the random communities. The suggested 
procedure consists of two steps: fitting generalized Pareto-
distribution of the most extreme random values and then esti-
mating p-values from this fitted distribution (See Appendix 3 
for an R-script of this procedure).

Conclusions

As shown above, SES calculated by Gotelli and McCabe's 
(2002) formula is misleading if the symmetry assumption is 
violated. Because this assumption is hardly tested, results 
based on SES values should be carefully considered. It is also 
true for p-values or significance tests based on SES where 
not only symmetry but normality of the null-distribution is 
assumed.

    

     

 

Figure 4. Skewness of distribution of functional diversity in random communities using four 

different test statistics: a) generalized functional diversity with q = 2 (2D); b) log-transformed 
2D; c) Rao’s quadratic entropy (Q); d) log-transformed Q. Random communities were 

generated by reshuffling trait values for 103 plots of Lhotsky et al. (2016) resulting in 103 

skewness values. 

  

Figure 4. Skewness of distribution of functional diversity in random communities using four different test statistics: a) generalized 
functional diversity with q = 2 (2D); b) log-transformed 2D; c) Rao’s quadratic entropy (Q); d) log-transformed Q. Random communi-
ties were generated by reshuffling trait values for 103 plots of Lhotsky et al. (2016) resulting in 103 skewness values.
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To avoid such errors, I recommend checking at minimum 
the symmetry of the null-distribution. However, if SES is used 
to calculate p-values or to determine statistical significance, 
normality should also be tested. If the symmetry assumption 
is violated, one can attempt to solve it using a log-transforma-
tion of the test statistic. However, log-transformations cannot 
solve this problem in all cases, thus the null-distribution of 
transformed values will need to be checked again. An alterna-
tive solution proposed in this paper is to use probit(1-p) as an 
effect size measure, where p-values are estimated using an 
algorithm found in Knijnenburg et al. (2009). If the normality 
assumption is satisfied, it results in the same value as SES, 
thus effect sizes calculated in this way are comparable with 
the published SES values.

Acknowledgement. Thanks to M. Scotti, B. Lhotsky and two 
anonymous reviewers for their comments that helped to im-
prove the manuscript.
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