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Abstract. We consider a nonlinear elliptic problem driven by the Dirichlet p-Lapla-
cian and a reaction term which depends also on the gradient (convection). No growth
condition is imposed on the reaction term f (z, ·, y). Using topological tools and the
asymptotic analysis of a family of perturbed problems, we prove the existence of a
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Keywords: convection reaction term, nonlinear regularity, nonlinear maximum princi-
ple, pseudomonotone map, Picone identity, Hartman condition.

2010 Mathematics Subject Classification: 35J60, 35J92.

1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. We study the following nonlinear
Dirichlet problem with gradient dependence

− ∆pu(z) = f (z, u(z),∇u(z)) in Ω, u
∣∣
∂Ω = 0, u > 0. (1.1)

In this problem ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|∇u|p−2∇u) for all u ∈W1,p
0 (Ω), 1 < p < ∞.

The dependence of the reaction term f (z, x, y) on the gradient ∇u of the unknown func-
tion u, precludes the use of variational methods in the study of problem (1.1). Instead our
approach is topological and uses the theory of nonlinear operators of monotone type and the
asymptotic analysis of a perturbation of the original problem. We prove the existence of a
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positive smooth solution, without imposing any growth condition on f (z, ·, y). Instead, we
employ a Hartman-type condition on f (z, ·, y) which leads to an a priori bound for the posi-
tive solutions. This absence of any growth condition on f (z, ·, y) distinguishes our work from
previous ones on elliptic equations with convection. We refer to the papers of de Figueiredo–
Girardi–Matzeu [3], Girardi–Matzeu [6] (semilinear problems driven by the Laplacian) and
Faraci–Motreanu–Puglisi [2], Ruiz [9] (nonlinear problems driven by the p-Laplacian). We
mention also the recent work of Gasiński–Papageorgiou [5] on Neumann problems driven by
a differential operator of the form div(a(u)∇u). In all the aforementioned works f (z, ·, y)
exhibits the usual subcritical polynomial growth.

2 Mathematical background – hypotheses

Let X be a reflexive Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). A map V : X → X∗ is said to be “pseudomonotone”, if it has
the following property:

“un
w−→ u in X , V(un)

w−→ u∗ in X∗ and lim sup
n→+∞

〈V(un), un − u〉 ≤ 0

imply that u∗ = V(u) and 〈V(un), un〉 → 〈V(u), u〉”.

A maximal monotone, everywhere defined operator is pseudomonotone. Moreover, if V =

A + K with A maximal monotone and everywhere defined and K is completely continuous
(that is, un

w−→ u in X ⇒ K(un) → K(u) in X∗), then V is pseudomonotone (see Gasiński–
Papageorgiou [4], p. 336).

Pseudomonotone operators exhibit remarkable surjectivity properties. More precisely we
have (see Gasiński–Papageorgiou [4], p. 336).

Proposition 2.1. If V : X → X∗ is pseudomonotone and strongly coercive, that is,

lim
‖u‖→+∞

〈V(u), u〉
‖u‖ = +∞,

then V is surjective (that is, R(V) = X∗).

The following two spaces will be used in the analysis of problem (1.1):
• the Sobolev space W1,p

0 (Ω);
• the Banach space C1

0(Ω) = {u ∈ C1(Ω) : u
∣∣
∂Ω = 0}.

By ‖ · ‖ we denote the norm of W1,p
0 (Ω). On account of the Poincaré inequality, we can

take
‖u‖ = ‖∇u‖p for all u ∈W1,p

0 (Ω).

The Banach space C1
0(Ω) is an ordered Banach space with positive (order) cone

C+ =
{

u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u
∂n

∣∣∣
∂Ω

< 0
}

,
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where ∂u
∂n = (∇u, n)RN with n(·) being the outward unit normal on ∂Ω.

Given x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W1,p
0 (Ω), we define u±(·) = u(·)±.

We know that
u± ∈W1,p

0 (Ω), u = u+ − u−, |u| = u+ + u−.

Consider the following nonlinear eigenvalue problem:

− ∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u
∣∣
∂Ω = 0. (2.1)

We know that (2.1) has a smallest eigenvalue λ̂1 which has the following properties:

• λ̂1 > 0 and λ̂1 is isolated (that is, if σ̂(p) denotes the spectrum of (2.1), then we can find
ε > 0 such that (λ̂1, λ̂1 + ε) ∩ σ̂(p) = ∅);

• λ̂1 is simple (that is, if û, ũ are eigenfunctions corresponding to λ̂1, then û = ξũ for some
ξ ∈ R \ {0});

•
λ̂1 = inf

[
‖∇u‖p

p

‖u‖p
p

: u ∈W1,p
0 (Ω), u 6= 0

]
. (2.2)

The infimum in (2.2) is realized on the one-dimensional eigenspace corresponding to λ̂1. The
above properties imply that the elements of this eigenspace, have fixed sign. By û1 we de-
note the Lp-normalized (that is, ‖û1‖p = 1) positive eigenfunction corresponding to λ̂1. The
nonlinear regularity theory and the nonlinear maximum principle (see, for example, Gasiński–
Papageorgiou [4], pp. 737–738) imply that û1 ∈ int C+.

A function f : Ω×R×RN → R is said to be “Carathéodory”, if

• for all (x, y) ∈ R×RN , z→ f (z, x, y) is measurable;

• for almost all z ∈ Ω, (x, y)→ f (z, x, y) is continuous.

Such a function is necessarily jointly measurable (see Hu–Papageorgiou [8], p. 142).
The hypotheses on the reaction term f (z, x, y) are the following:

H( f ) f : Ω×R×RN → R is a Carathéodory function such that f (z, 0, y) = 0 for a.a. z ∈ Ω,
all y ∈ RN and

(i) there exist M > 0 and δ > 0 such that

f (z, x, y) ≤ 0 for a.a. z ∈ Ω, all |x−M| ≤ δ, all |y| ≤ δ;

(ii) there exists aM ∈ L∞(Ω) such that

| f (z, x, y)| ≤ aM(z)[1 + |y|p−1] for a.a. z ∈ Ω, all 0 ≤ x ≤ M, all y ∈ RN ;

(iii) for every c > 0, there exists ηc ∈ L∞(Ω) such that

ηc(z) ≥ λ̂1 for a.a. z ∈ Ω, ηc 6≡ λ̂1,

lim inf
x→0+

f (z, x, y)
xp−1 ≥ ηc(z) uniformly for a.a. z ∈ Ω, all |y| ≤ c.
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Remark 2.2. Since we are looking for positive solutions and all the above hypotheses concern
the positive semiaxis R+ = [0,+∞), without any loss of generality we assume that

f (z, x, y) = 0 for a.a. z ∈ Ω, all x ≤ 0, all y ∈ RN .

Hypothesis H( f ) (i) is essentially a condition due to Hartman [7] (p. 433). It was used by
Hartman [7] for ordinary Dirichlet differential systems.

Example 2.3. The following function satisfies hypotheses H( f ). For the sake of simplicity we
drop the z-dependence.

f (x, y) =

{
ηxp−1 − 2ηxr−1 + xτ−1|y|p−1 if 0 ≤ x ≤ 1,

g0(x, y) if 1 < x,

with g0(·, ·) any continuous function, η > λ̂1 > 0, p < r, τ. This particular f (·, ·) satisfies the

Hartman condition H( f ) (i) with M = 1 and δ > 0 small such that δ ≤ η
1

p−1 .

Let M > 0 be as in hypothesis H( f ) (i) and consider the nonexpansive function (that is,
Lipschitz continuous with Lipschitz constant 1) pM : R→ R defined by

pM(x) =

{
x+ if x ≤ M,

M if M < x.

Clearly |pM(x)| ≤ |x| for all x ∈ R. We introduce the following function

f̂ (z, x, y) = f (z, pM(x), y) + pM(x)p−1. (2.3)

This is a Carathéodory function. Let e ∈ int C+ and ε > 0. We consider the following auxiliary
Dirichlet problem:

− ∆pu(z) + |u(z)|p−2u(z) = f̂ (z, u(z),∇u(z)) + εe(z) in Ω, u
∣∣∣
∂Ω

= 0. (2.4)

Proposition 2.4. If hypotheses H( f ) hold and ε > 0 is small, then problem (2.4) admits a solution
uε ∈ int C+ and 0 ≤ uε(z) ≤ M for all z ∈ Ω.

Proof. Let A : W1,p
0 (Ω) → W−1,p′(Ω) = W1,p

0 (Ω)∗ ( 1
p + 1

p′ = 1) be the nonlinear map defined
by

〈A(u), h〉 =
∫

Ω
|∇u|p−2(∇u,∇h)RN dz for all u, h ∈W1,p

0 (Ω).

It is well-known (see, for example Gasiński–Papageorgiou [4]), that the map A(·) is
bounded (that is, maps bounded sets to bounded ones), continuous, strictly monotone, hence
maximal monotone too. Also let ψp : W1,p

0 (Ω)→ Lp′(Ω) be

ψp(u) = |u|p−2u for all u ∈W1,p
0 (Ω).

This map too is bounded, continuous and maximal monotone (recall that Lp′(Ω) ↪→
W−1,p′(Ω)).

Let N f̂ denote the Nemitsky map corresponding to the Carathéodory function f̂ , that is,

N f̂ (u)(·) = f̂ (·, u(·),∇u(·)) for all u ∈W1,p
0 (Ω).

Hypothesis H( f ) (ii) and the Krasnoselskii theorem (see Gasiński–Papageorgiou [4],
p. 407) imply that
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N f̂ (·) is bounded, continuous.

The compact embeddings of

W1,p(Ω) into Lp(Ω) and of Lp′(Ω) into W−1,p′(Ω) = W1,p
0 (Ω)∗

(use the Sobolev embedding theorem and Lemma 2.2.27, p. 141 of Gasiński–Papageorgiou [4]),
imply that ψp and N f̂ are both completely continuous maps.

Let V : W1,p
0 (Ω)→W−1,p′(Ω) be defined by

V(u) = A(u) + ψp(u)− N f̂ (u)− εe for all u ∈W1,p
0 (Ω).

Evidently V(·) is bounded, continuous and pseudomonotone. Also, for all u ∈ W1,p
0 (Ω)

we have

〈V(u), u〉 = ‖∇u‖p
p + ‖u‖

p
p −

∫
Ω

f̂ (z, u,∇u)u dz− ε
∫

Ω
eu dz

≥ ‖u‖p − c1‖u‖p−1 − c1 for some c1 > 0 (see hypothesis H( f ) (ii)),

⇒ V(·) is strongly coercive (recall p > 1).

Then we can use Proposition 2.1 and find uε ∈W1,p
0 (Ω), uε 6= 0 such that

V(uε) = 0

⇒ 〈A(uε), h〉+
∫

Ω
|uε|p−2uεh dz =

∫
Ω

f̂ (z, uε,∇uε)h dz + ε
∫

Ω
eh dz (2.5)

for all h ∈W1,p
0 (Ω).

In (2.5) we choose h = −u−ε ∈W1,p
0 (Ω). Then

‖∇u−ε ‖
p
p ≤ 0 (see (2.3) and recall that e ∈ int C+),

⇒ uε ≥ 0, uε 6= 0.

From (2.5) we have
−∆puε(z) + uε(z)p−1 = f (z, pM(uε(z)),∇uε(z)) + pM(uε(z))p−1 + εe(z)

for a.a. z ∈ Ω,

uε

∣∣∣
∂Ω

= 0.

(2.6)

From (2.6) and the nonlinear regularity theory (see Gasiński–Papageorgiou [4], pp. 737–738),
we have

uε ∈ C+ \ {0}.

Let c = ‖uε‖C1
0(Ω). Hypotheses H( f ) (ii), (iii) imply that there exists ξ̂c > 0 such that

f (z, x, y) + ξ̂cxp−1 ≥ 0 for a.a. z ∈ Ω, all 0 ≤ x ≤ M, all |y| ≤ c.

From (2.6) we have

∆puε(z) ≤ [1 + ξ̂c]uε(z)p−1 for a.a. z ∈ Ω,

⇒ uε ∈ int C+,
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by the nonlinear strong maximum principle (see Gasiński–Papageorgiou [4], p. 738).
Finally we show that

0 ≤ uε(z) ≤ M for all z ∈ Ω. (2.7)

To show (2.7) we argue by contradiction. So, suppose that

uε(z0) = max
Ω

uε > M.

Evidently z0 ∈ Ω. Then for ϑ > 0 small we have

∂uε

∂n

∣∣∣
∂Bϑ(z0)

≤ 0 and uε(z) > M for all z ∈ Bϑ(z0) ⊆ Ω.

Here Bϑ(z0) = {z ∈ Ω : |z− z0| ≤ ϑ}. We have

pM(uε(z)) = M for all z ∈ Bϑ(z0) and ∇uε(z0) = 0. (2.8)

We choose ϑ > 0 small so that

|uε(z)− uε(z0)| ≤ δ and |∇uε(z)| ≤ δ for all z ∈ Bϑ(z0)

(recall uε ∈ int C+),

⇒ |pM(uε(z))− pM(uε(z0))| ≤ δ and |∇uε(z)| ≤ δ for all z ∈ Bϑ(z0) (2.9)

(recall pM(·) is nonexpansive).

From (2.9) and hypothesis H( f ) (i), we have

f (z, pM(uε(z)),∇uε(z))pM(uε(z)) ≤ 0 for all z ∈ Bϑ(z0). (2.10)

We multiply (2.6) with uε(z) and then integrate over Bϑ(z0). Using the nonlinear Green’s
identity (see Gasiński–Papageorgiou [4], p. 211), we have

∫
Bϑ(z0)

|∇uε|pdz−
∫

∂Bϑ(z0)
|∇uε|p−2 ∂uε

∂n
uεdσ +

∫
Bϑ(z0)

up
ε dz

=
∫

Bϑ(z0)
[ f (z, pM(uε),∇uε) + pM(uε)

p−1]uεdz + ε
∫

Bϑ(z0)
euεdz

=
∫

Bϑ(z0)
[ f (z, pM(uε),∇uε) + pM(uε)

p−1]pM(uε)
uε

M
dz + ε

∫
Bϑ(z0)

euεdz (see (2.8))

≤
∫

Bϑ(z0)
Mp−1uεdz + ε

∫
Bϑ(z0)

euεdz (see (2.10) and (2.8)),

⇒ −
∫

∂Bϑ(z0)
|∇uε|p−2 ∂uε

∂n
uεdσ +

∫
Bϑ(z0)

[up−1
ε −Mp−1 − εe]uεdz ≤ 0.

But from (2.8) we see that for all ε > 0 small (say for ε ∈ (0, ε0)) the left hand side of the last
inequality is strictly bigger than zero, a contradiction. Therefore (2.7) is true.

Proposition 2.5. If hypotheses H( f ) hold, then there exist γ ∈ (0, 1) and c2 > 0 such that

uε ∈ C1,γ
0 (Ω) and ‖uε‖C1,γ

0 (Ω)
≤ c2 for all ε ∈ (0, ε0).
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Proof. Let uε ∈ int C+ (ε ∈ (0, ε0)) be the solution of (2.4) produced in Proposition 2.4. We
know that

0 ≤ uε(z) ≤ M for all z ∈ Ω. (2.11)

Also from (2.3) and (2.5), we have

− ∆puε(z) = f (z, uε(z),∇uε(z)) + εuε(z) for a.a. z ∈ Ω, uε

∣∣
∂Ω = 0. (2.12)

From (2.11) and (2.12) and the nonlinear regularity theory (see Gasiński–Papageorgiou [4],
Theorem 6.2.7, p. 738), we infer that there exist γ ∈ (0, 1) and c2 > 0 such that

uε ∈ C1,γ
0 (Ω) and ‖uε‖C1,γ

0 (Ω)
≤ c2 for all ε ∈ (0, ε0).

Now we are ready for the existence result.

Theorem 2.6. If hypotheses H( f ) hold, then problem (1.1) admits a positive solution û ∈ int C+.

Proof. Let εn ∈ (0, ε0), n ∈ N, and assume that εn → 0+. Let un = uεn ∈ int C+ for all n ∈ N

(see Proposition 2.4). On account of Proposition 2.5 and since C1,γ
0 (Ω) is embedded compactly

into C1
0(Ω), we may assume that

un → û in C1
0(Ω).

We claim that û 6= 0.
Arguing by contradiction, assume that û = 0. If c = supn∈N ‖un‖C1

0(Ω), then hypothesis

H( f ) (iii) implies that given ε > 0, we can find δ̂ = δ̂(ε) > 0 such that

f (z, x, y) ≥ [ηc(z)− ε] xp−1 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ̂, all |y| ≤ c. (2.13)

Since un → 0 in C1(Ω) (recall that we have assumed that û = 0), we can find n0 ∈N such that

0 ≤ un(z) ≤ δ̂ for all z ∈ Ω, all n ≥ n0. (2.14)

For n ≥ n0, we consider the function

R(û1, un)(z) = |∇û1(z)|p − |∇un(z)|p−2

(
∇un(z),∇

(
ûp

1

up−1
n

)
(z)

)
RN

.

From the nonlinear Picone’s identity of Allegretto–Huang [1], for n ≥ n0 we have

0 ≤
∫

Ω
R(û1, un)dz

= ‖∇û1‖
p
p −

∫
Ω
|∇un(z)|p−2

(
∇un,∇

(
ûp

1

up−1
n

))
RN

dz

= λ̂1 −
∫

Ω
f (z, un,∇un)

ûp
1

up−1
n

dz− εn

∫
Ω

e
ûp

1

up−1
n

dz

≤ λ̂1 −
∫

Ω
(ηc(z)− ε)ûp

1 dz (see (2.13), (2.14) and recall that e ∈ int C+)

=
∫

Ω
(λ̂1 − ηc(z))û

p
1 dz + ε (recall that ‖û1‖p = 1). (2.15)
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Since û1 ∈ int C+ and hypothesis H( f ) (iii) says that

ηc(z) ≥ λ̂1 for a.a. z ∈ Ω, ηc 6= λ̂1,

we infer that
ξ∗ =

∫
Ω
(ηc(z)− λ̂1)û

p
1 dz > 0.

So, choosing ε ∈ (0, ξ∗), from (2.15) we have

0 ≤
∫

Ω
R(û1, un)dz < 0 for all n ≥ n0,

a contradiction. Therefore û 6= 0. Moreover, passing to the limits as n → +∞ (see (2.12) with
ε = εn, n ∈N), we obtain

−∆pû(z) = f (z, û(z),∇û(z)) for a.a. z ∈ Ω, û
∣∣
∂Ω = 0.

As before the nonlinear regularity theory and the nonlinear maximum principle, imply that
û ∈ int C+.
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[5] L. Gasiński, N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with
dependence on the gradient, J. Differential Equations 263(2017), No. 2, 1451–1476. https:
//doi.org/10.1016/j.jde.2017.03.021; MR3632225

[6] M. Girardi, M. Matzeu, Positive and negative solutions of a quasi-linear elliptic equa-
tion by a mountain pass method and truncature techniques, Nonlinear Anal. 59(2004),
No. 1–2, 199–210. https://doi.org/10.1016/j.na.2004.04.014; MR2092086

[7] P. Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York, 1964.
MR0171038

[8] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Theory, Mathematics
and its Applications, Vol. 419, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1997. MR1485775

https://doi.org/10.1016/S0362-546X(97)00530-0
https://doi.org/10.1016/S0362-546X(97)00530-0
https://www.ams.org/mathscinet-getitem?mr=1618334
https://doi.org/10.1007/s00526-014-0793-y
https://doi.org/10.1007/s00526-014-0793-y
https://www.ams.org/mathscinet-getitem?mr=3385168
https://www.ams.org/mathscinet-getitem?mr=2035498
https://www.ams.org/mathscinet-getitem?mr=2168068
https://doi.org/10.1016/j.jde.2017.03.021
https://doi.org/10.1016/j.jde.2017.03.021
https://www.ams.org/mathscinet-getitem?mr=3632225
https://doi.org/10.1016/j.na.2004.04.014
https://www.ams.org/mathscinet-getitem?mr=2092086
https://www.ams.org/mathscinet-getitem?mr=0171038
https://www.ams.org/mathscinet-getitem?mr=1485775


Solutions for Dirichlet problems with gradient dependence 9

[9] D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear
problems, J. Differential Equations 199(2004), No. 1, 96–114. https://doi.org/10.1016/j.
jde.2003.10.021; MR2041513

https://doi.org/10.1016/j.jde.2003.10.021
https://doi.org/10.1016/j.jde.2003.10.021
https://www.ams.org/mathscinet-getitem?mr=2041513

	Introduction
	Mathematical background – hypotheses

