
Electronic Journal of Qualitative Theory of Differential Equations
2018, No. 13, 1–14; https://doi.org/10.14232/ejqtde.2018.1.13 www.math.u-szeged.hu/ejqtde/

A Lipschitz condition along a transversal foliation
implies local uniqueness for ODEs

José Ángel CidB 1 and F. Adrián F. Tojo2

1Departamento de Matemáticas, Universidade de Vigo, Campus de Ourense, Spain
2Departamento de Análise Matemática, Universidade de Santiago de Compostela, Spain

Received 28 December 2017, appeared 16 February 2018

Communicated by Josef Diblík

Abstract. We prove the following result: if a continuous vector field F is Lipschitz when
restricted to the hypersurfaces determined by a suitable foliation and a transversal
condition is satisfied at the initial condition, then F determines a locally unique integral
curve. We also present some illustrative examples and sufficient conditions in order to
apply our main result.
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1 Introduction

Uniqueness for ODEs is an important and quite old subject, but still an active field of research
[7–9], being Lipschitz uniqueness theorem the cornerstone on the topic. Besides the existence
of many generalizations of that theorem, see [1, 6, 10], one recent and fruitful line of research
has been the searching for alternative or weaker forms of the Lipschitz condition. For instance,
let U ⊂ R2 be an open neighborhood of (t0, x0) and f : U ⊂ R2 → R be continuous and
consider the scalar initial value problem

x′(t) = f (t, x(t)), x(t0) = x0. (1.1)

It was proved, independently by Mortici, [12], and Cid and Pouso [4,5], that local uniqueness
holds provided that the following conditions are satisfied:

• f (t, x) is Lipschitz with respect to t,

• f (t0, x0) 6= 0.

A more general result had been proved before by Stettner and Nowak [14], but in a paper
restricted to German readers. They proved that if U ⊂ R2 is an open neighborhood of (t0, x0),
f : U ⊂ R2 → R is continuous and (u1, u2) ∈ R2 such that
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• | f (t, x)− f (t + ku1, x + ku2)| ≤ L|k| on D,

• u2 6= f (t0, x0)u1,

then the scalar problem (1.1) has a unique local solution. By taking either (u1, u2) = (0, 1)
or (u1, u2) = (1, 0) this result covers both the classical Lipschitz uniqueness theorem and the
previous alternative version. Moreover this result has been remarkably generalized in [8] by
Diblík, Nowak and Siegmund by allowing the vector (u1, u2) to depend on t.

Let us now consider the autonomous initial value problem for a system of differential
equations

z′(t) = F(z(t)), z(t0) = p0, (1.2)

where n ∈N, F : U ⊂ Rn+1 → Rn+1 and p0 ∈ U.
Trough the paper we shall need the following definition: if g : D ⊂ Rn+1 → E, where E is

a normed space, we will say that g is Lipschitz in D when fixing the first variable if there exists
L > 0 such that for all (s, x1, x2, . . . , xn), (s, y1, y2, . . . , yn) ∈ D we have that

‖g(s, x1, x2, . . . , xn)− g(s, y1, y2, . . . , yn)‖E ≤ L‖(x1, x2, . . . , xn)− (y1, y2, . . . , yn)‖,

and where ‖ · ‖ stands for any norm in Rn. Moreover, for any function g with values in Rn+1

we denote g = (g1, g2, . . . , gn+1).
The following alternative version of Lipschitz uniqueness theorem for systems was proved

by Cid in [3].

Theorem 1.1. Let U ⊂ Rn+1 an open neighborhood of p0 and F : U → Rn+1 continuous. If moreover

• F is Lipschitz in U when fixing the first variable,

• F1(p0) 6= 0,

then there exists α > 0 such that problem (1.2) has a unique solution in [t0 − α, t0 + α].

Remark 1.2. The classical Lipschitz theorem is included in the previous one. In order to see
this, let n ∈ N, U ⊂ Rn+1 be an open set, f : U → Rn and (t0, x0) ∈ U and consider the
non-autonomous problem

x′(t) = f (t, x(t)), x(t0) = x0. (1.3)

As it is well known, problem (1.3) is equivalent to the autonomous one (1.2), where

F(z1, z2, . . . , zn+1) := (1, f (z1, z2, . . . , zn+1)),

and p0 := (t0, x0). Now, if f (t, x) is Lipschitz with respect to x then F(z1, z2, . . . , zn+1) is
Lipschitz when fixing the first variable and moreover F1(p0) = 1 6= 0, so Theorem 1.1 applies.

Recently, Diblík, Nowak and Siegmund obtained in [13] a generalization of both [3] and
[14]. Their result reads as follows.

Theorem 1.3. Let U ⊂ Rn+1 be an open neighborhood of p0, F : U → Rn+1 be continuous and V a
linear hyperplane in Rn+1 such that

• F is Lipschitz continuous along V , that is, there exists L > 0 such that if x, y ∈ U and x− y ∈ V ,
then

‖F(x)− F(y)‖ ≤ L‖x− y‖,
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and the transversality condition

• F(p0) 6∈ V

holds. Then there exists α > 0 such that problem (1.2) has a unique solution in [t0 − α, t0 + α].

The previous theorem has the following geometric meaning: uniqueness for the auton-
omous system (1.2) follows provided that the continuous vector field F is Lipschitz when
restricted to a family of parallel hyperplanes to V that covers U and that the vector field at the
initial condition F(p0) is transversal to V .

Our main goal in this paper is to extend Theorem 1.3 from the linear foliation generated by
the hyperplane V to a general n-foliation. The paper is organized as follows: in Section 2 we
present our main result which relies on an appropriate change of coordinates and Theorem 1.1.
We will show by examples that our result is in fact a meaningful generalization of Theorem 1.3.
In Section 3 we present some useful results about Lipschitz functions, including the definition
of a modulus of Lipschitz continuity along a hyperplane that will be used in Section 4 for
obtaining explicit sufficient conditions on F for the existence of a suitable n-foliation. Another
key ingredient for that result shall be a general rotation formula proved too at Section 4.

Through the paper 〈·, ·〉 shall denote the usual scalar product in the Euclidean space.

2 The main result: a general uniqueness theorem

Definition 2.1. Let p0 ∈ Rn+1. Assume there exist open subsets V ⊂ Rn, U ⊂ Rn+1, an open
interval J ⊂ R with 0 ∈ J and a family of differentiable functions {gs : V → U}s∈J such that
g0(0) = p0 ∈ U and Φ : (s, y) ∈ J ×V → gs(y) ∈ U is a diffeomorphism. Then we say {gs}s∈J

is a local n-foliation of U at p0.

Remark 2.2. An observation regarding notation. If Φ : Rn+1 → Rn+1 is a diffeomorphism, we
denote by Φ′ its derivative and by Φ−1 its inverse. Also, we write (Φ−1)′ for the derivative
of the inverse. Observe that Φ′ takes values inMn+1(R) so, although we cannot consider the
functional inverse of Φ′, we can consider the inverse matrix, whenever it exists, of every Φ′(x)
for x ∈ Rn+1. We denote this function by (Φ′)−1. Clearly, the chain rule implies that

(Φ′)−1(x) = (Φ−1)′(Φ(x)).

The following is our main result.

Theorem 2.3. Let U ⊂ Rn+1, V ⊂ Rn be open sets, p0 ∈ U, F : U ⊂ Rn+1 → Rn+1 a continuous
function and {gs : V → U}s∈J a local n-foliation of U at p0 which defines the diffeomorphism Φ :
J ×V → U. If the following assumptions hold,

(C1) Transversality condition:〈(
∂Φ−1

1
∂z1

(p0), . . . ,
∂Φ−1

1
∂zn+1

(p0)

)
, F(p0)

〉
6= 0, (2.1)

(C2) Lipschitz condition along the foliation: F ◦Φ and (Φ′)−1 are Lipschitz in a neighborhood of zero
when fixing the first variable,

then there exists α > 0 such that problem (1.2) has a unique solution in [t0 − α, t0 + α].
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Proof. Consider the change of coordinates

z = (z1, . . . , zn+1) = Φ(s, y1, . . . , yn) := gs(y1, . . . , yn). (2.2)

Since {gs}s∈J is a foliation, Φ is a diffeomorphism. Then, considering y = (s, y1, . . . , yn),
differentiating (2.2) with respect to t and taking into account equation (1.2),

d z
d t

= Φ′(y)
d y
d t

= F(z) = (F ◦Φ)(y). (2.3)

Since Φ is a diffeomorphism, Φ′(y) is an invertible matrix for every y, so

d y
d t

= Φ′(y)−1(F ◦Φ)(y).

By definition of gs, Φ(0) = p0, so we can consider the problem

d y
d t

(t) = h(y), y(t0) = 0, (2.4)

where
h(y) = Φ′(y)−1F(Φ(y)).

Now, by (C2) we have that h is the product of locally Lipschitz functions when fixing the first
variable. Furthermore, if e1 = (1, 0, . . . , 0) ∈ Rn and taking into account (C1),

h1(0) = eT
1 Φ′(0)−1F(p0) = eT

1 (Φ
−1)′(p0)F(p0) =

〈(
∂Φ−1

1
∂z1

(p0), . . . ,
∂Φ−1

1
∂zn+1

(p0)

)
, F(p0)

〉
6= 0.

Hence, we can apply Theorem 1.1 to problem (2.4) and conclude that problem (1.2) has,
locally, a unique solution.

Remark 2.4.

1) Condition (2.1) can be easily interpreted geometrically: the vector(
∂Φ−1

1
∂z1

(p0), . . . ,
∂Φ−1

1
∂zn+1

(p0)

)
,

is normal to the hypersurface given by g0(V) at p0. So, condition (2.1) means that the
vector F(p0) is not tangent to that hypersurface, and therefore it is called the ’transversality
condition’.

2) Notice that, from [3, Example 3.1], we know that if the transversality condition (2.1) does
not hold then the Lipschitz condition along the foliation, that is (C2), is not enough to
ensure uniqueness. On the other hand, by [3, Example 3.4], we also know that (C1) and a
Lipschitz condition along a local (n− 1)-foliation do not imply uniqueness. So, in some
sense, conditions (C1) and (C2) are sharp.

Theorem 2.3 generalizes the main result in [13], where only foliations consisting of hy-
perplanes are considered. In the next example we show the limitations of linear (or affine)
coordinate changes which are used in [13].
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Example 2.5. Let F(x, y) := 1 + (y − x2)
2
3 . Is there a linear change of coordinates Φ such

that F ◦Φ is Lipschitz in a neighborhood of zero when fixing the first variable? The answer
is no. Any linear change of variables Φ will be given by two linearly independent vectors
v, w ∈ R2 as Φ(z, t) = zw + tv. If F ◦ Φ is Lipschitz in a neighborhood of zero when fixing
the first variable, that is, z, that implies that the directional derivative of F at any point of
the neighborhood in the direction of v, whenever it exists, is a lower bound for any Lipschitz
constant. To see that this cannot happen, take S = {(x, y) ∈ R2 : y = x2} and realize that F is
differentiable in R2\S, with

∇F(x, y) =
2
3
(y− x2)−

1
3 (−2x, 1), for (x, y) ∈ R2\S.

Let v = (v1, v2) ∈ R2. The directional derivative of F at (x, y) in the direction of v is

DvF(x, y) = 〈∇F(x, y), v〉 = 2
3
(y− x2)−

1
3 (v2 − 2v1x), for (x, y) ∈ R2\S.

Now consider a neighborhood N of 0. In particular, we can consider the points of the form
(x, y) = (λ, λ2 + µ) ∈ N\S for µ 6= 0 and λ ∈ (−ε, ε), so

DvF(x, y) =
2
3

v2 − 2λv1

µ1/3 .

This quantity is unbounded in N\S unless the numerator is 0 for every λ ∈ (−ε, ε), but that
means that v = 0, so v and w cannot be linearly independent. Hence, no linear change of
coordinates Φ makes F ◦Φ Lipschitz in a neighborhood of zero when fixing the first variable.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2.1: The parabolas gz(t) foliating the plane, where g0(t) is the thicker one.

Nevertheless, take (x, y) = Φ(z, t) = gz(t) = (t, z + t2). We have Φ−1(x, y) = (y− x2, x)
and both are differentiable, so Φ is a diffeomorphism. Now, (F ◦Φ)(z, t) = 1 + z

2
3 , which is

clearly Lipschitz when fixing the first variable.

Example 2.6. With what we learned from Example 2.5, it is easy to see that uniqueness for the
scalar initial value problem

x′(t) = 1 + (x(t)− t2)
2
3 , x(0) = 0, (2.5)

can not be dealt with [13, Theorem 2] neither with [8, Theorem 1]. However, by using the
local 1-foliation associated to diffeomorphism Φ given in Example 2.5, it is easy to show that
conditions (C1) and (C2) of Theorem 2.3 are satisfied. Therefore, we have the local uniqueness
of solution.
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3 Some results about Lipschitz functions

We will now establish some properties of Lipschitz functions that will be useful for checking
condition (C2) in Theorem 2.3. Before that, consider the following lemma.

Lemma 3.1. Let A, B, C ∈ Mn(R), A and C invertible. Then

‖ABC‖ ≥ ‖B‖
‖A−1‖‖C−1‖ ,

where ‖ · ‖ is the usual matrix norm.

Proof. It is enough to observe that

‖B‖ = ‖A−1ABCC−1‖ ≤ ‖A−1‖‖ABC‖‖C−1‖.

Lemma 3.2. Let U be an open subset of Rn and g : U → GLn(R).

1. If g is locally Lipschitz and g−1 (the inverse matrix function) is locally bounded, then g−1 is
locally Lipschitz.

2. If g is locally Lipschitz when fixing the first variable and g−1 is locally bounded, then g−1 is
locally Lipschitz when fixing the first variable.

Proof. 1. Let K be a compact subset of U, k1 be a Lipschitz constant for g in K and k2 a bound
for g−1 in K. Then, for x, y ∈ K, using Lemma 3.1,

k1‖x− y‖ ≥ ‖g(x)− g(y)‖ = ‖g(x)(g(y)−1 − g(x)−1)g(y)‖ ≥ ‖g(y)
−1 − g(x)−1‖

k2
2

.

Hence, ‖g(x)−1 − g(y)−1‖ ≤ k1k2
2‖x− y‖ in K and g−1 is locally Lipschitz.

2. We proceed as in 2. Let K be a compact subset of U, (t, x), (t, y) ∈ K, k1 be a Lipschitz
constant for g in K when fixing t and k2 a bound for g−1 in K. Then,

k1‖x− y‖ ≥‖g(t, x)− g(t, y)‖ = ‖g(t, x)(g(t, y)−1 − g(t, x)−1)g(t, y)‖

≥‖g(t, y)−1 − g(t, x)−1‖
k2

2
.

Hence, ‖g(t, x)−1 − g(t, y)−1‖ ≤ k1k2
2‖x− y‖ and g−1 is locally Lipschitz when fixing the first

variable.

Corollary 3.3. Let U be an open subset of Rn, f : U → f (U) ⊂ Rn be a diffeomorphism (notice that,
in that case, f ′ : U → GLn(R)).

1. If f ′ is locally Lipschitz and ( f ′)−1 is locally bounded, then ( f ′)−1 is locally Lipschitz.

2. If f ′ is locally Lipschitz and ( f ′)−1 is locally bounded, then ( f−1)′ is locally Lipschitz.

3. If f ′ is locally Lipschitz when fixing the first variable and ( f ′)−1 is locally bounded, then ( f ′)−1

is locally Lipschitz when fixing the first variable.
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Proof. 1. Just apply Lemma 3.2.1 to g = f ′.
2. Notice that

( f−1)′(x) = ( f ′)−1( f−1(x)),

and that ( f ′)−1 is locally Lipschitz by the previous claim. On the other hand, since f ′ is
locally continuous we have that f is locally a C1-diffeomorphism, and thus f−1 is locally Lip-
schitz. Therefore ( f−1)′ is locally Lipschitz since it is the composition of two locally Lipschitz
functions.

3. Just apply Lemma 3.2.2 to g = f ′.

3.1 A modulus of continuity for Lipschitz functions along a hyperplane

Let U be an open subset of Rn+1, p0 ∈ U and consider the tangent space of U at p, which
can be identified with Rn+1. Consider now the real Grassmannian Gr(n, n + 1), that is, the
manifold of hyperplanes of Rn+1. We know that Gr(n, n + 1) ∼= Gr(1, n + 1) = Pn, that
is, we can identify unequivocally each hyperplane with their perpendicular lines, which are
elements of the projective space Pn.

Definition 3.4. Consider Bn+1(p, δ) ⊂ Rn+1 to be the open ball of center p and radius δ. Then,
for a function F : U → Rn+1 and every p ∈ U, v ∈ Pn and δ ∈ R+ we define the modulus of
continuity

ωF(p, v, δ) := sup
x,y∈Bn+1(p,δ)
x−p,y−p⊥v

x 6=y

‖F(x)− F(y)‖
‖x− y‖ ∈ [0,+∞].

We also define

ωF(p, v) := lim
δ→0

ωF(p, v, δ) = lim
δ→0

sup
x,y∈Bn+1(p,δ)
x−p,y−p⊥v

x 6=y

‖F(x)− F(y)‖
‖x− y‖

= lim
(x,y)→(p,p)
x−p,y−p⊥v

x 6=y

‖F(x)− F(y)‖
‖x− y‖ ∈ [0,+∞].

Remark 3.5. If ωF(p, v) < +∞, then there exist δ, ε ∈ R+ such that

‖F(x)− F(y)‖ ≤ (ωF(p, v) + ε)‖x− y‖, x, y ∈ Bn+1(p, δ), x− p, y− p ⊥ v.

Equivalently,

‖F(x + p)− F(y + p)‖ ≤ (ωF(p, v) + ε)‖x− y‖, x, y ∈ Bn+1(0, δ), x, y ⊥ v.

Let A be a orthonormal matrix such that its first column is parallel to v. In that case, since A
is orthogonal, x ⊥ e1 implies that Ax ⊥ v. Then,

‖F(Ax + p)− F(Ay + p)‖ ≤ (ωF(p, v) + ε)‖A(x− y)‖, x, y ∈ Bn+1(0, δ), x, y ⊥ e1.

That is, taking into account that ‖A‖ = 1,

‖F(A(0, x) + p)− F(A(0, y) + p)‖ ≤ (ωF(p, v) + ε)‖x− y‖, x, y ∈ Bn(0, δ).

Hence, if ϕ(x) = Ax + p then F ◦ ϕ is locally Lipschitz in an neighborhood of the origin when
the first variable is equal to zero.
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The following lemma illustrates the relation between the modulus of continuity ωF and
the partial derivatives of F.

Lemma 3.6. Assume F is continuously differentiable in a neighborhood N of p. Then

ωF(p, v) = sup
w⊥v
‖w‖=1

‖DwF(p)‖.

Proof. Since F′(z) is continuous at p, for {εn} → 0 there exists {δn} → 0 such that if z ∈
Bn+1(p, δn) and ‖w‖ = 1 then ‖F′(z)(w)‖ ≤ ‖F′(p)(w)‖+ εn. Hence, using the mean value
theorem,

sup
x,y∈Bn+1(p,δn)

x−p,y−p⊥v
x 6=y

‖F(x)− F(y)‖
‖x− y‖ ≤ sup

x,y,z∈Bn+1(p,δn)
x−p,y−p⊥v

x 6=y

‖F′(z)(x− y)‖
‖x− y‖ ≤ sup

z∈Bn+1(p,δn)
u∈Bn+1(0,2δn)

u⊥v
u 6=0

‖F′(z)(u)‖
‖u‖

= sup
z∈Bn+1(p,δn)

d∈(0,2δn)
w⊥v
‖w‖=1

‖F′(z)(dw)‖
‖dw‖ = sup

z∈Bn+1(p,δn)
w⊥v
‖w‖=1

‖F′(z)(w)‖

≤ sup
w⊥v
‖w‖=1

‖F′(p)(w)‖+ εn = sup
w⊥v
‖w‖=1

‖DwF(p)‖+ εn.

Then, taking the limit when n→ ∞, we obtain

ωF(p, v) ≤ sup
w⊥v
‖w‖=1

‖DwF(p)‖.

On the other hand, assume w ∈ Sn and w ⊥ v. Then F(p + tw) = F(p) + t(DwF(p) + g(t))
where g is continuous and limt→0 g(t) = 0. Therefore,

‖DwF(p)‖ =
∥∥∥∥F(p + tw)− F(p)

t
− g(t)

∥∥∥∥ ≤ sup
x,y∈Bn+1(p,t)
x−p,y−p⊥v

x 6=y

[
‖F(x)− F(y)‖
‖x− y‖ + |g(t)|

]
.

Taking the limit when t tends to zero, ‖DwF(p)‖ ≤ ωF(p, v), which ends the proof.

Remark 3.7. This definition of the modulus of continuity ωF(·, ·) is somewhat similar to the
definition of strong absolute differentiation which appears in [2, expression (1)]:

Let (X, dX) and (Y, dY) be two metric spaces and consider F : X → Y and p ∈ X. We say F is
strongly absolutely differentiable at p if and only if the following limit exists:

F|′|(p) := lim
(x,y)→(p,p)

x 6=y

dY(F(x), F(y))
dX(x, y)

.

However, notice that there some important differences between ωF(·, ·) and F|′| when X =

Rn and Y = Rm. First, since ω(·, ·) is defined with a supremum, ω(·, ·) is well defined in more
cases than F|′|. Also, in the definition of ωF(·, v), we are avoiding the direction of a certain
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vector v. This means that, while strong absolute differentiation implies continuity at the point
(see [2, Theorem 3.1]), ω(·, ·) does not.

Regarding the similarities, when the partial derivatives of F exist, F|′| = ‖∑n
k=1

∂F
∂xk
‖ (see

[2, Theorem 3.6]).

Example 3.8. Consider again F(x, y) := 1 + (y− x2)
2
3 and S = {(x, y) ∈ R2 : y = x2}. As was

stated in Example 2.5, we have that F|R2\S ∈ C∞(R2\S) and

∇F(x, y) =
2
3
(y− x2)−

1
3 (−2x, 1), for (x, y) ∈ R2\S.

Therefore, ω(p, v) < +∞ for every (p, v) ∈ (R2\S)×P1.
On the other hand, for p = (x0, x2

0) ∈ S and v = (v1 : v2) ∈ P1, if x = (x1, y1)− p ⊥ v then
x = λ(−v2, v1) + p for some λ ∈ R. Analogously, we take y = µ(−v2, v1) + p for some µ ∈ R.
Hence,

ωF(p, v) = lim
(x,y)→(p,p)
x−p,y−p⊥v

x 6=y

‖F(x)− F(y)‖
‖x− y‖ = lim

(λ,µ)→(0,0)
λ 6=µ

|F(λ(−v2, v1) + p)− F(µ(−v2, v1) + p)|
‖(λ− µ)(−v2, v1)‖

= lim
(λ,µ)→(0,0)

λ 6=µ

|[λ(2x0v2 + v1)− λ2v2
2]

2
3 − [µ(2x0v2 + v1)− µ2v2

2]
2
3 |

|λ− µ| .

We now can consider two cases: (v1 : v2) = (−2x0 : 1) and (v1 : v2) 6= (−2x0 : 1). In the first
case, taking into account that z2 + z + 1 ≥ 3/4 for every z ∈ R,

ωF(p, v) = lim
(λ,µ)→(0,0)

λ 6=µ

|(−λ2v2
2)

2
3 − (−µ2v2

2)
2
3 |

|λ− µ| = lim
(λ,µ)→(0,0)

λ 6=µ

|µ 4
3 − λ

4
3 ||v2|

2
3

|λ− µ|

= |v2|
2
3 lim
(λ,µ)→(0,0)

λ 6=µ

∣∣∣∣∣µ 1
3 +

λ

µ
2
3 + µ

1
3 λ

1
3 + λ

2
3

∣∣∣∣∣ = |v2|
2
3 lim
(λ,µ)→(0,0)

λ 6=µ

∣∣∣∣∣∣µ 1
3 + λ

1
3

1( µ
λ

) 2
3 +

( µ
λ

) 1
3 + 1

∣∣∣∣∣∣
≤ |v2|

2
3 lim
(λ,µ)→(0,0)

λ 6=µ

∣∣∣∣µ 1
3 +

4
3

λ
1
3

∣∣∣∣ = 0.

Observe that in this deduction we have assumed λ 6= 0. It is clear that, when λ = 0, the limit
is zero as well.

In the case (v1 : v2) 6= (−2x0 : 1) the quotient inside the limit is not bounded and
ωF(p, v) = +∞. Therefore,

ω−1
F ([0,+∞)) = (R2\S)×P1 ∪ {((x, x2), (−2x : 1)) ∈ R2 ×P1 : x ∈ R}.

4 How to get a Lipschitz condition along a foliation

The next lemma is a key ingredient in the main result of this section. It gives an alternative
expression to the rotation matrix provided by Rodrigues’ rotation formula and generalizes it
for n-dimensional vector spaces.
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Lemma 4.1 (Codesido’s rotation formula). Let x, y ∈ Rn+1 and define Ky
x ∈ Mn+1(R) as

Ky
x := yxT − xyT.

Now, let u, v ∈ Sn, v 6= −u, and define Rv
u ∈ Mn+1(R) as

Rv
u := Id+Kv

u +
1

1 + 〈u, v〉 (K
v
u)

2, (4.1)

where Id is the identity matrix of order n + 1.
Then, Rv

u ∈ SO(n + 1) and Rv
uu = v, that is, Rv

u is a rotation in Rn+1 that sends the unitary
vector u to v. Furthermore, the function R : {(u, v) ∈ Sn × Sn : u 6= −v} → SO(n + 1), defined by
R(u, v) := Rv

u, is analytic.

Proof. First, we show that Rv
u ∈ O(n + 1), that is, (Rv

u)
T = (Rv

u)
−1. Observe that (Kv

u)
T = −Kv

u
and so [(Kv

u)
2]T = (Kv

u)
2. That is, (Rv

u)
T = Id−Kv

u +
1

1+〈u,v〉 (K
v
u)

2. Therefore,

(Rv
u)

TRv
u =

[
Id−Kv

u +
1

1 + 〈u, v〉 (K
v
u)

2
] [

Id+Kv
u +

1
1 + 〈u, v〉 (K

v
u)

2
]

= Id+
1− 〈u, v〉
1 + 〈u, v〉 (K

v
u)

2 +
1

(1 + 〈u, v〉)2 (K
v
u)

4.

Now,

(Kv
u)

2 = (vuT − uvT)2 = vuTvuT + uvTuvT − vuTuvT − uvTvuT

= 〈u, v〉 (vuT + uvT)− (vvT + uuT),

(Kv
u)

4 =
[
〈u, v〉 (vuT + uvT)− (vvT + uuT)

]2
=
(
〈u, v〉2 − 1

)
(Kv

u)
2.

Therefore,

(Rv
u)

TRv
u = Id+

1− 〈u, v〉
1 + 〈u, v〉 (K

v
u)

2 − 1− 〈u, v〉2

(1 + 〈u, v〉)2 (K
v
u)

2 = Id .

Clearly, Rv
u is analytic on S = {(u, v) ∈ Sn× Sn : u 6= −v} and so is the determinant function.

Now, we are going to prove that S is a connected set: firstly, define the linear subspaces

V1 := {z ∈ R2n+2 : zi = −zn+1+i, i = 1, 2, . . . n + 1},

V2 := {z ∈ R2n+2 : zi = 0, i = 1, 2, . . . n + 1},

V3 := {z ∈ R2n+2 : zn+1+i = 0, i = 1, 2, . . . n + 1},

and note that codim(Vi) = n + 1 ≥ 2 for all i ∈ {1, 2, 3}. Then, it is known that X :=
Rn+1 \ (V1 ∪ V2 ∪ V3) is connected, see [11, Chapter V, Problem 5], and since the projection
π : X → S defined as

π(z) =
(

(z1, z2, . . . , zn+1)

‖(z1z2, . . . , zn+1)‖
,

(zn+2, zn+3, . . . , z2n+2)

‖(zn+2, zn+3, . . . , z2n+2)‖

)
,

is continuous and onto, we have that S is connected too. Therefore, |Rv
u| is continuous on the

connected set S and takes values in {−1, 1}, so |Rv
u| is constant. Since |Ru

u| = | Id | = 1 we
have that |Rv

u| = 1 on S, that is, Rv
u ∈ SO(n + 1).
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Last, observe that

Rv
uu = u + (vuT − uvT)u +

〈u, v〉 (vuT + uvT)u− (vvT + uuT)u
1 + 〈u, v〉

= u + v− uvTu +
〈u, v〉 (v + uvTu)− (vvTu + u)

1 + 〈u, v〉

= v +
〈u, v〉 (v + uvTu + u− uvTu)− (vvTu + u) + u− uvTu

1 + 〈u, v〉

= v +
〈u, v〉 (v + u)− vvTu− uvTu

1 + 〈u, v〉

= v +
〈u, v〉 (v + u)− 〈u, v〉 v− 〈u, v〉 u

1 + 〈u, v〉 = v.

Remark 4.2. For n = 1 the function R admits a continuous extension to S1 × S1. Indeed, let
us consider u, v ∈ S1, v 6= −u. Then u = (cos(α), sin(α)) and v = (cos(β), sin(β)) for some
α, β ∈ R, with β 6= α + (2k + 1)π, k ∈ Z. Now, a direct computation shows that

Rv
u =

(
cos(α− β) sin(α− β)

− sin(α− β) cos(α− β)

)
.

Therefore,

lim
v→−u

Rv
u = lim

β→α+π

(
cos(α− β) sin(α− β)

− sin(α− β) cos(α− β)

)
=

(
−1 0
0 −1

)
.

However, for n ≥ 2 the function R does not admit a continuous extension to Sn × Sn. To
see this, consider u ∈ Sn, w ∈ Rn+1, w ⊥ u, w 6= 0 and define v(w) = (w − u)/‖w − u‖.
Observe that v(w) ∈ Sn, v(w) 6= −u, lim

‖w‖→0
v(w) = −u and

Kv(w)
u =

1
‖w− u‖Kw

u .

Hence,

Rv(w)
u = Id+

1
‖w− u‖Kw

u +
‖w− u‖

‖w− u‖+ 〈u, w〉 − 1
1

‖w− u‖2 (K
w
u )

2

= Id+
1

‖w− u‖Kw
u +

−wwT − ‖w‖2uuT

‖w− u‖(‖w− u‖ − 1)
.

Now, consider w̄ ⊥ u with ‖w̄‖ = 1.Therefore, if it exists,

lim
v→−u

Rv
u = lim

t→0
Rv(tw̄)

u = Id+ lim
t→0

−t2(w̄w̄T − uuT)√
t2 + 1(

√
t2 + 1− 1)

= Id−2(w̄w̄T − uuT).

But in Rn+1, with n ≥ 2, there exist at least two independent unitary vectors w̄1 and w̄2 in 〈u〉⊥,
each of them leading to a different value of the right-hand side of the previous expression.
Hence, the lim

v→−u
Rv

u does not exist and thus R can not be continuously extended to Sn × Sn.

The following is the main result in this section and gives sufficient conditions for the
existence of a n-foliation which allows F to satisfy condition (C2) in Theorem 2.3.
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Theorem 4.3. Let U be an open subset of Rn+1, p0 ∈ U and F : U → Rn+1 continuous. Assume
there exists an open interval J with 0 ∈ J and a simple path γ = (γ1, γ2) ∈ C1(J, U ×Pn) such that
the following conditions hold:

(i) γ1(0) = p0.

(ii) There exist δ, M ∈ R+, such that ωF(γ1(t), γ2(t), δ) < M for all t ∈ J.

(iii) γ′1(0) 6⊥ γ2(0).

Then, there exists an open neighborhood of zero Û ⊂ U ⊂ Rn+1 such that Φ(s, y) is a local
n-foliation of Û. Moreover, F ◦Φ and (Φ′)−1 are Lipschitz in a neighborhood of zero when fixing the
first variable.

Proof. Assume, without loss of generality, that γ1 is parameterized by arc length, that is,
‖γ′1(t)‖ = 1 for all t ∈ J. Consider Sn as covering space of Pn with the usual projection
π : Sn → Pn. Take v0 ∈ π−1(γ2(0)), such that v0 6= −e1 where e1 = (1, 0, . . . , 0) ∈ Rn+1, and
consider the lift γ̃ = (γ1, γ̃2) : J → V × Sn of γ such that γ̃(0) = (p0, v0).

Now, γ̃2 is continuous, and 〈e1, γ̃2(0)〉 = 〈e1, v0〉 6= −1 so we can consider an open interval
J̃ ⊂ J where 〈e1, γ̃2(s)〉 6= −1 (that is, γ̃2(s) 6= −e1) for s ∈ J̃. Since γ̃ is differentiable and
‖γ̃2(s)‖ = 1 for every s ∈ J̃, we can consider the continuously differentiable function

J̃ SO(n + 1)

s A(s) := Rγ̃2(s)
e1

A

where Rv
u is defined as in Lemma 4.1. Observe that denoting by aj(s) the columns of A(s),

that is,
A(s) =

(
a1(s) a2(s) . . . an+1(s)

)
,

we have that a1(s) = γ̃2(s) and {a2(s), a3(s), . . . , an+1(s)} is an orthonormal basis of γ̃2(s)⊥,
(remember that A(s)e1 = γ̃2(s) and that A(s) is an orthogonal matrix).

Now, we can define the differentiable function Φ : J̃ ×Rn → Rn+1 given by

Φ(s, y) := γ1(s) + A(s)(0, y).

Claim 1. gs(y) := Φ(s, y) is a local n-foliation.
We easily compute

∂Φ
∂s

(s, y) = γ′1(s) + A′(s)(0, y),

∂Φ
∂y

(s, y) =
(

a2(s) a3(s) . . . an+1(s)
)

.

So
Φ′(0, 0) =

(
γ′1(0) a2(0) a3(0) . . . an+1(0)

)
,

and since, by (iii), γ′1(0) 6⊥ γ̃2(0) = a1(0) we have

JΦ(0, 0) = |Φ′(0, 0)| 6= 0.

Then, by the inverse function theorem there exist open sets Ĵ ⊂ J̃, V̂ ⊂ V and Û ⊂ U such
that Ĵ × V̂ contains the origin and Φ : Ĵ × V̂ → Û is a diffeomorphism. Moreover, by (i),
Φ(0, 0) = p0, so Φ(s, y), a local n-foliation of Û.
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Claim 2. F ◦Φ is Lipschitz continuous in a neighborhood of zero when fixing the first variable.
Notice that, by construction, Φ(s, y)− γ1(s) ∈ 〈γ̃2(s)〉⊥. Now, condition (ii) implies that

‖F ◦Φ(s, y1)− F ◦Φ(s, y2)‖ = ‖F(γ1(s) + A(s)(0, y1))− F(γ1(s) + A(s)(0, y2))‖
≤ ωF(γ1(s), γ2(s), δ)‖γ1(s) + A(s)(0, y1)− γ1(s) + A(s)(0, y2)‖
≤ M sup

s∈ Ĵ
‖A(s)‖‖y1 − y2‖

for every s ∈ Ĵ and y1, y2 ∈ Bn
(
0, δ

sups∈ Ĵ ‖A(s)‖
)
.

Claim 3. (Φ′)−1 is Lipschitz continuous in a neighborhood of zero when fixing the first variable.
Fix s ∈ Ĵ. We have that

Φ′(s, y) =
(

γ′1(s) + A′(s)(0, y) a2(s) a3(s) . . . an+1(s)
)

.

Then,
‖Φ′(s, x)−Φ′(s, y)‖ ≤ sup

s∈ Ĵ
‖A(s)‖‖x− y‖,

so Φ′ is Lipschitz continuous in a neighborhood of zero when fixing s.
On the other hand, (Φ′)−1 is a continuous function, therefore locally bounded. Hence, by

Corollary 3.3, (Φ′)−1 is Lipschitz continuous in a neighborhood of zero when fixing the first
variable.
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