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1 Introduction

Halanay [11] proved an upper estimation for the nonnegative solutions of an autonomous
continuous time delay differential inequality with maxima. This, so called Halanay inequality,
and its generalizations became a powerful tool in the stability theory of delay differential
equations (see for instance [5, 6, 9, 14, 18, 22]).

Halanay-type inequalities are also studied in the theory of difference inequalities and equa-
tions (see [2, 3, 10, 17, 20]), and in the theory of time scales (see [1, 4, 13, 15]).

Motivated by the original result of Halanay, the study of the asymptotic behavior of non-
negative solutions of the homogeneous Halanay-type inequality

y′ (t) ≤ −α (t) y (t) + β (t) sup
t−τ(t)≤s≤t

y (s) , t ≥ t0

has received a lot of attention by many authors (see [5, 6, 9, 12, 18, 19, 21, 23]).
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However, there are almost no papers (see [6] and [12]) which have been devoted to the
asymptotic analysis of the nonnegative solutions of the inhomogeneous Halanay-type differ-
ential inequality

x′ (t) ≤ −α (t) x (t) + β (t) sup
t−τ(t)≤s≤t

x (s) + $ (t) , t ≥ t0, (1.1)

its newly introduced counterpart

x′ (t) ≥ −α (t) x (t) + β (t) inf
t−τ(t)≤s≤t

x (s) + $ (t) , t ≥ t0, (1.2)

together with the inhomogeneous linear delay differential inequalities

x′ (t) ≤ −α (t) x (t) + β (t) x (t− τ (t)) + $ (t) , t ≥ t0, (1.3)

and

x′ (t) ≥ −α (t) x (t) + β (t) x (t− τ (t)) + $ (t) , t ≥ t0. (1.4)

In this paper we study these inequalities and the inhomogeneous linear delay differential
equation

x′ (t) = −α (t) x (t) + β (t) x (t− τ (t)) + $ (t) , t ≥ t0. (1.5)

under the following conditions:

(A1) t0 ∈ R is fixed, the functions α : [t0, ∞[ → R, β : [t0, ∞[ → R+ and $ : [t0, ∞[ → R+ are
locally integrable,

(A2) τ : [t0, ∞[→ R+ is measurable and it obeys the inequality

t0 − τ0 ≤ t− τ (t) , t ≥ t0

with a constant τ0 ≥ 0.

By R+ we mean the set of nonnegative numbers. A function p : [t0, ∞[ → R is called
locally integrable, if it is integrable on every compact subset of [t0, ∞[.

Our aim is to give sharp upper bounds for the nonnegative solutions of (1.1), (1.3) and (1.5),
and sharp lower bounds for the nonnegative solutions of (1.2), (1.4) and (1.5). We also obtain
information on the approach of the nonnegative solutions of (1.5) to a limit. It is worth to note
that in the literature and also in our paper just the nonnegative solutions of the Halanay-type
inequality (1.1) are investigated, because they give estimation for the norm of the solutions
of more complicated systems of delay differential equations. Our investigation is based on
the variation of constants formula and some results borrowed from our recent paper [9]. We
remind the reader that Lemma 5.3 plays an important role in the proofs. Our approach to the
problem is completely different from that of [6] and [12].

The paper is organized as follows. In Section 2 the main results are established. Section 3
is devoted to the discussion. Sections 4 and 5 are collections of some auxiliary results. Section
6 contains the proofs.
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2 Main results

We say that a function x : [t0 − τ0, ∞[ → R is a solution of the differential equation (1.5) or
the differential inequalities (1.1)–(1.4) if x is Borel measurable and bounded on [t0 − τ0, t0],
locally absolutely continuous on [t0, ∞[, and x satisfies (1.5) or (1.1)–(1.4) almost everywhere
on [t0, ∞[, respectively.

A function x : [t0 − τ0, ∞[ → R that is absolutely continuous on [t0, t] for every t ∈ [t0, ∞[
is said to be locally absolutely continuous on [t0, ∞[.

First we establish sharp conditions for the boundedness and the existence of the limit of
the nonnegative solutions of (1.5). There are only few results in this direction.

Theorem 2.1. Assume (A1) and (A2). Assume further that there exists t1 ≥ t0 for which

α (t)− β (t) > 0, t ≥ t1, (2.1)

and every nonnegative solution of the homogeneous differential equation

y′ (t) = −α (t) y (t) + β (t) y (t− τ (t)) , t ≥ t0 (2.2)

tends to zero at infinity. Then
(a) For every nonnegative solution x : [t0 − τ0, ∞[→ R+ of (1.5), we have

lim inf
t→∞

$ (t)
α (t)− β (t)

≤ lim inf
t→∞

x (t) ≤ lim sup
t→∞

x (t) ≤ lim sup
t→∞

$ (t)
α (t)− β (t)

. (2.3)

(b) If

lim
t→∞

$ (t)
α (t)− β (t)

∈ [0, ∞] (2.4)

exists, then for every nonnegative solution x : [t0 − τ0, ∞[→ R+ of (1.5), we have

lim
t→∞

x (t) = lim
t→∞

$ (t)
α (t)− β (t)

.

By using the following result from [9], we can obtain explicit conditions under which every
nonnegative solution of (2.2) tends to zero at infinity.

Theorem A (see [9, Theorem 2.8, Theorem 3.3 and Theorem 3.5]). Assume (A1), (A2) and

β (t) ≤ α (t) , t ≥ t0.

Consider the homogeneous Halanay-type differential inequality

y′ (t) ≤ −α (t) y (t) + β (t) sup
t−τ(t)≤s≤t

y (s) , t ≥ t0. (2.5)

Every solution of (2.5) tends to zero at infinity, if one of the following sets of conditions is satisfied:

(a) There exists a locally integrable function δ : [t0 − r, ∞[→ R such that

δ (t) + β (t) exp
(∫ t

t−τ(t)
δ (s) ds

)
≤ α (t) , t ≥ t0 (2.6)

and
lim
t→∞

∫ t

t0

δ (s) ds = ∞.
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(b)
lim
t→∞

(t− τ (t)) = ∞, (2.7)

and there exists a constant q ∈ ]0, 1[ such that

lim sup
t→∞

∫ t

t0

(qα (s)− β (s)) ds = ∞.

(c) (2.7) is satisfied,
0 ≤ β (t) ≤ qα (t) , t ≥ t0 with q ∈ ]0, 1[ , (2.8)

and ∫ ∞

t0

α (s) ds = ∞. (2.9)

Remark 2.2. Assume (A1), (A2) and

β (t) ≤ α (t) , t ≥ t0.

(a) By Theorem 2.8 in [9], every solution of (2.5) tends to zero at infinity if and only if the
condition (a) in Theorem A holds.

(b) Theorem 2.11 in [9] shows that every solution of (2.5) tends to zero exponentially at infinity
if and only if there exists a locally integrable function δ : [t0 − r, ∞[→ R such that (2.6) is
satisfied and

lim inf
t→∞

1
t− t0

∫ t

t0

δ (s) ds > 0.

It is worth to note that the estimates in Theorem 2.1 are sharp for some equations. This is
illustrated by the next example.

Example 2.3. Consider the inhomogeneous linear delay differential equation

x′ (t) = − (t + 1) x (t) +
1
2

x
(

t− π

2

)
+ sin (2t) + (t + 1)

(
1 + sin2 (t)

)
− 1

2
(
1 + cos2 (t)

)
, t ≥ 0.

(2.10)

In this case t0 = 0, and the functions τ, α, β, $ : [0, ∞[→ R are defined by

τ (t) =
π

2
, α (t) = t + 1, β (t) =

1
2

,

and
$ (t) = sin (2t) + (t + 1)

(
1 + sin2 (t)

)
− 1

2
(
1 + cos2 (t)

)
.

Some easy calculation shows that (A1), (A2), (2.1), and (2.7), (2.8), (2.9) are satisfied, and

lim inf
t→∞

$ (t)
α (t)− β (t)

= 1 < 2 = lim sup
t→∞

$ (t)
α (t)− β (t)

.

It is also easy to check that the nonnegative function

x :
[
−π

2
, ∞
[
→ R+, x (t) = 1 + sin2 (t)

is a solution of (2.10), and for this solution

lim inf
t→∞

x (t) = 1, lim sup
t→∞

x (t) = 2.
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In the following result we investigate the asymptotic behavior of the nonnegative solutions
of (1.1)–(1.4).

Theorem 2.4. Assume (A1) and (A2). Assume further that there exists t1 ≥ t0 for which

α (t)− β (t) > 0, t ≥ t1,

and every nonnegative solution of the Halanay-type inequality

y′ (t) ≤ −α (t) y (t) + β (t) sup
t−τ(t)≤s≤t

y (s) , t ≥ t0 (2.11)

tends to zero at infinity. Then

(a) For every nonnegative solution x : [t0 − τ0, ∞[→ R+ of either (1.1) or (1.3), we have

lim sup
t→∞

x (t) ≤ lim sup
t→∞

$ (t)
α (t)− β (t)

. (2.12)

(b) For every nonnegative solution x : [t0 − τ0, ∞[→ R+ of either (1.2) or (1.4), we have

lim inf
t→∞

x (t) ≥ lim inf
t→∞

$ (t)
α (t)− β (t)

.

By using Theorem A, we can also give explicit conditions under which every nonnegative
solution of (2.11) tends to zero at infinity.

3 Discussion of the results

First, we deal with the necessity of the condition (2.4) in Theorem (2.1) (b).
The following lemma has a preparatory character.

Lemma 3.1. Assume that (A1), (A2) and conditions (2.1), (2.7), (2.8) and (2.9) are satisfied.
If x : [t0 − τ0, ∞[→ R+ is a nonnegative solution of (1.5) such that

x (∞) := lim
t→∞

x (t) ∈ [0, ∞[ (3.1)

exists, then

x (∞) = lim
t→∞

$ (t)− x′ (t)
α (t)− β (t)

.

Proof. It follows from (2.1) and (2.8) that

β (t)
α (t)− β (t)

≤ β (t)
(1− q) α (t)

≤ q
1− q

, t ≥ t1. (3.2)

By rearranging the equation (1.5), we have

$ (t)− x′ (t)
α (t)− β (t)

= x (t) +
β (t)

α (t)− β (t)
(x (t)− x (t− τ (t))) , t ≥ t0.

This implies the result by using (3.2), (2.7) and (3.1).
The proof is complete.
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Remark 3.2. Assume that the conditions of the previous lemma are satisfied.
If

lim
t→∞

$ (t)
α (t)− β (t)

∈ [0, ∞[ (3.3)

exists, then Theorem 2.1 (b), Theorem A (c) and Lemma 3.1 imply that for every nonnegative
solution x : [t0 − τ0, ∞[→ R+ of (1.5) we have

lim
t→∞

x (t) = lim
t→∞

$ (t)
α (t)− β (t)

and lim
t→∞

x′ (t)
α (t)− β (t)

= 0.

Conversely, if there exists a nonnegative solution x0 : [t0 − τ0, ∞[ → R+ of (1.5) such that
limt→∞ x0 (t) exists and finite, and also

lim
t→∞

x′0 (t)
α (t)− β (t)

= 0,

then by Lemma 3.1, (3.3) is satisfied.

Lemma 3.1 suggests that though the existence of the limit

lim
t→∞

$ (t)
α (t)− β (t)

ensures the existence of x (∞) in Theorem 2.1 (b), but this condition is not necessary in general.
The next example illustrates this phenomenon.

Example 3.3. Let h : R → R be a continuous function with support [0, 1] such that the range
of h is [0, 1], and

∫ 1
0 h = 1

2 . Define the functions y, x, $ : [0, ∞[→ R by

y (t) :=
∞

∑
n=0

h
(
(t− 2n) 22n)− ∞

∑
n=0

h
(
(t− (2n + 1)) 22n+1

)
,

x (t) := 1 +
∫ t

0
y (s) ds

and
$ := x + y.

Then y is well defined, since at most one of the summands different from zero at every
t ∈ [0, ∞[. The function y is obviously infinitely differentiable, and

lim sup
t→∞

y (t) = 1, lim inf
t→∞

y (t) = −1.

It is also easy to check that y is integrable and

∫ ∞

0
y (s) ds =

1
2

∞

∑
n=0

1
22n −

1
2

∞

∑
n=0

1
22n+1 =

1
3

.

It follows from the previous properties of y that the function x is positive, differentiable,
and

lim
t→∞

x (t) =
4
3

.
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Plainly we get that the function $ is positive, continuous, and

lim sup
t→∞

$ (t) =
7
3

, lim inf
t→∞

$ (t) =
1
3

.

We can see that x is a positive solution of the differential equation

x′ (t) = −x (t) + $ (t) , t ≥ 0 (3.4)

with finite limit, and every solution of (3.4) tends to the same limit. Equation (3.4) has the
form (1.5) with α, β, τ : [0, ∞[→ R,

α (t) = 1, β (t) = τ (t) = 0,

but

lim sup
t→∞

$ (t)
α (t)− β (t)

=
7
3

, lim inf
t→∞

$ (t)
α (t)− β (t)

=
1
3

.

Remark 3.4. Assume 0 < K1 < K2 < ∞, and choose L ∈ [K1, K2]. By using the method in the
previous example, we can construct an equation of the form (1.5) such that

lim sup
t→∞

$ (t)
α (t)− β (t)

= K2, lim inf
t→∞

$ (t)
α (t)− β (t)

= K1,

and every positive solution of the constructed equation tends to L.

Now we compare our estimates with some known ones.
The paper of Backer [6] considers inhomogeneous Halanay-type inequalities (1.1), among

others. Corollary 3.4 there implies the following statement.

Proposition B. Consider the inhomogeneous Halanay-type differential inequality (1.1), and suppose
that

α (t) ≥ α∗ > 0, β (t) ≥ β∗ ≥ 0, t ≥ t0,

where α, β and $ are bounded and continuous on [t0, ∞[,

t− τ (t) ≤ t, t∗ = inf
t∈[t0,∞[

(t− τ (t)) and lim
t→∞

(t− τ (t)) = ∞

and x is nonnegative, bounded and continuous on [t∗, ∞[. Suppose also that there exists a value ς > 0
such that

0 < ς ≤ α (t)− β (t) , t ≥ t0.

Then every nonnegative solution of the homogeneous Halanay-type inequality (2.11) tends to zero
at infinity, and

lim sup
t→∞

x (t) ≤ sup
t∈[t0,∞[

$ (t)
α (t)− β (t)

. (3.5)

An interesting result was proved by Hien, Phat and Trinh for the inhomogeneous Halanay-
type differential inequality (1.1) (see Theorem 3.2 in [12]), which gives that
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Proposition C. Consider the inhomogeneous Halanay-type differential inequality (1.1), and suppose
that

α (t) > 0, β (t) ≥ 0, $ (t) ≥ 0, t ≥ t0, (3.6)

where α, β and $ are continuous on [t0, ∞[,

t− τ (t) ≤ t, and lim
t→∞

(t− τ (t)) = ∞

and x is nonnegative and continuous on ]−∞, ∞[, and bounded on ]−∞, t0].
If

lim
t→∞

∫ t

t0

α (s) ds = ∞,

M := sup
t≥t0

∫ t

max(t−τ(t),t0)
α (s) ds < ∞.

and
sup
t≥t0

β (t)
α (t)

< 1 (3.7)

hold, then for every nonnegative solution of (1.1) we have

lim sup
t→∞

x (t) ≤ $α

1− δ0
∞

, (3.8)

where δ0
∞ = supt≥t0

β(t)
α(t) and $α = supt≥t0

$(t)
α(t) .

The next proposition and example show that our estimate (2.12) is much better than either
of the estimates (3.5) and (3.8) in general. It is also true that the conditions in Theorem 2.4 are
less restrictive than the conditions in either Proposition B or Proposition C.

Proposition 3.5. If (A1), (3.6) and (3.7) are satisfied, then

lim sup
t→∞

$ (t)
α (t)− β (t)

≤ sup
t∈[t0,∞[

$ (t)
α (t)− β (t)

≤ $α

1− δ0
∞

.

Proof. For all t1 ≥ t0 we have

sup
t≥t1

$ (t)
α (t)− β (t)

= sup
t≥t1

$(t)
α(t)

1− β(t)
α(t)

≤
sup
t≥t1

$(t)
α(t)

inf
t≥t1

(
1− β(t)

α(t)

) =

sup
t≥t1

$(t)
α(t)

1− sup
t≥t1

β(t)
α(t)

≤ $α

1− δ0
∞

,

which implies the result.
The proof is complete.

Example 3.6. Let K > 0 be fixed, and consider the Halanay-type differential inequality

x′ (t) ≤ −1
t

x (t) +
1
2t

sup
t−τ(t)≤s≤t

x (s) +
K
t2 , t ≥ 1. (3.9)

Here, t0 := 1, $ (t) := K
t2 , α (t) := 1

t , β (t) := 1
2t (t ≥ 1), and τ : [t0, ∞[→ R+ is measurable

satisfying the inequality
1− τ0 ≤ t− τ (t) , t ≥ 1
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with a constant τ0 ≥ 0 and
lim
t→∞

(t− τ (t)) = ∞.

Since

lim
t→∞

$ (t)
α (t)− β (t)

= lim
t→∞

K
t2

1
t −

1
2t

= lim
t→∞

2K
t

= 0,

our result Theorem 2.4 (a) yields that every nonnegative solution of (3.9) tends to zero at
infinity.

Because

sup
t∈[1,∞[

$ (t)
α (t)− β (t)

=
$α

1− δ0
∞

=

sup
t≥1

$(t)
α(t)

1− sup
t≥1

β(t)
α(t)

=

sup
t≥1

K
t

1− sup
t≥1

1
2

= 2K,

the results Proposition B and C give estimates that all nonnegative solutions of (3.9) are only
bounded by a positive constant.

4 General framework

Assume (A1) and (A2), and let ϕ : [t0 − τ0, t0]→ R be Borel measurable and bounded. Denote
y (ϕ) the unique solution of the initial value problem

y′ (t) = −α (t) y (t) + β (t) y (t− τ (t)) , t ≥ t0,

y (t) = ϕ (t) , t0 − τ0 ≤ t ≤ t0

}
, (4.1)

and v : [t0 − τ0, ∞[ × [t0, ∞[ → R the so called fundamental solution of the homogeneous
linear delay differential equation in (4.1), that is

∂v (t, s)
∂t

= −α (t) v (t, s) + β (t) v (t− τ (t) , s) , t0 ≤ s ≤ t

v (t, s) =

{
1, t = s

0, t < s

 .

The initial value problem

x′ (t) = −α (t) x (t) + β (t) x (t− τ (t)) + $ (t) , t ≥ t0,

x (t) = ϕ (t) , t0 − τ0 ≤ t ≤ t0

}
(4.2)

has also a unique solution x (ϕ). It is known that this solution can be obtained by

x (ϕ) (t) = y (ϕ) (t) +
∫ t

t0

v (t, s) $ (s) ds, t ≥ t0. (4.3)

Assume further that ϕ and $ are nonnegative functions. Then

(a) if ϕ (t0) > 0, then x (ϕ) (t) > 0 for every t ∈ [t0, ∞[;

(b) if ϕ (t0) = 0, then x (t) ≥ 0 for every t ∈ [t0, T[;
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(c) if ψ : [t0 − τ0, t0] → R is Borel measurable, bounded, and ψ (t) ≥ ϕ (t) ≥ 0
(t0 − τ0 ≤ t ≤ t0), then

x (ψ) (t) ≥ x (ϕ) (t) , t ≥ t0.

The following result is analogous to Theorem 2.2 in [9]. It shows that there is a close
connection between inequalities (1.1) and (1.3).

Theorem 4.1. Assume (A1) and (A2).

(a) If η : [t0, ∞[→ R+ is a measurable function such that

η (t) ≤ τ (t) , t ≥ t0, (4.4)

then every solution of

x′ (t) ≤ −α (t) x (t) + β (t) x (t− η (t)) + $ (t) , t ≥ t0, (4.5)

is a solution of (1.1) too.

(b) Conversely, if the function x : [t0 − τ0, ∞[ → R+ is a solution of (1.1), then there exist a mea-
surable function η : [t0, ∞[ → R+ depending on x such that η satisfies (4.4), and there exists a
solution x̂ : [t0 − τ0, ∞[→ R+ of (4.5) such that

x̂ (t) = x (t) , t ≥ t0 and sup
t0−τ0≤s≤t0

x̂ (s) = sup
t0−τ0≤s≤t0

x (s) . (4.6)

The next result explains the correspondence between inequalities (1.2) and (1.4).

Theorem 4.2. Assume (A1) and (A2).

(a) If η : [t0, ∞[→ R+ is a measurable function such that (4.4) is satisfied, then every solution of

x′ (t) ≥ −α (t) x (t) + β (t) x (t− η (t)) + $ (t) , t ≥ t0, (4.7)

is a solution of (1.2) too.

(b) Conversely, if the function x : [t0 − τ0, ∞[ → R+ is a solution of (1.2), then there exist a mea-
surable function η : [t0, ∞[ → R+ depending on x such that η satisfies (4.4), and there exists a
solution x̂ : [t0 − τ0, ∞[→ R+ of (4.7) such that

x̂ (t) = x (t) , t ≥ t0 and inf
t0−τ0≤s≤t0

x̂ (s) = inf
t0−τ0≤s≤t0

x (s) . (4.8)

5 Auxiliary results

The next two results are slight modifications of Lemma 5.3 and Lemma 5.4 in [9], respectively.

Lemma 5.1. Let f : R→ R be continuous, and define the function χ : {(t, s) ∈ R2 | s ≤ t} → R by

χ (t, s) = min
{

u ∈ [s, t] | f (u) = min
s≤v≤t

f (v)
}

. (5.1)

Then χ is lower semi-continuous.
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Proof. For every (t, s) ∈ R2 with s ≤ t we have

χ (t, s) = min
{

u ∈ [s, t] | − f (u) = max
s≤v≤t

(− f (v))
}

,

and hence Lemma 5.3 in [9] can be applied to the function − f .
The proof is complete.

Lemma 5.2. Let t0 ∈ R and τ0 ≥ 0 be fixed, and f : [t0 − τ0, ∞[ → R be continuous. Assume
τ : [t0, ∞[→ R+ is measurable such that

t0 − τ0 ≤ t− τ (t) , t ≥ t0.

(a) Then the function

ϑ : [t0, ∞[→ R, ϑ (t) = min
{

u ∈ [t− τ (t) , t] | f (u) = min
t−τ(t)≤v≤t

f (v)
}

is measurable.

(b) Define the function
η : [t0, ∞[→ R, η (t) = t− ϑ (t) .

Then η is measurable and t− τ (t) ≤ t− η (t) ≤ t (t ≥ t0).

Proof. We can copy the proof of Lemma 5.4 in [9], by using Lemma 5.1.

The following lemma is needed in the proofs of the main results.

Lemma 5.3. Assume (A1) and (A2). Assume further that every nonnegative solution of the differential
equation

x′ (t) = −α (t) x (t) + β (t) x (t− τ (t)) , t ≥ t0 (5.2)

tends to zero at infinity.
If T ≥ t0, then

(a) Every nonnegative solution of the differential equation

x′ (t) = −α (t) x (t) + β (t) x (t− τ (t)) , t ≥ T (5.3)

tends to zero at infinity too.

(b) If ϑ : [t0, ∞[→ R is locally integrable, then

lim
t→∞

∫ T

t0

v (t, s) ϑ (s) ds = 0. (5.4)

(c)

lim
t→∞

∫ t

T
v (t, s) (α (s)− β (s)) ds = 1. (5.5)
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Proof. (a) Let xT : [t0 − τ0, ∞[→ R be a nonnegative solution of (5.3), and let x : [t0 − τ0, ∞[→
R be the solution of the initial value problem

x′ (t) = −α (t) x (t) + β (t) x (t− τ (t)) , t ≥ t0,

x (t) = 1, t0 − τ0 ≤ t ≤ t0

}
.

Then x (t) > 0 for all t ≥ t0 − τ0, and there exists c > 0 such that

x (t) ≥ c, t0 − τ0 ≤ t ≤ T.

This inequality and the fact that xT is nonnegative and bounded on [t0 − τ0, T] mean that
there exists k > 0 such that

xT (t) ≤ kx (t) , t0 − τ0 ≤ t ≤ T. (5.6)

Since equations (5.2) and (5.3) are homogeneous, kx is a solution of both equations. There-
fore, recalling that every nonnegative solution of (5.2) tends to zero at infinity, we have

lim
t→∞

kx (t) = 0. (5.7)

From (5.6) it follows that

xT (t) ≤ kx (t) , t0 − τ0 ≤ t ≤ ∞. (5.8)

Now, (5.7) and (5.8) imply the result.
(b) Let ϑ̂ : [t0, ∞[→ R be defined by

ϑ̂ (t) =

{
ϑ (t) , t0 ≤ t < T,

0, t ≥ T,

and let z : [t0 − τ0, ∞[→ R be given by

z (t) =


0, t0 − τ0 ≤ t ≤ t0,∫ t

t0

v (t, s) ϑ̂ (s) ds, t ≥ t0.

By using (4.3), we have that z is the solution of the initial value problem

x′ (t) = −α (t) x (t) + β (t) x (t− η (t)) + ϑ̂ (t) , t ≥ t0,

x (t) = 0, t0 − τ0 ≤ t ≤ t0

}
.

The definition of ϑ̂ shows that z is a solution of the differential equation (5.3), and therefore
by (a),

lim
t→∞

z (t) = lim
t→∞

∫ T

t0

v (t, s) ϑ (s) ds = 0

which gives (5.4).
(c) It is obvious that the function x : [t0 − τ0, ∞[ → R, x (t) = 1 is a solution of the initial

value problem

x′ (t) = −α (t) x (t) + β (t) x (t− η (t)) + α (t)− β (t) , t ≥ t0,

x (t) = 1, t0 − τ0 ≤ t ≤ t0

}
,
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and hence by using (4.3), and the condition that every nonnegative solution of (5.2) tends to
zero at infinity, we obtain

lim
t→∞

∫ t

t0

v (t, s) (α (s)− β (s)) ds = 1. (5.9)

Since∫ t

T
v (t, s) (α (s)− β (s)) ds =

∫ t

t0

v (t, s) (α (s)− β (s)) ds−
∫ T

t0

v (t, s) (α (s)− β (s)) ds, t ≥ T,

the result follows from (5.9) and (5.4).
The proof is complete.

6 Proofs

Proof of Theorem 4.1. We can copy the proof of Theorem 2.2 in [9].

Proof of Theorem 4.2. (a) Let x : [t0 − τ0, ∞[ → R be a solution of (4.7). Since β is nonnegative
and (4.4) is satisfied,

x′ (t) ≥ −α (t) x (t) + β (t) x (t− η (t)) + $ (t)

≥ −α (t) x (t) + β (t) inf
t−η(t)≤s≤t

x (s) + $ (t)

≥ −α (t) x (t) + β (t) inf
t−τ(t)≤s≤t

x (s) + $ (t) , a.e. on [t0, ∞[ ,

and therefore x is also a solution of (1.2).
(b) Suppose x : [t0 − τ0, ∞[→ R+ is a solution of (1.2).
Let m := inft0−τ0≤s≤t0 x (s), define the number

t1 :=

{
∞, if x (t) > m, for all t ≥ t0,

min {t ≥ t0 | x (t) = m} , otherwise,

and introduce the measurable sets

A1 := {t ∈ [t0, t1[ | t− τ (t) < t0} ,

A2 := {t ∈ [t1, ∞[ | t− τ (t) < t0}
and

B := [t0, ∞[ \ (A1 ∪ A2) .

If τ0 > 0, choose a strictly increasing sequence (an)n≥1 from [t0 − τ0, t0[ such that a1 :=
t0 − τ0 and an → t0, and define

x̂ : [t0 − τ0, ∞[→ R+, x̂ (t) =

{
m, if t = an, n ≥ 1,

x (t) , otherwise.

If τ0 = 0, then t1 = t0, A1 = A2 = ∅ and B = [t0, ∞[, and let x̂ := x.
Since β is nonnegative, and

inf
t−τ(t)≤s≤t

x (s) ≥ inf
t−τ(t)≤s≤t

x̂ (s) , t ≥ t0,
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x̂ is also a solution of (1.2). It is easy to check that

inf
t−τ(t)≤s≤t

x̂ (s) =


m, if t ∈ A1,

min
t0≤s≤t

x (s) , if t ∈ A2,

min
t−τ(t)≤s≤t

x (s) , if t ∈ B.

Introduce the functions ϑ : [t0, ∞[→ R,

ϑ (t) =



an+1, if t ∈ A1 and t− τ(t)∈ [an, an+1[ ,

min
{

u ∈ [t0, t] | x (u) = min
t0≤s≤t

x (s)
}

, if t ∈ A2

min
{

u ∈ [t− τ (t) , t] | x (u) = min
t−τ(t)≤s≤t

x (s)
}

, if t ∈ B,

and
η : [t0, ∞[→ R+, η (t) = t− ϑ (t) .

It is obvious that η is measurable on A1, and it satisfies (4.4). As we have seen in
Lemma 5.2, the function η is measurable on A2 ∪ B and

t− τ (t) ≤ t− η (t) ≤ t (t ≥ t0) ,

and hence (4.4) holds.
It follows from the definition of η that x̂ is a solution of (4.5) with this η.
The proof is complete.

Proof of Theorem 2.1. Fix a nonnegative solution x : [t0 − τ0, ∞[→ R+ of (1.5).
(a) We can obviously suppose that

lim sup
t→∞

$ (t)
α (t)− β (t)

< ∞. (6.1)

According to (2.1) and (6.1), for every c > lim supt→∞
$(t)

α(t)−β(t) there exists T > max (t0, t1)
(depends on c) such that

$ (t)
α (t)− β (t)

≤ c, t ≥ T. (6.2)

If y (x) : [t0 − τ0, ∞[→ R+ is the solution of the initial value problem

y′ (t) = −α (t) y (t) + β (t) y (t− τ (t)) , t ≥ t0,

y (t) = x (t) , t0 − τ0 ≤ t ≤ t0,

then by using (4.3), we have

x (t) = y (x) (t) +
∫ t

t0

v (t, s) $ (s) ds, t ≥ t0. (6.3)

By the assumption,
lim
t→∞

y (x) (t) = 0,
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and hence (6.3) shows that

lim sup
t→∞

x (t) = lim sup
t→∞

∫ t

t0

v (t, s) $ (s) ds. (6.4)

By using Lemma 5.3 (b) with ϑ = $, we have from (6.5) that

lim sup
t→∞

x (t) = lim sup
t→∞

∫ t

T
v (t, s) $ (s) ds. (6.5)

By (6.2) and (2.1),∫ t

T
v (t, s) $ (s) ds =

∫ t

T
v (t, s) (α (s)− β (s))

$ (s)
α (s)− β (s)

ds

≤ c
∫ t

T
v (t, s) (α (s)− β (s)) ds, t ≥ T,

and therefore Lemma 5.3 (c) yields that

lim sup
t→∞

∫ t

T
v (t, s) $ (s) ds ≤ c lim sup

t→∞

∫ t

T
v (t, s) (α (s)− β (s)) ds = c. (6.6)

Combining this with (6.5), the third inequality in (2.3) follows.
Now we continue the proof of the first inequality in (2.3).
If

lim inf
t→∞

$ (t)
α (t)− β (t)

= 0,

then nothing to prove, so we can suppose that

lim inf
t→∞

$ (t)
α (t)− β (t)

> 0. (6.7)

We can follow as in (a).
It comes from (2.1) and (6.7) that for every 0 < c < lim inft→∞

$(t)
α(t)−β(t) there exists T >

max (t0, t1) (depends on c) such that

$ (t)
α (t)− β (t)

≥ c, t ≥ T. (6.8)

The formula (6.5) can be written now as

lim inf
t→∞

x (t) = lim inf
t→∞

∫ t

T
v (t, s) $ (s) ds. (6.9)

By using (6.8) and Lemma 5.3 (b), we have

lim inf
t→∞

∫ t

T
v (t, s) $ (s) ds = lim inf

t→∞

∫ t

T
v (t, s) (α (s)− β (s))

$ (s)
α (s)− β (s)

ds

≥ c lim inf
t→∞

∫ t

T
v (t, s) (α (s)− β (s)) ds = c.

This gives the result by (6.9).
(b) It is an easy consequence of (a).
The proof is complete.
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Proof of Theorem 2.4. (a) Since every solution of (1.3) is also a solution of (1.1), it is enough to
consider (1.1).

Fix a nonnegative solution x : [t0 − τ0, ∞[→ R+ of (1.1).
By Theorem 4.1 (b), there exists a measurable function η : [t0, ∞[ → R+ satisfying (4.4),

and a nonnegative solution x̂ : [t0 − τ0, ∞[ → R+ of (4.5) such that (4.6) holds. It follows that
there exists a locally integrable function ϑ : [t0, ∞[→ R such that

ϑ (t) ≤ $ (t) , t ≥ t0 (6.10)

and
x̂′ (t) = −α (t) x (t) + β (t) x̂ (t− η (t)) + ϑ (t) , a.e. on [t0, ∞[ ,

which shows that x̂ is a nonnegative solution of the differential equation

x′ (t) = −α (t) x (t) + β (t) x (t− η (t)) + ϑ (t) , t ≥ t0. (6.11)

Since every nonnegative solution of the differential equation

y′ (t) = −α (t) y (t) + β (t) y (t− η (t)) , t ≥ t0 (6.12)

is a solution of (2.11), we have that every nonnegative solution of (6.12) tends to zero at infinity.
By (4.3) and (4.6),

x (t) = y (x) (t) +
∫ t

t0

vη (t, s) ϑ (s) ds, t ≥ t0,

where vη is the fundamental solution of (6.12) and y (x) is the solution of (6.12) with the initial
value

y (x) (t) = x (t) , t0 − τ0 ≤ t ≤ t0.

On the other hand, (6.10) and the nonnegativity of vη imply

x (t) ≤ y (x) (t) +
∫ t

t0

vη (t, s) $ (s) ds, t ≥ t0,

and therefore

lim sup
t→∞

x (t) ≤ lim sup
t→∞

∫ t

t0

vη (t, s) $ (s) ds.

Now, we can proceed as between (6.4) and (6.6) in the proof of Theorem 2.1.
(b) We can prove similarly to (a), by using Theorem 4.2 instead of Theorem 4.1.
The proof is complete.
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18 I. Győri and L. Horváth

[14] A. Ivanov, E. Liz, S. Trofimchuk, Halanay inequality, Yorke 3/2 stability criterion, and
differential equations with maxima, Tokohu Math. J. 54(2002), 277–295. MR1904953

[15] E. Kaufmann, Y. N. Raffoul, Periodicity and stability in neutral nonlinear dynamic
equations with functional delay on a time scale, Electron. J. Differential Equations 2007,
No. 27, 1–12. MR2299581

[16] Y. Li, Y. Kuang, Periodic solutions of periodic delay Lotka–Volterra equations and sys-
tems, J. Math. Anal. Appl. 255(2001), No. 1, 260–280. https://doi.org/10.1006/jmaa.
2000.7248; MR1813821

[17] E. Liz, J. B. Ferreiro, A note on the global stability of generalized difference equations,
Appl. Math. Lett. 15(2002), 655–659. https://doi.org/10.1016/S0893-9659(02)00024-1;
MR1913266

[18] S. Mohamad, K. Gopalsamy, Continuous and discrete Halanay-type inequalities, Bull.
Austral Math. Soc. 61(2000), 371–385. https://doi.org/10.1017/S0004972700022413;
MR1762635

[19] B. Ou, B. Jia, L. Erbe, An extended Halanay inequality of integral type on time scales,
Electron. J. Qual. Theory Differ. Equ. 2015, No. 38, 1–11. https://doi.org/10.14232/
ejqtde.2015.1.38; MR3371441

[20] S. Udpin, P. Niamsup, New discrete type inequalities and global stability of nonlinear
difference equations, Appl. Math. Lett. 22(2009), 856–859. https://doi.org/10.1016/j.
aml.2008.07.011; MR2523594

[21] W. Wang, A generalized Halanay inequality for stability of nonlinear neutral functional
differential equations, J. Inequal. Appl. 2010, Art. ID 475019, 16 pp. https://doi.org/10.
1155/2010/475019; MR2678909

[22] L. Wen, Y. Yu, W. Wang, Generalized Halanay inequalities for dissipativity of Volterra
functional differential equations, J. Math. Anal. Appl. 347(2008), 169–178. https://doi.
org/10.1016/j.jmaa.2008.05.007; MR2433834

[23] D. Xu, Z. Yang, Impulsive delay differential inequality and stability of neural networks,
J. Math. Anal. Appl. 305(2005), 107–120. https://doi.org/10.1016/j.jmaa.2004.10.040;
MR2128115

https://www.ams.org/mathscinet-getitem?mr=1904953
https://www.ams.org/mathscinet-getitem?mr=2299581
https://doi.org/10.1006/jmaa.2000.7248
https://doi.org/10.1006/jmaa.2000.7248
https://www.ams.org/mathscinet-getitem?mr=1813821
https://doi.org/10.1016/S0893-9659(02)00024-1
https://www.ams.org/mathscinet-getitem?mr=1913266
https://doi.org/10.1017/S0004972700022413
https://www.ams.org/mathscinet-getitem?mr=1762635
https://doi.org/10.14232/ejqtde.2015.1.38
https://doi.org/10.14232/ejqtde.2015.1.38
https://www.ams.org/mathscinet-getitem?mr=3371441
https://doi.org/10.1016/j.aml.2008.07.011
https://doi.org/10.1016/j.aml.2008.07.011
https://www.ams.org/mathscinet-getitem?mr=2523594
https://doi.org/10.1155/2010/475019
https://doi.org/10.1155/2010/475019
https://www.ams.org/mathscinet-getitem?mr=2678909
https://doi.org/10.1016/j.jmaa.2008.05.007
https://doi.org/10.1016/j.jmaa.2008.05.007
https://www.ams.org/mathscinet-getitem?mr=2433834
https://doi.org/10.1016/j.jmaa.2004.10.040
https://www.ams.org/mathscinet-getitem?mr=2128115

	Introduction
	Main results
	Discussion of the results
	General framework
	Auxiliary results
	Proofs

