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Abstract: Mechanical models of balancing a ball rolling on a see-saw (“ball and beam” system)
and balancing an inverted pendulum attached to a cart rolling on a see-saw (“pendulum-
cart and beam” system) are analyzed. A delayed proportional-derivative controller is modeled
with four different actuation schemes. The angular position, the angular velocity, the angular
acceleration of the see-saw and the torque acting on the see-saw are considered to be the variables
manipulated by the control system. The corresponding mathematical models take the form of
retarded, neutral and advanced functional differential equations. Stabilizability analysis shows
that the ball and beam system can only be stabilized in the presence of feedback delay if the
manipulated variable is the angular position of the see-saw or the torque acting on the see-saw.
The pendulum-cart and beam system can only be stabilized in the presence of feedback delay
if the manipulated variable is the torque acting on the see-saw.
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1. INTRODUCTION

Stabilization of systems around their unstable equilibria
by means of feedback control is a common task in many
branches of modern sciences. Engineering structures are
often operated around an unstable position for the simple
cause that it is more efficient to initiate and perform
sudden motions from these positions. The corresponding
control process typically involves a feedback delay, which
is originated from signal processing, information trans-
mission and actuation lags. Many human activities can
be associated with a similar feedback mechanism, one
might think of simple quiet standing, gait or running
where the feedback delay is the reaction time. Human
balancing tasks, such as stick balancing on a fingertip or
on a pingpong racket Cabrera and Milton (2002); Mehta
and Schaal (2002); Milton et al. (2016); Yoshikawa et al.
(2016), quiet standing Maurer and Peterka (2005); Suzuki
et al. (2012); Hwang et al. (2016), standing on pinned
or rolling balance boards Chagdes et al. (2016); Molnar
et al. (2017), are therefore often analyzed via simplified
mechanical and mathematical models.

In this paper, two balancing tasks are investigated: (1)
balancing a rolling ball on a see-saw; and (2) balancing
a pendulum-cart system on a see-saw. Different control
actuation concepts are modeled with and without feedback
delay, which gives different types of governing equations,
namely, retarded functional differential equation (RFDE),
neutral functional differential equation (NFDE) and ad-
vanced functional differential equations (AFDEs). The
different models are compared with respect to their sta-
bilizability properties.

2. MECHANICAL MODELS

Mechanical models of balancing a ball rolling on a see-
saw, also called ball and beam system and balancing an
inverted pendulum attached to a cart rolling on a see-saw,
called pendulum-cart and ball system are shown in Figs. 1
and 2. The ball and beam system (model 1) is a two DoF
system with position x of the ball and angle ψ of the see-
saw being the general coordinates. The pendulum-cart and
ball system (model 2) is a three DoF system with general
coordinates x, ψ and angle ϕ of the pendulum.

Four different actuating concepts are distinguished, when
the manipulated variables are:

(1) the angular position of the see-saw: ψ;

(2) the angular velocity of the see-saw: ψ̇ = ω;

(3) the angular acceleration of the see-saw: ψ̈ = ε;
(4) the torque acting on the see-saw: Q.

The output is assumed to be fed back via a PD controller
in all cases. Furthermore, two more cases are distinguished
based on the argument of the feedback variables:

(1) real-time continuous measurement, when x(t), ψ(t)
and ϕ(t) are directly fed back;

(2) continuous measurement with feedback delay, when
the delayed states x(t − τ), ψ(t − τ) and ϕ(t − τ)
show up in the control law.

Different models are named by combining the above no-
tations. For instance, model 1.4.2 refers to model 1, with
the torque being the manipulated variable, and with the
feedback delay taken into account. These cases give overall
2× 4× 2 = 16 different models.
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Fig. 1. Model 1: ball and beam system.
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Fig. 2. Model 2: pendulum-cart and beam system.

3. MODELS FOR BALL AND BEAM SYSTEM

The control concepts presented in the previous section are
discussed along with a brief description of the correspond-
ing stability properties.

3.1 Model 1.1

In this case, the angular position ψ of the see-saw is
assumed to be manipulated by the control system based
on the observation, that most human subjects solve this
balancing task by simply holding the see-saw in a steady
position relying on the gravity to roll the ball to the
desired middle position. In this case, the mechanical model
is reduced to a one DoF system and the corresponding
linearized equation of motion reads

ẍ(t) = −gψ(t). (1)

Different control concepts are detailed below.

Model 1.1.1 It is assumed that the position of the rolling
ball on the see-saw is measured continuously in real-time.
Equation (1) holds, and the PD control realizes ψ(t) =
Pxx(t) +Dxẋ(t), which implies the governing equation

ẍ(t) + gDxẋ(t) + gPxx(t) = 0, (2)

where Px andDx are the proportional and derivative gains.
The system is asymptotically stable if Px > 0 and Dx > 0.

Model 1.1.2 Here, the feedback delay τ is taken into
account. Equation (1) still holds, the only difference shows
up in the delayed arguments. The governing equation reads

ẍ(t) + gDxẋ(t− τ) + gPxx(t− τ) = 0. (3)

Using the D-subdivision method, the D-curves of this
system can be given as

ω = 0 : Px = 0, Dx ∈ R, (4)

ω > 0 : Px =
ω2

g
cos(ωτ), Dx =

ω

g
sin(ωτ), (5)

and the corresponding stability diagram can be seen in
Fig. 3. Note that this system can be stabilized for all τ ≥ 0,
which means that model 1.1.2 is delay-independently stable
(see Michiels and Niculescu (2007)).

Fig. 3. The stable domain and the number of unstable
poles for model 1.1.2 with τ = 1s.

3.2 Model 1.2

This model is based on the assumption that the manip-
ulated variable is the angular velocity of the see-saw.
The linearized equation of motion can be obtained after
differentiating (1) with respect to time:

...
x (t) = −gψ̇(t) = −gω(t). (6)

Model 1.2.1 For the case of real-time measurement the
control can be written in the form of ω(t) = Pxx(t) +
Dxẋ(t), thus, the governing equation reads

...
x (t) + gDxẋ(t) + gPxx(t) = 0. (7)

The stability chart and the number of unstable poles for
different parameter regions are shown in Fig. 4.

Fig. 4. Transition curves and the number of unstable poles
for model 1.2.1. On line Dx > 0, Px = 0 all the three
characteristic roots are 0.

Model 1.2.2 In case of delayed feedback, the system is
governed by

...
x (t) + gDxẋ(t− τ) + gPxx(t− τ) = 0. (8)

The D-curves can be given in the form

ω = 0 : Px = 0, Dx ∈ R, (9)

ω > 0 : Px = −ω
3

g
sin(ωτ), Dx =

ω2

g
cos(ωτ), (10)

and the stability diagram can be seen in Fig. 5 for τ = 1s.
As seen in Fig. 4 and Fig. 5, model 1.2 cannot be stabilized.



Fig. 5. Transition curves and the number of unstable poles
for model 1.2.2 with τ = 1s.

3.3 Model 1.3

Here, it is assumed that the manipulated variable is
the angular acceleration of the see-saw. The linearized
equation of motion can be obtained by taking the second
derivative of (1):

x(iv)(t) = −gψ̈(t) = −gε(t). (11)

Model 1.3.1 The control of the angular acceleration
takes the form ε(t) = Pxx(t) + Dxẋ(t) in the real-time
model, which, after substituted into (11), leaves us with

x(iv)(t) + gDxẋ(t) + gPxx(t) = 0. (12)

The corresponding stability diagram is shown in Fig. 6.
Note that the characteristic equation evaluated at point
(Px, Dx) = (0, 0) is λ4 = 0, which results in 0 being a
quadruple root.

Fig. 6. Transition curves and the number of unstable poles
for model 1.3.1.

Model 1.3.2 The case of delayed feedback implies

x(iv)(t) + gDxẋ(t− τ) + gPxx(t− τ) = 0. (13)

The corresponding D-curves are

ω = 0 : Px = 0, Dx ∈ R, (14)

ω > 0 : Px = −ω
4

g
cos(ωτ), Dx = −ω

3

g
sin(ωτ). (15)

The stability properties of the model are shown in Fig. 7.
Asymptotic stability cannot be achieved in this case.

Fig. 7. Transition curves and the number of unstable poles
for model 1.3.2 with τ = 1s.

3.4 Model 1.4

In this model, the system is assumed to be manipulated by
a control torque acting on the see-saw. The corresponding
2 DoF system is governed by(

m2 0
0 θ1

)
q̈(t) +

(
0 m2g

m2g 0

)
q(t) =

(
0

−Q(t)

)
, (16)

where q(t) = (x (t) , ψ (t))
T

, θ1 = m1l
2
1/12 is the moment

of inertia of the see-saw and Q(t) is the torque specified
by the PD controller. The parameters of the model are
m1 = 2kg, m2 = 1kg, l1 = 2m (see Fig. 1). Note that
models 1.1, 1.2 and 1.3 were independent of these physical
parameters.

Model 1.4.1 In the case of real-time output measurement
(16) holds, and the control torque is given in the form

Q(t) = Pxx(t) +Dxẋ(t) + Pψψ(t) +Dψψ̇(t). (17)

The stable domains for model 1.4.1 are given after substi-
tution and the application of the D-subdivision method,
and are shown in Fig. 8.

Fig. 8. Stability charts and the number of unstable poles
for model 1.4.1.

Model 1.4.2 In the delayed case the control torque reads

Q(t) = Pxx(t−τ)+Dxẋ(t−τ)+Pψψ(t−τ)+Dψψ̇(t−τ).
(18)

The D-curves can be written in the form

ω = 0 : Px = −gm2, Dx ∈ R, (19)

ω > 0 : Px =
cos(ωτ)

g

(
θ1ω

4 −m2g
2
)
− Pψ

ω2

g
, (20)

Dx =
sin(ωτ)

gω

(
θ1ω

4 −m2g
2
)
−Dψ

ω2

g
. (21)

Numerical analysis shows that the system can only be
stabilized for delays less than τcrit = 0.32s. Some sample
stability diagrams for model 1.4.2 can be seen in Fig. 9.

4. PENDULUM-CART AND BEAM SYSTEM

The control concepts presented in the previous section are
repeated here for the pendulum-cart model rolling on the
see-saw.



Fig. 9. Stable domains for model 1.4.2, with τ = 0.08s.

4.1 Model 2.1

The three-DoF mechanical model (see Fig. 2) is to be
discussed from now on with the angular position ψ of the
see-saw being the manipulated variable for models 2.1.×.
The linearized equation of motion takes the form{

ẍ(t) = aϕ(t)− gψ(t),

ϕ̈(t) = bϕ(t)− ψ̈(t),
(22)

where

a =
3m3g

m3 + 4m2
, b =

6g(m2 +m3)

l3(m3 + 4m2)
,

with m3 = 0.1kg and l3 = 1m. The other parameters are
the same as in model 1.

Model 2.1.1 Here, the control angular position reads

ψ(t) = Pxx(t) +Dxẋ(t) + Pϕϕ(t) +Dϕϕ̇(t), (23)

which, after substituted into (22), provides the correspond-
ing governing equation for this model. The stability dia-
gram is shown in Fig. 10.

Fig. 10. Transition curves and the number of unstable
poles for model 2.1.1.

Model 2.1.2 For delayed feedback, we have

ψ(t) = Pxx(t− τ) +Dxẋ(t− τ) +Pϕϕ(t− τ) +Dϕϕ̇(t− τ).
(24)

The corresponding characteristic equation reads

D(λ) = Dϕλ
5e−λτ+(Pϕe

−λτ+1)λ4+(a+g)Dxλ
3e−λτ+

+
[
(a+ g)Pxe

−λτ − b
]
λ2−bgDxλe

−λτ −bgPxe−λτ = 0.
(25)

As seen in (25) the highest derivative appears with a
delayed argument, thus system (22) with (24) becomes an
AFDE in this model. Consequently, model 2.1.2 is always
unstable with infinitely many unstable characteristic roots.

4.2 Model 2.2

The angular velocity is assumed to be manipulated by the
control system and the linearized equation of motion reads{ ...

x (t) = aϕ̇(t)− gω(t),

ϕ̈(t) = bϕ(t)− ω̇(t).
(26)

Model 2.2.1 In the case of real-time output measure-
ment, the manipulated angular velocity takes the form

ω(t) = ψ̇(t) = Pxx(t) +Dxẋ(t) + Pϕϕ(t) +Dϕϕ̇(t). (27)

The stability chart for this model can be seen in Fig. 11.

Fig. 11. Stability boundaries and the number of unstable
poles for model 2.2.1.

Model 2.2.2 With feedback delay, the control input takes
form

ω(t) = Pxx(t− τ) +Dxẋ(t− τ) +Pϕϕ(t− τ) +Dϕϕ̇(t− τ).
(28)

Equation (26) with (28) gives a NFDE. The corresponding
characteristic equation reads

D(λ) = (1 +Dϕe
−λτ )λ5 + Pϕλ

4e−λτ−
− bλ3 +

[
(a+ g)λ2 − bg

]
(Px + λDx)e−λτ = 0. (29)

Note that, according to the strong stability criteria, (29)
has infinitely many unstable roots if |Dϕ| > 1. However,
it can be shown that the system is still unstable for any
control parameters and delays even if |Dϕ| < 1. Some
corresponding stability charts are shown in Fig. 12.

4.3 Model 2.3

This model discusses the case where the angular acceler-
ation is assumed to be manipulated by the controller in



Fig. 12. Transition curves and the number of unstable
poles for model 2.2.2 with τ = 0.01s.

the three-DoF system. The linearized equation of motion
reads {

x(iv)(t) = aϕ̈(t)− gε(t),

ϕ̈(t) = bϕ(t)− ε(t).
(30)

System (30) fails Kalman’s criteria of controllability, thus
both model 2.3.1 and 2.3.2 are not controllable by means
of angular acceleration control, therefore they are not
discussed here further.

4.4 Model 2.4

In this model, a torque type control is assumed. Since the
angular position is not restricted by the control system,
the corresponding model has three degrees of freedom. The
linearized equation of motion reads

Mq̈(t) + Sq(t) = Q∗(t), (31)

where q = (x (t) , ψ (t) , ϕ (t))
T

, Q∗(t) = (0,−Q (t) , 0)
T

and

M =


m2 +m3 −

l3m3

2
−
l3m3

2

−
l3m3

2

1

12
(l21m1 + 4l23m3)

l23m3

3

−
l3m3

2

l23m3

3

l23m3

3

 , (32)

S =


0 g(m2 +m3) 0

g(m2 +m3) −
1

2
gl3m3 −

1

2
gl3m3

0 −
1

2
gl3m3 −

1

2
gl3m3

 . (33)

Model 2.4.1 The control torque Q(t) takes the form

Q(t) = Pxx(t) +Dxẋ(t) + Pψψ(t)+

+Dψψ̇(t) + Pϕϕ(t) +Dϕϕ̇(t). (34)

Some sample stability charts are shown in Fig. 13.

Model 2.4.2 For delayed feedback, the control torque is

Q(t) = Pxx(t− τ) +Dxẋ(t− τ) + Pψψ(t− τ)+

+Dψψ̇(t− τ) + Pϕϕ(t− τ) +Dϕϕ̇(t− τ). (35)

Some stability diagrams for model 2.4.2 can be seen in
Fig. 14 for τ = 0.01s. The critical delay, where the system
cannot by stabilized any more, was found numerically to
be τcrit ≈ 0.05s.

Fig. 13. Stable domains for model 2.4.1.

Fig. 14. Stable domains for model 2.4.2 with τ = 0.01s.

5. RESULTS

An overview on the stabilizability properties of the differ-
ent models are presented in Fig. 15. While the ball and
beam system (model 1) can be stabilized via the angular
position of the see-saw and via a control torque acting
on the see saw, the the pendulum-cart and beam system
(model 2) can only be stabilized via a control torque. The
ball and beam system can be stabilized via the angular
position of the see-saw independently on the value of the
feedback delay. In case of stabilization via control torque,
there is a critical delay, which limits stabilizability. For
model 1, the critical delay is τcrit = 0.32s, for model
2, it is τcrit = 0.05s. This analysis confirmed the intu-
itive assumption that it is more difficult to stabilize the
pendulum-cart and beam system than the ball and beam
system.

An experimental device was built for each mechanical
model in order to perform balancing tasks by human
subjects. The typical human reaction time in visual tasks
is around 200∼250ms Milton et al. (2016), which implies
that for humans it is impossible to balance the pendulum-
cart and beam system. Balancing trials by 12 subjects
confirmed this assumption. None of 12 subjects were able
to keep the pendulum in the upright position for more than
a second for the pendulum-cart and beam system, while all
of them were able to drive the ball to the desired middle



Fig. 15. Sample stability charts for the different models. Only models 1.1.×, 1.4.× and 2.4.× can be stabilized.

position for the ball and beam system within 10 ∼ 15
seconds. These analysis supports that the human either
manipulates the angular position ψ of the see-saw or
applies a control torque on the see-saw during the ball and
beam balancing task. The only possible way to balance
the pendulum-cart and beam system is the application of
a control torque on the see-saw, but, for the presented
parameter regions, this process can be stable only if the
feedback delay is much shorter than the typical human
reaction time, namely, less than 0.05s.
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