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Abstract 
 A data set containing acute toxicity values (96-h LC50) of 69 substituted benzenes for 
fathead minnow (Pimephales promelas) was investigated with two Quantitative Structure-
Activity Relationship (QSAR) models, either using or not using molecular descriptors, 
respectively. Recursive Neural Networks (RNN) derive a QSAR by direct treatment of the 
molecular structure, described through an appropriate graphical tool (variable-size labeled 
rooted ordered trees) by defining suitable representation rules. The input trees are encoded by 
an adaptive process able to learn, by tuning its free parameters, from a given set of structure-
activity training examples. Owing to the use of a flexible encoding approach, the model is 
target invariant and does not need a priori definition of molecular descriptors. The results 
obtained in this study were analyzed together with those of a model based on molecular 
descriptors, i.e. a Multiple Linear Regression (MLR) model using CROatian MultiRegression 
selection of descriptors (CROMRsel). The comparison revealed interesting similarities that 
could lead to the development of a combined approach, exploiting the complementary 
characteristics of the two approaches. 
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1. Introduction 

Evaluation of the risk posed by the multitude of chemicals produced every year by 

industry and agriculture is a complicated task. Proper evaluation of the risk is of increasing 

importance. It is not practically and economically feasible to conduct toxicity tests on all 

substances released into the environment. Therefore, experimental measurements need to be 

integrated with theoretical predictive methods that can fill gaps in the data and identify those 

compounds that are most promising for empirical assessment. Many predictive methods 

correlate the toxicity to other, simpler, physico-chemical property and biological activity [1]. 

However, several classes of property/activity data are unavailable for many substances. It is 

estimated that roughly half of chemicals do not have any experimental data at al. [2]. 

Therefore, increasing preference is being given to methods that correlate the investigated 

property/activity (or target property/activity) with representation(s) of the molecular structure 

alone. 

Quantitative Structure–Activity Relationships (QSARs) are widely recognized as 

scientifically credible tools for the prediction of acute toxicity [2-4]. The basic aim of QSAR 

is to find a function F that relates the appropriate representation of the molecular structure to 

the target activity. In more detail, F can be decomposed into an encoding or feature 

representation function f and a mapping function g. The choice of functions f and g is what 

discriminates among the different approaches, with most differences arising from the f 

function. Standard QSAR approaches employ structural molecular descriptors or calculated 

molecular activity to encode the molecules (f function), while the output value is computed 

through either linear or nonlinear regression models (g function).  

In order to make adequate assessment of the quality of a QSAR model and to obtain 

useful predictions, it is of fundamental importance to use accurate empirical data [5]. The 

MED-Duluth Database [6] provides toxicity data for more than 750 assays on over 600 

compounds towards the freshwater fish fathead minnow (Pimephales promelas). The 

measured activity is the Lethal Concentration for 50% of the tested sample after 96 hours of 

exposure (96h-LC50). These data are considered highly reliable by regulatory authorities such 

as the USA Environmental Protection Agency, both because of their experimental accuracy 

and their significance in the evaluation of acute and chronic toxicity in vertebrate animals and 

in aquatic environments [7]. Among the classes of compounds included in the MED-Duluth 

database, benzene derivatives received much attention in previous QSAR studies because of 

their widespread use in the chemical and pharmaceutical industry [8]. In 1984 Hall et al. [9] 
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derived group contributions to the LC50 of a homogeneous set of 66 substituted benzenes, 26 

of which were experimentally determined by the authors themselves. They found a decreasing 

contribution to toxicity in the order Cl > Br > NO2 > CH3 > OCH3 > NH2 > OH. The 
additivity model obtained from those contributions fitted the whole data set with a square 

correlation coefficient, R2, of 0.904 and a standard error of estimate, S, of 0.25. 

Approximately the same dataset (69 compounds) was later investigated by Basak et al. [10] 

who built MLR models using the CROMRsel procedure for descriptor selection. The 

descriptors included in their best model were P9 (path of length nine), 2χv, 4χv (valence path 

connectivity indices of order two and four, respectively), 6χv
Pc (valence path-cluster 

connectivity index of order six), Elumo (energy of the lowest unoccupied molecular orbital), μ 

(dipole moment) and 3DWH (3-D Wiener number for the hydrogen-filled structures computed 

using geometric distance matrices). This model showed R2 = 0.884, S = 0.26 for the fitting of 

the whole data set and RCV
2 = 0.856, SCV = 0.29 for the leave-one-out cross-validation. 

Toropov and Toropova [11] calculated descriptors for the 69 benzenoids in the presence of 

correlation weights in the molecular graph and different values of third-order Morgan 
extended connectivity. Their model yielded R2 = 0.898, S = 0.25 for the training set of 44 

compounds and R2 = 0.918, S = 0.23 for the test set of 25 compounds. Perez-Gonzalez et al. 

[8] used TOPological Sub-structural MOlecular DEsign (TOPS-MODE), based on the 

calculation of the spectral moments of the bond matrix. The obtained model was function of 

μ5
dip (fifth spectral moment weights with dipole moment), μ*μ1

hyb (square of first spectral 

moment weights with hydrophobicity) and μ1
dist (first spectral moment weights with atomic 

distance). It showed R2 = 0.888, S = 0.25 for the training set of 50 molecules and R2 = 0.908, 

S = 0.28 for the test set of 19 molecules. 
In the present work we have re-investigated this data set of 69 benzenoids with the 

Recursive Neural Network (RNN) model, developed in the last years by the Department of 

Computer Science and the Department of Chemistry & Industrial Chemistry of the University 

of Pisa for QSPR/QSAR analysis [12-15]. This approach differs radically from standard 

methods: it automatically learns the f and g functions and it treats a variable-size structured 

representation of molecules instead of numerical descriptors directly. Its main advantages are 

generality and adaptability, as it can be applied with little or no modification to different 

classes of compounds and target properties. In particular, it is not necessary to calculate and 

select a new set of descriptors each time a new property or compound type is investigated 

[16]. This characteristic qualifies the method as target invariant. Its previous applications 

successfully predicted the boiling points of linear and branched alkanes [12, 13], the 
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pharmacological activity of series of substituted benzodiazepines [12-14] and 8-azaadenine 

derivates [15], the free energy of solvation of mono- and poly-functional organic compounds 

[16, 17], the glass transition temperature of (meth)acrylic polymers and copolymers [18-24] 

and the melting point of pyridinium bromides [18, 25]. This method is particularly suitable 

for tasks in which no background knowledge is available a priori because the molecular 

representation retains all structural information whereas the RNN automatically learns the 

correlation functions. On the other hand, the input data are of much higher complexity than in 

standard approaches (usually vectors of less than 10 descriptors); therefore a greater number 

of training examples are needed to build an accurate relationship. Moreover, due to the 

recursive and non-linear nature of these relationships, their physical interpretation is more 

difficult than a direct observation of known physicochemical descriptors.  

The results obtained in this study were analyzed together with those of Multiple 

Linear Regression (MLR) models obtained through the CROatian MultiRegression selection 

of descriptors (CROMRsel) method developed at the Ruđer Bošković Institute of Zagreb [26]. 

In addition to making a performance comparison, the purpose of this research was to find a 

starting point from which to develop a combined approach, exploiting the complementary 

characteristics of the two methods. 

 

2. Methods 
The RNN model is explained in detail elsewhere [12-16]. We here briefly summarize 

its main characteristics. The RNNs are an extension of standard neural networks able to 

directly deal with labeled hierarchical structured representation of molecules, in particular in 

the form of rooted trees, a subclass of DPAGs (Directed Positional Acyclic Graphs). Trees 

have variable size and give a richer and more flexible vehicle of information than the flat 

vectors of descriptors employed in traditional QSAR approaches. Moreover, RNNs can 

adaptively encode the input structures by learning from the given structure-activity training 

examples. To this end, the RNN recursively encodes each structure through a bottom-up 

approach that dynamically mimics its morphology. For each vertex of the input structure, the 

model computes a numerical code by using information of both the vertex label and, 

recursively, the code of the sub-graphs descending from the current vertex. The process 

returns a code for the whole molecular structure, as depicted in Fig. 1. This code is then 

mapped to the output activity value. The learning algorithm allows the model to tune the free 

parameters of the neural network functions on the basis of the training examples and by this 
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process the RNN models find a direct and adaptive relationship between molecular structures 

and target properties/activities. 
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Figure 1: Tree representation and encoding of 3-hydroxyanisole. The first child of 

Benzene is the oxygen atom linked to a methyl group, because it has higher priority than OH 

and H. The ordering is, according to the drawing of the molecule, clockwise in order to assign 

a lower position (3) to the next group with highest priority (OH). f and g indicate the encoding 

and mapping functions, respectively. 

 
Every chemical compound is represented as a labeled rooted ordered tree by a 2-D 

graph that could easily be obtained from its structural formula. The molecule is fragmented 

into defined atomic groups: each group corresponds to a vertex of the tree and each bond 

between them corresponds to an edge, see Fig. 1. An appropriate set of rules is defined in 

order to have a unique correspondence between each molecule and its chemical tree. Each 

vertex is assigned a label, which is a tuple of variables categorically distinguishing the symbol 

of the atomic group. Despite being conventionally defined, a label can convey chemical 

information through orthogonality or similarity to other labels. In the current study the 

following groups were used: Benzene, NO2, NH2, O, OH, Cl, Br, CH3 and H. They were rated 

according to a priority scale [16], which corresponds to the order in which they are written, 

that was used to determine the tree root and the total order on each vertex's subtree. In this 

work the tree root was always placed on the Benzene, as shown in Fig. 1. Benzene has 6 
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children, ordered according to their position on the ring. The first child is the one with highest 

priority and the direction of the ordering (clockwise or counter-clockwise) is the one that 

assigns the lowest position to the next fragment with highest priority. This kind of structure-

based representation is general and able to represent any sort of chemical compound [16,21]. 

Its flexibility also allows for choosing the most suitable representation for each data set and 

predictive task at hand [18]. 

In the MLR approach, the regression equation expressing the QSAR model is in the 

form of a linear combination of descriptors, with their coefficients determined by the least-

squares method. The MLR models were developed using CROMRsel [26] for a more efficient 

stepwise (one-by-one) model selection. The best models are selected in the orthogonal basis in 

order to have a simpler and faster procedure, which also allows for taking into account the 

many higher-order and cross-product terms; this point is well illustrated in ref. 26. The 

algorithm on which the computer program is based can be presented as follows [27]. 

1. Initial data: the set of N descriptors and target activity values. 

2. Two descriptors are selected in unbiased fashion from the initial set of descriptors. 

They are orthogonalized, then the correlation coefficient between the activity A and 

each individual orthogonalized descriptor is computed. From this, individual 

computations of the total correlation coefficient, which is equal to the correlation 

coefficient between the experimental activity values A and its computed values A’, are 

obtained. The same procedure is repeated for the selected n descriptors, where n ≤ N 

and n < m (m = the number of molecules). The value of n is fixed at the beginning of 

the computation. The n value is the size of multiregression model, i.e., the number of 

descriptors we want to have in the model. 

3. For every I-tuple of descriptors (I = 2, 3, ..., n), the combination with the highest R is 

singled out, and this combination necessarily possesses the smallest value of S among 

all possibilities generated by use of an I-tuple of the same class (there are exactly (NI )of 

them). In such a way, the n best I-tuples are obtained. 

4. Among the n best I-tuples (I = 2, 3, ..., n), the one that gives the smallest S, which is at 

the same time the best total solution, is selected. This solves the problem of selecting 

the optimum number of descriptors and detecting the optimum I-tuple of descriptors to 

produce the best estimation of the activity A. 

5. Finally, statistical parameters, for training and prediction on an independent test set 

are calculated for the selected best model. 
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3. Results and discussion 
The data set was taken from Hall [9] and consists of the 96h- LC50 (concentration that 

kills 50% of the tested sample after 96 hours of exposure) of 69 substituted benzenes towards 

the freshwater fish fathead minnow (Pimephales promelas). The toxicity is expressed as -

log(LC50), with the concentration measured in mol/L; the values range from 3.04 to 6.37. 

These data represent a relatively small and homogeneous subset of the MED-Duluth Database 

and therefore provide a mainly local predictive problem. The total data set of 69 compounds 

was split into a training set and an external test set of 51 and 18 molecules, respectively. A 

few of the included molecular structures are depicted in Fig. 2. 
 

OH CH3 NH2 OCH3

benzene phenol toluene aniline anisole  
Figure 2: Structures of benzene and the simplest benzenoids used in the current study. 

 

The random initialization of the RNN connection weights can lead to different 

outcomes because of the use of a stochastic gradient–based technique to solve a least-mean 

square problem. In order to have a significant result, in each of our experiments sixteen trials 

were carried out for the RNN simulation and the results were averaged over the different 

trials. Learning was terminated when the maximum error for each compound of the training 

set was below a preset threshold value, which was set at 0.6 units of -log(LC50) ([LC50] = 

mol/L). This value was determined on the basis of the standard deviation in the experimental 

measurements performed by Hall, which is reported as 0.15 [9]. The chosen training threshold 

corresponds to four times the standard deviation value and, according to Gaussian statistics, 

encompasses 94.5% of the total variance. The average statistics on the results are reported in 

Table 1, whereas Tables 2 and 3 list the detailed outcomes for each compound of the training 

and test set, respectively.  

A scatter plot of the experimental -log(LC50) vs. calculated values obtained by the 

RNN method is provided in Fig. 3. 

Moreover, we carried out a prediction on the same data set by using Multiple Linear 

Regression (MLR) analysis. In particular, we used CROMRsel method [10, 26] for the 

selection of the descriptors that yield the best model. The descriptors were calculated with 
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DRAGON 5.0 software and filtered by eliminating constants, near constants and highly 

intercorrelated descriptors, i.e. with a correlation coefficient greater than 0.95. 
 

 Training set 

51 molecules 

Test set 

18 molecules 

 RNN MLR RNN MLR 

MARa 0.19 0.21 0.22 0.21 

Maxb 0.51 0.65 0.45 0.58 

Sc 0.24 0.27 0.25 0.27 

R2 d 0.910 0.886 0.821 0.806 
a Mean Absolute Residual (log units). b Maximum absolute residual (log units). c Standard error of 

estimate/prediction (log units). d Square correlation coefficient.  

 

Table 1: Experimental results for the RNN and MLR methods. 
 

The resulting pool of 169 descriptors included constitutional, topological, geometrical 

and charge descriptors, walk/path and functional group counts, connectivity, information, 

edge adjacency and topological charge indices, atom-centered fragments and structure-

calculated molecular properties. CROMRsel [26] was applied to this 169-descriptors set to 

build and select models, allowing a maximum of 4 descriptors per model. The one that gave 

the best performance, with respect to the correlation coefficient, on the training set is: 
 
-log(LC50) = 2.75(±0.16) + 0.31(±0.04)nCL + 2.14(±0.37)X5v + 0.32(±0.04)MPC09 

+ 4.27(± 0.50)DP18  (1) 

 
where nCL is the number of chlorine atoms, X5v is the valence connectivity index 5χv, DP18 

is the molecular profile no. 18 and MPC09 is the molecular path count of order 9 [28-31]. 

The average results yielded by MLR for training and test sets are reported in Table 1, 

while the detailed outcomes are shown in Table 2 and Table 3. Comparison of experimental 

data vs. values calculated by equation (1) is plotted in Fig. 4. 

The RNN and MLR methods gave very similar results on this data set, and 

comparable to those obtained in the reported literature. The overall statistical parameters in 

Table 1 show approximately the same values for both methods, though indicating slightly 

better performance by RNN. It was not obvious a priori that RNN should give better 

performance on this small and homogeneous data set, because RNN, as explained in the 

introduction, is best suited for general, non-local problems. 
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Molecule name Experimental -log(LC50) Calculated  -log(LC50) 

RNN 

Calculated  -log(LC50) 

MLR 

Benzene 3.40 3.33 3.23 
Bromobenzene 3.89 3.56 3.63 
Chlorobenzene 3.77 3.86 3.74 
Phenol 3.51 3.45 3.27 
Toluene 3.32 3.56 3.40 
1,2-dichlorobenzene 4.40 4.37 4.23 
1,3-dichlorobenzene 4.30 4.19 4.19 
2-chlorophenol 4.02 3.96 3.77 
3-chlorotoluene 3.84 3.86 3.86 
4-chlorotoluene 4.33 4.10 4.28 
1,3-dihydroxybenzene 3.04 3.41 3.29 
3-hydroxyanisole 3.21 3.32 3.51 
3-methylphenol 3.29 3.45 3.41 
4-methylphenol 3.58 3.69 3.57 
4-nitrophenol 3.36 3.72 3.56 
1,4-dimethoxybenzene 3.07 3.54 3.70 
1,4-dimethylbenzene 4.21 3.80 3.89 
2-nitrotoluene 3.57 3.67 3.57 
3-nitrotoluene 3.63 3.53 3.68 
1,2-dinitrobenzene 5.45 4.94 4.95 
1,4-dinitrobenzene 5.22 4.91 5.07 
2-methyl-3-nitroaniline 3.48 3.64 3.66 
2-methyl-4-nitroaniline 3.24 3.71 3.85 
3-methyl-6-nitroaniline 3.80 3.88 3.84 
4-methyl-2-nitroaniline 3.79 3.98 3.89 
4-hydroxy-3-nitroaniline 3.65 3.72 3.63 
4-methyl-3-nitroaniline 3.77 3.84 3.85 
1,2,4-trichlorobenzene 5.00 5.02 5.08 
1,3,5-trichlorobenzene 4.74 4.92 4.60 
3,4-dichlorotoluene 4.74 4.62 4.68 
2,4-dichlorotoluene 4.54 4.43 4.68 
4-chloro-3-methylphenol 4.27 4.09 4.03 
2,4-dimethylphenol 3.86 3.82 3.67 
2,6-dimethylphenol 3.75 3.90 3.54 
2,3-dinitrotoluene 5.01 4.93 5.17 
2,4-dinitrotoluene 3.75 4.22 4.40 
2,5-dinitrotoluene 5.15 5.05 5.20 
2,6-dinitrotoluene 3.99 4.11 4.12 
1,3,5-trinitrobenzene 5.29 4.97 4.90 
2-methyl-3,6-dinitroaniline 5.34 5.02 5.18 
5-methyl-2,4-dinitroaniline 4.92 4.49 4.42 
4-methyl-2,6-dinitroaniline 4.21 4.43 4.59 
5-methyl-2,6-dinitroaniline 4.18 4.31 4.39 
4-methyl-3,5-dinitroaniline 4.46 4.46 4.41 
2,4,6-tribromophenol 4.70 4.67 4.36 
1,2,3,4-tetrachlorobenzene 5.43 5.35 5.46 
2,4,6-trichlorophenol 4.33 4.77 4.75 
2-methyl-4,6-dinitrophenol 5.00 4.52 4.42 
2,3,6-trinitrotoluene 6.37 6.31 6.71 
2,3,4,5-tetrachlorophenol 5.72 5.67 5.52 
2,3,4,5,6-pentachlorophenol 6.06 5.84 6.18 

 

Table 2: Detailed outputs of RNN and MLR experiments for the training set. 
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Molecule name Experimental -log(LC50) Calculated -log(LC50) 

RNN 

Calculated -log(LC50) 

MLR 

1,4-dichlorobenzene 4.62 4.50 4.68 

2-methylphenol 3.77 3.57 3.43 

1,2-dimethylbenzene 3.48 3.69 3.55 

4-nitrotoluene 3.76 3.77 3.83 

1,3-dinitrobenzene 4.38 3.99 4.08 

2-methyl-5-nitroaniline 3.35 3.75 3.93 

2-methyl-6-nitroaniline 3.80 3.63 3.72 

1,2,3-trichlorobenzene 4.89 4.70 4.65 

2,4-dichlorophenol 4.30 4.62 4.36 

3,4-dimethylphenol 3.90 3.68 3.68 

2,4-dinitrophenol 4.04 4.17 4.12 

1,2,4-trimethylbenzene 4.21 3.93 3.97 

3,4-dinitrotoluene 5.08 5.17 5.42 

3,5-dinitrotoluene 3.91 4.34 4.39 

2-methyl-3,5-dinitroaniline 4.12 4.57 4.49 

3-methyl-2,4-dinitroaniline 4.26 4.28 4.17 

1,2,4,5-tetrachlorobenzene 5.85 5.74 5.85 

2,4,6-trinitrotoluene 4.88 5.10 5.08 
 

Table 3: Detailed outputs of RNN and MLR experiments for the test set. 
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Figure 3: Plot of the experimental vs. calculated -log(LC50) obtained with the RNN 

method. 
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Figure 4: Plot of the experimental vs. calculated -log(LC50) obtained with the MLR 

method.  
Observation of the detailed outcomes in Tables 2 and 3 reveals a great similarity 

between the two methods, even at the level of the outcomes of individual molecules. Indeed, 

the average absolute difference between the output for each molecule by RNN and MLR is 

0.13 log units for the training set and 0.11 for the test set. These values are considerably 

smaller than the mean average residuals reported in Table 1. Only 12 molecules in the training 

test and 2 in the test set show residuals of opposite sign between RNN and MLR. These 

observations could suggest that the encoding procedures of the two methods, although using 

very different procedures (encoding by learning from examples versus selection of predefined 

features) arrive at approximately the same interpretation of the molecular structure. Although 

this hypothesis needs further investigation, it could provide a key to better understand the 

internal representation of RNN methodology. As mentioned in the introduction, the physical 

interpretation of the results is relatively easy in descriptor-based methods but problematic in 

structure-based NN approaches. On the other hand, RNN does not use descriptors and 

therefore, by construction, does not require fixing a priori their number, type and selection 

[12, 16]: the encoding of molecules into numerical data for the QSAR modeling is generated 

by learning the direct map between molecular structures and target property values in the data 

set.  
 

3.1 Validation 

An additional validation tool became available only recently [32, 33]. The sum of 

absolute values for ranking differences (SRDs) between ‘reference’ and actual rankings 

(experimental, RNN- and MLR-predicted values) will show which calculation method is 
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better, and whether they are superior to the measured values. If the SRD values are smaller 

then the model is better. The average of all three methods has been accepted as ‘reference’ 

ranking. The ordering by sum of ranking differences is compared with simulated random 

numbers. A set of 250 vectors was generated with uniform discrete distribution between 0 and 

1 for 51 objects (training set) and for 18 objects (test set). 

Results for both training and test sets are reported in Table 4. The last 5 entries in the 

table refer to simulated random numbers, where XX1 is the first vigintile (5%), Q1 is the first 

quartile (25%), Med is the median, Q3 is the last quartile (75%) and XX19 is the last vigintile 

(95%). The results are shown in Fig. 5 for the 51 compounds of the training set. The SRD 

values are scaled between 0 and 100 and plotted on the X-axis. The Gaussian fit (Mean = 

66.67, StD = 6.03) of the discrete distribution of SRD values for random numbers is reported 

in Fig. 5 as well. 

 

 Ranking SRDs 

 RNN Exp MLR XX1 Q1 Med Q3 XX19 

Training set 86 102 122 742 806 866 920 990 

Test set 18 18 26 79 95 108 120 134 

 

Table 4: Non-scaled sum of ranking differences for training, 51 molecules, and test 

sets, 18 molecules. 
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Figure 5: Scaled SRD values (between 0 and 100) using average as reference (X and 

left Y axes) for the training set of 51 compounds. The continuous line is the Gaussian fit 

(Mean = 66.67, StD = 6.03) of the discrete distribution of SRD values for random numbers. 

XX1 is the 5% percentile, Med is the median, XX19 is the 95% percentile for the discrete 

distribution (right Y axis). 
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The RNN provides the best representation for the training set, the experimental values 

are somewhat worse and the multilinear approximation is even worse. The experimental 

SRDs are far away from the generated (random) values, which is reassuring: the probability 

that the real SRDs derive from a random sequence is negligible. 

The smaller SRD values evaluated for the test set (Table 4) reflect the smaller number 

of compounds involved as compared to the training set. Rescaled SRD values for the test set 

can be seen in Fig. 6. 
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Figure 6: Scaled SRD values (between 0 and 100) using average as reference (X and 

left Y axes) for the test set of 18, compounds. The continuous line is the Gaussian fit (Mean = 

66.73, StD = 10.39) of the discrete distribution of SRD values for random numbers. XX1 is 

the 5% percentile, Med is the median, XX19 is the 95% percentile for the discrete distribution 

(right Y-axis). 
 

The real and random SRD are closer for the test set than for the training set, although 

the probability of this being a random sequence is still negligible. The empirical random 

distribution is well approximated by the normal distribution. By chance, for the test set the 

calculated values are better on this criterion than the experimental ones. 

 
4. Conclusions 

We investigated a data set containing LC50 values for 69 benzene derivatives to obtain 

structure-activity relationships by applying two distinct methods: Recursive Neural Networks 

and Multiple Linear Regression. These methods are radically different in procedure and 

capabilities and many of their aspects are complementary. The RNN uses a more general 

chemical representation, in the form of labeled trees, which does not need any background 

knowledge of the specific problem. On the other hand, MLR provides simpler and physically 

understandable relationships between the property and selected molecular descriptors. Both 
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methods provided good results as compared to other studies available in the literature. This is 

particularly satisfactory for the RNN method, although this method is in general best suited 

for non-local tasks, where the mechanism of action(s) may not depend on few known features 

as in the present task. Moreover, it is also satisfactory from a statistical learning point of view 

that RNN, which is potentially more complex than the MLR approach using only 4 

descriptors, could achieve a comparable predictive performance even on a small data set. 

Despite the differences between the methods, their outcomes were very similar, in 

terms of average parameters as well as of individual outputs. This observation suggests that 

they arrive at more or less the same interpretation of the molecular structure, although by 

following very different strategies. In particular, RNN, by encoding the structures through ex 

novo calculation of “adaptive topological descriptors”, seems to reach a situation analogous to 

that obtained by MLR through selection of the most significant structural features. This 

hypothesis could be exploited in future work for the development of an approach that 

combines the flexibility of RNN with the more direct physical understanding of MLR. 
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