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bMTA-BME Lendület Human Balancing Research Group, Budapest, Hungary

∗ Corresponding author. E-mail address: hajdu@mm.bme.hu

Abstract

Reliable stability predictions of machine tool chatter have high potential in the optimization of machining processes. Industrial applications
can benefit from the corresponding stability lobe diagrams, which can guarantee improvement in the performance. However, predictions and
experiments often do not match during cutting tests due to uncertain dynamics and operational parameters. In order to provide safe and accurate
tools for machining engineers, the importance of reliability of the stability lobe diagrams must be highlighted. There exists several solution to
include uncertainty in the model used for stability predictions, such as modal parameter estimations or cutting force characteristics measurements.
This paper collects the most well-known techniques that are used for the construction of robust stability lobe diagrams. In order to highlight the
potential of such solutions, the results obtained by two different methods are compared to experimental cutting tests.
c© 2018 The Authors. Published by Elsevier Ltd.
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(HPC 2018).
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1. Introduction

Productivity of manufacturing operations are characterized
by the material removal rate, which depends on the spindle
speed, feed rate and axial/radial immersions of the machining
operations. Tuning of these parameters does not result neces-
sarily in better cutting conditions, since unstable harmful vi-
brations can arise. These vibrations are referred as chatter in
the literature, that spoils the surface quality, results extensive
noise, possible damages in the machine components and in-
creases toolwear. Surface regeneration effect is often consid-
ered as the main reason for this instability, which is extensively
studied since the 50’s, when Tobias [1] and Tlusty [2] presented
the first mathematical models to describe chatter.

The model of surface regeneration effect is based on the
stability analysis of delay-differential equations, where the re-
generative time-delay is determined by the sequentially cutting
edges of the milling cutter. Variations in the chip thickness af-
fects the cutting force and self-excited vibrations arise. When
the stationary solution loses stability, then large amplitude os-
cillation, i.e. chatter, arises. The stability properties are visual-
ized on the so-called stability lobe diagrams, which plot stable
(chatter-free) domains in the plane of technological parameters
(usually the spindle speed and the depth of cut). These dia-
grams contain useful information for the machinists and give a

guide to select optimal machining parameters, where unstable
vibrations are completely avoided.

There exists several numerical techniques to analyze the sta-
bility of different machining operations, some of them directly
utilize frequency response functions (FRFs), while others are
time-domain techniques. Frequency domain based solutions,
such as the single-frequency solution or zero-order approxima-
tion (ZOA), the multi-frequency solution (MFS) [3,4] or the ex-
tended multi-frequency solution (EMFS) [5] can be applied to
measured FRFs directly. Time domain based techniques, such
as the semi-discretization [6], the full-discretization [7], the in-
tegration method [8], the Chebyshev collocation method [9] and
the spectral element technique [10] require fitted modal param-
eters as input.

In spite of the available efficient numerical algorithms, the
stability lobe predictions are still not utilized in most industrial
applications. One reason for this is the relatively high complex-
ity of the problem and low reliability of the predictions. Since
cutting parameter estimations and dynamical measurements are
loaded with significant uncertainty, the model contains simplifi-
cations and unmodelled dynamics, the actual stability diagrams
differ from the theoretical predictions. In this work we put the
uncertainty analysis into focus.
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2. Dynamical model of milling operations

Here the dynamical model of milling operations is presented
briefly. If the tool has N teeth of uniform helix angle β,
then the corresponding regenerative time-delay is calculated as
τ = 60/(NΩ), where Ω (rpm) is the spindle speed. The equation
of motion in the modal space can be written as

q̈(t) + [2ζkωn,k]q̇(t) + [ω2
n,k]q(t) = U>F(t), (1)

where q(t) ∈ Rn is the modal coordinate vector, F(t) ∈ Rn is the
spatial forcing vector, n is the number of degrees of freedom,
[·] ∈ Rn×n are diagonal matrices, ωn,k is the kth natural angular
frequency, ζk is the relative damping ratio and U ∈ Rm×n is the
modal transformation matrix that connects the spatial coordi-
nate vector u(t) ∈ Rm and modal space as u(t) = Uq(t). Insert-
ing the regenerative forcing model into the governing equation,
then assuming small perturbation ξ(t) about the periodic motion
qp(t) of the stationary cutting yields the governing equation

ξ̈(t) + [2ζkωn,k]ξ̇(t) + [ω2
n,k]ξ(t) = U>G(t)U (ξ(t − τ) − ξ(t)) ,

(2)
where G(t) = G(t + τ) is the periodic directional matrix [6].

As opposed to the time-domain representations, the use of
FRFs and Fourier transformations gives an alternative way
to analyze the stability of the system. The dynamic behav-
ior of the system in the frequency domain is represented by
u(ω) = H(ω)F(ω), where u(ω) and F(ω) are the Fourier trans-
forms of u(t) and F(t), while H(ω) is the frequency response
function matrix of the tool. According to the multi-frequency
solution, the stability boundaries can be calculated from

det
(
I −Q(Ω, ap;ω)

)
= 0, (3)

where Q(Ω, ap;ω) is a truncated Hill’s infinite matrix, that in-
cludes the machining parameters and FRF matrix. With the use
of time-domain or frequency-domain techniques, the stability
of the system can be investigated on the plane of the spindle
speed Ω and depth of cut ap.

Independently from the representation of the governing
equation, the uncertainties in the FRF matrix H(ω) or in the
modal parameters ωn,k, ζk, U affect the stability boundaries. A
measured FRF is presented in Fig. 1, obtained from 10 different
measurements. Each measurement is indicated by solid gray
lines, while the upper and lower bounds are denoted by black
lines (±1σ). A seven-degree-of-freedom system was fitted onto
the average of the measurements. This results 7×4 = 28 modal
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Fig. 1. Measured frequency response functions |Hxx(ω)| (gray), their upper and
lower bounds based on 1σ standard deviation (black) and the fitted model (red).

parameters in total. As it can be seen, neither the measurement,
nor the fitting process is perfect, therefore the uncertainty anal-
ysis plays an important role in stability predictions.

3. Uncertainty analysis

The effect of parameter variations on the system’s stability
have already been analyzed by many researchers. In most of
the cases the input parameters (modal parameters, cutting coef-
ficients) are assumed to be uncertain and the stability diagram is
determined with the use of statistical or robust methods. In the
simplest scenario, one can determine the stability boundaries
using Monte Carlo simulations [11–13] and evaluate the dis-
tribution, sensitivity and robustness afterwards. Depending on
the number of parameters, this calculation process often leads
to very high computational time and therefore their practical ap-
plication without significant improvements is limited. In order
to overcome this limitation, statical and/or robust techniques
can be utilized that can speed up the calculations, typically in
cost of the precision.

3.1. Statistical methods

In reliability analysis the reliability index and reliability
probability are two important parameters that quantitatively re-
flect the effect of uncertainty on the design. The definition of
reliability includes a multi-dimensional integral in the form

P =

∫
· · ·

∫
g(x)>0

fX(x)dx, (4)

where x is the characteristic parameter vector, X is the random
parameter vector corresponding to x, fX(x) is the joint proba-
bility density function (PDF) of X, and g(x) is the limit state
function. Here, g(x) > 0 indicates the cases, when the system
is stable, then P gives the probability of stability. Since the
evaluation of a multidimensional integral is highly complicated
numerically, several solutions exist to overcome this limitation.

Probabilistic methods are based on the estimation of the PDF
of the absolute value of the largest characteristic exponent or
the spectral radius of the monodromy operator. When uncer-
tainties are assumed to be ‘small’ (or their effect is ‘small’),
and the PDFs of the input random variables are known, then
the local sensitivity techniques, such as the local partial deriva-
tives [12,14] or first-order second moment methods and their
improved versions [15–17] can give an accurate result for the
probability of stability. For milling operations, where the spec-
tral radius of the approximated monodromy operator deter-
mines the stability properties, local sensitivity methods provide
less accurate solutions due to the more complex topology of
stability diagrams. [18] used neural networks to speed up the
calculation process, while [19] presented an approximating nu-
merical method, which provides confidence levels of stability
boundaries for high number of uncertain parameters. [20] intro-
duced the RCPM method, that is based on discretization of the
PDF and evaluation of stability on a discrete grid in the space of
uncertain system parameters. Although this is one of the most
accurate solution, it is limited to small number of parameters
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only. A different solution is used by [21] and [22] by introduc-
ing Fuzzy arithmetics to characterize the effect of uncertainty,
but the calculation procedure is still limited to few parameters
due to the high numerical complexity.

A more sophisticated method is proposed by [23] using the
dimension reduction method and saddlepoint approximation
(DRM-SPA), which is effective in calculation time and preci-
sion, however, gives less accurate solution where Hopf and flip
stability boundaries meet. This is a technique of function ap-
proximation for the moment estimation of probability density
functions. Therefore the complete evaluation of (4) simpli-
fies to one-dimensional integrations, which can be done with
quadrature rules (such as Gauss-Hermite). Once the first four
moments are approximately known, the saddlepoint approxi-
mation can be used to generate the probability density function
and cumulative distribution function (CDF). In this work, we
utilize this solution and compare the results to experiments in
Sec. 4

3.2. Robust methods

While statistical methods are useful when information about
the probability distribution is required, robust techniques are
found to be very effective if the distributions are omitted. In
case of robust stability, the stability of the system is guaranteed
for bounded perturbations in the prescribed parameters. There
exists several very different ways to obtain these boundaries,
some of them are already applied for machining operations.
The edge theorem combined with the zero exclusion method
is presented in [24,25] and compared to the results obtained by
linear matrix inequalities in [26]. [27] used the stability radius
method to give the exact robust stability boundaries of a single-
degree-of-freedom system and provides and approximation of
robust stability for multiple-degrees-of-freedom systems with
uncertain modal parameters.

Up to this point, each technique was based on fitted modal
parameters and cutting coefficients. In order to avoid modal pa-
rameter estimation and significantly reduce the number of un-
certainties, [27] presented a frequency-domain approximation
by means of envelope fitting around the measured FRFs. In
[28], this concept was extended further using structured sin-
gular values and the extended multi-frequency solution (MFS-
SSV). The advantage of the technique is the small computa-
tional time and direct applicability of measured FRFs, however,
it does not take into account the variations in the cutting coef-
ficients. The solution obtained by the structured singular value
analysis is also presented in Sec. 4 through a case study.

4. Experiment

An experiment was carried out on a CNC machine. The FRF
matrix of the tool-tip was measured in XY directions (10 hit
each), the result corresponding to the main direction x can be
seen in Fig. 1. Then a seven-degree-of-freedom system was fit-
ted onto the average of the measured functions. The same fitting
process was repeated for several combination of the measured
FRFs in order to characterize the uncertainty in the fitting and
measuring procedure. Due to the high number of parameters,
these modal data are not listed here.

Cutting tests were performed to identify the empirical spe-
cific force characteristics in radial (r) and tangential directions
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Fig. 2. Theoretical stability chart with measurements: (a) Chatter frequency;
(b) DRM-SPA method [23]; (c) MFS-SSV method [28]. Notation: ©-stable,
�-marginal, ×-unstable.

(t) as a function of chip thickness h: fx(h) = Kc,xh + Ke,x(1 −
e−Exh), x = t, r, where Kc,t = 1049 MPa, Ke,t = 13.3 N/mm,
Et = 668 mm−1, Kc,r = 532 MPa, Ke,r = 15 N/mm, Er =

453 mm−1. Other cutting parameters are: N = 2, β = 30◦,
fZ = 0.05 mm and 50% down-milling operation.

In order to determine the probability of stability, the DRM-
SPA method of [23] was utilized. The total number of stability
chart calculations required 28 × 4 + 1 = 113 repeated function
evaluations at each point on the stability diagram. The results
are indicated in Fig. 2(a-b),where panel (a) shows the theoreti-
cal dominant chatter frequencies and (b) indicates the probabil-
ity of stability at levels 1-10-50-90-99%, respectively.

The robust boundaries were determined by the MFS-SSV
method [28] also, where the envelope of uncertainty is de-
scribed by the 1σ standard deviation of the measurements. This
calculation requires slightly more computational effort than a
single stability diagram (here it was approx. two-times longer).
The corresponding solution is presented in Fig. 2(c), where
black curves indicate the nominal boundary, red curve indicates
the robust stability boundary.

The experiment was carried out at different spindle speeds,
green circles indicate stable operation, magenta squares denote
marginal points (undecided) and red crosses stand for unstable
operation. The experimental setup is presented in Fig. 3. The
stability properties were determined based on the surface qual-
ity, signals of the accelerometers and spectrum of the industrial
microphones. Two sample spectra of the microphone signals
are presented in Fig. 4(a-b). In panel (b) the dominant chatter
frequency is marked with red cross.



4 Author name / Procedia CIRP 00 (2018) 000–000

AccelerometerAccelerometer

MicrophoneMicrophone

WorkpieceWorkpiece

ToolTool

Fig. 3. Experimental setup.
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Fig. 4. Spectrum of the measured signal of the microphone: (a) Stable
(Ω = 8000 rpm, ap = 1.5 mm); (b) Unstable (Ω = 8000 rpm, ap = 3 mm).

5. Conclusions

While uncertainties in conventional stability calculations of-
ten lead to unreliable predictions, statistical and robust methods
can overcome these limitations. This paper collects the most
well-know time and frequency-domain techniques listed by the
literature. Two different algorithms are highlighted, namely the
dimension reduction method with saddlepoint approximation
and the multi-frequency solution with structured singular value
analysis. The methods are tested in experiments that validated
the necessity of uncertainty analysis in stability lobe diagram
calculations.
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