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A B S T R A C T

In this study, the thermal stability and Mn carbide formation were investigated in amorphous Cu-Mn/C films
with potential applications as interconnect layers. Amorphous Cu-Mn films (with 50 and 70 at% Mn content)
were deposited by direct current (DC) magnetron sputtering at room temperature. Evaporated carbon foils were
used as substrates to model low-κ carbon doped oxides in their reaction with Cu-Mn films. In-situ transmission
electron microscopy indicated that the amorphous state was stable below 300 °C, where the films crystallized
into Cu(Mn) and α-Mn based solid solutions. The Mn carbide phases appeared at 400 °C where it was accom-
panied by the disappearance of the α-Mn phase and a decrease in the Mn content of the Cu(Mn) phase. The
Mn23C6 and Mn5C2 carbide phases were present from 400 °C to 500 °C, and Mn5C2 and Mn7C3 carbides in the
temperature range of 500–600 °C. The Mn5C2 carbides exhibited significant grain growth in the temperature
range of 400–600 °C. The activation energies for Mn5C2 growth were 101 ± 20 and 88 ± 22 kJ/mol in the
films containing 50 and 70 at% Mn, respectively, thereby indicating that growth was facilitated by a higher Mn
content. In addition to carbide formation, surface oxidation occurred in the system. Thermodynamic con-
siderations indicate that Mn carbide formation can only occur in the Cu-Mn-C-O system when the Mn is not fully
oxidized and free metallic Mn atoms remain.

1. Introduction

Due to the continued downscaling of ultra-large scale integrated
circuits, the use of conventional barriers in Cu metallization has become
challenging, and thus self-forming barriers (SFB) have been proposed as
a potential solution. The basic idea of SFBs involves the formation of a
barrier from the material undergoing metallization while it interacts
with the dielectric. In particular, Cu metallization involves alloying
with a strong oxide-forming element, which is selected because it tends
to migrate to the alloy/dielectric interface and reacts with the di-
electric. The segregation and reaction of the alloying element with the
dielectric can be achieved by annealing during technological processes.
Among the various alloying candidates, Mn has been investigated
widely and it forms a reliable uniform barrier layer on SiO2 surfaces
[1–4].

Barrier formation in low Mn content Cu-Mn films has been studied
extensively [2,5,6] but other compositions also merit investigation. In
our previous study, the morphology and electrical properties of the Cu-
Mn thin film system were mapped as a function of the composition, and
an amorphous phase-state was observed in the 40–70 at% Mn interval

[7]. It is considered that an amorphous structure can have several ad-
vantages in SFB processes because its structural homogeneity and lack
of grain boundaries may help to prevent Cu diffusion. However,
amorphous Cu-Mn structures are metastable, so they may crystallize
during annealing or due to other thermal effects that occur in techno-
logical processes. Therefore, the thermal stability of Cu-Mn amorphous
structures should be examined in order to ensure their adaptability for
SFB processes.

Another important issue in the development of ultra-large scale
integrated circuits is the optimization of low dielectric constant (κ)
insulating materials, which have recently been investigated extensively
[8–14]. Among the commercially available low-κ dielectrics, carbon
doped oxides (CDOs) are considered to be most compatible with
modern device fabrication. CDOs are SiO2-based materials, which are
formed by replacing some of the Si-O bonds with less polar Si-CHx

bonds. However, Si-CHx bonds are considerably weaker than Si-O bonds
and a wide range of device fabrication steps, including barrier forma-
tion, can deplete carbon from CDOs and increase the κ value. The re-
leased carbon can interfere with the uniform formation of a barrier at
the interconnect/CDO interface by forming carbide phases that are
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incorporated into the barrier. Some studies of Cu(Mn)-based barrier
formation on CDO substrates also investigated how to prevent carbide
formation [10,12–14]. These studies modeled barrier formation by
depositing a ∼1 nm thick Mn layer on CDO substrates with different
experimental parameters.

Many studies have investigated the effects of Mn oxidation on Mn
carbide formation (e.g., the Mn layer was deposited in an O2 atmo-
sphere) [10,12,13]. Limited carbide formation was found when the Mn
was partially oxidized [12,13], whereas carbide formation was sup-
pressed at full oxidation, even after annealing [10]. However, fully
oxidizing the Mn is undesirable because the presence of metallic Mn is
important for controlling the thickness of the barrier layer [3]. Other
studies aimed to modify the surface of the CDO substrate before Mn
deposition. If carbon is removed from the CDO surface by atomic
oxygen treatment, a SiO2-like surface sublayer forms [14]. This sub-
layer effectively prevents the formation of Mn-C bonds on a non-porous
substrate, even after annealing, but it is ineffective on a porous sub-
strate. Furthermore, atomic oxygen treatment may negatively impact
the formation of a discrete barrier with porous substrates [14]. Thus,
these previous studies indicate that processes for preventing carbide
formation may be detrimental for the dielectric constant (e.g., low
carbon content and porosity of CDOs) and/or the SFB process (e.g., fully
oxidizing the Mn).

In this study, to facilitate the design of SFBs, we studied the reaction
between a promising SFB material and carbon. In particular, we in-
vestigated the thermal stability of amorphous Cu-Mn films and Mn
carbide formation during annealing using in-situ transmission electron
microscopy (TEM) analysis. Evaporated carbon foils were used as sub-
strates to model the CDO surfaces in their reaction with Cu-Mn films.
Improving our fundamental understanding of Mn carbide formation
may assist its prevention, so we characterized the formation of the
carbide phases and their grain growth.

2. Experimental

Amorphous Cu-Mn alloy thin films were co-deposited in a high-
vacuum direct current (DC) magnetron sputtering system. Films with a
thickness of 50 nm were grown at room temperature on evaporated
carbon foils. The carbon foils were prepared by thermal sublimation of
a graphite rod on collodion film substrates supported by Ni grids at a
pressure of Pa. The collodion films were then removed by annealing the
grids at 400 °C for 90min. The resulting carbon foils had an amorphous
structure and a thickness of 10–20 nm. The Cu and Mn targets (99.99%
and 99.95% purity, respectively) were mounted 25° toward the vertical
and the rotating substrate holder was positioned 12 cm away from
them. Before deposition, the sputtering chamber was evacuated to a
base pressure of 5 10 6× − Pa and the substrates were annealed at 150 °C
for 60min to remove any mobile hydrocarbons. Ar (99.999% purity)
was then introduced at a pressure of 2 10 1× − Pa. The targets were pre-
sputtered before deposition with the shutters closed for 5–10min. The
desired compositions (50 and 70 at% Mn) were obtained by adjusting
the magnetrons' power [7]. The deposition rate of the layers was
0.4 nm/s.

The films were annealed in-situ and examined with a Philips CM-20
transmission electron microscope, which operated at 200 keV. The
temperature range for in-situ annealing was 20–600 °C and the heat
treatment program is shown in Fig. 1. Energy dispersive X-ray spec-
troscopy (EDS) analysis was performed to verify the compositions of the
samples using a Ge detector (NORAN EDS system) attached to the CM-
20 microscope.

The phase compositions of the films were evaluated based on the
selected area electron diffraction (SAED) patterns using the Process
Diffraction program [15]. The size of the area that contributed to the
SAED patterns measured 5 μm in diameter. During the evaluation of
each SAED pattern, the camera constant was specified by calibrating
based on MnO markers. For each temperature step, the MnO lattice

parameter was calculated using Eq. (1):

a a αΔT(1 ),T T °C20= += (1)

where aT is the lattice parameter at a given temperature, α T( ) is the
thermal expansion coefficient, and T is the temperature. The thermal
expansion coefficient for MnO was taken from a previous study [16].

3. Results

Figs. 2 and 3 show the changes in the microstructure during an-
nealing based on bright field images and the electron diffraction in-
tensity distributions. The as-deposited films subjected to in-situ heat
treatment were amorphous with both compositions [7]. Mn oxidizes
readily, even in ultra-high vacuum environments [13], so the presence
of MnO nanoparticles caused a slight diffraction contrast (Fig. 2a and
e). During annealing, the films with Mn contents of 50 and 70 at%
exhibited similar behavior, and only slight differences were observed.
As the temperature increased, both films remained amorphous below
300 °C. At 300 °C, both films crystallized into Cu-based and α-Mn-based
solid solutions. The typical electron diffraction patterns for these phases
are shown in Fig. 4. The grain size in the solid solutions was around
10–40 nm (Fig. 2b and f). The Cu-based solid solution remained stable
until the end of annealing, but the Mn-based phases underwent
changes. The α-Mn-based solid solution disappeared at 400 °C in the
50 at% Mn film and at 450 °C in the 70 at% Mn content film. New
phases appeared at 400 °C (marked by arrows in Fig. 3). In addition,
strong oxidation occurred above 400 °C and substantial grain growth
was also observed (Fig. 2d and h).

The diffraction maxima determined for the Cu-based and α-Mn-
based solid solutions exhibited continuous shifts in both films (Fig. 3),
thereby indicating changes in the lattice parameters. The lattice para-
meters measured for both solid solutions at each temperature are listed
in Table 1. In general, two mechanisms can contribute to changes in the
lattice parameter: thermal expansion and changes in the solute con-
centration. Thermal expansion can be calculated based on the lattice
parameter for pure components at room temperature (a Å3,6149Cu =
[17] and a Å8,9125α Mn =− [18]) and their thermal expansion coeffi-
cients (α K1.65 10 1/Cu

5= × − [17] and α K2.17 10 1/Mn
5= × − [18]) using

Eq. (1). The dissolution limits of each component should be considered
when determining changes in the solute concentration. α-Mn can dis-
solve up to ∼10 at% Cu under non-equilibrium conditions [7], ∼5 at%
C in the temperature range of 0–400 °C [19], and a negligible amount of
O [20]. Thus, the α-Mn solid solution could comprise several elements:

Fig. 1. Annealing cycle used in the in-situ experiments. The vacuum conditions
during annealing were 6 10 5× − Pa at 20 °C, which increased to 1 10 3× − Pa at
600 °C.
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Mn, Cu, and C atoms. By contrast, Cu dissolves ∼20–45 at% Mn in the
temperature range of 300–600 °C [21] and negligible amounts of C and
O [22,23]. Thus, Cu forms a simple Cu(Mn) solid solution and its
composition can be calculated from the lattice parameter. Czigány et al.
measured the dependence of the Cu(Mn) lattice parameter based on the
composition in sputtered Cu-Mn thin films at room temperature as:
a a c0.322Cu= + , where c is the Mn concentration in the Cu(Mn) solid
solution in at% [24]. We modified this equation to consider thermal
expansion:

a a c0.322 ,T CuT= + (2)

where aCuT is calculated at each temperature using Eq. (1).
Fig. 5 shows the compositions of the Cu(Mn) phase calculated (using

Eq. (2)) in the temperature range of 300–600 °C. There were significant
declines in the Mn contents in both films. After crystallization, the Cu
(Mn) phase dissolved 31 and 23 at% Mn in the films with Mn contents
of 50 and 70 at%, respectively, and the Mn content increased slightly in
both films as the temperature increased. The Mn content decreased to
18 at% at 400 °C and then decreased further to 6 at% at 450 °C in the
film containing 50 at% Mn. In the film containing 70 at% Mn, the Mn
content increased at 400 °C but decreased to 9 at% at 450 °C. Above

450 °C, the Mn content varied between 7 and 11 at% in both films.
Fig. 6 shows enlargements of the diffraction intensity distributions

for the films with Mn contents of 50 (a) and 70 at% (b) to highlight the
formation of the new phases. At 400 °C, two Mn carbide phases could be
identified in both films: Mn23C6 and Mn5C2. In addition, Mn5C2 was
present up to 600 °C, but Mn23C6 disappeared at 500 °C and 550 °C in
the films with Mn contents of 50 and 70 at%, respectively. At 500 °C, a
new carbide, Mn7C3, formed in both films and remained stable up to
600 °C. The appearance and disappearance of the crystalline phases are
shown in Table 2.

To interpret the carbide formation process, we next provide a
comprehensive summary of all the processes that occurred in the
multicomponent system. At 400 °C, three processes started simulta-
neously: the α-Mn phase disappeared (i), the Mn content of the Cu(Mn)
phase decreased (ii), and Mn carbides formed (iii). All three processes
could be derived from a solid state reaction between the film and the
carbon substrate layer. Carbon atoms diffused into the film where they
could react with the metallic Mn present in the α-Mn and Cu(Mn) solid
solutions to form Mn carbide phases. A slight difference was found
between the films containing 50 and 70 at% Mn. In the film containing
70 at% Mn, the α-Mn phase disappeared and the Mn content of the Cu

Fig. 2. Changes in the microstructure of the films with Mn contents of 50 at% (a–d) and 70 at% (e–h) during annealing in bright field TEM images (a, e: 20 °C; b, f:
300 °C; c, g: 450 °C; d, h: 600 °C).

Fig. 3. Electron diffraction intensity distributions for the films with Mn contents of 50 (a) and 70 at% (b) at different temperatures during in-situ heat treatment.
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(Mn) phase decreased at a higher temperature (450 °C), whereas car-
bides were formed at the same temperature (400 °C) as in the film
containing 50 at% Mn. If we assume that carbon diffusion was similar in
the two films, the transformation of metallic Mn into carbide must have
been prolonged in the film with a Mn content of 70 at% due to its higher
Mn content.

Mn can form various carbide phases and three were identified in

both films: Mn23C6, Mn5C2, and Mn7C3. Although we obtained a mul-
ticomponent system, the Mn-C phase diagram (shown in Fig. 7) may
help to interpret the changes in the carbide phases. In terms of carbides,
below 500 °C, the system was in the phase range denoted by I in Fig. 7
where Mn23C6 and Mn5C2 carbides were present. As the temperature
increased, more carbon diffused into the film and the compound with a
lower C:Mn ratio (Mn23C6) disappeared, and a new phase with a higher
C:Mn ratio then appeared, i.e., Mn7C3. Thus, above 500 °C, the system
was in the phase range denoted by II where Mn5C2 and Mn7C3 carbides
were present.

To investigate the microstructure of the carbides, dark field images
were recorded using the reflections located between the two dashed
lines in Fig. 6. The carbide grains (shown in Fig. 8) had a lamellar
structure and they exhibited significant grain growth in the tempera-
ture range of 400–600 °C (also shown in Fig. 2c and d, 2g–h). We fol-
lowed the growth of five carbide grains in dark field images taken at
different temperatures within an area of μm1.7 1.5 2× . The grains had a
somewhat elongated shape so two perpendicular axes, x and y, were
measured on each grain and the grain size d was calculated as:
d x y( )/2= + . The only carbide phase present throughout the tem-
perature range of 400–600 °C was the Mn5C2 phase, so we can conclude
that we measured these grains.

Fig. 9a shows the dependence of the grain size measured for the
Mn5C2 phase as a function of the annealing temperature. The location
of the points suggests Arrhenius-type grain growth. The characteristic
activation energy for the Arrhenius-type growth process can be esti-
mated according to the following equation [25]:

d d At
Q
RT

exp ,g
m m n gg

0 ⎜ ⎟= + ⎛
⎝

− ⎞
⎠ (3)

where dg is the average carbide grain size at a given annealing step
nm( ), d0 is the average carbide grain size at the start of each annealing
step nm( ), t is the time s( ), Qgg is the activation energy of carbide grain
growth J mol( / ), R is the gas constant J mol K( / ), T is the absolute
temperature K( ), and m A n, , and are constants, where m 2= applies
when the growth rate is limited by interfacial reactions (ideal grain
growth) and m 3= applies for a system limited by the diffusion of
atoms in the solid or liquid phases [26]. In our films, carbide growth
was presumably limited by the diffusion of Mn and C atoms, so we used
m 3= . According to the implementation of the experiment, t could be
regarded as constant so Eq. (3) can be simplified as follows.

d d A
Q
RT

expg
m m gg

0 ⎜ ⎟= + ′ ⎛
⎝

− ⎞
⎠ (4)

Fig. 4. Selected area electron diffraction patterns obtained for the 50 at% Mn film at 250 °C (a) and 300 °C (b). The structure of the film was amorphous below 300 °C
(a). At 300 °C, the film crystallized into Cu-based and α-Mn-based solid solutions (b).

Table 1
Lattice parameters measured for Cu-based and Mn-based solid solutions. The
error in the lattice parameter measurements was 0.5%.

T [°C] 50 at% Mn 70 at% Mn

a Å[ ]Cu a Å[ ]α Mn− a Å[ ]Cu a Å[ ]α Mn−

300 3.731 9.015 3.705 9.015
350 3.736 9.015 3.714 9.015
400 3.694 – 3.725 8.986
450 3.659 – 3.668 –
500 3.666 – 3.668 –
550 3.671 – 3.671 –
600 3.686 – 3.679 –

Fig. 5. Dependence on temperature of the Mn concentration in the Cu(Mn)
solid solution for films with Mn contents of 50 and 70 at%.

K.H. Nagy, F. Misják Journal of Physics and Chemistry of Solids 121 (2018) 312–318

315



By calculating the logarithm of Eq. (4), we obtain:

d d lnA
Q
RT

ln( ) .g
m m gg

0 ⎜ ⎟− = ′ + ⎛
⎝

− ⎞
⎠ (5)

By taking the partial derivative of Eq. (5) with respect to T1/ , the
activation energy can be calculated as follows.

d d
T

Q
R

(ln( ))
(1/ )
g

m m
gg0∂ −

∂
= −

(6)

By plotting Eq. (5) (see Fig. 9b), the relationship between
d dln( )g

m m
0− and T1/ is linear when m 3= . Thus, in agreement with

our assumption, the grain growth was an Arrhenius-type process, and it
was limited by diffusion and the slopes of the linear fits were equal to
Q R/gg (Eq. (6)). Thus, the activation energies for Mn5C2 grain growth
were 101 ± 20 and 88 ± 22 kJ/mol in the films containing 50 and
70 at% Mn, respectively. Therefore, carbide growth was facilitated by
higher Mn contents.

In addition to carbide formation, surface oxidation occurred in the
system. MnO was present at the top of the as-deposited films but the
intensity of the MnO diffraction peaks (Fig. 2) increased significantly
during annealing above 300 °C. To compare the probability of oxide and
carbide formation, the standard free energy (ΔG0) was determined for
each of the two processes in the annealing temperature range. The
carbon line [27] divides all oxides into two classes. The oxides with
more negative standard free energy than the carbon line cannot be
reduced by carbon. The carbon line was at a constant value of
−395 kJ/mol in the temperature range of 20–600 °C [27], and the MnO
curve varied in a linear manner from −729 kJ/mol to −640 kJ/mol

[28]. The standard free energy curve for MnO was below the carbon
line, so the carbon could not reduce MnO. Therefore, Mn carbide for-
mation could only occur in this multicomponent system when free
metallic Mn atoms were present.

This thermodynamic restriction explains the results of previous
studies that investigated the effects of Mn oxidation on Mn carbide
formation [10,12,13]. Bogan et al. and McCoy et al. [12,13] found that
the partial oxidation of Mn resulted in limited Mn carbide formation. In
addition, Casey et al. [10] showed that the full oxidation of Mn effec-
tively inhibited Mn carbide formation, although it increased the
thickness of the barrier layer. In a later study, Bogan et al. [14] in-
vestigated another method for preventing Mn carbide formation, where
they modified the surface of the CDO substrate and created an SiO2-like
surface sublayer, which avoided Mn carbide formation on a non-porous
CDO. However, limited carbide formation was found on a porous sub-
strate and the surface treatment had detrimental effects on the forma-
tion of a discrete barrier layer.

Based on the experimental results and thermodynamic arguments,
we provide suggestions regarding the requirements in terms of the
optimal method for inhibiting carbide formation. First, in the en-
vironment of the Cu(Mn)/CDO interface, there must be sufficient
oxygen for the full oxidation of Mn. Second, the diffusion of Mn into the
CDO must be prevented.

4. Summary

Amorphous Cu-Mn thin films (with Mn contents of 50 and 70 at%)
were deposited by DC magnetron sputtering on evaporated carbon

Fig. 6. Electron diffraction intensity distributions determined for the films with Mn contents of 50 at% (a) and 70 at% (b), highlighting carbide formation. The dashed
lines denote the angular intervals of the reflections used for dark field TEM images (an example is shown in Fig. 8b).

Table 2
Phases of the films with Mn contents of 50 and 70 at% in the temperature range of 300–600 °C (plus signs indicate that a given phase exists at a given temperature).

T [°C] Cu α-Mn Mn23C6 Mn5C2 Mn7C3 MnO

50% 70% 50% 70% 50% 70% 50% 70% 50% 70% 50% 70%

300 + + + + + +
350 + + + + + +
400 + + + + + + + + +
450 + + + + + + + +
500 + + + + + + + + +
550 + + + + + + + +
600 + + + + + + + +
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substrates at room temperature. The films were annealed in-situ in the
TEM to investigate the thermal stability of the amorphous Cu-Mn films
and Mn carbide formation. Both compositions exhibited similar beha-
vior during annealing. The amorphous state was stable below 300 °C,
where the films crystallized into Cu(Mn) and α-Mn-based solid solu-
tions. The Cu-based solid solution remained stable up to 600 °C but the
Mn-based phases underwent changes. The Mn carbide phases appeared
at 400 °C, which were accompanied by the disappearance of the α-Mn
phase and a decrease in the Mn content of the Cu(Mn) phase. In the
temperature range of 400–500 °C, the Mn23C6 and Mn5C2 carbide
phases were present. As the temperature increased, more carbon dif-
fused into the film. Hence, the compound with a lower C:Mn ratio
(Mn23C6) disappeared and a new phase with a higher C:Mn ratio ap-
peared, i.e., Mn7C3. The Mn5C2 carbides had a lamellar structure and
they exhibited Arrhenius-type grain growth in the temperature range of

400–600 °C. The activation energies for Mn5C2 growth were 101 ± 20
and 88 ± 22 kJ/mol in the films containing 50 and 70 at% Mn, re-
spectively, thereby indicating that carbide growth was facilitated by
higher Mn contents. In addition to carbide formation, surface oxidation
also occurred in the system. Our results suggest that a thin, uniform
barrier layer without carbide formation can be formed on the surfaces
of CDOs when sufficient oxygen is available for the full oxidation of Mn
within the diffusion distance of the Cu(Mn)/CDO interface and when
the diffusion of Mn into the CDO is prevented.

Prime novelty statement

In the submitted manuscript, we report in-situ TEM results obtained
on thermal stability and solid phase reaction between amorphous Cu-
Mn films and carbon substrates. Carbon substrates are used to model

Fig. 7. Mn-C equilibrium phase diagram in the temperature range of 0–650 °C based on Ref. [19].

Fig. 8. Bright field (a) and dark field (b) image of a Mn5C2 carbide grain in the 50 at% Mn sample annealed at 600 °C.

Fig. 9. Mn5C2 grain growth during annealing. Dependence of the grain size as the function of the annealing temperature (a). Dependence of the logarithm of grain
growth d d( )g

m m
0− as a function of T1/ when m 3= (Eq. (6)) (b).
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low-κ carbon doped dielectric surfaces in their reaction with Cu-Mn
films. The goal is to describe the mechanism of Mn carbide formation
and the forming carbide phases. The possibility of suppressing carbide
formation is discussed.
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