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Abstract. In safety-critical cyber-physical systems (CPS), a service fail-
ure may result in severe financial loss or damage in human life. Smart
CPSs have complex interaction with their environment which is rarely
known in advance, and they heavily depend on intelligent data process-
ing carried out over a heterogeneous computation platform and provide
autonomous behavior. This complexity makes design time verification in-
feasible in practice, and many CPSs need advanced runtime monitoring
techniques to ensure safe operation. While graph queries are a powerful
technique used in many industrial design tools of CPSs, in this paper, we
propose to use them to specify safety properties for runtime monitors on
a high-level of abstraction. Distributed runtime monitoring is carried out
by evaluating graph queries over a distributed runtime model of the sys-
tem which incorporates domain concepts and platform information. We
provide a semantic treatment of distributed graph queries using 3-valued
logic. Our approach is illustrated and an initial evaluation is carried out
using the MoDeS3 educational demonstrator of CPSs.

1 Introduction

A smart and safe cyber-physical system (CPS) [23,30,36] heavily depends on in-
telligent data processing carried out over a heterogeneous computation platform
to provide autonomous behavior with complex interactions with an environment
which is rarely known in advance. Such a complexity frequently makes design
time verification be infeasible in practice, thus CPSs need to rely on run-time
verification (RV) techniques to ensure safe operation by monitoring.

Traditionally, RV techniques have evolved from formal methods [24,26], which
provide a high level of precision, but offer a low-level specification language (with
simple atomic predicates to capture information about the system) which hinders
their use in every day engineering practice. Recent RV approaches [17] started
to exploit rule-based approaches over a richer information model.

In this paper, we aim to address runtime monitoring of distributed systems
from a different perspective by using runtime models (aka models@ runtime
[8, 38]) which have been promoted for the assurance of self-adaptive systems
in [10, 44]. The idea is that runtime models serve as a rich knowledge base for



the system by capturing the runtime status of the domain, services and platforms
as a graph model, which serves as a common basis for executing various analysis
algorithms. Offering centralized runtime models accessible via the network, the
Kevoree Modeling Framework [28] has been successfully applied in numerous
Internet-of-Things applications over the Java platform. However, the use of such
run-time models for analysis purposes in resource-constrained smart devices or
critical CPS components is problematic due to the lack of control over the actual
deployment of the model elements to the execution units of the platform.

Graph queries have already been applied in various design and analysis tools
for CPSs thanks to their highly expressive declarative language, and their scal-
ability to large industrial models [40]. Distributed graph query evaluation tech-
niques have been proposed in [22, 34], but all of these approaches use a cloud-
based execution environment, and the techniques are not directly applicable for
a heterogeneous execution platform with low-memory computation units.

As a novelty in our paper, we specify safety criteria for runtime monitor-
ing by graph queries formulated over runtime models (with domain concepts,
platform elements, and allocation as runtime information) where graph query
results highlight model elements that violate a safety criterion. Graph queries
are evaluated over a distributed runtime model where each model element is
managed by a dedicated computing unit of the platform while relevant contex-
tual information is communicated to neighboring computing units periodically
via asynchronous messages. We provide a semantic description for the distributed
runtime model using 3-valued logic to uniformly capture contextual uncertainty
or message loss. Then we discuss how graph queries can be deployed as a service
to the computing units (i.e., low-memory embedded devices) of the execution
platform of the system in a distributed way, and provide precise semantics of
distributed graph query evaluation over our distributed runtime model. We pro-
vide an initial performance evaluation of our distributed query technique over
the MoDeS3 CPS demonstrator [45], which is an open source educational plat-
form, and also compare its performance to an open graph query benchmark [35].

2 Overview of Distributed Runtime Monitoring

Figure 1 is an overview of distributed runtime monitoring of CPSs deployed over
heterogeneous computing platform using runtime models and graph queries.

Our approach reuses a high-level graph query language [41] for specifying
safety properties of runtime monitors, which language is widely used in various
design tools of CPS [37]. Graph queries can capture safety properties with rich
structural dependencies between system entities which is unprecedented in most
temporal logic formalisms used for runtime monitoring. Similarly, OCL has been
used in [20] for related purposes. While graph queries can be extended to ex-
press temporal behavior [11], our current work is restricted to (structural) safety
properties where the violation of a property is expressible by graph queries.

These queries will be evaluated over a runtime model which reflects the cur-
rent state of the monitored system, e.g. data received from different sensors, the



Fig. 1: Distributed runtime monitoring by graph queries

services allocated to computing units, or the health information of computing
infrastructure. In accordance with the models@ runtime paradigm [8, 38], ob-
servable changes of the real system gets updated — either periodically with a
certain frequency, or in an event-driven way upon certain triggers.

Runtime monitor programs are deployed to a distributed heterogeneous com-
putation platform, which may include various types of computing units ranging
from ultra-low-power microcontroller units, through smart devices to high-end
cloud-based servers. These computation units primarily process the data pro-
vided by sensors and they are able to perform edge- or cloud-based computations
based on the acquired information. The monitoring programs are deployed and
executed on them exactly as the primary services of the system, thus resource
restrictions (CPU, memory) need to be respected during allocation.

Runtime monitors are synthesized by transforming high-level query specifi-
cations into deployable, platform dependent source code for each computation
unit used as part of a monitoring service. The synthesis includes a query opti-
mization step and a code generation step to produce platform-dependent C++
source code ready to be compiled into an executable for the platform. Due to
space restrictions, this component of our framework is not detailed in this paper.

Our system-level monitoring framework is hierarchical and distributed. Mon-
itors may observe the local runtime model of the their own computing unit, and
they can collect information from runtime models of different devices, hence pro-
viding a distributed monitoring architecture. Moreover, one monitor may rely on
information computed by other monitors, thus yielding a hierarchical network.

Running example We illustrate our runtime monitoring technique in the con-
text of a CPS demonstrator [45], which is an educational platform of a model
railway system that prevents trains from collision and derailment using safety
monitors. The railway track is equipped with several sensors (cameras, shunt
detectors) capable of sensing trains on a particular segment of a track connected



to some computing units, such as Arduinos, Raspberry Pis, BeagleBone Blacks
(BBB), or a cloud platform. Computing units also serve as actuators to stop
trains on selected segments to guarantee safe operation. For space considera-
tions, we will only present a small self-contained fragment of the demonstrator.

In Figure 1, the System Under Monitor is a snapshot of the system where
train tr1 is on segment s4, while tr2 is on s2. The railroad network has a static
layout, but turnouts tu1 and tu2 can change between straight and divergent
states. Three BBB computing units are responsible for monitoring and control-
ling disjoint parts of the system. A computing unit may read its local sensors,
(e.g. the occupancy of a segment, or the status of a turnout), collect information
from other units during monitoring, and it can operate actuators accordingly
(e.g. change turnout state) for the designated segment. All this information is
reflected in the (distributed) runtime model which is deployed on the three com-
puting units and available for the runtime monitors.

3 Towards Distributed Runtime Models

3.1 Runtime Models

Many industrial modeling tools used for engineering CPS [3, 31, 47] build on
the concepts of domain-specific (modeling) languages (DSLs) where a domain
is typically defined by a metamodel and a set of well-formedness constraints. A
metamodel captures the main concepts in a domain as classes with attributes,
their relations as references, and specifies the basic structure of graph models.

A metamodel can be formalized as a vocabularyΣ = {C1, . . . , Cn1
, A1, . . . , An2

,
R1, . . . , Rn3

} with a unary predicate symbol Ci for each class, a binary predicate
symbol Aj for each attribute, and a binary predicate symbol Rk for each relation.

Example 1. Figure 2 shows a metamodel for the CPS demonstrator with Com-
puting Units (identified on the network by hostID attribute) which host Domain
Elements and communicate with other Computing Units. A Domain Element is ei-
ther a Train or Railroad Element where the latter is either a Turnout or a Segment.
A Train is situated on a Railroad Element which is connected to at most two other
Railroad Elements. Furthermore, a Turnout refers to Railroad Elements connecting
to its straight and divergent exits. A Train also knows its speed.

Objects, their attributes, and links between them constitute a runtime model
[8, 38] of the underlying system in operation. Changes to the system and its
environment are reflected in the runtime model (in an event-driven or time-
triggered way) and operations executed on the runtime model (e.g. setting values
of controllable attributes or relations between objects) are reflected in the system
itself (e.g. by executing scripts or calling services). We assume that this runtime
model is self-descriptive in the sense that it contains information about the
computation platform and the allocation of services to platform elements, which
is a key enabler for self-adaptive systems [10,44].

A runtime model M = ⟨DomM , IM ⟩ can be formalized as a 2-valued logic
structure over Σ where DomM = ObjM ⊔ DataM where ObjM is a finite set of
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Fig. 2: Metamodel for CPS demonstrator

objects, while DataM is the set of (built-in) data values (integers, strings, etc.).
IM is a 2-valued interpretation of predicate symbols in Σ defined as follows:

– Class predicates: If object op is an instance of class Ci then the 2-valued

interpretation of Ci in M denoted by [[Ci(op)]]
M

= 1, otherwise 0.
– Attribute predicates: If there exists an attribute of type Aj in op with

value ar in M then [[Aj(op, ar)]]
M

= 1, and otherwise 0.
– Reference predicates: If there is a link of type Rk from op to oq in M then

[[Rk(op, oq)]]
M

= 1, otherwise 0.

3.2 Distributed Runtime Models

Our framework addresses decentralized systems where each computing unit pe-
riodically communicates a part of its internal state to its neighbors in an update
phase. We abstract from the technical details of communication, but we assume
approximate synchrony [13] between the clocks of computing units, thus all up-
date messages regarded lost that does not arrive within given timeframe Tupdate.

As such, a centralized runtime model is not a realistic assumption for mixed
synchronous systems. First, each computing unit has only incomplete knowledge
about the system: it fully observes and controls a fragment of the runtime model
(to enforce the single source of truth principle), while it is unaware of the internal
state of objects hosted by other computing units. Moreover, uncertainty may
arise in the runtime model due to sensing or communication issues.

Semantics of distributed runtime models. We extend the concept of runtime
models to a distributed setting with heterogeneous computing units which pe-
riodically communicate certain model elements with each other via messages.
We introduce a semantic representation for distributed runtime models (DRMs)
which can abstract from the actual communication semantics (e.g. asynchronous
messages vs. broadcast messages) by (1) evaluating predicates locally at a com-
puting unit with (2) a 3-valued truth evaluation having a third 1/2 value in
case of uncertainty. Each computing unit maintains a set of facts described by
atomic predicates in its local knowledge base wrt. the objects with attributes it



Fig. 3: Distributed runtime model for CPS demonstrator

hosts, and references between local objects. Additionally, each computing unit
incorporates predicates describing outgoing references for each object it hosts.

The 3-valued truth evaluation of a predicate P (v1, . . . , vn) on a computing
unit cu is denoted by [[P (v1, . . . , vn)]]@cu. The DRM of the system is constituted
from the truth evaluation of all predicates on all computing units. For the current
paper, we assume the single source of truth principle, i.e. each model element is
always faithfully observed and controlled by its host computing unit, thus the
local truth evaluation of the corresponding predicate P is always 1 or 0. However,
3-valued evaluation could be extended to handle such local uncertainties.

Example 2. Figure 3 shows a DRM snapshot for the CPS demonstrator (bottom
part of Figure 1). Computing units BBB1–BBB3 manage different parts of the
system, e.g. BBB1 hosts objects s1, s2, tu1 and tr2 and the links between them.
We illustrate the local knowledge bases of computing units.

Since computing unit BBB1 hosts train tr2, thus [[Train(tr2)]]@BBB1 = 1.
However, according to computing module BBB2, [[Train(tr2)]]@BBB2 = 1/2 as
there is no train tr2 hosted on BBB2, but it may exist on a different one.

Similarly, [[ConnectedTo(s1, s7)]]@BBB1 = 1, as BBB1 is the host of s1, the
source of the reference. This means BBB1 knows that there is a (directed) refer-
ence of type connectedTo from s1 to s7. However, the knowledge base on BBB3
may have uncertain information about this link, thus [[ConnectedTo(s1, s7)]]@
BBB3 = 1/2, i.e. there may be a corresponding link from s1 to s7, but it cannot
be deduced using exclusively the predicates evaluated at BBB3.

4 Distributed Runtime Monitoring

4.1 Graph queries for specifying safety monitors

To capture the safety properties to be monitored, we rely on the VIATRA Query
Language (VQL) [7]. VIATRA has been intensively used in various design tools
of CPSs to provide scalable queries over large system models. The current paper
aims to reuse this declarative graph query language for runtime verification pur-
poses, which is a novel idea. The main benefit is that safety properties can be
captured on a high level of abstraction over the runtime model, which eases the
definition and comprehension of safety monitors for engineers. Moreover, this
specification is free from any platform-specific or deployment details.



pattern closeTrains(

St : RailroadElement ,

End : RailroadElement)

{

Train.on(T,St);

Train.on(OT,End);

T != OT;

RailroadElement.connectedTo(St, Mid);

RailroadElement.connectedTo(Mid , End);

St != End;

}

(a) Graph query in the VIATRA Query Language

CloseTrains(St,End) =
RailroadElement(St)∧
RailroadElement(End)∧

∃T : Train(T) ∧ On(T , St)∧
∃OT : Train(OT) ∧ On(OT ,End)∧
¬(T = OT)∧
∃Mid : RailroadElement(Mid) ∧
ConnectedTo(St,Mid)∧
ConnectedTo(Mid,End)∧
¬(St = End)

(b) Query as formula

(c) Graphical query representation

Fig. 4: Safety monitoring objective closeTrains specified as graph pattern

The expressiveness of the VQL language converges to first-order logic with
transitive closure, thus it provides a rich language for capturing a variety of com-
plex structural conditions and dependencies. Technically, a graph query captures
the erroneous case, when evaluating the query over a runtime model. Thus any
match (result) of a query highlights a violation of the safety property at runtime.

Example 3. In the railway domain, safety standards prescribe a minimum dis-
tance between trains on track [1, 14]. Query closeTrains captures a (simplified)
description of the minimum headway distance to identify violating situations
where trains have only limited space between each other. Technically, one needs
to detect if there are two different trains on two different railroad elements, which
are connected by a third railroad element. Any match of this pattern highlights
track elements where passing trains need to be stopped immediately. Figure 4a
shows the graph query closeTrains in a textual syntax, Figure 4b displays it as a
graph formula, and Figure 4c is a graphical illustration as a graph pattern.

Syntax. Formally, a graph pattern (or query) is a first order logic (FOL) for-
mula φ(v1, . . . , vn) over variables [42]. A graph pattern φ can be inductively
constructed (see Table 1) by using atomic predicates of runtime models C(v),
A(v1, v2), R(v1, v2), C, A, R ∈ Σ, equality between variables v1 = v2, FOL connec-
tives ∨, ∧, quantifiers ∃, ∀, and positive (call) or negative (neg) pattern calls.

This language enables to specify a hierarchy of runtime monitors as a query
may explicitly use results of other queries (along pattern calls). Furthermore,
distributed evaluation will exploit a spatial hierarchy between computing units.

Semantics. A graph pattern φ(v1, . . . , vn) can be evaluated over a (central-

ized) runtime model M (denoted by [[φ(v1, . . . , vn)]]
M
Z ) along a variable binding



Table 1: Semantics of graph patterns (predicates)
1. [[C(v)]]MZ :=IM (C)(Z(v)) 6. [[v1 = v2]]

M
Z :=1 iff Z(v1) = Z(v2)

2. [[A(v1, v2)]]
M
Z :=IM (A)(Z(v1), Z(v2)) 7. [[φ1 ∧ φ2]]

M
Z :=min([[φ1]]

M
Z , [[φ2]]

M
Z )

3. [[R(v1, v2)]]
M
Z :=IM (R)(Z(v1), Z(v2)) 8. [[φ1 ∨ φ2]]

M
Z :=max([[φ1]]

M
Z , [[φ2]]

M
Z )

4. [[∃v : φ]]MZ :=max{[[φ]]MZ,v ↦→x
: x ∈ ObjM} 9. [[¬φ]]MZ :=1− [[φ]]MZ

5. [[∀v : φ]]MZ :=min{[[φ]]MZ,v ↦→x
: x ∈ ObjM}

10. [[call(φ(v1, . . . , vn))]]
M
Z :=

{
∃Z′ : Z ⊆ Z′ ∧ ∀i∈1..n :

Z′(vci ) = Z(vi) : [[φ(v
c
1, . . . , v

c
n)]]

M
Z′

11. [[neg(φ(v1, . . . , vn))]]
M
Z :=1− [[call(φ(v1, . . . , vn))]]

M
Z

Z : {v1, . . . , vn} → DomM from variables to objects and data values in M in
accordance with the semantic rules defined in Table 1 [42].

A variable binding Z is called a match if pattern φ is evaluated to 1 over M ,
i.e. [[φ(v1, . . . , vn)]]

M
Z = 1. Below, we may use [[φ(v1, . . . , vn)]] as a shorthand for

[[φ(v1, . . . , vn)]]
M
Z when M and Z are clear from context. Note that min and max

take the numeric minimum and maximum values of 0, 1/2 and 1 with 0 ≤ 1/2 ≤ 1.

4.2 Execution of Distributed Runtime Monitors

To evaluate graph queries of runtime monitors in a distributed setting, we pro-
pose to deploy queries to the same target platform in a way that is compliant
with the distributed runtime model and the potential resource restrictions of
computation units. If a graph query engine is deployed as a service on a com-
puting unit, it can serve as a local monitor over the runtime model. However,
such local monitors are usable only when all graph nodes traversed and retrieved
during query evaluation are deployed on the same computing unit, which is not
the general case. Therefore, a distributed monitor needs to gather information
from other model fragments and monitors stored at different computing units.

A query cycle. Monitoring queries are evaluated over a distributed runtime
model during the query cycle, where individual computing units communicate
with each other asynchronously in accordance with the actor model [18].

– A monitoring service can be initiated (or scheduled) at a designated com-
puting unit cu by requesting the evaluation of a graph query with at least
one unbound variable denoted as [[φ(v1, . . . , vn)]]@cu =?

– A computing unit attempts to evaluate a query over its local runtime model.
– If any links of its local runtime model point to a fragment stored at a neigh-

boring computing unit, or if a subpattern call is initiated, corresponding
query R(v1, v2), call(φ) or neg(φ) needs to be evaluated at all neighbors cui.

– Such calls to distributed monitors are carried out by sending asynchronous
messages to each other thus graph queries are evaluated in a distributed way



Fig. 5: Beginning of distributed query execution for monitor closeTrains

along the computing platform. First, the requester cur sends a message of the
form “[[φ(v1, . . . , vn)]]@cup =?”. The provider cup needs to send back a reply
which contains further information about the internal state or previous mon-
itoring results of the provider which contains all potential matches known by
cup, i.e. all bindings [[φ(o1, . . . , on)]]@cup ≥ 1/2 (where we abbreviated the
binding vi ↦→ oi into the predicate as a notational shortcut).

– Matches of predicates sent as a reply to a computing unit can be cached.
– Messages may get delayed due to network traffic and they are considered to

be lost by the requester if no reply arrives within a deadline. Such a case
introduces uncertainty in the truth evaluation of predicates, i.e. the requestor
cur stores [[φ]]@cup = 1/2 in its cache, if the reply of the provider cup is lost.

– After acquiring truth values of predicates from its neighbors, a computing
unit needs to decide on a single truth value for each predicate evaluated
along different variable bindings. This local decision will be detailed below.

– At the end of the query cycle, each computing unit resets its cache to remove
information acquired within the last cycle.

Example 4. Figure 5 shows the beginning of a query evaluation sequence for
monitor closeTrains initiated at computing unit BBB3. Calls are asynchronous
(cf. actor model), while diagonal lines illustrate the latency of network commu-
nication. Message numbers represent the order between timestamps of messages.

When the query is initiated (message 1, shortly, m1), and the first predicate
Train of the query is sent to the other two computing unit as requests with a
free variable parameter T (m2 and m3). In the reply messages, BBB2 reports
tr1 as an object satisfying the predicate (m4), while BBB1 answers that tr2 is
a suitable binding to T (m5). Next BBB3 is requesting facts about outgoing
references of type On leading from objects tr2 and tr1 to objects stored in BBB1
and BBB2, respectively (m6 and m7). As the answer, each computing unit sends
back facts stating outgoing references from the objects (m8 and m9).

The next message (m10) asks for outgoing references of type ConnectedTo

from object s2. To send a reply, first BBB1 asks BBB2 to ensure that a reference



from s2 to s3 exists, since s3 is hosted by BBB2 (m11). This check adds tolerance
against lost messages during model update. After BBB1 receives the answer from
BBB2 (m12), it replies to BBB3 containing all facts maintained on this node.

Semantics of distributed query evaluation. Each query is initiated at a desig-
nated computing unit which will be responsible for calculating query results
by aggregating the partial results retrieved from its neighbors. This aggregation
has two different dimensions: (1) adding new matches to the result set calculated
by the provider, and (2) making a potential match more precise. While the first
case is a consequence of the distributed runtime model and query evaluation, the
second case is caused by uncertain information caused by message loss/delay.

Fortunately, the 3-valued semantics of graph queries (see Table 1) already
handles the first case: any match reported to the requester by any neighboring
provider will be included in the query results if its truth evaluation is 1 or 1/2.
As such, any potential violation of a safety property will be detected, which may
result in false positive alerts but critical situations would not be missed.

However, the second case necessitates extra care since query matches coming
from different sources (e.g. local cache, reply messages from providers) need to
be fused in a consistent way. This match fusion is carried out at cu as follows:

– If a match is obtained exclusively from the local runtime model of cu, then
it is a certain match, formally [[φ(o1, . . . , on)]]@cu = 1.

– If a match is sent as a reply by multiple neighboring computing units cui

(with cui ∈ nbr(cu)), then we take the most certain result at cu, formally,
[[φ(o1, . . . , on)]]@cu := max{[[φ(o1, . . . , on)]]@cui |cui ∈ nbr(cu)}.

– Otherwise, tuple o1, . . . , on is surely not a match: [[φ(o1, . . . , on)]]@cu = 0.

Note that in the second case uses max{} to assign a maximum of 3-valued
logic values wrt. information ordering (which is different from the numerical
maximum used in Table 1). Information ordering is a partial order ({1/2, 0, 1},⊑)
with 1/2 ⊑ 0 and 1/2 ⊑ 1. It is worth pointing out that this distributed truth
evaluation is also in line with Sobociński 3-valued logic axioms [33].

Performance optimizations. Each match sent as a reply to a computing unit
during distributed query evaluation can be cached locally to speed up the re-
evaluation of the same query within the query cycle. This caching of query results
is analogous tomemoing in logic programming [46]. Currently, cache invalidation
is triggered at the end of each query cycle by the local physical clock, which we
assume to be (quasi-)synchronous with high precision across the platform.

This memoing approach also enables units to selectively store messages in the
local cache depending on their specific needs. Furthermore, this can incorporate
to deploy query services to computing units with limited amount of memory and
prevent memory overflow due to the several messages sent over the network.

A graph query is evaluated according to a search plan [43], which is a list of
predicates ordered in a way that matches of predicates can be found efficiently.
During query evaluation, free variables of the predicates are bound to a value
following the search plan. The evaluation terminates when all matches in the



model are found. An in-depth discussion of query optimization is out of scope
for this paper, but section 5 will provide an initial investigation.

Semantic guarantees and limitations. Our construction ensures that (1) the ex-
ecution will surely terminate upon reaching the end of the query time window,
potentially yielding uncertain matches, (2) each local model serves as a single
source of truth which cannot be overridden by calls to other computing units,
and (3) matches obtained from multiple computing units will be fused by pre-
serving information ordering. The over- and under approximation properties of
3-valued logic show that the truth values fused this way will provide a sound
result (Theorem 1 in [42]). Despite the lack of total consistency, our approach
still has safety guarantees by detecting all potentially unsafe situations.

There are also several assumptions and limitations of our approach. We use
asynchronous communication without broadcast messages. We only assumed
faults of communication links, but not the failures of computing units. We also
excluded the case when computing units maliciously send false information. In-
stead of refreshing local caches in each cycle, the runtime model could incorpo-
rate information aging which may enable to handle other sources of uncertainty
(which is currently limited to consequences of message loss). Finally, in case of
longer cycles, the runtime model may no longer provide up-to-date information
at query evaluation time.

Implementation details. The concepts presented in the paper are implemented
in a prototype software, which has three main components: (i) an EMF-based
tool [39] for data modeling and code generation for the runtime model, (ii) an
Eclipse-based tool for defining and compiling monitoring rules built on top of the
VIATRA framework [41], and (iii) the runtime environment to evaluate queries.

The design tools are dominantly implemented in Java. We used EMF meta-
models for data modeling, but created a code generator to derive lightweight
C++ classes as representations of the runtime model. The query definition en-
vironment was extended to automatically compile queries into C++ monitors.

The runtime monitoring libraries and the runtime framework is available in
C++. Our choice of C++ is motivated by its low runtime and memory overhead
on almost any type of platforms, ranging from low-energy embedded microcon-
trollers to large-scale cloud environments. Technically, a generic query service
can start query runners for each monitoring objective on each node. While query
runners execute the query-specific search plan generated compile time, the net-
work communication is handled by a query service if needed. To serialize the
data between different nodes, we used the lightweight Protocol Buffers [16].

5 Evaluation

We conducted measurements to evaluate and address two research questions:

Q1: How does distributed graph query execution perform compared to executing
the queries on a single computing unit?



Q2: Is query evaluation performance affected by alternative allocation of model
objects to host computing units?

5.1 Measurement Setup

Computation platform. We used the real distributed (physical) platform of the
CPS demonstrator to answer these research questions (instead of setting up a
virtual environment). It consists of 6 interconnected BBB devices (all running
embedded Debian Jessie with PREEMPT-RT patch) connected to the railway
track itself. This arrangement represents a distributed CPS with several com-
puting units having only limited computation and communication resources. We
used these units to maintain the distributed runtime model, and evaluate mon-
itoring queries. This way we are able to provide a realistic evaluation, however,
due to the fixed number of embedded devices built into the platform, we cannot
evaluate the scalability of the approach wrt. the number of computing units.

CPS monitoring benchmark. To assess the distributed runtime verification frame-
work, we used the MoDeS3 railway CPS demonstrator where multiple safety
properties are monitored. They are all based on important aspects of the do-
main, and they have been integrated into the real monitoring components. Our
properties of interest (in increasing complexity of queries) are the following:

– Train locations: gets all trains and the segments on which trains are located.
– Close trains: this pattern is the one introduced in Figure 4.
– Derailment : detects the train when approaching a turnout, but the turnout

is set to the other direction (causing the train to run off from the track).
– End of siding : detects trains approaching an end of the track.

Since the original runtime model of the CPS demonstrator has only a total of
49 objects, we scaled up the model by replicating the original elements (except
for the computing units). This way we obtained models with 49 – 43006 objects
and 114 – 109015 links, having similar structural properties as the original one.

Query evaluation benchmark. In order to provide an independent evaluation for
our model query-based monitoring approach, we adapted the open-source Train
Benchmark [35] that aims at comparing query evaluation performance of vari-
ous tools. This benchmark defines several queries describing violations of well-
formedness constraints with different complexity over graph models. Moreover,
it also provides a model generator to support scalability assessment.

5.2 Measurement Results

Execution times. The query execution times over models deployed to a single
BBB were first measured to obtain a baseline evaluation time of monitoring for
each rule (referred to as local evaluation). Then the execution times of system-
level distributed queries were measured over the platform with 6 BBBs, evalu-
ating two different allocations of objects (standard and alternative evaluations).
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(b) Train Benchmark

Fig. 6: Query evaluations times over different model sizes

In Figure 6 each result captures the times of 29 consecutive evaluations of
queries excluding the warm-up effect of an initial run which loads the model and
creates necessary auxiliary objects. A query execution starts when a node initi-
ates evaluation, and terminates when all nodes have finished collecting matches
and sent back their results to the initiator.

Overhead of distributed evaluation. On the positive side, the performance
of graph query evaluation on a single unit is comparable to other graph query
techniques reported in [35] for models with over 100K objects, which shows a
certain level of maturity of our prototype. Furthermore, the CPS demonstrator
showed that distributed query evaluation yielded significantly better result than
local-only execution for the Derailment query on medium size models (with 4K –
43K objects reaching 2.23× – 2.45× average speed-up) and comparable runtime
for Close trains and Train locations queries on these models (with the great-
est average difference being 30 ms across all model sizes). However, distributed
query evaluation had problems for End of siding, which is a complex query with
negative application conditions, which provides clear directions for future re-
search. Anyhow, the parallelism of even a small execution platform with only 6
computing units could suppress the communication overhead between units in
case of several distributed queries, which is certainly a promising outcome.

Impact of allocation on query evaluation. We synthesized different allocations
of model elements to computing units to investigate the impact of allocation
of model objects on query evaluation. With the CPS demonstrator model in



particular, we chose to allocate all Trains to BBB1, and assigned every other
node stored previously on BBB1 to the rest of the computing units. Similarly,
for the Train Benchmark models, we followed this pattern with selected types,
in addition to experimenting with fully random allocation of objects.

The two right-most columns of Figure 6a and Figure 6b show results of
two alternate allocations for the same search plan with a peak difference of
2.06× (Derailment) and 19.92× (Semaphore neighbor) in the two cases. However,
both of these allocations were manually optimized to exploit locality of model
elements. In case of random allocations, difference in runtime may reach an order
of magnitude 4. Therefore it is worth investigating new allocation strategies and
search plans for distributed queries for future work.

Threats to validity. The generalizability of our experimental results is limited
by certain factors. First, to measure the performance of our approach, the plat-
form devices (1) executed only query services and (2) connected to an isolated
local area network via Ethernet. Performance on a real network with a busy
channel would likely have longer delays and message losses thus increasing exe-
cution time. Then we assessed performance using a single query plan synthesized
automatically by the VIATRA framework but using heuristics to be deployed for
a single computation unit. We believe that execution times of distributed queries
would likely decrease with a carefully constructed search plan and allocation.

6 Related Work

Runtime verification approaches. For continuously evolving and dynamic CPSs,
an upfront design-time formal analysis needs to incorporate and check the ro-
bustness of component behavior in a wide range of contexts and families of con-
figurations, which is a very complex challenge. Thus consistent system behavior
is frequently ensured by runtime verification (RV) [24], which checks (poten-
tially incomplete) execution traces against formal specifications by synthesizing
verified runtime monitors from provenly correct design models [21,26].

Recent advances in RV (such as MOP [25] or LogFire [17]) promote to capture
specifications by rich logic over quantified and parameterized events (e.g. quanti-
fied event automata [4] and their extensions [12]). Moreover, Havelund proposed
to check such specifications on-the-fly by exploiting rule-based systems based on
the RETE algorithm [17]. However, this technique only incorporates low-level
events; while changes of an underlying data model are not considered as events.

Traditional RV approaches use variants of temporal logics to capture the
requirements [6]. Recently, novel combinations of temporal logics with context-
aware behaviour description [15,19] (developed within the R3-COP and R5-COP
FP7 projects) for the runtime verification of autonomous CPS appeared and
provide a rich language to define correctness properties of evolving systems.

Runtime verification of distributed systems. While there are several existing
techniques for runtime verification of sequential programs available, the authors

4 See Appendix A for details under http://bit.ly/2op3tdy



of [29] claim that much less research was done in this area for distributed systems.
Furthermore, they provide the first sound and complete algorithm for runtime
monitoring of distributed systems based on the 3-valued semantics of LTL.

The recently introduced Brace framework [49] supports RV in distributed
resource-constrained environments by incorporating dedicated units in the sys-
tem to support global evaluation of monitoring goals. There is also focus on
evaluating LTL formulae in a fully distributed manner in [5] for components
communicating on a synchronous bus in a real-time system. Additionally, ma-
chine learning-based solution for scalable fault detection and diagnosis system is
presented in [2] that builds on correlation between observable system properties.

Distributed graph queries. Highly efficient techniques for local-search based [9]
and incremental model queries [40] as part of the VIATRA framework were de-
veloped, which mainly builds on RETE networks as baseline technology. In [34],
a distributed incremental graph query layer deployed over a cloud infrastructure
with numerous optimizations was developed. Distributed graph query evaluation
techniques were reported in [22,27,32], but none of these techniques considered
an execution environment with resource-constrained computation units.

Runtime models. The models@ runtime paradigm [8] serves as the concep-
tual basis for the Kevoree framework [28] (developed within the HEADS FP7
project). Other recent distributed, data-driven solutions include the Global Data
Plane [48] and executable metamodels at runtime [44]. However, these frame-
works currently offer very limited support for efficiently evaluating queries over
a distributed runtime platform, which is the main focus of our current work.

7 Conclusions

In this paper, we proposed a runtime verification technique for smart and safe
CPSs by using a high-level graph query language to capture safety properties for
runtime monitoring and runtime models as a rich knowledge representation to
capture the current state of the running system. A distributed query evaluation
technique was introduced where none of the computing units has a global view
of the complete system. The approach was implemented and evaluated on the
physical system of MoDeS3 CPS demonstrator. Our first results show that it
scales for medium-size runtime models, and the actual deployment of the query
components to the underlying platform has significant impact on execution time.
In the future, we plan to investigate how to characterize effective search plans
and allocations in the context of distributed queries used for runtime monitoring.
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27. Mitschke, R., Erdweg, S., Köhler, M., Mezini, M., Salvaneschi, G.: i3QL: Language-
integrated live data views. ACM SIGPLAN Notices 49(10), 417–432 (October 2014)

28. Morin, B., et al.: Kevoree Modeling Framework (KMF): Efficient modeling tech-
niques for runtime use. Tech. rep., University of Luxembourg (2014)

29. Mostafa, M., Bonakdarpour, B.: Decentralized Runtime Verification of LTL Spec-
ifications in Distributed Systems. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium. pp. 494–503 (May 2015)

30. Nielsen, C.B., et al.: Systems of systems engineering: Basic concepts, model-based
techniques, and research directions. ACM Comput. Surv. 48(2), 18 (2015)

31. No Magic: MagicDraw, https://www.nomagic.com/products/magicdraw
32. Peters, M., Brink, C., Sachweh, S., Zündorf, A.: Scaling parallel rule-based reason-

ing. In: ESWC. pp. 270–285 (2014)
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Fig. 7: Train Benchmark query evaluation times for four different allocations

Appendix A Train Benchmark Query Results with
Random Allocation

The query evaluation times for four different allocations of small Train Bench-
mark models are shown in Figure 7. In most cases, the random allocation of
elements yielded orders of magnitudes slower execution times compared to local
and standard allocations. This clearly shows that allocation greatly influences
the overhead needed for distributed query evaluation.

The number of sent messages measured on the BBB1 computing unit are
summarized in Table 2 for the standard and random allocations. Each of these
sent messages were followed by a reply message, but the replies are not included
in these tables. These message numbers during query evaluation provide a good
explanation for the differences in execution times.



Table 2: Sent messages in standard (left) and random (right) allocations on BBB1
Model
size

Positive
length

Switch
set

Semaphore
neighbor

1336 10 26 34
3473 10 30 86
8115 10 30 166

Model
size

Positive
length

Switch
set

Semaphore
neighbor

1336 10 124 402
3473 10 426 1136
8115 10 1386 3066


