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Abstract.

We extend the orbital-dependent electron tunnelling model implemented within

the three-dimensional (3D) Wentzel-Kramers-Brillouin (WKB) atom-superposition

approach for simulating scanning tunnelling microscopy (STM) by including arbitrary

tip orientations. The orientation of the tip is characterised by a local coordinate

system centered on the tip apex atom obtained by a rotation with respect to the

sample coordinate system. The rotation is described by the Euler angles. Applying

our method, we highlight the role of the real-space shape of the electron orbitals

involved in the tunnelling, and analyse the convergence and the orbital contributions

of the tunnelling current above the W(110) surface depending on the orientation of a

model tungsten tip. We also simulate STM images at constant-current condition, and

find that their quality depends very much on the tip orientation. Some orientations

result in protrusions on the images that do not occur above W atoms. The presence

of such apparent atom positions makes it difficult to identify the exact position of

surface atoms. It is suggested that this tip orientation effect should be considered at

the evaluation of experimental STM images on other surfaces as well. The presented

computationally efficient tunnelling model could prove to be useful for obtaining more

information on the local tip geometry and orientation by comparing STM experiments

to a large number of simulations with systematically varied tip orientations.

PACS numbers: 68.37.Ef, 71.15.-m, 73.63.-b

Submitted to: Journal of Physics: Condensed Matter

1. Introduction

The scanning tunnelling microscope (STM) is undoubtedly a successfully used tool to

study physical and chemical phenomena on surfaces of materials. The experimentally

least controllable parameter of the STM equipment is the local geometry and orientation
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of the tip structure, that plays an important role in determining the electron tunnelling

features [1, 2, 3, 4, 5, 6]. The problem of the presence of multi-tips can also arise [7].

Therefore advanced theoretical models are needed that are capable to deal with large

scale simulations of a considerable variety of realistic tip structures [5, 6]. The present

work tries to complement existing methods, and introduces a computationally efficient

model based on the orbital-dependent atom-superposition tunnelling approach [8] that

allows a large flexibility of tip structures, and orientations in particular.

Owing to the practically unknown tip structure, the identification of atomic

positions from experimentally observed STM images is not straightforward. The tip size

effect on asymmetric surface features has been demonstrated to result in the occurrence

of an apparent step edge shifted away from the real geometric position on a Au(11 12

12) surface [9]. To model the tip size and shape effect, an s-orbital continuum model

has been proposed [10]. Tip rotations within the extended Hückel theory have also been

put forward [6]. All of these listed examples studied highly corrugated surfaces having

topographic features of at least one atom height difference on top of a flat surface.

It is interesting to find that identifying the atomic positions even on flat surfaces

can be problematic. The reason is the corrugation inversion phenomenon found, e.g.,

on (100) [11], (110) [12], and (111) [13] metal surfaces. According to Heinze et al. [12],

it was found on a W(110) surface that under certain circumstances the apparent height

of tungsten atoms at the surface top position can be larger or smaller than the apparent

height of the surface hollow position at constant-current condition. It means that metal

atoms do not always appear as protrusions on the STM image. It was reported that

the W(110) surface has a corrugation inversion depending on the bias voltage [12], and

on the tip-sample distance and tip orbital character as well [8]. Chen explained this

effect occurring on low Miller index metal surfaces as a consequence of m 6= 0 tip states

[14]. Atomic contrast reversal has also been found above Xe atomic adsorbates [11] and

oxygen overlayers [15] on metal surfaces. It was established that the character of the

contrast depends on the tip-sample distance and on the tip geometry and electronic

structure, see, e.g., Ref. [5].

The effect of the tip on the electron tunnelling properties has been studied in

numerous works. For example, Ness and Gautier investigated different metal tips and

their interaction with metal surfaces in a tight-binding framework [16, 17, 18]. Ref. [19]

presented a theoretical method that can separate the tip and sample contributions to

the dI/dV in scanning tunnelling spectroscopy (STS). The difference between model

magnetic tips on the spin-polarised spectroscopic properties (SP-STS) was investigated

in Refs. [20, 21]. Magnetic contrast variations were studied in spin-polarised STM (SP-

STM) on a noncollinear magnetic surface in Refs. [22, 23]. Teobaldi et al. rationalised

the STM contrast mechanisms observed on the graphite(0001) surface by modelling a

few tungsten tips taking the effects of tip termination, composition, and sharpness into

account [24].

Different electron transport models considered the role of the electron orbitals.

Chen and Sacks theoretically studied the effect of the tip orbitals on the corrugation
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of constant-current STM images [25, 26]. While Chen pointed out that corrugation

enhancement is expected for tip orbitals localised along the surface normal (z) direction

(pz and d3z2−r2), Sacks argued thatm 6= 0 tip states (dxz, dyz, dxy, dx2−y2) are responsible

for this effect. Sirvent et al. presented a tight-binding model based on the Keldysh

formalism for calculating the conductance in atomic point contacts and analysed the

effect of the d orbitals [27]. Mingo et al. used the same method for STM junctions

[11]. Cerdá et al. developed an STM simulation method based on the Landauer-

Büttiker formula [28] and the surface Green function matching technique [1]. Palotás et

al. introduced an orbital-dependent tunnelling transmission function within an atom-

superposition framework [8]. In these methods the decomposition of the current and/or

conductance with respect to electron orbitals has been provided.

In the present work we consider a simple model for orbital-dependent tunnelling

within the atom-superposition approach based on Ref. [8]. The main idea of the paper

is the extension of the geometrical factor, responsible for a modified transmission due to

electron orbital orientational overlap effects, to an arbitrary local tip coordinate system

within a three-dimensional (3D) Wentzel-Kramers-Brillouin (WKB)-based theory [29].

The method is used for investigating the nature of apparent atomic positions on STM

images depending on the tip orientation. We provide a basic understanding of the

features based on the real-space shape of the electron orbitals involved in the tunnelling.

The paper is organised as follows: The theoretical model of the orbital-dependent

tunnelling within the atom-superposition approach taking arbitrary tip orientations into

account is presented in section 2. We investigate the convergence and the orbital

contributions of the tunnelling current as well as the atomic contrast changes of the

W(110) surface depending on the orientation of a model tungsten tip in section 3.

Summary of our findings is found in section 4.

2. Orbital-dependent tunnelling model within 3D WKB theory with

arbitrary tip orientation

Palotás et al. developed an orbital-dependent electron tunnelling model [8] for

simulating STM and STS measurements within the 3D WKB framework based on

previous atom-superposition theories [30, 31, 32, 33] and an STS theory [34]. Using

this method provided comparable STM images to those obtained by standard Tersoff-

Hamann [30, 35] and Bardeen [36] tunnelling models implemented in the BSKAN code

[3, 37], and has successfully been used for re-investigating the corrugation inversion

phenomenon on the W(110) surface [8, 12]. The advantages, particularly computational

efficiency, limitations, and the potential of the method have been discussed in Ref. [29].

Here, we extend this model by considering an arbitrary tip orientation. In the model, it

is assumed that electrons tunnel through one tip apex atom only, and for the tunnelling

process the one-dimensional (1D) WKB approximation is used. Tunnelling transitions

between the tip apex atom and a suitable number of sample surface atoms are summed

up [8, 38]. Since the 3D geometry of the tunnel junction is considered, the method is,
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in effect, a 3D WKB approach. Another 3D approach for STS with a prescribed tip

orbital symmetry has been reported by Donati et al. [39]. In our method, the electronic

structure of the tip and the surface is included via the atom-projected electron density of

states (PDOS) obtained by ab initio electronic structure calculations [22]. The orbital-

decomposition of the PDOS is essential for the description of the orbital-dependent

tunnelling [8].

Assuming elastic tunnelling and T = 0 K temperature, the tunnelling current

measured at RTIP tip position with V bias voltage is given as

I (RTIP , V ) =
∫ V

0

dI

dU
(RTIP , U, V ) dU. (1)

The integrand can be written as a superposition of individual atomic contributions from

the sample surface (sum over a):

dI

dU
(RTIP , U, V ) (2)

= ε2
e2

h

∑

a

∑

β,γ

Tβγ
(

ES
F + eU, V,da

)

na
Sβ

(

ES
F + eU

)

nTγ

(

ET
F + eU − eV

)

.

Here, e is the elementary charge, h is the Planck constant, and ES
F and ET

F are the

Fermi energies of the sample and the tip, respectively. The ε2e2/h factor gives the

correct dimension (A/V) of the formal conductance-like quantity in Eq.(2). The value

of ε has to be determined by comparing the simulation results to experiments, or to

calculations with other methods, e.g., the Bardeen approach [36]. In our simulations

ε = 1 eV has been chosen, that gives comparable current values to the ones obtained

from the Bardeen method [8]. Note that the choice of ε has no qualitative influence on

the reported results. na
Sβ (E) and nTγ (E) are the orbital-decomposed PDOS functions

for the ath sample surface atom and the tip apex atom with orbital symmetry β and

γ, respectively. These quantities can be obtained by any suitable electronic structure

calculation. The total PDOS is simply the sum of the orbital-decomposed contributions:

na
S (E) =

∑

β

na
Sβ (E) , (3)

nT (E) =
∑

γ

nTγ (E) . (4)

Note that a similar decomposition of the Green functions was used within the linear

combination of atomic orbitals (LCAO) framework in Refs. [11, 27].

The sum over β and γ in Eq.(2) denotes the superposition of the effect of

atomic orbitals of the sample and the tip, respectively, via an orbital-dependent

tunnelling transmission function: Tβγ
(

ES
F + eU, V,da

)

gives the probability of the

electron tunnelling from the β orbital of the ath surface atom to the γ orbital of the tip

apex atom at negative bias voltage (V < 0), and from the tip to the surface at positive

bias (V > 0). The transmission probability depends on the energy of the electron

(measured from the sample Fermi energy), the bias voltage (V ), and the relative position

of the tip apex and the ath sample atom (da = RTIP −Ra). In our model, we consider
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β, γ ∈ {s, py, pz, px, dxy, dyz, d3z2−r2, dxz, dx2−y2} atomic orbitals, and the following form

for the transmission function:

Tβγ
(

ES
F + eU, V,da

)

= e−2κ(U,V )datβγ (ϑa, ϕa, ϑ
′
a, ϕ

′
a) . (5)

The exponential factor corresponds to an orbital-independent transmission, where all

electron states are considered to be exponentially decaying spherical states [30, 33, 35],

and it depends on the distance between the ath surface atom and the tip apex, da = |da|,

and on the vacuum decay,

κ(U, V ) =
1

h̄

√

√

√

√2m

(

φS + φT + eV

2
− eU

)

. (6)

Here, we assumed an effective rectangular potential barrier in the vacuum between the

sample and the tip. φS and φT are the electron work functions of the sample and the

tip, respectively, m is the electron mass, and h̄ is the reduced Planck constant. The

method of determining the electron work functions from the calculated local electrostatic

potential is reported, e.g., in Ref. [22].

The orbital-dependence of the transmission coefficient is given by the geometry

factor tβγ (ϑa, ϕa, ϑ
′
a, ϕ

′
a) that takes into account the relative orientation of the real-

space shape of different atomic orbitals between the ath sample atom and the tip apex

atom. The definition of this factor has the following physical motivation: It modifies the

exponentially decaying transmission probability according to the angular dependence of

the electron densities of the atomic orbitals. The concept is discussed in more detail in

Ref. [8]. The angular dependence of an atomic orbital of a sample (tip) atom is given

by the real spherical harmonics χβ(γ)(ϑ
(′), ϕ(′)) that is defined in the local coordinate

system fixed to the sample surface atom (r, ϑ, ϕ), or to the tip apex atom (r′, ϑ′, ϕ′),

and depends on the local polar (ϑ(′)) and azimuthal (ϕ(′)) angles. An arbitrary tip

orientation corresponds to a rotated local tip coordinate system with respect to the

coordinate system chosen for the ath surface atom, see Fig. 1. Generally, we have to

distinguish between these two coordinate systems, so that the coordinates of a given

vector are denoted with primes (′) if they are defined in the rotated coordinate system

of the tip: (x′, y′, z′), and without primes if defined in the coordinate system of the

sample (x, y, z). The rotation of the axes with respect to each other is given by the

Euler angles (ϑ0, ϕ0, ψ0) shown in Fig. 1:








x′

y′

z′









= R(ϑ0, ϕ0, ψ0)









x

y

z









, (7)

and the rotation matrix is

R(ϑ0, ϕ0, ψ0) = (8)




cosϕ0 cosψ0 − sinϕ0 sinψ0 cosϑ0 cosϕ0 sinψ0 + sinϕ0 cosψ0 cosϑ0 sinϕ0 sinϑ0
− sinϕ0 cosψ0 − cosϕ0 sinψ0 cosϑ0 − sinϕ0 sinψ0 + cosϕ0 cosψ0 cosϑ0 cosϕ0 sinϑ0

sinψ0 sinϑ0 − cosψ0 sinϑ0 cosϑ0



 .
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With these physical and geometrical considerations, the orbital-dependent part of

the transmission probability is the following:

tβγ (ϑa, ϕa, ϑ
′
a, ϕ

′
a) = χ2

β (ϑa, ϕa)χ
2
γ (ϑ

′
a, ϕ

′
a) . (9)

Here χβ (ϑa, ϕa) and χγ (ϑ
′
a, ϕ

′
a) give the angular dependence of the electron wave

function of the β orbital of the ath surface atom and of the γ orbital of the tip apex atom,

respectively, see Table 1. The squares of these functions give the angular dependence of

the corresponding electron densities. The angles given in both real spherical harmonics

correspond to the tunnelling direction, i.e., the line connecting the ath surface atom and

the tip apex atom, as viewed from their local coordinate systems. If the geometrical

positions of the tip and the surface atoms are given in global coordinates then the angles

(ϑa, ϕa) can be obtained from the following equations:

da = RTIP (x, y, z)−Ra (xa, ya, za)

= (x− xa, y − ya, z − za) = (da, ϑa, ϕa) , (10)

da =
√

(x− xa)
2 + (y − ya)

2 + (z − za)
2, (11)

ϑa = arccos
(

z − za
da

)

, (12)

ϕa = arccos
(

x− xa
da sin ϑa

)

. (13)

Similarly, the angles (ϑ′a, ϕ
′
a) can be calculated by expressing the coordinates of the

vector −da in the local coordinate system of the tip, as follows:

d′
a = −R(ϑ0, ϕ0, ψ0)da = (x′a, y

′
a, z

′
a) = (d′a, ϑ

′
a, ϕ

′
a) , (14)

d′a =
√

x′2a + y′2a + z′2a = da, (15)

ϑ′a = arccos

(

z′a
da

)

, (16)

ϕ′
a = arccos

(

x′a
da sinϑ′a

)

. (17)

Here, R(ϑ0, ϕ0, ψ0) is defined in Eq.(8).

From Eqs.(1) and (2) it is clear that the tunnelling current can be decomposed

according to the orbital symmetries:

I (RTIP , V ) =
∑

β,γ

Iβγ (RTIP , V ) , (18)

with

Iβγ (RTIP , V ) =
∫ V

0

dIβγ
dU

(RTIP , U, V ) dU, (19)

and

dIβγ
dU

(RTIP , U, V ) (20)

= ε2
e2

h

∑

a

Tβγ
(

ES
F + eU, V,da

)

na
Sβ

(

ES
F + eU

)

nTγ

(

ET
F + eU − eV

)

.



Arbitrary tip orientation in STM simulations: 3D WKB theory and application to W(110)7

This decomposition gives the opportunity to analyse the tunnelling process in terms

of orbital contributions. The relative contribution of the β ↔ γ transition can be

calculated as

Ĩβγ (RTIP , V ) =
Iβγ (RTIP , V )

I (RTIP , V )
. (21)

Using the presented method, we can investigate tip rotational effects on the

tunnelling properties, e.g., on the STM image. This could prove to be extremely useful

if one wants to gain information on the local geometrical properties of the tip in real

STM experiments by comparing measurements to simulation results [6].

3. Results and discussion

To demonstrate the tip orientation effects on the tunnelling properties we consider a

W(110) surface. This surface is a widely used substrate for thin film growth, see e.g.,

Refs. [12, 40], therefore it has a technological importance. Heinze et al. [12] pointed out

that the determination of the position of surface atomic sites is not straightforward as

atomic resolution is lost at negative bias voltages, and a bias-dependent contrast reversal

has been predicted. This means that normal and anticorrugated constant-current STM

images can be obtained in certain bias voltage ranges, and the W atoms do not always

appear as protrusions in the images. It was shown that a competition between states

from different parts of the surface Brillouin zone is responsible for this effect [12, 41].

Explanation of this effect based on the real-space shape of the electron orbitals within an

orbital-dependent tunnelling model was given in Ref. [8]. For an s-type tip, an excellent

agreement has been found with the results of Ref. [12]. Concerning tips with pz and

d3z2−r2 orbital symmetry, it was reported in Ref. [8] that the contrast inversion occurs

at larger tip-sample distances, in contrast to the speculations of Ref. [12]. Moreover,

it was shown that two qualitatively different corrugation inversion behaviors can occur

based on the tip orbital composition [8]. In the present work, we investigate the atomic

contrast changes depending on the tip orientation of a model tungsten tip.

3.1. Computational details

We performed geometry relaxation and electronic structure calculations based on the

density functional theory (DFT) within the generalised gradient approximation (GGA)

implemented in the Vienna Ab-initio Simulation Package (VASP) [42, 43, 44]. A plane-

wave basis set for the electronic wave function expansion, and the projector-augmented

wave (PAW) method [45] for the description of the electron-ion interaction were

employed. We used the Perdew-Wang (PW91) parametrization [46] of the exchange-

correlation functional. The electronic structures of the sample surface and the tip were

calculated separately.

We modelled the W(110) surface by a slab of nine layers, where the two topmost W

layers have been fully relaxed. We used the experimental lattice constant of aW = 316.52
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pm. The unit cell of the W(110) surface (shaded area), the rectangular scan area for

the tunnelling current simulation, and the surface top (T) and hollow (H) positions are

shown in Figure 2. A 41 × 41 × 5 Monkhorst-Pack (MP) [47] k-point grid was used

for obtaining the orbital-decomposed projected electron DOS onto the surface W atom,

na
Sβ(E).

Motivated by a previous work [24], we considered a blunt W(110) tip model, i.e., an

adatom adsorbed on the hollow site as the tip apex on the W(110) surface. The adatom

position has been relaxed in the surface normal direction. Moreover, an 11× 15× 5 MP

k-point grid was used for calculating the orbital-decomposed projected DOS onto the

apex atom, nTγ(E). The electron work functions of the sample and the tip were chosen

as φS = φT = 4.8 eV. More details about the relaxed surface and tip structures can be

found in Ref. [8].

Using the presented model, the following tip orientations were calculated: ϑ0 ∈

[0◦, 75◦] and ϕ0, ψ0 ∈ [0◦, 90◦] with 5◦ steps. We report selected results of this big data

set highlighting the tip orientation trends on the tunnelling properties. We consider

the following sets for the Euler angles (ϑ0, ϕ0, ψ0): (0◦, 0◦, [0◦, 90◦]), ([0◦, 75◦], 0◦, 0◦),

(45◦, 0◦, [0◦, 90◦]), (45◦, [0◦, 90◦], 0◦). Note that by changing the Euler angles, tunnelling

through one tip apex atom was considered only, and contributions from other tip atoms

were not taken into account. High degrees of tilting the tip (ϑ0 > 45◦) could, in fact,

result in multiple tip apices [7] depending on the local geometry that can increase the

tunnelling current but could also lead to the destruction of atomic resolution.

The tunnelling current was calculated in a box above the rectangular scan area

shown in Figure 2 containing 99000 (30 × 22 × 150) grid points with a 0.149 Å lateral

and 0.053 Å vertical resolution. The constant-current contours are extracted following

the method described in Ref. [22], and we report STM images above the mentioned

rectangular scan area.

3.2. Convergence properties

Previously, the convergence of the tunnelling current was investigated with respect to the

number of surface atoms involved in the summation of the atom-superposition formula

(sum over a) without tip rotation [8]. It was found that the orbital-independent, the

s-type, and the tungsten tips behave similarly concerning the current convergence, and

for the pz- and d3z2−r2-type tips a faster convergence was found. The latter finding

was explained by the more localised character of the corresponding tip orbitals in the

direction normal to the sample surface. We report a similar convergence test for the

tungsten tip comparing different tip orientations. To take into account a wide energy

range around the Fermi level, we calculated the tunnelling current at -2.0 V and +2.0 V

bias voltages at z = 4.5 Å above a surface W atom, and averaged these current values.

The averaged currents were normalised for each tip calculation to obtain comparable

results. The convergences of the normalised averaged current with respect to the lateral

distance on the surface, d‖, characteristic for the number of atoms involved in the atom-
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superposition summation, are shown in Figure 3. d‖ represents the radius of a surface

section measured from the W atom below the tip apex, from which area the surface

atomic contributions to the tunnelling current are taken.

We find that by fixing the z′ = z axis (ϑ0 = 0◦), the rotation of the tip with

ψ0 ∈ [0◦, 90◦] does not change the convergence character compared to ψ0 = 0◦ (not

shown). This is due to the dominant current contributions from the s, pz, and d3z2−r2

orbitals of both the sample and the tip, that do not change upon the mentioned tip

rotation. For an illustration see the top left part of Figure 4. The situation is remarkably

different by changing ϑ0. This tip rotation has an effect of a tilted z′ axis of the tip

apex compared to the sample z direction. The more the tilting the faster convergence

of the normalised averaged current is observed. We show examples of (45◦, 0◦, 0◦) and

(75◦, 0◦, 0◦) in Figure 3. As the rotation of ϑ0 is around the x axis, i.e., x′ = x remains

the same, the tip dy′z′ and dx′2−y′2 orbitals with nodal planes involving the z′ direction

gain more importance in the tunnelling as the tilting increases since they can hybridise

easier with the dominant orbitals of the sample: s, pz, and d3z2−r2 . This finding is

demonstrated in the top right part of Figure 4. Concomitantly, the tip pz′ and d3z′2−r′2

orbitals lose contribution as they give transmission maximum in the z′ direction that is

not in-line with z because of the tilting. Starting from the (45◦, 0◦, 0◦) tip orientation,

we can rotate the tip around the sample z direction with angles ψ0 ∈ [0◦, 90◦]. We

find that this type of rotation does not considerably affect the convergence character

of the current compared to the (45◦, 0◦, 0◦) orientation (not shown). This is due to

the practically unchanged dominant current contributions by rotating with ψ0, see the

bottom left part of Figure 4. On the other hand, rotating the local tip coordinate

system around z′, i.e., by changing ϕ0 results in slight convergence changes. First, the

convergence speed drops slightly at (45◦, 45◦, 0◦), and then increases at (45◦, 90◦, 0◦)

orientation. This effect is related to the tip dx′z′ and dy′z′ orbitals as their contribution

changes the most by this type of rotation, see also the bottom right part of Figure 4.

We found that the tip rotation effects do not change the suggestion that atom

contributions within at least d‖ = 3aW ≈ 9.5 Å distance from the surface-projected tip

position have to be considered [8]. The reason is that the exponentially decaying part

of the transmission function is dominant over the orbital-dependent part. In case of

calculating STM images, d‖ = 3aW ≈ 9.5 Å has to be measured from the edge of the

scan area in all directions to avoid distortion of the image, thus involving 67 surface

atoms in the atomic superposition. For brevity, in the following we use the same surface

atoms to calculate single-point tunnelling properties as well.

3.3. Orbital Contributions

Let us analyse the tip orientation effects on the relative importance of selected β ↔ γ

transitions in determining the total tunnelling current above a surface W atom. From

this analysis we obtain a quantitative picture about the role of the different atomic

orbitals in the construction of the tunnelling current, and their changes upon tip
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rotation. The Ĩβγ relative current contributions can be calculated according to Eq.(21).

This quantity gives the percentual contribution of the individual transition to the total

tunnelling current. Figure 4 shows selected relative current contributions using the

tungsten tip at V= -0.1 V bias voltage z = 4.5 Å above a surface W atom. Note that

those transitions are reported only, which have either a significant contribution, or show

considerable changes upon the tip rotations. We find that by rotating the tip with ψ0

around the z′ = z axis (top left part of Figure 4), the dominant contributions are due

to the tip d3z′2−r′2 orbital combined with the sample s, pz, and d3z2−r2 orbitals, and

they do not change by the mentioned tip rotation. On the other hand, the dyz − dy′z′

and dxz − dx′z′ contributions lose, while the dyz − dx′z′ and dxz − dy′z′ gain importance

upon this type of tip rotation. The top right part of Figure 4 corresponds to rotations

around the x′ = x axis with ϑ0, and the evolution of the dominant contributions. It

can be seen that the dominant sample contributions remain unchanged, i.e., they are

the s, pz, and d3z2−r2 orbitals, while the dominating tip orbitals change from d3z′2−r′2 at

(0◦, 0◦, 0◦) to dy′z′ at (45
◦, 0◦, 0◦), and to dx′2−y′2 at (75

◦, 0◦, 0◦). The bottom left part of

Figure 4 shows relative current contribution changes with respect to tip rotations by ψ0

around the sample z direction starting from the (45◦, 0◦, 0◦) orientation. We find that

this type of rotation does not affect the dominant current contributions with dy′z′ tip

orbital character. The biggest changes in other transitions are found for the sample dyz
orbital, i.e., the contributions in combination with the tip dx′y′ , dy′z′, and dx′z′ orbitals

slightly increase, while the dyz − d3z′2−r′2 and dyz − dx′2−y′2 transitions show decreasing

importance upon this kind of tip rotation. Finally, by rotating the local tip coordinate

system around the z′ axis with ϕ0 starting from the (45◦, 0◦, 0◦) orientation results in

decreased dy′z′ and increased dx′z′ contributions in combination with the sample s, pz,

and d3z2−r2 orbitals. This is shown in the bottom right part of Figure 4. It is interesting

to find that the d3z2−r2 −s relative contribution increases by rotating ϕ0. This, however,

does not mean an absolute increment of this current contribution since the tip s state

is insensitive to the rotation.

3.4. Atomic contrast changes

On a constant-current (I=const) STM image, the sign change of the apparent height

difference between the surface top position (zT ) and hollow position (zH),

∆z(I) = zT (I)− zH(I) (22)

is indicative for the corrugation inversion. [For the surface top (T) and hollow (H)

positions, see Figure 2.] In the conventional understanding, ∆z(I) > 0 corresponds

to a normal STM image, where the W atoms appear as protrusions, and ∆z(I) < 0

to an anticorrugated image, where the W atoms show up as depressions [8, 12]. We

will demonstrate that this simple picture for the corrugation inversion does not hold

considering the tip rotation effects on the STM images. Instead, ∆z(I) gives information

on the relative heights of the T and H positions only. The tip rotations have more

complex effects resulting in apparent atom positions that can be translated or rotated
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with respect to the real atomic positions on the STM image. Due to the monotonically

decreasing character of the tunnelling current with respect to the increasing tip-sample

distance, the current difference between tip positions above the T and H surface sites

provides the same information on the relative heights as ∆z(I) [8]. The current difference

at a tip-sample distance of z and at bias voltage V is defined as

∆I(z, V ) = IT (z, V )− IH(z, V ). (23)

The ∆I(z, V ) = 0 contour gives the (z, V ) combinations where the apparent heights of

the surface T and H positions are equal. The sign of ∆I(z, V ) corresponds to the sign

of ∆z(I(V )) [8].

Figure 5 shows tip rotation effects on the ∆I(z, V ) = 0 contours in the [0 Å, 14 Å]

tip-sample distance and [-2 V,+2 V] bias voltage range. Dotted vertical and horizontal

lines denote the zero bias voltage and the limit of the validity of any tunnelling model,

respectively. A pure tunnelling model, e.g., the 3D WKB approach, is valid in the

z > 3.5 Å tip-sample distance range only. We find that by rotating the tip with ψ0

around the z′ = z axis (top left part of Figure 5), the contours shift to larger tip-sample

distances close to zero bias, and their shapes remain qualitatively unchanged. It is

interesting to see that the ∆I(z, V ) < 0 region found for the (0◦, 0◦, 0◦) tip orientation

at around z = 3.5 Å close to +2 V disappears by this type of tip rotation. The same

finding is obtained in the top right part of Figure 5, that corresponds to rotations around

the x′ = x axis with ϑ0. Here, the quality of the contours change considerably. The

(30◦, 0◦, 0◦) and (45◦, 0◦, 0◦) tip orientations result in ∆I(z, V ) = 0 contours at enlarged

tip-sample distances close to zero bias, and a ∆I(z, V ) < 0 region opens at small tip-

sample distances between +0.5 V and +1 V bias voltages. By further rotation this

region disappears, and concomitantly the contours shift to lower tip-sample distances

close to V = 0 V. For the (75◦, 0◦, 0◦) tip orientation, we obtain ∆I(z, V ) < 0 at

z > 3.5 Å around zero bias. The bottom left part of Figure 5 shows the evolution of the

∆I(z, V ) = 0 contours with respect to tip rotations by ψ0 around the sample z direction

starting from the (45◦, 0◦, 0◦) orientation. The contours do not change considerably close

to V = 0 V, but the ∆I(z, V ) < 0 region at small tip-sample distances between +0.5

V and +1 V disappears. Finally, the effect of the rotation of the local tip coordinate

system around the z′ axis with ϕ0 starting from the (45◦, 0◦, 0◦) orientation is shown in

the bottom right part of Figure 5. The contours are shifted to lower tip-sample distances

close to zero bias and at high positive bias voltages, whereas the shift is toward larger

tip-sample distances at high negative bias. Moreover, this type of rotation does not

affect the presence of the ∆I(z, V ) < 0 region at small tip-sample distances between

+0.5 V and +1 V.

As it was suggested in Ref. [8], particular tip nodal planes restrict the collection

of surface atom contributions to specific regions on the sample surface. By changing

the tip-sample distance, the orientational overlaps between the tip and sample orbitals

change, and according to our model some localised orbitals gain more importance in

the tunnelling contribution, see also Figure 4. The complex tip-sample distance, bias-
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voltage, and tip-orientation dependent effect of the real-space orbitals on the tunnelling

can be visualised as the zero contours of the current difference between tip positions

above the surface top and hollow sites, as shown in Figure 5.

To demonstrate the atomic contrast changes depending on the tip orientation

(ϑ0, ϕ0, ψ0) more apparently, constant-current STM images are simulated. The scan

area is the rectangular section shown in Figure 2. Selected results obtained at I= 6.3 nA

current and V= -0.25 V bias voltage are shown in Figure 6. These tunnelling parameters

correspond to a tip-sample distance of z= 4.5 Å above the surface W atoms, and with

an unrotated tip a normal corrugation is expected [8]. Moving the unrotated tip farther

from the surface results in lower tunnelling currents, and the atomic contrast is inverted

at I= 0.43 nA (z= 5.8 Å) in reasonable agreement with calculations employing the

Bardeen tunnelling model [8]. Alternatively, a corrugation inversion can be observed at

a fixed tip-sample distance by changing the bias voltage. Such an effect was reported

in Ref. [12], where z= 4.6 Å was assumed.

We find that by rotating the tip with ψ0 around the z′ = z axis (top row of Figure

6), the elongated feature located on the W atoms initially in the y direction is rotated.

This results in a striped image for the (0◦, 0◦, 55◦) tip orientation. The stripes with larger

apparent height correspond to the atomic rows, and they are oriented along the diagonal

of the rectangle. Turning the tip to the (0◦, 0◦, 90◦) orientation, the elongated feature

located on the W atoms turns to the x direction. The reason is the rearrangement of the

importance of the dyz−dy′z′ and dxz−dx′z′ transitions toward the dyz−dx′z′ and dxz−dy′z′

ones upon this type of rotation, as shown in Figure 4. Tip rotation around the x′ = x

axis with ϑ0 results in apparent atom positions shifted toward the bottom edge of the

image, i.e., toward the −y direction. This effect is demonstrated for the set of images

with (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦) tip orientations (second row, and first image of the third

row of Figure 6). During this rotation the dominant tip orbital character changes from

d3z′2−r′2 to dy′z′ , see Figure 4. The third row of Figure 6 shows the effect of tip rotations

by ψ0 around the sample z direction starting from the (45◦, 0◦, 0◦) orientation. We find

that the apparent atom positions that were shifted away toward the −y direction are

now rotated on the images with respect to the z axis centered on the real W atom

positions. The STM image corresponding to the (45◦, 0◦, 55◦) tip orientation shows

apparent W atom positions shifted along the diagonal of the rectangle with respect

to the real atomic positions. Similarly, the (45◦, 0◦, 90◦) tip orientation corresponds to

apparent W atom positions shifted toward the +x direction. As it was shown in Figure

4, the tip dy′z′ orbital is always dominant, and the biggest changes are found for the

sample dyz orbital contributions upon this type of rotation. The last row of Figure

6 considers the tip rotation around the z′ axis with ϕ0 starting from the (45◦, 0◦, 0◦)

orientation. The obtained complex rearrangement of apparent atom positions on the

STM images is due to the changing effect of the dy′z′ and dx′z′ contributions of the

tunnelling tip, as demonstrated in Figure 4.

Thus, we highlighted the effect of a variety of tip orientations on the electron

tunnelling properties, particularly on the occurrence of apparent atomic positions on
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the STM images of a W(110) surface. Apart from the studied normal STM images, we

expect that anticorrugated STM images are also influenced by the tip rotation. Such tip

orientation effects have to be considered at the evaluation of experimental STM images

on other surfaces as well. We suggest that the comparison of STM experiments to a large

number of simulations with systematically varied tip orientations could lead to a gain

of more information on the local tip geometry and orientation. Combining tip rotations

with different crystallographic tip orientations and tip terminations could enhance the

agreement between experiment and theory considerably, as was demonstrated in Ref.

[6]. The 3D WKB atom-superposition theory [29] extended to include arbitrary tip

orientations is a promising candidate to be a powerful tool to perform the task of large

scale simulations of the mentioned tip effects.

4. Conclusions

We extended the orbital-dependent electron tunnelling model implemented within the

3D WKB atom-superposition approach for simulating STM by including arbitrary

tip orientations described by the Euler angles with respect to the sample coordinate

system. Applying our method, we highlighted the role of the real-space shape of

the electron orbitals involved in the tunnelling, and analysed the convergence and the

orbital contributions of the tunnelling current above the W(110) surface depending on

the orientation of a model tungsten tip. We found that tip rotations around the z

axis of the tip apex atom do not change the dominating current contributions, while

other rotations can change the tip character of the dominating transitions. We also

studied atomic contrast changes upon tip rotation. We found that the zero contours

of the current difference above the surface top and hollow positions have a complex

tip-sample distance and bias-voltage dependence on the tip orientation. The relative

apparent heights of these two surface positions are directly related to the calculated

current difference. Simulating STM images at constant-current condition, we found

that their quality depends very much on the tip orientation. Some orientations result

in protrusions on the images that do not occur above W atoms. The presence of such

apparent atom positions makes it difficult to identify the exact position of surface atoms.

It is suggested that this tip orientation effect should be considered at the evaluation of

experimental STM images on other surfaces as well. The presented computationally

efficient tunnelling model could prove to be useful for obtaining more information on

the local tip geometry and orientation by comparing STM experiments to a large number

of simulations with systematically varied tip orientations. Extending this orbital-

dependent tunnelling model to magnetic junctions is expected to provide useful results

about the interplay of tip-orientation, real-space-orbital and spin-polarisation effects in

SP-STM and SP-STS experiments as well.
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Table 1. Real-space orbitals, their definition from spherical harmonics Y m
l (ϑ(′), ϕ(′)),

and the angular dependence of their wave functions, i.e., real spherical harmonics

χβ(γ)(ϑ
(′), ϕ(′)). Note that ϑ(′) and ϕ(′) are the usual polar and azimuthal angles,

respectively, in the spherical coordinate system centered on the corresponding sample

(tip) atom.

Orbital β(γ) Definition χβ(γ)(ϑ
(′), ϕ(′))

s Y 0
0 1

py(′) Y 1
1 − Y −1

1 sin ϑ(′) sinϕ(′)

pz(′) Y 0
1 cosϑ(′)

px(′) Y 1
1 + Y −1

1 sinϑ(′) cosϕ(′)

dx(′)y(
′) Y 2

2 − Y −2
2 sin2 ϑ(′) sin(2ϕ(′))

dy(′)z(′) Y 1
2 − Y −1

2 sin(2ϑ(′)) sinϕ(′)

d3z(′)2−r(
′)2 Y 0

2
1
2
(3 cos2 ϑ(′) − 1)

dx(′)z(
′) Y 1

2 + Y −1
2 sin(2ϑ(′)) cosϕ(′)

dx(′)2−y(
′)2 Y 2

2 + Y −2
2 sin2 ϑ(′) cos(2ϕ(′))

Figure 1. Geometry of a general tip-sample setup. The rotation of the tip coordinate

system is described by the Euler angles (ϑ0, ϕ0, ψ0).
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Figure 2. The surface unit cell of W(110) (shaded area) and the rectangular scan

area for the tunnelling current simulations. Circles denote the W atoms. The top (T)

and hollow (H) positions are explicitly shown.
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Figure 3. (Colour online) Convergence of the normalised averaged current z=4.5

Å above the surface top (T) position (W atom) calculated with different tungsten tip

orientations described by the Euler angles (ϑ0, ϕ0, ψ0) given in degrees, see also Figure

1.
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Figure 4. (Colour online) Tip orientation effect on selected relative current

contributions between sample β and tip γ orbitals [Ĩβγ in Eq.(21), here denoted by

β − γ] using the tungsten tip at V= -0.1 V bias voltage, z=4.5 Å above the surface

top (T) position (W atom). The tip orientation is described by the Euler angles

(ϑ0, ϕ0, ψ0) given in degrees, see also Figure 1. For brevity, we used the notation dz(′)2

for the d3z(′)2
−r(

′)2 orbitals.
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Figure 5. (Colour online) The ∆I(z, V ) = IT (z, V )−IH(z, V ) = 0 contours indicative

for the relative apparent heights of the surface top (T) and hollow (H) positions [see

Eq.(23), and its meaning in the text] calculated using the tungsten tip with different

tip orientations described by the Euler angles (ϑ0, ϕ0, ψ0) given in degrees, see also

Figure 1. The sign of ∆I(z, V ) (+ or −) is explicitly shown at the corners on the right

hand side of each part of the figure: It is positive below the curves, and negative above

them.
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Figure 6. (Colour online) Tip orientation effect on the simulated STM images:

Constant-current contours at I= 6.3 nA and V= -0.25 V bias voltage about z=4.5

Å above the W(110) surface, using the tungsten tip with different orientations

described by the Euler angles (ϑ0, ϕ0, ψ0) given in degrees, see also Figure 1. The

scan area corresponds to the rectangle shown in Figure 2. Light and dark areas denote

larger and smaller apparent heights, respectively.


